
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2024 1

DriveGPT4: Interpretable End-to-end
Autonomous Driving via Large Language Model

Zhenhua Xu, Yujia Zhang, Enze Xie*, Zhen Zhao, Yong Guo,
Kwan-Yee K. Wong, Zhenguo Li, Hengshuang Zhao*

Abstract—Multimodal large language models (MLLMs) have
emerged as a prominent area of interest within the research
community, given their proficiency in handling and reasoning with
non-textual data, including images and videos. This study seeks
to extend the application of MLLMs to the realm of autonomous
driving by introducing DriveGPT4, a novel interpretable end-
to-end autonomous driving system based on LLMs. Capable
of processing multi-frame video inputs and textual queries,
DriveGPT4 facilitates the interpretation of vehicle actions, offers
pertinent reasoning, and effectively addresses a diverse range
of questions posed by users. Furthermore, DriveGPT4 predicts
low-level vehicle control signals in an end-to-end fashion. These
advanced capabilities are achieved through the utilization of a
bespoke visual instruction tuning dataset, specifically tailored
for autonomous driving applications, in conjunction with a mix-
finetuning training strategy. DriveGPT4 represents the pioneering
effort to leverage LLMs for the development of an interpretable
end-to-end autonomous driving solution. Evaluations conducted
on the BDD-X dataset showcase the superior qualitative and
quantitative performance of DriveGPT4. Additionally, the fine-
tuning of domain-specific data enables DriveGPT4 to yield close or
even improved results in terms of autonomous driving grounding
when contrasted with GPT4-V. The webpage of this paper is
available at https://tonyxuqaq.github.io/projects/DriveGPT4.

I. INTRODUCTION

Over the past decade, there has been remarkable growth in
the field of autonomous driving, encompassing both academia
and industry [1], [2]. Commercialized autonomous driving
systems have been successfully implemented in everyday
scenarios, such as harbors, warehouses and urban areas.
Commonly, the autonomous vehicle adopts modular designs,
including perception, planning, and control. In conventional
autonomous driving systems, these modules are implemented
by detailed rule-based methods to handle various scenarios.
But such a system may fail when unseen cases are met, such
as rare accidents.

To ensure that vehicles can effectively handle diverse
situations using intelligent actions, data-driven learning-based
methods have become a widespread component of modern
autonomous driving systems [3], [4], [5], [6], [7]. To better
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integrate and optimize the entire system, some approaches pro-
pose training the network in an end-to-end manner, eliminating
the need for discontinuous intermediate steps [8], [9], [10].
By using vehicle-mounted sensor data as input, the end-to-end
autonomous driving system can directly predict planned paths
and/or low-level vehicle controls. Nonetheless, the end-to-end
learning-based autonomous driving system functions as a black
box, signifying that humans cannot interpret or comprehend
the generated decisions, leading to significant ethical and legal
concerns, which restricts the development of commercialized
autonomous driving systems.

In recent years, explainable autonomous driving [11], [12],
[13], [14], [15] has garnered increasing interest due to its
potential to demystify the black box. These studies develop
large-scale datasets comprising autonomous vehicle data along
with language pairs. Language models, such as BERT [16]
and GPT [17], are trained on these datasets to generate natural
language based on input from vehicle-mounted sensor data.
However, the capabilities of small language models are limited,
causing most of these systems to produce rigid responses to
predefined questions. In addition, small language models suffer
from insufficient model capacity and present unsatisfactory
question-answering performance.

With the advent of large language models (LLMs), such
as ChatGPT [18] and LLaMA [19], the interpretability of
autonomous driving systems could benefit from improved
text prediction, given that LLMs possess extensive general
knowledge about the world. Moreover, LLMs have the potential
to better analyze and generate low-level vehicle controls due to
their inherent reasoning capabilities. To achieve this, LLMs are
required to comprehend multimodal data, like images or videos.
Multimodal LLMs have been attracting increasing interest from
various research communities, such as computer vision [20],
[21], embodied AI [22], [23], and biomedicine [24], [25]. These
studies propose to project multimodal input from image, audio,
video, control, and other spaces into the text domain, allowing
LLMs to understand and process this multimodal data as text.
To the best of our knowledge, no existing paper grounds LLMs
for interpretable end-to-end autonomous driving purposes.

In this paper, we introduce DriveGPT4, an interpretable
end-to-end autonomous driving system that utilizes large
language models. The digit “4” in the system name represents
multimodality, similar to that of MiniGPT4 [26]. DriveGPT4
takes as input a video sequence captured by a front-view
monocular RGB camera, and then predicts the control signal
for the next step (i.e., vehicle speed and turning angle). At the
same time, human users can converse with DriveGPT4, which
can provide natural language responses, such as describing
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the vehicle’s actions and explaining the reasoning behind its
behavior. To train DriveGPT4 to communicate like a human,
we follow LLaVA [27] and create a visual instruction tuning
dataset based on the BDD-X dataset [28] using ChatGPT. The
contributions of this paper are summarized as follows:

• We present DriveGPT4, a novel multimodal LLM for in-
terpretable end-to-end autonomous driving. Mix-finetuned
on the created dataset, DriveGPT4 can process multimodal
input data and generate text responses as well as low-level
control signals.

• We develop a new visual instruction tuning dataset for
interpretable autonomous driving with the assistance of
ChatGPT. The performance of DriveGPT4 is boosted by
finetuning the generated data.

• We evaluate all methods on the BDD-X dataset for
multiple tasks. DriveGPT4 outperforms all baselines,
which demonstrates its effectiveness.

II. RELATED WORKS

End-to-end Autonomous Driving. End-to-end autonomous
driving aims to directly predict the vehicle path and low-
level control signals based on visual inputs [29], [30], [8],
[9], [10]. [31] is considered the first deep learning end-to-end
self-driving work. In this study, the authors train a convolutional
neural network to control vehicles using monocular images as
input. Recent works integrate all system modules by tokenizing
module outputs [9], [10], achieving a more powerful and robust
control effect. However, these works lack interpretability, which
limits their trustworthiness and commercialization potential.
Interpretable Autonomous Driving. To address the black
box issue in learning-based autonomous driving, some studies
employ visualizations [32], [33], [34]. However, visual maps
can be challenging for non-expert passengers to comprehend.
Alternatively, other research utilizes language models to
describe vehicle situations with natural languages, such as
vehicle actions [11], [12], [14], vehicle action reasoning [14],
surrounding object statements [15], and discussions of potential
risks to the ego vehicle [15]. Constrained by the limited capacity
of smaller language models, these methods can only address
predefined human questions and provide inflexible answers,
hindering their widespread application in real-world scenarios.
Multimodal LLM. Building on the powerful pretrained LLM
weights, such as PaLM [35], [22], LLaMA [19], [36], and
Vicuna [37], multimodal LLMs aim to handle multiple types
of input beyond text. Blip [21], [38] leverages Q-formers to
project multimodal input into the text space, while others
[25], [39] simply train a fully connected layer as the projector.
Multimodal LLMs have been widely applied to various tasks,
such as image understanding [38], [27], video understanding
[39], [40], [41], [26], [42], medical diagnosis [25], [24],
and embodied AI [35], [22], [43], [23], etc. Our task is
closely related to video understanding and embodied AI.
DriveGPT4 is inspired by the former to understand input
video data and the latter to predict control signals. Among
these works, only a few focus on autonomous driving-related
tasks [44], [45], [46]. DriveLikeHuman [44] can only handle
simple simulation scenes, limiting its real-world applicability.

Action description: The car is stopped Action justification: for the red light

Action description: The car pulls into the right lane
Action justification: because traffic is moving faster in that lane.

Fig. 1: Example of BDD-X labeled data.

NuPrompt [45] focuses on object tracking for vehicle perception
but does not consider end-to-end driving or vehicle action
reasoning. DriveLM [46] is a large benchmark for driving
scene understanding.

III. DATA GENERATION

A. BDD-X Dataset.

The BDD-X dataset [28] is employed in this study due to
the scarcity of publicly available datasets suitable for our task.
We sourced both videos and labels from the BDD-X dataset.
This dataset contains approximately 20,000 samples, which
consist of 16,803 clips designated for training and 2,123 for
testing. Each clip is divided into eight images. The BDD-X
dataset provides control signal data for each frame, such as
vehicle speed and turning angle. It also includes text annotations
detailing vehicle action descriptions and action justifications
for every video clip, as exemplified in Fig. 1.
BDD-X question-answerings. BDD-X provides three types
of labels: vehicle action descriptions, action justifications, and
control signals for each video clip. To train the LLM, question-
answering (QA) pairs are required. We generate a set of
synonymous questions and use corresponding BDD-X labels
as the answer. For example, for a vehicle action description,
a question equivalent to “What is the current action of this
vehicle?” should be sent to the LLM as the input question.
Then, the LLM should generate the response, whose ground
truth label is the vehicle action description. Considering there
are three types of labels in the BDD-X dataset, we create three
question sets: Qa, Qj , and Qc. To prevent the LLM from
overfitting to fixed question patterns, inspired by [27], each
question set should contain multiple synonymous expressions
of one question.

• Qa contains synonymous questions equivalent to “What is
the current action of this vehicle?”. A randomly selected
question qa ∈ Qa forms a QA pair with the action
description label.

• Qj contains synonymous questions equivalent to “Why
does this vehicle behave in this way?”. A randomly
selected question qj ∈ Qj forms a QA pair with the
action justification label.

• Qc contains synonymous questions equivalent to “Predict
the speed and turning angle of the vehicle in the next
frame.”. A randomly selected question qc ∈ Qc forms a
QA pair with the control signal label.

A randomly selected question qX ∈ QX and a corresponding
label form a QA pair to create the dataset. LLMs can learn to
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Large Language Model

Human questions:
“What is the current action of the
vehicle?” ”Why does the vehicle
behave in this way?”

Visual Encoder

Text Tokenizer

Text De-Tokenizer

DriveGPT4 answers:
“The vehicle is driving
forward.” ”Because the road is
clear with no obstacles forward.”

, i.e., speed and turning angleat

Input video frames:

DriveGPT4

Predicted control signals:

Stage 1: Pretraining (Alignment)

Stage 2: Mix-finetune (Instruction-tuning)

702K Videos 595K Images

73K Videos 150K Images

16K
BDD-X QAs

+
40K ChatGPT QAs

ChatGPT

Stage 1:

Stage 2:

Projector

Fig. 2: DriveGPT4 overview. DriveGPT4 is a comprehensive multimodal language model capable of processing inputs comprising videos, and
texts. Video sequences undergo tokenization using a dedicated video tokenizer, while text and control signals share a common de-tokenizer.
DriveGPT4 can concurrently generate responses to human inquiries and predict control signals.

predict and interpret vehicle actions simultaneously. However
these QA pairs have fixed and rigid contents. Due to the lack of
diversity, training solely on these QAs will degrade the ability
of LLMs and render them incapable of answering questions in
other formats.
Additional QAs generated by ChatGPT. In previous works,
ADAPT [14] trains a caption network to predict descriptions
and justifications. However, the provided description and
justification labels are fixed and rigid. If human users wish
to learn more about the vehicle and ask everyday questions,
past works may fall short. Thus, BDD-X alone is insufficient
for meeting the requirements of interpretable autonomous
driving. Instruction tuning data generated by ChatGPT/GPT4
has been proven effective for performance enhancement in
natural language processing [37], image understanding [27],
and video understanding [42], [40]. ChatGPT/GPT4 can access
privileged information (e.g., image-labeled captions, ground
truth object bounding boxes) and is prompted to generate
conversations, descriptions, and reasoning. Currently, there is
no visual instruction-following dataset tailored for autonomous
driving purposes. Therefore, we create our own dataset based
on BDD-X assisted by ChatGPT.

To address the aforementioned issue, ChatGPT is leveraged
as a teacher to generate more conversations about the ego
vehicle. The prompt generally follows the prompt design used
in LLaVA. To enable ChatGPT to ”see” the video, YOLOv8
[47] is implemented to detect commonly seen objects in
each frame of the video (e.g., vehicles, pedestrians). Obtained
bounding box coordinates are normalized following LLaVA
and sent to ChatGPT as privileged information. In addition to
object detection results, the video clip’s ground truth control
signal sequences and captions are also accessible to ChatGPT.
Based on this privileged information, ChatGPT is prompted to

generate multiple rounds and types of conversations about the
ego vehicle, traffic lights, turning directions, lane changes,
surrounding objects, spatial relations between objects, etc.
Detailed prompt is provided in the appendix.

Finally, we collect 56K video-text instruction-following
samples, including 16K BDD-X QAs and 40K QAs generated
by ChatGPT. An example is shown in Tab. I.

IV. DRIVEGPT4

A. Model Architecture

DriveGPT4 is a versatile multimodal LLM capable of
handling various input types, including videos, and texts. Videos
are uniformly sampled into a fixed number of images, and a
video tokenizer based on Valley [39] is employed to convert
video frames into text domain tokens. All generated tokens are
concatenated and input into the LLM. In this paper, LLaMA2
[36] is adopted as the LLM. Upon producing predicted tokens,
a de-tokenizer decodes them to restore human languages.
Drawing inspiration from RT-2 [43], texts and control signals
utilize the same text de-tokenizer, signifying that control signals
can be interpreted as a language and effectively processed by
LLMs. Decoded texts contain predicted signals in a fixed
format. The overview architecture of DriveGPT4 is visualized
in Fig. 2.
Video tokenizer. Let the input video frames be denoted as V =
[I1, I2, ..., IN ]. For each video frame Ii, the pretrained CLIP
visual encoder [48] is used to extract its feature Fi ∈ R257×d.
The first channel of Fi represents the global feature of Ii, while
the other 256 channels correspond to patch features of Ii. For
succinct representation, the global feature of Ii is denoted as
FG
i , while the local patch features of Ii are represented as FP

i .
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Caption1: Action description
The car turns right
Caption 2: Action justification
As the road is clear to turn.
Control signals
Speed(m/s): 3.91, 3.1, 2.35, 2.92, 3.51, 4.24, 4.85, 5.22
Turning angle(degree): 0.0, -3.08, -5.98, -4.66, -2.91, 1.97, 7.02, 14.46
Object boxes
Frame 0: car:[0.298, 0.408, 0.572, 0.756], car:[0.924, 0.408, 1.0, 0.51], car:[0.005, 0.83, 0.995, 0.982], car:[0.737, 0.373, 0.933, 0.522],
car:[0.737, 0.373, 0.933, 0.522]
Frame 1: car:[0.327, 0.416, 0.623, 0.779], car:[0.004, 0.827, 0.99, 0.982], car:[0.961, 0.426, 1.0, 0.523], car:[0.76, 0.379, 0.966, 0.538]
Frame 2: car:[0.393, 0.427, 0.709, 0.777], car:[0.79, 0.387, 0.945, 0.553], car:[0.003, 0.825, 0.99, 0.98], car:[0.926, 0.434, 1.0, 0.549]
Frame 3: car:[0.518, 0.424, 0.849, 0.791], car:[0.834, 0.397, 0.994, 0.587], car:[0.007, 0.825, 0.983, 0.985]
Frame 4: car:[0.695, 0.542, 0.924, 0.777]
Frame 5:
Frame 6:
Frame 7:

BDD-X QAs
Question: What is the action of this vehicle?
Answer: The car turns right.
Question: Why does this vehicle behave in this way?
Answer: as the road is clear to turn.
Question: Predict the speed of the ego vehicle.
Answer: 5.5.
Question: Predict the turning angle of the ego vehicle.
Answer:7.44.

QAs generated by ChatGPT
Question: What objects are present in the video, and how do they change throughout the frames?
Answer: The video features various objects. As the video progresses, the positions and visibility of these objects change. In the initial frames,
there are multiple cars. As the ego vehicle turns right, the surrounding cars gradually disappear from view.
Question: What can we learn from the ego vehicle’s interactions with the traffic and surrounding environment?
Answer: The ego vehicle’s interactions with the traffic and surrounding environment demonstrate the importance of safe driving practices.
The driver maintains a proper speed while navigating through traffic and pays attention to their surroundings, such as the positions of other
vehicles. As they make the right turn, they ensure the road is clear before accelerating. These actions highlight the need for drivers to be
aware of their environment, follow traffic rules, and prioritize safety when sharing the road with other users.

TABLE I: Example of the instruction-tuning data sample. The upper part of this figure demonstrates input information to ChatGPT,
including video captions, control signals and object detection results obtained by YOLOv8. The lower part shows BDD-X QAs and
conversations generated by ChatGPT. Refer to the appendix for detailed prompts.

Human: Current speed of the vehicle: 2.15m/s. The length of this video is 2.10 seconds. What is the current action of this vehicle? Assistant:
The car slows down to a stop.
Human: Why does the vehicle behave in this way? Assistant: since the light ahead became red.
Human: Forecast the speed of the vehicle. Assistant: 2.09.
Human: Forecast the turning angle of the vehicle. Assistant: 0.00.

TABLE II: Example of DriveGPT4 predictions. In this example, 4 out of 8 frames are shown for concise visualization.

The temporal visual feature of the entire video can then be
expressed as:

T = FG
0 ⊕ FG

1 ⊕ ...⊕ FG
N (1)

where ⊕ denotes concatenation. The spatial visual feature of

the whole video is given by:

S = Pooling(FP
0 , FP

1 , ..., FP
N ) (2)

where Pooling(·) represents a pooling layer that convert N
features into a single feature tensor for memory efficiency.
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Ultimately, both the temporal feature T and spatial feature S
are projected into the text domain using a projector.
Text and control signals. Inspired by RT-2 [43], control signals
are processed similarly to texts, as they belong to the same
domain space. Control signals are directly embedded within
texts during the process. The default LLaMA tokenizer is
employed. DriveGPT4 should predict control signals in the
next step (i.e., (vN+1,∆N+1)) based on the multimodal input
data. The speed of ego vehicle and time length of the input
video clip are included in the text input. The turning angle
represents the relative angle between the current frame and the
previous frame. After obtaining predicted tokens, the LLaMA
tokenizer is used to decode tokens back into texts. Predicted
control signals are embedded in the output texts using a fixed
format, allowing for easy extraction. An example illustrating
the input and output of DriveGPT4 is presented in Tab. II.

B. Training
Consistent with previous LLM-related studies, DriveGPT4’s

training consists of two stages: (1) the pretraining stage,
focusing on video-text alignment; and (2) the mix-finetuning
stage, aimed at training the LLM to answer questions related
to interpretable end-to-end autonomous driving.
Pretraining. In line with LLaVA [27] and Valley [39], the
model undergoes pretraining on 593K image-text pairs from the
CC3M dataset and 703K video-text pairs from the WebVid-2M
dataset [49]. The pretraining images and videos encompass
various topics and are not specifically designed for autonomous
driving applications. During this phase, the CLIP encoder and
LLM weights remain fixed. Only the projector is trained.
Mix-finetune. In this stage, the LLM in DriveGPT4 is trained
alongside the projector. To enable DriveGPT4 to understand and
process domain knowledge, it is trained with the 56K video-text
instruction-following data generated in Section III. However the
56K autonomous driving domain data is not sufficient for LLM
fine-tuning, and DriveGPT4 might have serious hallucination
issues (e.g., detecting non-existent vehicles or traffic lights).
To enhance DriveGPT4’s ability for visual understanding and
question answering, we scale up the fine-tuning dataset by
utilizing 223K general instruction-following data generated
by LLaVA and Valley for mix-finetuning. “Mix” represents
that general visual understanding data is utilized for training
together with task-specific instruction tuning data for our task.
Consequently, DriveGPT4 is finetuned with 56K video-text
instruction-following data for autonomous driving together with
223K general instruction-following data. The former ensures
that DriveGPT4 can be applied for interpretable end-to-end
autonomous driving, while the latter enhances the data diversity
and visual understanding ability of DriveGPT4. For training
efficiency, DriveGPT4 is first finetuned with 223K general data
and then further finetuned by 56K domain specific data. To
further improve the reasoning ability of DriveGPT4 and handle
the hallucination issue, in the future, we plan to create more
instruction-tuning data based on the CARLA simulator.

V. EXPERIMENT

In this paper, DriveGPT4 focuses on interpretable end-to-end
autonomous driving. With video frames and human questions as

TABLE III: Testing set split.

Split Scenes Amount

Easy Stopped; Driving forward; Parked; etc. 1202
Medium Lane switch; Acceleration; Intersection; etc. 295
Hard Vehicle turning; Traffic light change; etc. 312

input, the method is required to predict interpretations in human
language and control signals in the next step. Currently, except
the BDD-X dataset, there are very few existing datasets that
provide video clips captured by vehicle-mounted cameras with
text interpretation and control signal annotations. Therefore, we
mainly conduct evaluation experiments on the BDD-X dataset.
The BDD-X dataset is filtered to remove samples that have
inconsistent control signals and text reasoning.

A. Interpretable Autonomous Driving

In this section, we evaluate DriveGPT4 and its baselines on
interpretation generation, covering vehicle action description,
action justification, and additional questions about vehicle
status. ADAPT [14] serves as the state-of-the-art baseline
work. Recent multimodal video understanding LLMs [40], [39]
are also considered for comparison. All methods use 8-frame
videos as input. Currently, DriveGPT4 does not take 32-frame
videos as input like ADAPT considering the heavy memory
consumption and inference speed, which could be treated as a
limitation of this work.
Testing Set Split. During vehicle driving, the distribution of
scenes is usually not balanced. For example, some simple
scenes like driving straight-forward are more commonly seen
than more challenging vehicle turning or lane changes. For a
comprehensive evaluation comparison, the testing set is split
into “Easy”, “Medium” and “Hard” sets based on the driving
scene and vehicle status. Detailed split information is shown
in Tab. III.
Evaluation Metrics. To thoroughly assess the methods, we
report multiple metric scores widely used in the NLP com-
munity, including CIDEr [50], BLEU4 [51], and ROUGE-L
[52]. The BDD-X QA task tends to have a fixed format, so
the aforementioned NLP metrics are already sufficient for
evaluation. ChatGPT-generated QAs possess flexible formats
and more complicated semantic meanings. Following past
MLLM works [27], [42], [39], we also report the score
generated by ChatGPT. ChatGPT is prompted to assign a
numerical score between 0 and 1, with a higher score indicating
better prediction accuracy. The detailed prompt for ChatGPT-
based evaluation is available in the appendix. However, it
should be noted that the ChatGPT score is not stable, thus we
report the mean of three times of evaluations for reference.
Action Description and Justification. The goal is to predict
vehicle action descriptions and justifications as closely as
possible to the given labels. Evaluation results of all testing
splits are displayed in Tab. IV. More detailed results are shown
in Tab. V. From the results, it is observed that DriveGPT4
outperforms the previous SOTA baseline ADAPT on all testing
data, especially for the “Hard” splits with more challenging
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TABLE IV: Quantitative results of comparison experiments on different splits of the BDD-X testing dataset. We provide evaluation results on
comprehensive text answering (i.e., combining description and justification). “B4” represents the BLEU4 metric score.

Method Easy Medium Hard All

CIDEr↑ B4↑ ROUGE↑ CIDEr↑ B4↑ ROUGE↑ CIDEr↑ B4↑ ROUGE↑ CIDEr↑ B4↑ ROUGE↑
ADAPT 100.93 20.90 46.17 62.66 16.44 40.80 52.71 13.56 40.49 85.38 17.40 43.04

Video-LLaMA 10.31 2.59 11.47 9.10 1.34 9.08 2.99 1.12 9.09 8.90 1.52 10.86
Valley 31.27 5.31 44.29 17.35 4.10 31.55 9.76 2.34 20.46 20.91 4.75 14.54

DriveGPT4 113.20 20.38 46.46 65.01 16.94 40.51 57.29 12.28 42.07 99.10 18.32 44.73

TABLE V: Quantitative results of comparison experiments on the whole BDD-X testing dataset. We provide evaluation results on action
description, action justification, and full-text generation (i.e., i.e., combining description and justification). “B4” stands for BLEU4.

Method Description Justification Full

CIDEr↑ B4↑ ROUGE↑ CIDEr↑ B4↑ ROUGE↑ CIDEr↑ B4↑ ROUGE↑
ADAPT 227.93 32.99 61.82 80.00 9.25 30.79 85.38 17.40 43.04

DriveGPT4 256.03 35.41 63.77 98.71 10.02 31.52 99.10 18.32 44.73

TABLE VI: Quantitative results of control signals prediction on the whole BDD-X testing dataset.

Method Speed (m/s) Turning angle (degree)

RMSE↓ A0.1 ↑ A0.5 ↑ A1.0 ↑ A5.0 ↑ RMSE↓ A0.1 ↑ A0.5 ↑ A1.0 ↑ A5.0 ↑
ADAPT 3.02 9.56 24.77 37.07 90.39 11.98 27.93 66.83 75.13 89.45

DriveGPT4 1.30 30.09 60.88 79.92 98.44 8.98 59.23 72.89 79.59 95.32

The car merges left as it 
drives down the road

What is the current action
of the ego vehicle?

because the lane is open.

Why does the vehicle
behave in this way?

Speed: 22.52
Turning angle: 0.35

Predict the speed and
turning angle of the
vehicle in the next step.

Is there any risk to the ego vehicle?

The video shows several cars in the surrounding 
area. In each frame, multiple cars can be 
observed. These cars are moving at different 
speeds and positions. Some cars are in the same 
lane as the ego vehicle, while others are in 
adjacent lanes. The presence of these 
surrounding vehicles indicates that the ego 
vehicle is driving in a typical traffic scenario.

Provide more details about the surrounding.

Yes, there is a risk to the ego vehicle. A vehicle 
is detected in the lane of the ego vehicle. This 
vehicle is moving slowly and it appears to be in 
a position where it could potentially collide with 
the ego vehicle. The ego vehicle veers left to 
avoid a collision.

BDD-X QAs Additional QAs

The car is heading down 
the highway

What is the current action
of the ego vehicle?

because traffic is moving 
at a steady speed.

Why does the vehicle
behave in this way?

Speed: 8.96
Turning angle: 3.52

Predict the speed and
turning angle of the
vehicle in the next step.

Is there any risk to the ego vehicle?

The surrounding cars and the truck can be seen 
moving alongside the ego vehicle. They 
maintain their relative positions throughout the 
video, suggesting a consistent driving pattern. 
The ego vehicle does not appear to change 
lanes or overtake any other vehicles.

Provide more details about the surrounding.

No. The ego vehicle, which is the car we are 
observing from, appears to be maintaining a safe 
distance from the car in front of it. It slows 
down when the car in front slows down, 
indicating a cautious driving behavior.

BDD-X QAs Additional QAs

Fig. 3: QAs of DriveGPT4 on the BDD-X testing set.

TABLE VII: Quantitative results of comparison experiments on
additional question answering. The model is required to answer
questions generated by ChatGPT. “B4” stands for BLEU4. “-”
indicates the value is not available.

Method CIDEr↑ B4↑ ROUGE↑ ChatGPT↑
ADAPT - - - -

Video-LLaMA 5.71 2.94 10.20 27.75
Valley 11.37 5.01 11.09 43.23

DriveGPT4 56.34 22.94 31.70 81.62

driving scenes and vehicle dynamics. The effectiveness and
superiority of the proposed DriveGPT4 are well demonstrated.
Additional Question Answering. The above vehicle action
description and justification have relatively fixed formats. To
further evaluate the interpretable ability and flexibility of
DriveGPT, additional questions are generated following section
III-A. A hundred randomly sampled video clips in the BDD-
X testing set are used for question generation. Compared
with action descriptions and justifications, these questions are

more diverse and flexible. The evaluation results are shown in
Tab. VII. ADAPT cannot answer additional questions except
for the vehicle action description and justification. Previous
video understanding LLMs can answer these questions but
they do not learn autonomous driving domain knowledge.
Compared with all baselines, DriveGPT4 presents superior
results, demonstrating its flexibility.

B. End-to-end Control
In this section, we evaluate DriveGPT4 and its baselines for

open-loop control signal prediction, specifically focusing on
speed and turning angle. All methods are required to predict
control signals for the next time step. Following previous
works on control signal prediction, we use root mean squared
error (RMSE) and threshold accuracies (Aτ ) for evaluation.
Aτ measures the proportion of test samples with prediction
errors lower than τ . For a comprehensive comparison, we set
τ with multiple values: {0.1, 0.5, 1.0, 5.0}. The quantitative
results for the previous state-of-the-art (SOTA) method ADAPT
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TABLE VIII: Quantitative results of ablation studies on the BDD-X dataset. “BQ”, “CQ”, “MF” represent BDD-X QAs, ChatGPT QAs and
Mix-finetune, respectively. “-” indicates the value is not available.

BQ CQ MF BDD-X Questions ChatGPT Questions Speed Turning Angle

CIDEr↑ B4↑ ROUGE↑ CIDEr↑ B4↑ ChatGPT↑ RMSE↓ A0.1 ↑ A1.0 ↑ RMSE↓ A0.1 ↑ A1.0 ↑
20.91 4.75 14.54 11.37 5.01 43.23 - - - - - -

✓ ✓ 95.75 18.25 44.03 9.96 2.54 31.03 1.69 22.82 77.91 9.97 55.97 76.11
✓ ✓ 10.40 2.31 5.35 50.09 21.53 79.37 - - - - - -

✓ ✓ 76.51 11.09 40.93 17.24 10.50 77.37 4.67 17.15 44.82 14.80 21.19 70.02
✓ ✓ ✓ 99.10 18.32 44.73 56.34 22.94 81.62 1.30 30.09 79.92 8.98 59.23 79.59

The car is stopped at an 
intersection

What is the current action
of the ego vehicle?

because the light is red 
and pedestrians are 
crossing the street.

Why does the vehicle
behave in this way?

Speed: 0.0
Turning angle: 0.0

Predict the speed and
turning angle of the
vehicle in the next step.

Provide more details about the surrounding.

Based on the video, there is no evident risk to 
the ego vehicle. The car is stopped at the 
intersection, likely waiting for the traffic light 
to turn green. It appears that the car is 
following the traffic rules and waiting for its 
turn to proceed. The surrounding vehicles and 
pedestrians seem to be behaving normally, 
without any immediate threats to the ego 
vehicle.

Is there any risk to the ego vehicle?

The video shows a typical urban environment 
with various objects and activities. In the 
background, there are buildings and roads that 
are commonly seen in a city. Pedestrians can be 
seen walking on the sidewalks, and vehicles are 
driving on the road. The presence of traffic 
lights indicates that there is a regulated flow of 
traffic. It seems to be a busy intersection where 
pedestrians and vehicles interact.

BDD-X QAs Additional QAs

Fig. 4: Zeroshot generalization of DriveGPT4 on NuScenes [53].

The car drives forward

What is the current action
of the ego vehicle?

The vehicle is turning to
the left.

Whether this vehicle
turns?

Is there any risk to the ego vehicle?

The driver should pay attention to the
movement of the car in front and adjust their
driving accordingly. In this situation, it is
important to maintain a safe distance and be
prepared to react in case of any sudden changes
in the traffic situation.

Any suggestions for the driver?

Yes, there is a risk to the ego vehicle in the
video. As the car turns left, there is a possibility
of the car in front suddenly hitting the brakes
and stopping. This could potentially cause a
collision or harm to the ego vehicle if it is not
careful.

Fig. 5: Zero-shot generalization of DriveGPT4 on video games.

and DriveGPT4 are shown in Tab. VI. DriveGPT4 achieves
superior results for both speed and turning angle predictions.

C. Qualitative Results.

Multiple qualitative results are provided for intuitive com-
parison. For concise visualization, we only show four frames
of the input video clip. First, an example from the BDD-X
testing set is visualized in Fig. 3. DriveGPT4 can generate
high-quality texts and control predictions based on the prompt.
Then, to verify the generalization ability of DriveGPT4, we
apply DriveGPT4 to the NuScenes dataset [53] for zero-shot
QA in Fig. 4. We also try DriveGPT4 on video games to further
test its generalization ability. An example is shown in Fig. 5.
GPT4-V. As the multimodal version of GPT4, GPT4-V can un-
derstand, and reason single-frame images, illustrating excellent
generalization ability for various daily tasks. However, GPT4-V
is still a general model for images, and not specially finetuned
for grounding autonomous driving applications. Before the
comparison, GPT4-V is prompted with several BDD-X QA
pairs in advance. During the qualitative evaluation, even though
GPT4-V illustrates powerful recognition and reasoning ability,
it is observed that it (1) cannot predict numerical control

The current action of the ego vehicle is slowing down and coming to a stop.

This is a time series of seven pictures taken from a driving recorder. The chronological 
order is marked on the corresponding subfigure. This is a 4 seconds long video clip. 
Answer: What is the current action of the ego vehicle?

Why does this vehicle behave in this way? 

The vehicle behaves in this way likely due to traffic conditions ahead, possibly caused by a traffic 
signal or the actions of other vehicles on the road that are slowing down or stopping.

Predict the peed and turning angle of the ego vehicle in the next time step.

Predicted speed: 0.0 km/h (the vehicle will likely come to a complete stop); Turning angle: 0.0 
degrees (the vehicle will likely remain stationary without turning).

The car is driving forward.

What is the current action of the ego vehicle?

because traffic is moving freely

Why does the vehicle behave in this way?

Speed: 7.07
Turning angle: 0.00

Predict the speed and turning angle of the
vehicle in the next step.

DriveGPT4

GPT4-VGround Truth

The car accelerates because the traffic is moving forward.
Speed: 6.67 m/s
Turning angle: 0.40

Fig. 6: Comparison of DriveGPT4 and GPT4-V. GPT4-V is prompted
with BDD-X QA pairs before the comparison.

signals; (2) fails to correctly understand some vehicle actions,
especially dynamic actions (e.g., turning, accelerating, etc.).
An example is shown in Fig. 6. More examples can be found
in the appendix.

D. Ablation Studies

In this paper, several ablation studies are conducted to
validate proposed designs, and the results are provided in
Tab. VIII. By removing either BDD-X QAs or ChatGPT QAs
during finetuning, a decrease in corresponding performance is
observed, highlighting the significance of including all task-
specific multimodal data. QA pairs generated by ChatGPT
enable DriveGPT4 to answer human questions in more flexible
patterns, and enhance the QA ability of BDD-X questions.
Then, we test DriveGPT4 without the mix-finetune strategy by
removing the general image and video instruction-following
data. Severe performance deduction is observed, indicating the
necessity of finetuning DriveGPT4 with diverse multimodal
data. Thus, changes to DriveGPT4 would negatively impact
its versatile QA capabilities for interpretable end-to-end au-
tonomous driving.

VI. CONCLUSION

This paper presents DriveGPT4, an interpretable end-to-end
autonomous driving system using multimodal LLM. A new
dataset for autonomous driving interpretation is developed
with the assistance of ChatGPT and employed to mix-finetune
DriveGPT4, enabling it to respond to human inquiries about
the vehicle. DriveGPT4 utilizes input videos and texts to
generate textual responses to questions and predict control
signals for vehicle operation. It outperforms baseline models
in various tasks such as vehicle action description, action
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justification, general question answering, and control signal
prediction. Moreover, DriveGPT4 exhibits generalization ability
through zero-shot adaptation. In the future, DriveGPT4 will
be further enhanced for close-loop vehicle control tasks. To
handle the drifting issue of imitation learning, an LLM expert
will be developed for data collection without human effort.
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