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 

Abstract— Gravitational search algorithm (GSA) is a novel 

technique as compared to other heuristic methods and depends 

upon the gravitational forces between masses. It showed better 

performance in terms of convergence but has slow exploitation 

ability due to the fitness function effect on masses; they are getting 

heavier after every iteration. Therefore, masses are getting closer 

to each other and nullify the gravitational forces on each other 

avoiding them from swiftly exploiting the optimum. In order to 

solve this problem in this paper, an advanced gravitational search 

algorithm (AGSA) with modified exploitation strategy is proposed.  

The reason for the modification is that the agents will reach the 

optimum point swiftly and the convergence is much faster as 

compared to the standard and other improved versions of GSA 

available in the literature. AGSA is also compared with the 

standard and modified Particle Swarm Optimization algorithm in 

this paper. Five benchmark functions have been implemented to 

assess the efficiency of the presented algorithm. In addition, a 

standard, constrained, design problem of a pressure vessel design 

is also used to examine the efficiency of the proposed technique. 

Simulation results empirically validated that the presented 

algorithm has remarkably better results in accordance with 

convergence and solution stability when compared to the other 

methods. 

I. INTRODUCTION 

Among the different nature-inspired algorithms, GSA is a 

novel technique that can solve advance and difficult problems. 

It depends upon gravity law and the law of motion [1] and 

comes under a population-based technique that are having 

different masses. Depends upon the gravitational force, agents 

are giving information directly for undeviating the search and 

to explore the finest solution in the search area [2]. GSA that is 

inspired and depends upon the laws of physics has improved 

performance and characteristics than any nature inspired or bio-

inspired algorithms such as particle swarm optimization, cat 

swarm, Harmony search and others [3].  

In GSA, each agent is replicated as a matter and the problem 

search area as the universe where they are experiencing 

gravitational force. The Einstein general theory of relativity 

states that the gravitational field is demonstrated as a curvature 

of space-time. Due to this reason, many opportunities are still in 

this area of research to utilize the concepts of gravity and 

introduce new search operators. As a result, GSA is evaluated as 

a physics-based metaheuristic search algorithm and population-

based too. Newton's second law of motion defines some 

operators for GSA are agents’ movement, mass allotment and 

calculation of the force acting on the objects. Since distance and 

mass influence the force of gravity, the agents collaborate and 

content through gravity. Dependence on the distance, the 
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summation of the gravitational forces and the relationship 

between masses and fitnesses make this technique inimitable. To 

maintain stability between exploitation and exploration a new 

strategy in the velocity is proposed in this paper.  

In AGSA, different agents are applying forces simultaneously 

on one another and therefore, the step-size is comparatively 

large. Due to this larger step size movement, the exploration of 

the AGSA is good. However, the bigger step size leads to poor 

exploitation in the final stage. As a result, the algorithm suffers 

from poor solution stability, convergence, and less accuracy.  In 

order to solve this problem and to develop a bridge between 

exploration and exploitation, a new term is introduced in the 

velocity update equation in (11) with an exponentially 

decreasing value as the number of iterations is increasing; this 

helps to decrease the step size and thus improving exploitation. 

II. FUNDAMENTAL CONCEPTS OF GRAVITY LAW AND AGSA  

Amongst the four other basic interactions in nature, one of 

the basic property is the force of gravity that is the propensity 

to accelerate the masses towards themselves. The gravitational 

force causes the particles to attract each other towards itself. 

The inexorableness and unavoidability of the gravitational force 

create it unique among the different natural forces. Newton has 

described the force of gravity as an action from a distance that 

explains gravity acts upon different distanced particles without 

interruption and without any mediator. Newton Law of gravity 

is defined as “A gravitational force enforced each particle to 

attract every other particle in this universe. This gravitational 

force F is inversely proportional to the square of the distance 

they are separated from each other and directly proportional to 

the product of their masses [4]: 

 𝐹 = 𝐺
𝑀𝑎  𝑀𝑏

𝑅2                                                           (1) 

where G is a gravitational constant and its value is 6.6738 ×10-

11N⋅m2/kg2, Ma is the mass of the first particle and Mb mass of 

the second particle, R is the distance between the two particles 

they are separated from each other and F is the force of gravity. 

Also, the second law of Newton describes as  while force is 

exerted acceleration a is produce that is dependent on its mass 

“M” and this force  [5]: 

  𝑎 =
𝐹

𝑀
                                                                         (2) 

Due to the force of gravity particles of the universe attract all 

the other particles based on the principles (1) and (2). The 

influence of larger and nearer particles are greater. Therefore, if 

the distance increases the force of gravity also decreases 

between them. Moreover, due to the reducing in the force of 
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gravity, the definite value of the “G” is based on the real time 

of life of the universe. (3) shows the curtailment of the “G “with 

the time: 

𝐺(𝑡) = 𝐺(𝑡0) ∗ (
𝑡0

𝑡
)

𝛽  

, 𝛽 < 1                                              (3) 

where at time t, G(t) is the value of the gravitational constant 

and G(t0) is the value of the gravitational constant at the first 

cosmic Quantum-interval of time (t0), as β<1                                              

value of G is larger initially. It facilitates the exploration 

approach and ensures a swift convergence. To find out the 

whole search area in AGSA and at the end of the search 

exploitation fade in and exploration fade out for the faster 

convergence G asymptotically inclines to G (t0). The β is used 

to adjust the value of G. For the same G (t0) a smaller value of 

β guarantees a larger value of G initially. Thus, the convergence 

of GSA is controlled [6]. Value of β=0.1. 

Theoretic physics defines masses in three different types these 

are as follows: 

A. Inertial mass 

When a force is applied, Inertial mass “Mi” is the amount of the 

object’s confrontation to change its state of motion. Heavier 

inertial mass object varies its state of motion swiftly than an 

object with less inertial mass gradually varies its state of 

motion. 

B. Passive gravitational mass 

Passive gravitational mass “Mp” is the amount of the strength of 

an object’s interaction with the gravitational field. The 

gravitational field is weak for smaller “Mp”, as compared to the 

object with heavy “Mp”.  

C. Active gravitational mass 

 Active gravitational mass “Ma” is the amount of the strength of 

the gravitational field because of an individual object. For 

smaller values of “Ma”, the gravitational field of an object is 

weak as compared to the object with larger values of “Ma”.  

According to the above characteristics, Newtown’s Law of 

Gravity can be modified as follow:   

Fij is the gravitational force that applied by mass j on mass i 

which is inversely proportional to the square of the distance 

between them and directly proportional to the product of the 

“Mpi” and “Maj”. “ai” is inversely proportional to inertia mass 

of i and proportional to Fij. Precisely (1) and (2) can be modified 

as follows: 

𝐹𝑖𝑗 = 𝐺 
𝑀𝑎𝑗 𝑀𝑝𝑖

𝑅2                                                                     (4) 

𝑎𝑖𝑖 =
𝐹𝑖𝑗

𝑀𝑖𝑖
                                                                        (5) 

In spite of the fact Ma, Mp and Mi are theoretically definite; so 

far, none of the observations have demonstrated any absolute 

dissimilarity amidst them. The general relativity’s theory relies 

upon the supposition stating that passive gravitational mass and 

inertial mass are the same. This phenomenon is acknowledged 

as the weak equivalence principle. 

III. ADVANCED GRAVITATIONAL SEARCH 

ALGORITHM 

In this method, the mass of the agents/particles is 

considered as the criteria of their performances. Objects 

(agents) are attracted to each other by the gravitational force 

that is responsible for the movement of these agents globally in 

the direction of the heavier masses agents. The objects having 

heavyweight matches with best results of the given problem. 

Since AGSA depends upon the physics laws, each object has 

four properties these are: “Mp”, “Mi”, “Ma” and position. The 

Problem solution is determined by the position of the object and 

by using a fitness function; inertial and gravitational masses are 

calculated. Gradually, objects (masses) are attracted towards 

the objects with heavier mass. The pseudo code of AGSA is as 

follows: 

Let suppose a system of the objects with L objects, the ith object 

position can be denoted as:  

𝑋𝑖 = ( 𝑋𝑖
1, 𝑋𝑖

2, … … … … … 𝑋𝑖
𝑑 , 𝑋𝑖

𝑁) 𝑓𝑜𝑟 𝑖 = (1,2, . . 𝑁)        (6)    

In the dth dimension, N represents the dimension of search space 

and xd shows the position of the ith object.  

The force exerting on mass “i” from mass “j” at time t is 

represented as: 

𝐹𝑖𝑗
𝑑(𝑡) = 𝐺(𝑡)

𝑀𝑝𝑖 (𝑡) ∗  𝑀𝑎𝑗(𝑡)

𝑅𝑖𝑗(𝑡)+ 𝜀
  (𝑋𝑗

𝑑(𝑡) − 𝑋𝑖
𝑑(𝑡))                  (7)                                                             

where Rij(t) is the distance between two objects i and j, Mpi is 

the passive gravitational mass related to object i, G(t)  is a 

gravitational constant at time t, ε is a small constant and Maj is 

an active gravitational mass of object j.  

Let’s suppose that the total force acted on object i in dimension 

d is a random weighted sum of all the components of the forces 

applied on the other objects then (7) can be rewritten as  

𝐹𝑖
𝑑(𝑡) =  ∑ 𝑟𝑎𝑛𝑑𝑗 𝐹𝑖𝑗

𝑑𝑁
𝑗=1,𝑗 ≠i (t)                                              (8) 

At time t, the acceleration of the object i by the law of motion 

in the direction d can be represented as: 

𝑎𝑖
𝑑(𝑡) =

𝐹𝑖
𝑑(𝑡)

𝑀𝑖𝑖 (𝑡)
                                                                       (9)                                                                          

For the ith object, Mii represents the inertial mass. The velocity 

of the masses depends upon their present velocity as well as 

their acceleration. The updated object is given in (10) and (11) 

is the proposed velocity of the agent for next time t: 

𝑋𝑖
𝑑(𝑡 + 1) = 𝑋𝑖

𝑑 +  𝑣𝑖
𝑑(𝑡 + 1)                                              (10) 

Pseudo Code of AGSA 
Initialization 

for i= 1 to N 
   for d= 1 to D 

      initialize  𝑋𝑖 = ( 𝑋𝑖
1, 𝑋𝑖

2, … … … … … 𝑋𝑖
𝑑, 𝑋𝑖

𝑁)  

     initialize velocity  

next d 

compute the fitness of each agent 
next i 

for t= 1 to T 
select best agent and record position 

update  𝐺(𝑡) = 𝐺(𝑡0) ∗ (
𝑡0

𝑡
)

𝛽  

 

calculate each mass , update  Xw (t) and Xb (t) 
for i= 1 to N 

for d= 1 to D 

calculate 𝐹𝑖
𝑑(𝑡) =  ∑   𝑟𝑎𝑛𝑑𝑗 𝑗ꞓ 𝐾𝑏𝑒𝑠𝑡,𝑗≠𝑖 𝐹𝑖𝑗

𝑑 (𝑡) 

calculate acceleration  𝑎𝑖
𝑑(𝑡) =

𝐹𝑖
𝑑(𝑡)

𝑀𝑖𝑖 (𝑡)
     

calculate position  𝑋𝑖
𝑑(𝑡 + 1) = 𝑋𝑖

𝑑 + 𝑣𝑖
𝑑(𝑡 + 1)          

calculate velocity  𝑉𝑖
𝑑(𝑡 + 1) = (𝑟𝑎𝑛𝑑𝑖 ∗ 𝑣𝑖

𝑑(t)+𝑎𝑖
𝑑(𝑡)) ∗ (1 −

𝑡

𝑓𝐸
)𝛼                                      

next d 

compute the fitness value of the ith agent  
next i 

next t 



𝑉𝑖
𝑑(𝑡 + 1) = (𝑟𝑎𝑛𝑑𝑖 ∗ 𝑣𝑖

𝑑(t)+𝑎𝑖
𝑑(𝑡)) ∗ (𝟏 −

𝒕

𝒇𝑬
)𝜶               (11) 

where randi  is a uniform random number within [0-1], t is 

current iteration, fE  is function evaluation which is the stopping 

criteria and α is an integer. The reason for choosing smaller 

values of α that it results in a faster convergence of the 

algorithm. Search accuracy is monitor by the gravitational 

constant G and its value reduces with the passage of time. 

Inertial mass and the Gravitational constant will be calculated 

by the fitness evaluation. An agent with more mass is an 

efficient agent. That implies that agents with heavy masses have 

higher attractions and they move gradually. Assuming all the 

masses are same so the inertial mass and the gravitational 

masses can be updated as follows: 

𝑀𝑎𝑖 = 𝑀𝑖𝑖 = 𝑀𝑝𝑖 = 𝑀𝑖              𝑖 = 1,2,3, … … … 𝑁              (12) 

𝑚𝑖(𝑡) =
𝑓𝑖𝑡𝑖(𝑡)−𝑋𝑤 (𝑡)

𝑋𝑏 (𝑡)−𝑋𝑤(𝑡)
                                                          (13) 

𝑀𝑖(𝑡) =
𝑚𝑖(𝑡)

∑ 𝑚𝑗(𝑡)𝑁
𝑗=1

                                                                 (14) 

At time t, fiti(t) is the fitness value of the object.  

Worst Xw (t) and best Xb (t) for a maximization problem are 

defined as: 

𝑋𝑏(𝑡) = 𝑚𝑎𝑥𝑗 𝜀 {1,…𝑁}𝑓𝑖𝑡𝑗(t)                                                (15) 

𝑋𝑤(𝑡) = 𝑚𝑖𝑛𝑗 𝜀 {1,…𝑁}𝑓𝑖𝑡𝑗(t)                                                 (16) 

For the minimization problem, (15) and (16) are presented as 

follows: 

𝑋𝑏(𝑡) = 𝑚𝑖𝑛𝑗 𝜀 {1,…𝑁} 𝑓𝑖𝑡𝑗(t)                                                (17) 

𝑋𝑤(𝑡) = 𝑚𝑎𝑥𝑗𝜀 {1,…𝑁} 𝑓𝑖𝑡𝑗(t)                                                (18) 

By decreasing, the number of agents with the passage of time a 

balance can be obtained between exploitation and exploration. 

Therefore, simply the objects with heavier masses applying 

forces to the other objects are considered. A set of the agents 

that are known as Best agents “Kbest” having heavier masses are 

applying forces and attract the other agents in the search space. 

Hence, the value of the Kbest is decreasing gradually as the 

iteration progresses until simply one object is applying force to 

the other agents. Therefore, (8) is modified as follows: 

𝐹𝑖
𝑑(𝑡) =  ∑   𝑟𝑎𝑛𝑑𝑗 𝑗𝜀 𝐾𝑏𝑒𝑠𝑡,𝑗≠i 𝐹𝑖𝑗

𝑑  (𝑡)                                 (19) 

 

IV. RESULTS AND ANALYSIS 

Five benchmark functions are applied to evaluate and 

compare the efficiency between the proposed AGSA, SPSO, 

MPSO and other methods available in the literature. 

A.Benchmark Functions 

The consistency, effectiveness, and performance tests of 

various optimization techniques are outlined by using different 

benchmark functions and standards. This is one of the methods 

by which the convergence, stability and solution quality are 

calculated. For the performance evaluation of the presented 

technique, the following benchmark functions are used. They 

are as follows:  

1) Sphere: 

The sphere is a unimodal function that is the symmetrical model 

with a single minimum. The key idea of using this function for 

testing is to find out the convergence rate of searching. It is most 

likely the commonly used benchmark function. 

𝑓1(𝑥) =  ∑ 𝑥𝑖
2𝐷

𝑖=1                                                                      (20) 

2) Ackley: 

Ackley is a multi-modal function with many local minima. 

𝑓2(𝑥) = −20𝑒𝑥𝑝 (−0.2√
1

𝐷
∑ 𝑥𝑖

2𝐷
𝑖=1 ) − exp (

1

𝐷
∑ cos(2𝜋𝑥𝑖)𝐷

𝑖=1 ) + 20 +

𝑒                                                                                                               (21) 

3) Rastrigin: 

Rastrigin is also a multi-modal function with many local 

minima.  

𝑓3(𝑥) = ∑ [𝑥𝑖
2 − 10cos (2𝜋𝑥𝑖)

𝐷
𝑖=1 + 10]                                        (22) 

4) Griewank 

It is a multi-modal function with many local minima therefore; 

it is inclined to convergence in the wrong direction.  

𝑓4(𝑥) =
1

4000
∑ 𝑥𝑖

2 −  ∏ cos(
𝑥𝑖

√𝑖

𝐷
𝑖=1 ) + 1 𝐷

𝑖=1                                       (23) 

5) Rosenbrock: 

It is a unimodal function with a single minimum. It is intensely 

nonseparable. Also, the optimal point is situated in a very 

narrow ridge. The tip of the ridge is very sharp, and it runs 

around a parabola. 

𝑓5(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (1 − 𝑥𝑖)2]𝐷−1

𝑖=1                          (24) 

B. Simulation Setup: 

The performance of the proposed AGSA, MPSO, the 

Particle Swarm Optimization Cuckoo Search Paralleled 

Algorithm (PSOCSPA) [7] , Standard Gravitational Search 

Algorithm (SGSA),Local Exploitation Based Gravitational 

search Algorithm (LEGSA) [8], Improved Particle Swarm 

Optimization Algorithm (IPSO) [9] and Plane Surface 

Gravitational Search Algorithm (PSGSA) [10] are evaluated on 

the five benchmark test functions. 

The following simulation conditions for the algorithms used are 

as follows: 

 No of Particles=30;  

 Acceleration Constant C1 = 2.1;  

 Acceleration Constant C2 = 1.9;  

 Dimension D=30; 

 α= 2 

C. Statistical Analysis: 

The results for the AGSA, MPSO are compared with the 

SPSO, SGSA and other variations of the improved PSO and 

GSA algorithms. The results are compared in terms of standard 

deviation and mean as shown in Table I. 

One of the other main criteria to check the efficiency of the 

presented method and compare it with different techniques is to 

determine the t-test value. It is calculated by taking the standard 

deviation and mean values from the two algorithms. The 

positive t value corresponds to the good performance of the first 

algorithm as compared to the second algorithm and vice versa.  

Three terms are used in measuring the t-values: ξ value of the 

degree of freedom, α1 and α2 are the mean values and, σ1 and σ2 



are the values for the standard deviation of the two algorithms. 

The t-value can be measured as: 

𝑡 =  
α1−α2

√(
σ1

2

ξ+1
)+(

σ2
2

ξ+1
)

                                                                 (25) 

 If the t-value is larger than 1.645, which means the first method 

has better performance than the second technique by 95%. The 

t-values between the AGSA, MPSO, SPSO and various other 

versions of PSO and GSA methods are shown in Table II. It is 

noticeable that the t-value for the proposed algorithm is higher 

than 1.645 for most of the functions.  

D. Graphical Analysis 

From Fig. 1 to Fig. 5, the comparison between the SPSO, 

AGSA, SGSA, and MPSO is presented. It is clear from the 

figures that the AGSA gives better performance than other 

algorithms and shows faster convergence for all tested 

benchmark functions except Rosenbrock  

 

Fig 1.   A comparison between MPSO, SPSO, GS, and AGSA for Sphere 

Function. 
 

 

Fig. 2. A comparison between MPSO, SPSO, GSA, and AGSA for Griewank 

Function 
 

 

 
 

 

 

Fig. 3. A comparison between MPSO, SPSO, GSA, and AGSA for 

Rosenbrock Function 

 

 

Fig. 4. A comparison between MPSO, SPSO, GSA, and AGSA for Ackley 
Function 

 

 
 

 
 

 

Fig. 5. A comparison between MPSO, SPSO, GSA, and AGSA for Rastrigin 
Function 

 

 
 

 

 



TABLE I.  The standard deviation and mean evaluation between AGSA and other algorithms 
(All Results Are Averaged (Rank: 1—Best, 8—Worst 

TABLE II The t-values comparison between AGSA and other algorithms 

Functions AGSA MPSO SPSO SGSA IPSO PSOCSPA PSGSA LEGSA 

f1(x) 
Mean 6.6e−172 1.50e-142 0.0057 9.01e-06 1.81e-52 1.33e+01 1. 04 e −02 8.81109e-06 

Std. 
Dev 

5.21e−172 3.21e-142 0.0178 7.2e-07 3.52e-52 7.30e+01 1. 91 e −02 1.0968e-06 

Rank 1 2 6 4 3 8 7 5 

f2(x) 
Mean 1.13e −20 7.21e-14 0.0209 9.4e-06 7.99e-15 3.841e-06 1. 48 e−02 0.00956612 

Std. 

Dev 

7.16e −20 2.34e-14 0.629 3.2e-07 1.58e-15 5.964e-06 2. 38 e −02 0.00037639 

Rank 1 2 8 4 3 5 7 6 

f3(x) 

Mean 4.64e+ 01 3.634 1.94e+2 8.77 e1 4.57e1 0.0 2. 13 e +01 - 

Std. 

Dev 

8.30e+ 00 14.467 1.08e+2 9.51 1.23e1 0.0 5. 34 - 

Rank 4 2 7 6 5 1 3 8 

f4(x) 

Mean 9.03e−04 0.0063 1.35e2 0.7589 7.63e-03 9.696e-07 1. 01 e+01 - 

Std. 

Dev 

3.07e −04 0.02475 2.23e2 2.53e-16 8.69e-03 3.060e-6 2.47 - 

Rank 2 4 7 5 3 1 6 8 

f5(x) 

Mean 1.67e−03 2.465 2.30e+3 7.99 8.01e+01 - 5. 53 e +01 - 

Std. 

Dev 

1.81e −04 8.452 2.12e+3 0.99 6.06e+01 - 6. 22 e +01 - 

Rank 1 2 6 3 5 7 4 8 

Overall 

Ranking 

(Average 
Ranking 

Number) 

1 (1.8) 2 (2.4) 6 (6.8) 4 (4.4) 3 (3.8) 4 (4.4) 5 (5.4) 7 (7.0) 

Functions t-value

between

AGSA

and SPSO

t-value

between

AGSA

and 

MPSO 

t-value

between

AGSA

and 

SGSA 

t-value

between

AGSA

and 

PSGSA 

t-value

between

AGSA and 

LEGSA 

t-value

between

AGSA and 

ISPO 

t-value

between

AGSA

and 

PSOCSPA 
f1(x) 2.30 3.32 88.48 3.85 56.78 3.63 1.28 

f2(x) 0.0234 21.78 207.7 4.39 181.66 35.72 4.39 

f3(x) 9.63 18.13 23.13 -17.98 - -.0333 -3.95 

f4(x) 4.28 1.54 - 28.91 - 5.47 -20.77 

f5(x) 7.67 2.06 57.05 6.28 - 9.34 - 



V. PROBLEM FOR PRESSURE VESSEL DESIGN

To illustrate the performance of the proposed AGSA, the 

problem for pressure vessel designing is presented. Fig. 6 

illustrates a cylindrical pressure vessel being covered at both 

ends by spherical heads. The motivation is to decrease the 

overall cost, together with manufacturing and the material costs 

Fig. 6. Pressure Vessel Schematic 

Four design parameters for this problem are inner radius (r), 

the thickness of the shell (Ts), Cylindrical Length of section (L) 

and head thickness (Th). The main purpose is to reduce the cost 

function. Coello et.al  [11] defined these four parameter as x1, x2, 

x3 and x4 respectively.  The cost function is represented as: 

𝑓(𝑥) = 0.6224 𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥3
2 + 3.1661 𝑥4𝑥1

2 +
19.84 𝑥1

2𝑥3                                                                               (26)

The boundary conditions are defined as follows: 

𝑔1(𝑥) =  −𝑥1 + 0.0193 𝑥3   ≤ 0  (27) 

𝑔2(𝑥) = −𝑥2 + 0.00954𝑥3   ≤  0  (28) 

𝑔3(𝑥) = −𝜋𝑥3
2𝑥4 −

4

3
 𝜋 𝑥3

2 + 1296000     ≤  0   (29) 

𝑔4(𝑥) = 𝑥4 − 240   ≤  0   (30) 

The evaluation of the proposed and different methods are 

presented in Table III which shows the best solutions obtained 

from AGSA, MPSO, SPSO, an improved harmony search 

algorithm (IHS) [12] and augmented Lagrange multiplier 

algorithm combined with Powell's method (ALMAP) [13]. The 

results show that the presented technique gives improved results 

in terms of the mean and standard deviation of the cost function 

as compared to the other methods. 
TABLE III: Optimal solution for the proposed and other algorithms 

VI. CONCLUSION
An advanced form of the gravitational search algorithm is 

presented in this paper. The AGSA that is modeled depends upon 

the mass and gravity law. The algorithm depends upon the 

concepts of the theory of physics presented by Newton and each 

member of the search area in AGSA are the masses. AGSA 

consists of the individual system of masses in which the force of 

gravity is used to convey the information between masses. 

 The effectiveness of the presented method is illustrated by using 

five benchmark functions. Results achieved are analyzed with the 

Modified PSO, SPSO, SGSA and different other algorithms. It 

has been observed that the AGSA performed significantly better 

as compared to the SPSO, MPSO and other improved versions 

with respect to different parameters such as t-values, mean and 

standard deviation. Moreover, one other example is also taken 

into account to verify the implementation of the presented method 

and the results achieved show better mean and standard deviation 

as compared to the other algorithms. AGSA converges faster and 

effectively to the optimal solution. The AGSA also gives better 

results almost on all the benchmark functions.  

Gravitational Search Algorithm is a prospective research 

topic and still has the capacity for new improvements and 

variations in the original algorithm that present excellent 

performance on the different types of problems. GSA families 

can be developed by determining advanced operators, or by 

proposing enhanced versions.  
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Variable(s) Optimal Solutions 

AGSA MPSO SPSO IHS ALMAP 

𝒙𝟏
1.125 1.125 1.125 1.125 1.125 

𝒙𝟐
0.625 0.625 0.625 0.625 0.625 

𝒙𝟑
57.1235 58.2749 58.2832 58.2901 48.97 

𝒙𝟒
43.0152 43.6543 43.7864 43.6926 106.72 

𝒈𝟏(𝒙) 0.00001 0.0000 0.000 0.0000 0.179 

𝒈𝟐(𝒙) -0.0454 -0.0675 -0.06902 -0.0689 0.1578 

𝒈𝟑(𝒙) -1.1006 -2.2142 -2.31629 -2.0150 3.0 

𝒈𝟒(𝒙) -196.08 -196.42 -196.707 -196.30 133.284 

𝒇(𝒙) 7195.649 7201.948 7217.494 7197.73 8129.800 

Standard 

Deviation 

7.4E-04 3.05E-03 5.04E01 N/A N/A 
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