
Efficient and Secure Multiparty Computation from Fixed-Key Block Ciphers

Chun Guo
Université Catholique de Louvain

chun.guo.sc@gmail.com

Jonathan Katz
University of Maryland

jkatz@cs.umd.edu

Xiao Wang
Northwestern University

wangxiao@cs.northwestern.edu

Yu Yu
Shanghai Jiao Tong University

yuyu@cs.sjtu.edu.cn

Abstract—Many implementations of secure computation use
fixed-key AES (modeled as a random permutation); this results
in substantial performance benefits due to existing hardware
support for AES and the ability to avoid recomputing the AES
key schedule. Surveying these implementations, however, we find
that most utilize AES in a heuristic fashion; in the best case this
leaves a gap in the security proof, but in many cases we show it
allows for explicit attacks.

Motivated by this unsatisfactory state of affairs, we initiate a
comprehensive study of how to use fixed-key block ciphers for
secure computation—in particular for OT extension and circuit
garbling—efficiently and securely. Specifically:

• We consider several notions of pseudorandomness for hash
functions (e.g., correlation robustness), and show provably
secure schemes for OT extension, garbling, and other ap-
plications based on hash functions satisfying these notions.

• We provide provably secure constructions, in the (non-
programmable) random-permutation model, of hash func-
tions satisfying the different notions of pseudorandomness
we consider.

Taken together, our results provide end-to-end security proofs for
implementations of secure-computation protocols based on fixed-
key block ciphers (modeled as random permutations). Perhaps
surprisingly, at the same time our work also results in noticeable
performance improvements over the state-of-the-art.

I. INTRODUCTION

Over the past few years, secure computation has transitioned

from the realm of pure theory to the point where it is imple-

mented in multiple software libraries (see [26] for a recent

survey), funded by various government agencies, marketed by

many startup companies, and used in several real-world appli-

cations [10, 9, 32, 27]. This makes it critical to understand the

security provided by implementations1 of secure-computation

protocols. Indeed, although published protocols typically come

with proofs of security that can be independently verified

by the community, published protocol descriptions often omit

or ignore important low-level details, and researchers often

apply performance optimizations in a haphazard way when

implementing those protocols.

In this work we study the use of fixed-key AES (or fixed-key

block ciphers more generally) in implementations of secure

computation. Using fixed-key AES in this context can be

traced back to the work of Bellare et al. [5], who consider

fixed-key AES for circuit garbling as part of their JustGar-

ble framework. Prior to that point, most implementations

of garbled circuits used a hash function such as SHA-256,

modeled as a random oracle. Bellare et al. design several

1We stress that we are not referring to general software-security issues such
as improper input handling or buffer-overflow attacks (though these are also
important). Rather, the focus of this work is on cryptographic issues that arise
in the course of implementation.

provably secure garbling schemes based on a fixed-key block

cipher, and in doing so demonstrated significant performance

improvements; in particular, they show that using fixed-key

AES can be up to 50× faster than using a cryptographic

hash function due to the hardware support for AES provided

by modern processors. (While it is also possible to garble

circuits using AES with different keys at each gate, the added

overhead of key scheduling is substantial.) Prior to their work

CPU time was the main bottleneck for protocols based on

circuit garbling; after the introduction of JustGarble, network
throughput became the dominant factor. For this reason, fixed-

key AES has been almost universally adopted in subsequent

implementations of garbled circuits.

Bellare et al. prove security of their constructions when the

fixed-key block cipher is modeled as a random permutation.

This random-permutation model (RPM) is analogous to the

random-oracle model, and assumes that all parties have oracle

access to a public, random permutation π : {0, 1}k → {0, 1}k
and its inverse. Modeling a fixed-key block cipher as a random

permutation is weaker than modeling the block cipher as an

ideal cipher (which is also common); in particular, related-

key attacks do not apply in the fixed-key setting. Inspired

by the work of Bellare et al., many subsequent works on

efficient secure computation have relied on fixed-key AES for

the purposes of both garbling (e.g., [53]) and oblivious-transfer
(OT) extension (e.g., [46]), two important building blocks for

secure-computation protocols. Unfortunately, however, end-

to-end proofs of security are often missing. For example,

published OT-extension protocols may be based on a hash

function H and are proven secure by modeling H as a random

oracle. When the protocols are implemented, however, H is

not instantiated using a cryptographic hash function but is

instead instantiated haphazardly from a fixed-key block cipher.

At best this leaves a gap in the security proofs, but at worst—

as we show in Section II—it leaves the implemented protocols

vulnerable to explicit attacks.

Even the work of Bellare et al. has the drawback that

it is not modular. That is, they do not prove security of

their garbling schemes based on some assumption about the

“encryption scheme” used for each gate; instead, they prove

security directly in the random-permutation model. This makes

it difficult to apply their ideas to new garbling schemes that

are developed, as any changes in the scheme require re-doing

the entire proof. This was done, for example, in the analysis

of the subsequent half-gates garbling scheme [53]. In their

paper introducing the scheme, Zahur et al. follow a more

modular approach: they construct their garbling scheme based

on a hash function H and then prove that their scheme is

825

2020 IEEE Symposium on Security and Privacy

© 2020, Xiao Wang. Under license to IEEE.
DOI 10.1109/SP40000.2020.00016

secure if H satisfies a certain property specific to their scheme.

They also claim without proof that when H is instantiated in

a particular way based on a fixed-key cipher, then H satisfies

their definition. This is a step forward, but still leaves a gap

in the overall security proof.
We believe this state of affairs is unsatisfactory. In a

nutshell, the problem is that protocols are generally analyzed

by cryptographers based on a hash function H viewed as

a random oracle, but when these protocols are implemented

then H is instantiated from a fixed-key block cipher in some

unprincipled (and often insecure) way. In this paper, we

attempt to resolve this mismatch as described next.

A. Our Contributions
Deficiencies of current implementations. As already hinted

at above, our first contribution is merely identifying the

problem. We examined all state-of-the-art platforms for secure

computation2 and found that most of those using fixed-key

AES were using it incorrectly; of those, some are vulnerable

to explicit attacks. We refer to Section II for details.

Faced with this chaotic status quo, we initiate a compre-

hensive study of how to securely and efficiently use fixed-

key block ciphers for secure computation. We propose a

modular approach: we first identify various properties that

hash functions need to satisfy in order to prove different

protocols secure, and then show how to efficiently construct

hash functions provably satisfying those properties in the

random-permutation model. In more detail:

Identifying abstract security properties. We consider several

notions of pseudorandomness3 for hash functions, some that

were identified in previous work (e.g., correlation robust-

ness [28] and circular correlation robustness [14]) and others

that are new. We then show how hash functions realizing

these different notions can be used in a provably secure way

for various flavors of OT extension (Section IV) as well

as for circuit garbling (Section V) and other applications

(Section VI).

Realizations from fixed-key block ciphers. We show prov-

ably secure constructions, in the non-programmable RPM, of

hash functions meeting the notions we consider (Section VII).

Importantly, in our analyses we also provide concrete security

bounds, something that is often lacking in prior work. We also

discuss how to efficiently implement our constructions utiliz-

ing existing CPU instruction sets and pipelining (Section VIII).

Taken together, our work provides end-to-end security
proofs for secure-computation protocols based on fixed-key

block ciphers (in the OT-hybrid4 model). Somewhat surpris-

ingly, at the same time our work also results in performance

2See https://github.com/rdragos/awesome-mpc.
3The properties we consider are incomparable to traditional security defi-

nitions for hash functions such as collision-resistance; in fact, in some cases
we do not even need the hash function to be compressing. Nevertheless, we
use the term “hash function” since the properties we need would traditionally
be achieved using a hash function modeled as a random oracle.

4We cannot hope to construct the “base” oblivious transfers from fixed-key
block ciphers, as it is known that this requires stronger assumptions.

improvements of up to 3–4× over the current state-of-the-

art for OT extension and various other protocols; we refer to

Section VIII for further discussion.

B. Alternate Approaches

Recall that the problem we are addressing is that protocols

are proven secure assuming access to a random oracle H ,

but then implemented with H instantiated improperly from a

fixed-key block cipher. The approach we advocate, outlined in

the previous section, is to prove protocols secure using weaker
assumptions on H (in particular, falsifiable assumptions) and

then to provably realize these assumptions in the random-

permutation model. But one could imagine other ways of

trying to solve the problem; these are discussed briefly here.

One option is to simply instantiate H using a cryptographic

hash function like SHA-256 or SHA-3, treating those as

random oracles. The drawback of this approach is that such

hash functions are 15–50× slower than using fixed-key AES;

see Table III.

Alternately, one could hope to instantiate H based on a

fixed-key block cipher such that H is indifferentiable [38]

from a random oracle. This problem has attracted a lot of

attention [35, 18, 37, 39, 16, 33, 6] but, as we now discuss,

existing solutions are unsatisfactory.

We are aware of only two approaches to constructing a

random oracle H in the random-permutation model: the first

corresponds roughly to letting H(x) be the (k − O(k))-bit

truncation of π(0O(k)‖x) (where we view k as a security

parameter), and the second—called the XORP approach—

defines H(x) =
⊕

i πi(x) where the {πi} represent indepen-

dent random permutations. The first approach results in a hash

function whose domain and range are much shorter than the

domain/range of π, and would result in impractically poor

security bounds if applied to AES with a block length of 128

bits. The second approach can be used to construct a random

oracle mapping k-bit inputs to k-bit outputs given multiple

random permutations on {0, 1}k, and thus could in principle

be used to realize some of the security definitions we consider.

Drawbacks of this approach, however, include:

• Some of our definitions require compression, and it is

unknown how to obtain a compressing random oracle

that is both efficient and has acceptable concrete-security

bounds starting from a random permutation on {0, 1}k.

• The XORP approach requires calls to (at least) two

independent permutations; in some sense, this is inher-

ent [8, 36]. The constructions we show here use only

a single random permutation (and in some cases just a

single call to that permutation), and are more efficient

than XORP; we defer further discussion to Section VIII.

C. Outline of the Paper

In Section II we survey existing implementations of secure-

computation protocols, focusing in particular on how they in-

stantiate the underlying hash function based on fixed-key AES,

and show that in some cases they allow for an explicit

attack. We introduce in Section III various security definitions

826

Platform Security Implementation

APRICOT [46] Malicious H(x, i) = π(x)
APRICOT [46] Semi-honest H(x, i) = π(x)
SPDZ-2 [47] Malicious H(x, i) = π(x)⊕ x
libOTe [44] Malicious H(x, i) = π(x)⊕ x
libOTe [44] Malicious H(x, i) = SHA-256(x)

Unbound Tech [45] Malicious H(x, i) = π(x⊕ i)⊕ x⊕ i
EMP [49] Malicious H(x, i) = π(2x⊕ i)⊕ 2x⊕ i

TABLE I: Insecure instantiations of the hash function in existing
implementations of OT extension. π(·) denotes AES-128 with a fixed key.

for hash functions, some of which have been considered

before (e.g., correlation robustness) and some of which have

not (e.g., tweakable correlation robustness). In the following

sections we explore applications of hash functions satisfying

these definitions to OT extension (Section IV), the half-gates

garbling scheme (Section V), and other protocols (Section VI).

We address in Section VII the question of constructing hash

functions satisfying the various definitions from a fixed-key

block cipher, when that block cipher is modeled as a random

permutation. Finally, in Section VIII we evaluate the perfor-

mance of our constructions and compare them to prior work.

II. THE CURRENT STATE OF AFFAIRS

As discussed in Section I, while many of the existing

platforms for secure computation rely on fixed-key AES, very

few of them utilize it properly. Here we discuss some of

the problems we found. Before making our results public,

we contacted the authors of the affected works to inform

them of the problems we found, to confirm our analysis, and

to allow them time to patch their implementations. (Some

platforms [49, 45] adopted the constructions we propose later

in the paper, while others [44] found alternate solutions.)

A. Oblivious-Transfer Extension

Oblivious transfer (OT), introduced by Rabin in 1981 [43],

is a key component of protocols for secure two-party compu-

tation [52] and, more generally, secure computation without

an honest majority [24]—even in the semi-honest setting. In

standard (one-out-of-two) OT, there is a sender who begins

holding two messages m0,m1, and a receiver who holds a

bit b; by running the protocol, the receiver learns mb. Security

requires that the sender learns nothing about b while the

receiver learns nothing about m1−b.

Oblivious transfer requires public-key cryptography and

thus was, for a long time, a bottleneck in secure-computation

protocols. This changed with the introduction of efficient OT
extension [4, 28], which enables a small number (say, 128)

of “base” OTs to be leveraged to give an unbounded number

of OTs using only symmetric-key techniques. At a high level,

state-of-the-art OT-extension protocols work in two phases:

1) A receiver with choice bits x1, ..., xm runs a protocol with

a sender, after which the sender obtains a uniform k-bit

string Δ and uniform k-bit strings (a1, . . . ,am) while

the receiver obtains k-bit strings (b1, . . . ,bm) such that

ai ⊕ bi = xiΔ. (Here, k is a security parameter.)

A malicious receiver is able to influence the randomness

and thus can potentially control the {bi}.

2) The sender, with input messages {(m0
i ,m

1
i)}mi=1, com-

putes and sends cbi := H(ai ⊕ b · Δ, i) ⊕ mb
i to the

receiver, for i = 1, . . . ,m and b ∈ {0, 1}. The receiver

can “decrypt” only one value in each tuple; namely, it

can recover mxi
i := H(bi, i)⊕ cxi

i for all i.

Assuming the first phase is carried out securely, it can be

shown that the above protocol for OT extension is secure

in both the semi-honest and malicious settings when H is a

random oracle. Ishai et al. [28] showed that in the semi-honest

setting it suffices for H to be correlation robust for random

inputs (and in this case the additional input i to H is not

needed). Asharov et al. [2] proved that the protocol is secure

in the malicious setting if H is strongly correlation robust (cf.

Definition 1), i.e., even for adversarially chosen inputs.

Prior to our work it was not clear how to construct a

(strongly) correlation robust hash function from a fixed-key

block cipher, and existing implementations made seemingly

arbitrary choices (see next and Table I). Below we show that

these lead to attacks on the OT-extension protocols, though

it may not always imply an explicit attack on the overall

protocol implementation (depending on how the base OTs

are implemented). In what follows the block cipher is always

AES-128, but we write π for consistency with the rest of the

paper.

APRICOT and libscapi. APRICOT [46], which is also

internally used by libscapi [3], sets H(x, i) = π(x). This

is insecure, even in the semi-honest case, since this H is

invertible. (In particular, assume the receiver knows m0
i and

m1
i for some i. Then it can deduce ai and ai ⊕Δ; hence it

can recover Δ and learn all the rest of the sender’s inputs.)

We believe their intent was to set H(x, i) = π(x)⊕x. This

was confirmed by the authors of APRICOT, and the latest

version of their implementation has been updated to reflect

this. As described next, however, this is still insecure.

SPDZ-2, MP-SPDZ, and MASCOT. The SPDZ-2 [47] im-

plementation, which is also used by MP-SPDZ, sets H(x, i) =
π(x)⊕x as proposed in the MASCOT paper [30]. This choice

was justified there by noting that it is inspired by the Matyas-

Meyer-Oseas (MMO) construction that is collision resistant in

the ideal-cipher model. This reasoning is invalid since collision

resistance does not imply correlation robustness. In any case,

this instantiation admits a simple attack in the malicious setting

that exploits the fact that H has no dependence on i: by using

x1 = x2 = 1 and forcing b1 = b2 = b, the receiver can learn

m1
1,m

1
2, and also

c01 ⊕ c02 = H(b, 1)⊕H(b, 2) = m0
1 ⊕m0

2,

which is disallowed.

Note that any instantiation of H that does not depend on i
admits this attack in the malicious setting. In Appendix C, an

attack in the FΔ-ROT hybrid model based on this idea that

violates the privacy of the MASCOT protocol is presented.

827

libOTe. libOTe [44] provides two options for instantiating

H(x, i). The first option is identical to the one just discussed.

The second option instantiates H(x, i) = SHA-256(x). Be-

sides the fact that this option no longer benefits from fixed-key

AES, it also suffers from the same attack just described since

there is no dependence on i.

Unbound Tech and EMP. The blockchain MPC implemen-

tation by Unbound Tech [45] sets H(x, i) = π(x⊕ i)⊕x⊕ i.
Although H now depends on i, a variant of the above attack

still works if the malicious receiver chooses b1,b2 such that

b1 ⊕ 1 = b2 ⊕ 2.

EMP [49] uses H(x, i) = π(2x⊕ i)⊕ 2x⊕ i, and a similar

attack still applies.

The ABY framework. The ABY framework [17] also sets

H(x, i) = π(x ⊕ i) ⊕ x ⊕ i, but the above attack no longer

applies since ABY targets semi-honest security. However,

ABY implements correlated-OT extension and random-OT

extension rather than standard-OT extension. Existing proofs

of security for the former [1], even in the semi-honest setting,

require H to be a random oracle (see further discussion in

Section IV), while the ABY instantiation of H is clearly

not indifferentiable from a random oracle since H(x1, i1) =
H(x2, i2) for any x1, i1, x2, i2 with x1 ⊕ i1 = x2 ⊕ i2.

B. Garbling

As noted in the Introduction, JustGarble [5] is a garbling

scheme that is proven secure in the random-permutation

model. The proof is non-modular, however, and so it is

difficult to apply the techniques to newer garbling schemes.

In analyzing their half-gates construction based on an abstract

hash function H , Zahur et al. [53] introduce a definition

called “circular correlation robustness for naturally derived

keys” (see Section V) that is specific to their scheme, overly

complicated, and difficult to work with. They then instantiate

H as H(x, i) = π(2x⊕ i)⊕ 2x⊕ i, and claim without proof

that this satisfies their definition.5

Zhu et al. [54] used a customized garbling scheme with the

hash function instantiated as H(x, i) = π(x⊕ i)⊕x⊕ i. Since

the garbling scheme of Zhu et al. incorporates the free-XOR

optimization [31], a proof of security requires H to satisfy a

notion of circular correlation robustness [14]. However, we

show in Section VII-C that the related hash function H(x) =
π(x) ⊕ x is not circular secure (and the same applies to the

hash function of Zhu et al. as well).

C. Other Protocols and Implementations

Although we focus primarily on OT extension and garbling

in this paper, we observe that unprincipled reliance on fixed-

key AES has come up in other scenarios as well.

TinyLEGO. Frederiksen et al. [22] showed that the wire-

authentication protocol in TinyLEGO is secure if the hash

5It is unclear to us whether H satisfies their definition or not. Nevertheless,
we believe that half-gates garbling using their instantiation of H can be proven
secure directly in the random-permutation model. That is, we do not claim
that their scheme is insecure, only that their analysis is buggy.

function H being used is correlation robust for random inputs.

In the implementation of TinyLEGO [41], they instantiated H
as H(x, i) = π(2x ⊕ i) ⊕ 2x ⊕ i, but there is no proof that

this satisfies the required definition.

Free hash. Fan et al. [20] proposed a new way to “commit” to

a garbled circuit. The proof of security for their construction

assumes that the hash function H used is not only correlation

robust but also collision resistant. Unfortunately, it is easy to

see that the instantiation H(x, i) = π(2x⊕i)⊕2x⊕i they use

is not collision resistant (since H(x1, i1) = H(x2, i2) when

2x1 ⊕ i1 = 2x2 ⊕ i2), and this leads to an explicit attack on

the binding property of their scheme.

III. HASH-FUNCTION DEFINITIONS

Here we define several notions of “pseudorandomness” for

hash functions, some of which have been considered explicitly

before. Our definitions are tailored for a concrete-security

treatment, but asymptotic versions of our definitions can easily

be obtained by suitable modifications. In what follows, we let

Fk,� denote the set of all functions from {0, 1}k to {0, 1}�,
and write Fk for Fk,k.

Our definitions are all phrased in the strongest sense

possible—specifically, they allow the attacker to adaptively

choose the inputs to its oracle—since our constructions satisfy

them. For some applications, weaker notions (such as random

inputs or non-adaptive choice of inputs) may suffice, and the

definitions may be adapted appropriately for those cases.

Our definitions allow for non-uniform choice of the key R.

This is useful in analyzing schemes like half-gates gar-

bling [53], where the least-significant bit of R is set to 1.

Correlation robustness (cr). The notion of correlation robust-

ness was first proposed by Ishai et al. [28] in the context of

OT extension. Roughly, H is correlation robust if the keyed

function fR(x)
def
= H(x ⊕ R) is pseudorandom. In the work

of Ishai et al., this was only required to hold for random

inputs, giving a definition analogous to a weak pseudorandom

function; in other work [2], the attacker was allowed to choose

arbitrary inputs but only in a non-adaptive manner. Here we

consider the strongest notion where the attacker is free to

adaptively choose its inputs to its oracle.

Definition 1. Let H : {0, 1}k → {0, 1}k be a function, and
let R be a distribution on {0, 1}k. For R ∈ {0, 1}k, define
Ocr

R(x)
def
= H(x⊕R). For a distinguisher D, define

Advcr
H,R(D)

def
=

∣∣∣∣ Pr
R←R

[
DOcr

R(·) = 1
]
− Pr

f←Fk

[
Df(·) = 1

]∣∣∣∣ .
H is (t, q, ρ, ε)-correlation robust if for all D running in time
at most t and making at most q queries to Ocr

R(·), and all R
with min-entropy at least ρ, it holds that Advcr

H,R(D) ≤ ε.

Circular correlation robustness (ccr). Choi et al. [14] ex-

tended the notion of correlation robustness to allow for a

form of “circularity” needed to prove security of the free-XOR

technique [31] for circuit garbling. Zahur et al. [53] used a

828

weaker (but more complex) version of this definition, also in

the context of garbling; more details about their definition are

given in Section V.

Definition 2. Let H : {0, 1}k → {0, 1}k be a function, and
let R be a distribution on {0, 1}k. For R ∈ {0, 1}k, define
Occr

R (x, b)
def
= H(x⊕R)⊕ b ·R. For a distinguisher D, define

Advccr
H,R(D)

def
=

∣∣∣ Pr
R←R

[
DOccr

R (·) = 1
]
− Pr

f←Fk+1,k

[
Df(·) = 1

]∣∣∣,
where we require that D never queries both (x, 0) and (x, 1)
for any x. We say H is (t, q, ρ, ε)-circular correlation robust
if for all D running in time at most t and making at most q
queries to Occr

R (·), and all R with min-entropy at least ρ, it
holds that Advccr

H,R(D) ≤ ε.

Tweakable correlation robustness (tcr) and tweakable cir-
cular correlation robustness (tccr). By analogy with the

notion of tweakable block ciphers [34], we extend the notion

of (circular) correlation robustness to also incorporate a tweak.

As we discuss in Section IV, the addition of a tweak is crucial

for security of some protocols in the malicious setting.

Our definitions allow the attacker to repeat tweaks arbitrarily

many times. For some applications, weaker notions (such as

requiring non-repeating tweaks) may suffice, and the defini-

tions may be modified appropriately for those cases.

Definition 3. Let H : {0, 1}2k → {0, 1}k be a function, and
let R be a distribution on {0, 1}k. For R ∈ {0, 1}k, define
Otcr

R (x, i)
def
= H(x⊕R, i) and Otccr

R (x, i, b)
def
= H(x⊕R, i)⊕

b ·R. For a distinguisher D, define

Advtcr
H,R(D)

def
=

∣∣∣ Pr
R←R

[
DOtcr

R (·) = 1
]
− Pr

f←F2k,k

[
Df(·) = 1

]∣∣∣
and

Advtccr
H,R(D)

def
=

∣∣∣ Pr
R←R

[
DOtccr

R (·) = 1
]
− Pr

f←F2k+1,k

[
Df(·) = 1

]∣∣∣,
where in the latter case we require that D never queries both
(x, i, 0) and (x, i, 1) for any x, i. We say H is (t, q, ρ, ε)-
tweakable correlation robust (resp., (t, q, ρ, ε)-tweakable
circular correlation robust) if for all D running in time
at most t and making at most q queries to Otcr

R (·) (resp.,
Otccr

R (·)), and all R with min-entropy at least ρ, it holds that
Advtcr

H,R(D) ≤ ε (resp., Advtccr
H,R(D) ≤ ε).

Definitions in the random-permutation model. In this work

we construct hash functions H satisfying the above definitions

in the random-permutation model. That is, we assume a

public, random permutation π : {0, 1}k → {0, 1}k and show

constructions of H given oracle access to π. The security

definitions are then modified by (1) taking probabilities also

over uniform choice of π and (2) giving the distinguisher D
oracle access to both π and its inverse π−1. In this case, we can

prove security of our constructions unconditionally so long as

we bound the number of queries that D makes to π/π−1 and

Semi-honest security

Reference OT type Prior work This work

[28] Standard OT cr cr
[1] Correlated OT random oracle cr
[1] Random OT random oracle cr

Malicious security

[29, 2] Standard OT cr∗ tcr
[2] Correlated OT random oracle tcr
[2] Random OT random oracle tcr

TABLE II: Assumptions about H in protocols for OT extension.
cr∗ refers to correlation robustness with compression, for which no

instantiation from a fixed-key cipher was known.

its other oracle. Thus, e.g., we say that a construction H in the

random-permutation model is (p, q, ρ, ε)-correlation robust if

for all D making at most p queries to π/π−1 and q queries

to Ocr
R, and all R with min-entropy at least ρ, it holds that

Advcr
H,R(D) ≤ ε. We remark that for applications to secure

computation, q is typically fixed by the protocol but p can be

as large as the adversary’s running time.

Relations between the definitions. It is easy to see that any

H that is ccr (resp., tccr) is also cr (resp., tcr). It is also

easy to see that any H that is tcr (resp., tccr) can be used to

construct a hash function H ′ that is cr (resp., ccr).
The construction we give in Section VII-B is cr but not ccr.

We are not aware of a generic transformation from cr (resp.,

ccr) to tcr (resp., tccr), however in Section V we show

(implicitly) that any H that is ccr can be used to construct

a hash function H ′ that satisfies tccr for random inputs and

non-repeating tweaks. We show there that this weaker notion

suffices for analyzing the half-gates garbling scheme.

IV. OBLIVIOUS-TRANSFER EXTENSION

As discussed in Section II-A, many existing implementa-

tions of OT extension based on a fixed-key cipher are insecure

or, at best, cannot be proven secure. Part of the problem is

that some OT-extension protocols are proven secure in the

random-oracle model, but (efficient) instantiations of a random

oracle from a fixed-key cipher are not known. To address this

gap, we present here various flavors of OT-extension protocols

based on hash functions satisfying the definitions from the

previous section. In doing so, we improve on the assumptions

used in several prior works, as summarized in Table II.

Specifically, for semi-honest security we show that it suffices

for the hash function to be correlation robust. For malicious

security, however, we need tweakable correlation robustness.

The addition of a tweak is necessary in the malicious setting,

intuitively, to prevent the attacks shown in Section II. Without

a tweak, the hash function behaves “the same” across different

executions of the OT, and this can be exploited by a malicious

adversary. The attack can be prevented by incorporating an

independent tweak for each execution. (We formally prove

this intuition in the next section.)

Here we consider standard-OT extension and correlated-

OT extension; we defer the case of random-OT extension

829

Functionality FΔ-ROT

Initialize: Upon receiving (Init,Δ) from PA with Δ ∈ {0, 1}k, and (Init) from PB, store Δ and ignore subsequent Init commands.
Set up correlations: Upon receiving (x1, . . . , xm) from PB with xi ∈ {0, 1} do:

1) For each i ∈ [m], sample uniform ai,bi ∈ {0, 1}k such that ai ⊕ bi = xi ·Δ.
2) If PA is corrupted, wait for A to send {ai} and recompute {bi} accordingly.

If PB is corrupted, wait for A to send {bi} and recompute {ai} accordingly.
3) Send {ai} to PA and {bi} to PB.

Global key query: If PB is corrupted then A can send a predicate P : {0, 1}k → {0, 1} to the functionality after initialization but
before sending its input. If P (Δ) = 1, the functionality sends 1 to A; otherwise, the functionality aborts and notifies PA.

Fig. 1. Functionality FΔ-ROT.

Functionality FS-OT

Upon receiving ((m0
1,m

1
1), . . . , (m

0
m,m1

m)) from PA and
(x1, . . . , xm) from PB with xi ∈ {0, 1}, send {mxi

i } to PB.

Fig. 2. Functionality FS-OT for standard OT.

Protocol ΠS-OT

Inputs: PA has (m0
1,m

1
1), . . . , (m

0
m,m1

m) and PB has
x1, . . . , xm with xi ∈ {0, 1}.

Protocol:
1) PA chooses uniform Δ and sends (Init,Δ) to FΔ-ROT; PB

sends (Init) to FΔ-ROT.
2) PB sends (x1, . . . , xm) to FΔ-ROT, which returns

a1, . . . ,am to PA and b1, . . . ,bm to PB.
3) Semi-honest security: PA sends c0i := H(ai)⊕m0

i and
c1i := H(ai ⊕ Δ) ⊕ m1

i to PB, who can then compute
mxi

i := cxi
i ⊕H(bi).

Malicious security: PA sends c0i := H(ai, i) ⊕ m0
i and

c1i := H(ai ⊕Δ, i)⊕m1
i to PB, who can then compute

mxi
i := cxi

i ⊕H(bi, i).

Fig. 3. Protocol ΠS-OT in the FΔ-ROT-hybrid model.

to Appendix A. Since our focus is on instantiating the hash

function H used in the second phase of OT extension (cf. the

beginning of Section II-A), we present all our protocols in the

FΔ-ROT-hybrid model (see Figure 1). This ideal functionality

provides an abstraction of the first phase of OT extension, and

efficient protocols realizing it are known in both the semi-

honest [1] and malicious [29] settings.

A. Standard-OT Extension

Figure 2 describes the standard OT functionality FS-OT. In

Figure 3 we show a protocol realizing standard OT in the

FΔ-ROT-hybrid model, in both the semi-honest and malicious

settings. We remark that the result for the case of semi-honest

security already follows from the work of Ishai et al. [28].

Theorem 1 (Informal). If H is cr (resp., tcr) then protocol
ΠS-OT securely realizes FS-OT for semi-honest (resp., mali-
cious) adversaries in the FΔ-ROT-hybrid model.

The theorem is somewhat informal since, e.g., we have not

defined what it means for H to be cr but only what it means

for it to be (t, q, ρ, ε)-cr. A formal statement incorporating

concrete security bounds can be obtained from the proof.

Proof. Security in the FΔ-ROT-hybrid model for a corrupted

PA, whether semi-honest or malicious, holds perfectly and is

trivial to show. We therefore focus on the case of an adversary

A corrupting PB.

The case of a semi-honest PB is straightforward. (As noted

earlier, this is also implicit in [28].) The simulator in this case

extracts PB’s inputs from its input to the FΔ-ROT functionality,

sends these to the FS-OT functionality to obtain {mxi
i }, and

then for all i sets cxi
i := H(bi) ⊕mxi

i and chooses uniform

c1−xi
i . It is immediate that correlation robustness of H implies

that this results in a view for PB that is indistinguishable from

its view in a real execution.

In the malicious case the simulator is almost the same as

before, but the proof is more involved. For completeness, we

describe the simulator S in full:

1–2. S obtains the inputs (x1, . . . , xm), along with the values

{bi}i∈[m], that A sends to FΔ-ROT.

S sends (x1, . . . , xm) to FS-OT, which returns

(mx0
0 , . . . ,mxm

m).
S chooses a uniform Δ and answers A’s global key query

(if any) using Δ.

3. For all i, S sets cxi
i := H(bi, i) ⊕ mxi

i and chooses

uniform c1−xi
i . It sends the {cbi} to PB.

If A makes no global key query then it is immediate that if

H is (t,m, k, ε)-tweakable correlation robust then for any A
running in time at most t the advantage of A in distinguishing

the simulated view from the real view is at most ε+2−k (with

the second term accounting for the probability that Δ = 0k).

Assume that for all 0 ≤ ρ ≤ k it holds that H is

(t,m, ρ, ε(ρ))-tweakable correlation robust. Say the global key

query P of A is such that |{Δ : P (Δ) = 1}| = 2ρ. Then

with probability 2ρ−k the attacker reduces the min-entropy of

Δ to ρ, but with the remaining probability the functionality

aborts. The maximum distinguishing advantage of A is thus

maxρ{2ρ−k · ε(ρ)}+ 2−k.

B. Correlated OT

Correlated OT, proposed by Asharov et al. [1], is a weaker

form of OT in which the sender can only specify the XOR

of its “messages” (which are otherwise chosen uniformly by

the functionality); the relevant ideal functionality FC-OT is

830

Functionality FC-OT

Upon receiving (Δ1, . . . ,Δm) from PA and (x1, . . . , xm) from
PB with xi ∈ {0, 1} do:

1) For each i ∈ [m], sample uniform m0
i ∈ {0, 1}k and set

m1
i := m0

i ⊕Δi.
2) If PA is corrupted, wait for A to send {m0

i } and recompute
{m1

i } accordingly.
If PB is corrupted, wait for A to send {mxi

i } and

recompute {m1−xi
i } accordingly.

3) Send {m0
i } to PA and {mxi

i } to PB.

Fig. 4. Functionality FC-OT for correlated OT.

Protocol ΠC-OT

Inputs: PA has Δ1, . . . ,Δm ∈ {0, 1}k and PB has x1, . . . , xm

with xi ∈ {0, 1}.

Protocol:
1) PA chooses uniform Δ and sends (Init,Δ) to FΔ-ROT; PB

sends (Init) to FΔ-ROT.
2) PB sends (x1, . . . , xm) to FΔ-ROT, which returns

a1, . . . ,am to PA and b1, . . . ,bm to PB.
3) Semi-honest security: PA computes m0

i := H(ai) and
sends ci := H(ai) ⊕ H(ai ⊕ Δ) ⊕ Δi to PB, who can
then compute mxi

i := H(bi)⊕ xici.

Malicious security: PA computes m0
i := H(ai, i) and

sends ci := H(ai, i) ⊕ H(ai ⊕ Δ, i) ⊕ Δi to PB, who
can then compute mxi

i := H(bi, i)⊕ xici.

Fig. 5. Protocol ΠC-OT in the FΔ-ROT-hybrid model.

given in Figure 4. Prior work showing correlated-OT extension

protocols [1, 2] requires a programmable random oracle,

even for semi-honest security, because the simulator needs

to program the output of H to ensure consistency with the

output from the ideal functionality. In fact, it appears difficult

to efficiently realize the ideal functionality as defined by

Asharov et al. without a programmable random oracle, and

for this reason we weaken the ideal functionality to allow the

adversary to choose its output. (Interestingly, we observe that

prior work [2] does not actually realize the ideal functionality

of Asharov et al. [1] but instead also realizes the weaker

version we define here. See Appendix B for more details.)

This ideal functionality still suffices for applications to secure

computation. In Figure 5 we show a protocol that realizes this

functionality in both the semi-honest and malicious settings.

Theorem 2 (Informal). If H is cr (resp., tcr) then protocol
ΠC-OT securely realizes FC-OT for semi-honest (resp., mali-
cious) adversaries in the FΔ-ROT-hybrid model.

The comment following Theorem 1 applies here as well.

Proof. As in the case of Theorem 1, security for an adversary

A corrupting PA is perfect and easy to show. We thus focus on

the case of a corrupted PB. We consider the malicious setting;

the semi-honest setting follows similarly.

The simulator S for a malicious PB is as follows:

1–2. S obtains the inputs (x1, . . . , xm), as well as the values

{bi}i∈[m], that A sends to FΔ-ROT.

S also chooses a uniform Δ and answers A’s global key

query (if any) using Δ.

3. S chooses uniform {ci} and sends them to PB. It sets

mxi
i := H(bi, i) ⊕ xici and sends (x1, . . . , xm) and

{mxi
i } to FC-OT.

A proof of indistinguishability follows as in the proof of

Theorem 1.

V. REVISITING THE HALF-GATES GARBLING SCHEME

Zahur et al. [53] introduced the half-gates garbling scheme

based on an abstract hash function H . To analyze the scheme,

Zahur et al. introduce a definition called “circular correlation

robustness for naturally derived keys,” and prove security for

their garbling scheme when H satisfies that definition. They

then claim, without proof, that the hash function H(x, i) =
π(2x⊕ i)⊕ 2x⊕ i satisfies their definition. It is not clear to

us that this is the case (but see footnote 5).

In this section, we revisit the assumption needed to prove

security of the half-gates garbling scheme. (Everything we say

here applies to the privacy-free version of the scheme as well.)

We weaken the definition of circular correlation robustness to

match exactly what is needed for the security proof of Zahur

et al., and then show how to achieve the definition based on

the notions introduced in Section III.

The notion of “circular correlation robustness for naturally

derived keys” can be viewed as a form of tweakable circular

correlation robustness where the attacker does not have full

control over the queries made to the oracle Otccr
R (cf. Def. 3).

We proceed to give the details. Let H : {0, 1}2k → {0, 1}k
be a function, and let R be a distribution on {0, 1}k. We say

a sequence of operations Q = (Q1, . . . , Qq) is natural if each

Qi is one of the following:

1) xi ← {0, 1}k.

2) xi := xi1 ⊕ xi2 , where i1 < i2 < i.
3) xi := H(xi1 , i), where i1 < i.
4) xi := O(xi1 , i, b), where i1 < i.

Fix some natural sequence Q of length q. In the real-world

experiment, denoted RealH,Q,R, a key R is sampled from R
and then the oracle O in step 4, above, is set to Otccr

R . In

the ideal-world experiment, denoted IdealQ, the oracle O is

instead a function chosen uniformly from F2k+1,k. Either

experiment defines a distribution (determined by executing the

operations in Q in order) over values x1, . . . , xq , which are

output by the experiment.

Definition 4. For H,Q,R as above and a distinguisher D,
define Advccrnd

H,Q,R(D) as∣∣∣ Pr
{xi}←RealH,Q,R

[
D({xi}) = 1

]
− Pr

{xi}←IdealQ

[
D({xi}) = 1

]∣∣∣.
We say H is (t, q, ρ, ε)-circular correlation robust for natu-
rally derived keys if for all D running in time at most t, all
Q of length q, and all R with min-entropy at least ρ, it holds
that Advccrnd

H,Q,R(D) ≤ ε.

831

It is immediate that a tccr hash function satisfies the above

definition. But this is overkill, and we show now that a family

of hash functions satisfying the notion can be constructed

from any H that is ccr. Specifically, we show that the keyed

function H ′
S(x, i) = H(S⊕x⊕i) satisfies the above definition

when S is uniform. (We stress, however, that S is public and

so is also given to D.) Note that in the context of the half-

gates scheme, the circuit garbler would choose S and send it

(along with the garbled circuit) to the evaluator.

Theorem 3. Let H be (t, q, ρ, ε)-ccr, and define H ′
S(x, i) =

H(S ⊕ x ⊕ i). Then H ′
S is (t, q, ρ, ε′)-circular correlation

robust for naturally derived keys (where the probabilities
are also taken over uniform choice of S ∈ {0, 1}κ) with
ε′ = 2ε+ q2/2k+1.

Proof. Define HS(x) = H(S ⊕ x), so that H ′
S(x, i) =

HS(x⊕ i). Fix some sequence Q = {Q1, . . . , Qq}. Consider

the random variables x1, . . . , xq that are defined during the

course of experiment RealH′,Q,R, and let Coll denote the event

that there exist distinct i1, i2 with xi1 ⊕ i1 = xi2 ⊕ i2.

To bound the probability of Coll, note that all queries to

HS throughout the course of the experiment (which can occur

either as “type 3” or “type 4” operations) are determined

independently of S. Consider a modified experiment Real∗Q,R
in which HS is replaced with a function f chosen uniformly

from Fk. Viewing S as the key, and using the fact that H is

correlation robust, we must have∣∣∣∣∣ Pr
RealH′,Q,R

[Coll]− Pr
Real∗Q,R

[Coll]

∣∣∣∣∣ ≤ ε.

Each operation Qi in Real∗Q,R is one of the following:

1) xi ← {0, 1}k.

2) xi := xi1 ⊕ xi2 , where i1 < i2 < i.
3) xi := f(xi1 ⊕ i), where i1 < i.
4) xi := f(R⊕ xi1 ⊕ i)⊕ bR, where i1 < i.

Fix some distinct i1, i2. We have

xi1 ⊕ xi2

=
⊕
i∈I

xi ⊕
⊕
j∈J

f(xj ⊕ ij)⊕
⊕
k∈K

f(R⊕ xk ⊕ ik)⊕ bR,

for some sets I,J ,K ⊂ [q] and b ∈ {0, 1}. Note that Coll
occurs iff xi1 ⊕ xi2 = i1 ⊕ i2. If the above expression is

syntactically 0 (i.e., I = J = K = ∅ and b = 0), then Coll
cannot occur. If that is not the case, then at least one of I,J ,K
must be nonempty (note that b = 1 implies that K
= ∅). But

then the probability that xi1 ⊕ xi2 = i1 ⊕ i2 is at most 2−k.

So, by a union bound, we find that the probability of Coll in

Real∗Q,R is at most q2/2k+1. Hence the probability of Coll in

RealH′,Q,R is at most q2/2k+1 + ε.

Conditioned on that event that Coll does not occur in

RealH′,Q,R, no two queries to H(R⊕·) as part of evaluating a

“type 4” operation O(xi, i, b) = H(R⊕(S⊕xi⊕i))⊕bR ever

repeat, and thus we can construct from D a legal distinguisher

against H in the sense of circular correlation robustness.

Viewing R as the key, this implies that the distinguishing

advantage of D is at most

Pr
RealH′,Q,R

[Coll] + ε.

This completes the proof.

VI. OTHER APPLICATIONS OF CORRELATION

ROBUSTNESS

Here we describe two other applications of correlation

robust hash functions to secure distributed computing. Our

discussion here is brief only because the improvements, once

described, are immediate. We defer discussion about concrete

performance improvements to Section VIII, where we show a

3× improvement for both applications.

A. Length Extension for OT

A well-known technique for performing OT of long mes-

sages is to first carry out OT for (short) keys, and then to

encrypt each message with the corresponding key. Thus, at a

high level, we need to encrypt each of � messages m1, . . . ,m�

with the corresponding key from among k1, . . . , k�. While

this can of course be done using a block cipher, the natural

approach to doing so would involve keying the cipher with

each of the � keys, thus imposing the cost of � key-scheduling

operations. We observe that it is possible to do better using a

correlation robust hash function H .

Let mi = m1
i , . . . ,m

t
i, where each block mj

i is k bits long.

Then the encryption c1i , . . . , c
t
i of each message mi can be

done by setting

cji = H(j ⊕ ki)⊕mj
i .

(We do not need randomized encryption here since each key

is used to encrypt just one message.) Security follows directly

from correlation robustness of H .

B. The GGM Tree and Distributed Point Functions

The GGM tree construction [23] involves a binary tree

in which the label of a node is used to derive the label of

its children using a length-double pseudorandom generator

(PRG) G. If G is instantiated using AES in counter mode, then

deriving the labels for a leaf of the tree will require multiple

key-scheduling operations. We observe that G can instead be

instantiated using a correlation robust hash via

G(k) = H(1⊕ k) ‖H(2⊕ k).

The GGM tree has recently been used in the construction

of distributed point functions [11], which in turn have found

several applications including secure computation [19], private

queries on public data [48], and anonymous messaging [15].

VII. INSTANTIATING HASH FUNCTIONS IN THE RPM

In this section, we show constructions of hash functions

based on a random permutation π that satisfy the definitions

from Section III. Our proofs all rely on the H-coefficient

technique, which we review in Section VII-A.

832

A. The H-Coefficient Technique

We briefly recall the H-coefficient technique [42, 13], spe-

cialized for our proofs in the following three sections. In all

cases we consider a deterministic distinguisher D given access

to two oracles. The first oracle is always a random permutation

π on {0, 1}k (and its inverse). The second oracle O can take

two forms: in the real world it is a function that depends on a

key R sampled from a distribution R, while in the ideal world

it is a random function with range {0, 1}k. We are interested

in bounding the maximum difference between the probabilities

that D outputs 1 in the real world vs. the ideal world, where

the maximum is taken over all D making p queries to its first

oracle and q queries to its second oracle.

We define a transcript of D’s interaction by

Q = (Qπ,QO, R),

where Qπ = {(x1, y1), . . .} records D’s queries/answers

to/from π or π−1 (with (x, y) ∈ Qπ meaning π(x) = y,

regardless of whether the query was to π or π−1) and

QO = {(w1, z1), . . .} records D’s queries/answers to/from the

second oracle. A key R is appended to the transcript as well

(even though it is not part of the view of D) to facilitate the

analysis: in the real world, this is the key used by the second

oracle, whereas in the ideal world it is simply an independent

key sampled from R. A transcript Q is attainable for some

fixed D if there exist some oracles such that the interaction

of D with those oracles would lead to transcript Q.

Fix some D. Let T denote the set of attainable transcripts,

and let Prreal[·] and Prideal[·] denote the probabilities of events

in the real and ideal worlds, respectively. The H-coefficient

technique involves defining a partition of T into a “bad” set

Tbad and a “good” set Tgood = T \Tbad, and then showing that

Prideal[Q ∈ Tbad] ≤ ε1

and

∀Q ∈ Tgood :
Prreal[Q]

Prideal[Q]
≥ 1− ε2.

It is then possible to show that the distinguishing advantage

of D is at most ε1 + ε2.

One key insight of the H-coefficient technique is that the

ratio Prreal[Q]/Prideal[Q] is equal to the ratio between the

probability that the real-world oracles are consistent with Q
and the probability that the ideal-world oracles are consistent

with Q. Now, for any attainable transcript Q = (Qπ,QO, R),
the probability that the ideal world is consistent with Q is

always exactly

PrR[R]

(2k)p · 2kq
, (1)

where for integers 1 ≤ b ≤ a, we set

(a)b = a · (a− 1) · · · (a− b+ 1)

with (a)0 = 1 by convention. This is so since the probability

that a random permutation on {0, 1}k is consistent with the p
queries in Qπ is exactly 1/(2k)p; the probability that a random

function with range {0, 1}k is consistent with the q queries to

QO is exactly 1/2kq; and the probability that the key is R is

exactly PrR[R]. Bounding the distinguishing advantage of D
thus reduces to bounding the probability that the real world is

consistent with transcripts Q ∈ Tgood.

Let π
 Qπ denote the event that permutation π is consistent

with the queries/answers in Qπ , i.e., that π(x) = y for all

(x, y) ∈ Qπ . Since, in the real world, the behavior of the

second oracle is completely determined by π and R, we can

also write (π,R)
 QO to denote the event that permutation π
and key R are consistent with the queries/answers in QO. For

a (good) transcript Q = (Qπ,QO, R), the probability that the

real world is consistent with Q is exactly

Pr[(π,R)
 QO | π
 Qπ] · Pr[π
 Qπ] · PrR[R]

(using independence of R and π). We have Pr[π
 Qπ] =
1/(2k)p exactly as before. The crux of the proof thus reduces

to bounding Pr[(π,R)
 QO | π
 Qπ]. We can equivalently

write this as Pr[∀(w, z) ∈ QO : Oπ
R(w) = z | π
 Qπ]. Note

that since the proof mainly uses the randomness in the RPM,

we only need a non-programmable random permutation.

B. Correlation Robustness

We begin by showing a construction that achieves corre-

lation robustness. We refer to the resulting hash function as

MMO since it is reminiscent of (though not identical to) the

Matyas-Meyer-Oseas construction. Namely, we define

MMOπ(x)
def
= π(x)⊕ x.

Theorem 4. If π is modeled as a random permutation then
MMOπ is (p, q, ρ, ε)-correlation robust, where

ε =
2pq

2ρ
+

q2

2k+1
.

Proof. We consider a deterministic distinguisher D making

queries to two oracles. The first is a random permutation π
on {0, 1}k (and its inverse); in the real world, the second oracle

is Ocr
R(·) = MMOπ(R ⊕ ·) (for R sampled from a distribu-

tion R), and in the ideal world it is an independent random

function from {0, 1}k to {0, 1}k. As in Section VII-A, we

denote the transcript of D’s interaction by Q = (Qπ,QO, R).
We only consider attainable transcripts from now on.

We say a transcript Q = (Qπ,QO, R) is bad if either:

• (B-1) There is a query (w, z) ∈ QO and a query of the

form (R⊕ w, �) or of the form (�,R⊕ w ⊕ z) in Qπ .

• (B-2) There exist distinct queries (wi, zi), (wj , zj) ∈ QO
such that wi ⊕ zi = wj ⊕ zj .

In the ideal world, for some fixed queries (w, z) ∈ QO and

(x, y) ∈ Qπ , we have

Pr[R⊕ w = x] = Pr[R = w ⊕ x] ≤ 1

2ρ

as R has min-entropy ρ. Thus the probability of (B-1) is at

most 2pq · 2−ρ. Similarly, the probability of (B-2) is

Pr[∃i
= j : wi ⊕ zi = wj ⊕ zj] =

(
q

2

)
· 1

2k
≤ q2/2k+1

833

since both zi and zj are random.

Fix a good transcript Q = (Qπ,QO, R). The probability

that the ideal world is consistent with Q is exactly (1). The

probability that the real world is consistent with Q is

Pr[∀(w, z) ∈ QO : Ocr
R(w) = z | π
 Qπ]

(2k)p
· PrR[R].

We can express the numerator above as

q∏
i=1

Pr[Ocr
R(wi) = zi | π
 Qπ ∧ ∀j < i : Ocr

R(wj) = zj].

Fix some i. Note that Ocr
R(wi) = zi iff MMOπ(R⊕wi) = zi,

i.e., π(R⊕wi) = R⊕wi ⊕ zi. Moreover, since the transcript

is good there is no query of the form (R ⊕ wi, �) in Qπ

(since (B-1) does not occur), nor is π(R⊕wi) determined by

the fact that Ocr
R(wj) = zj for all j < i (since all queries

to Ocr
R are distinct). Similarly, there is no query of the form

(�,R ⊕ wi ⊕ zi) in Qπ (since (B-1) does not occur), nor is

π−1(R ⊕ wi ⊕ zi) determined by the fact that Ocr
R(wj) = zj

for all j < i (since (B-2) does not occur). Thus, we have

Pr[Ocr
R(wi) = zi | π
 Qπ ∧ ∀j < i : Ocr

R(wj) = zj]

= 1/(2k − p− i+ 1) ≥ 1/2k

for all i. It follows that

Pr[∀(w, z) ∈ QO : Ocr
R(w) = z | π
 Qπ] ≥ 1/2kq,

and so the probability that the real world is consistent with

the transcript is at least (1). This completes the proof.

C. Circular Correlation Robustness

We begin by observing that the construction from the pre-

vious section is not circular correlation robust. (To the best of

our knowledge, this gives the first explicit separation between

correlation robustness and circular correlation robustness.) To

see this, consider the following distinguisher D given oracle

access to π and an oracle O:

1) Query z := O(x, 1), where x is arbitrary.

2) Query s := π−1(x⊕ z), and set R∗ := x⊕ s.

3) Query z′ := O(x′, 0), for any x′
= x. Output 1 iff z′ =
MMOπ(x′ ⊕R∗).

Note that if O(x, b) = Occr
R (x, b)

def
= MMOπ(x ⊕ R) ⊕ b · R

then

z = π(x⊕R)⊕ (x⊕R)⊕R = π(x⊕R)⊕ x.

Thus, R∗ = R and so D always outputs 1. On the other

hand, if O is a random function then D outputs 1 only with

probability 2−k.

A small change to the previous construction, however, suf-

fices to achieve circular correlation robustness. For a function

σ : {0, 1}k → {0, 1}k that we will fix later, define

M̂MO
π

σ(x)
def
= π(σ(x))⊕ σ(x).

We say σ is linear if σ(x ⊕ y) = σ(x) ⊕ σ(y) for all

x, y ∈ {0, 1}k. We say σ is an orthomorphism [12] if it is a

permutation, and the function σ′ given by σ′(x) def
= σ(x)⊕ x

is also a permutation.

Theorem 5. Let σ be a linear orthomorphism. If π is modeled
as a random permutation then M̂MO

π

σ is (p, q, ρ, ε)-circular
correlation robust, where

ε =
2pq

2ρ
+

q2

2k+1
.

Proof. We prove a more general result. For some function

σ : {0, 1}k → {0, 1}k and distribution R over {0, 1}k, set

H∞(σ(R)⊕R)
def
= − log

(
max
R∗

Pr
R←R

[σ(R)⊕R = R∗]
)
.

Clearly H∞(σ(R) ⊕ R) ≤ H∞(R), with equality when

σ is an orthomorphism. Assuming σ is linear permutation

and fixing some distribution R, we prove that the maximum

advantage of a distinguisher making p queries to π/π−1 and

q queries to its second oracle is at most

ε =
pq

2ρ
+

pq

2ρ′ +
q2

2k+1
,

where ρ = H∞(R) and ρ′ = H∞(σ(R) ⊕ R). This implies

the theorem.

Fix a deterministic distinguisher D making queries to two

oracles. The first is a random permutation on {0, 1}k (and its

inverse); the second oracle is Occr
R (w, b) = M̂MO

π

σ(R⊕w)⊕b·
R (for R sampled from R) in the real world, but in the ideal

world it is an independent random function from {0, 1}k+1

to {0, 1}k. Following the notation from Section VII-A, denote

the transcript of D’s interaction by Q = (Qπ,QO, R). We

only consider attainable transcripts from now on.

We say a transcript (Qπ,QO, R) is bad if either:

• (B-1) There is a query (w, b, z) ∈ QO and a query of the

form (σ(R⊕ w), �) or (�, σ(R⊕ w)⊕ bR⊕ z) in Qπ .

• (B-2) There are distinct (wi, bi, zi), (wj , bj , zj) ∈ QO
such that σ(wi)⊕ biR⊕ zi = σ(wj)⊕ bjR⊕ zj .

We now bound the probabilities of these events in the

ideal world, beginning with (B-1). For some fixed queries

(w, b, z) ∈ QO and (x, y) ∈ Qπ , we have

Pr[σ(R⊕ w) = x] = Pr[σ(R) = x⊕ σ(w)]

(where the probability is over choice of R), using the fact

that σ is linear. Since σ is a permutation, this probability is at

most 2−ρ. Similarly,

Pr[σ(R⊕w)⊕bR⊕z = y] = Pr[σ(R)⊕bR = y⊕σ(w)⊕z].

If b = 0, this probability is at most 2−ρ ≤ 2−ρ′
as before. If

b = 1, this probability is at most 2−ρ′
. Taking a union bound

over all pairs of queries, we thus see that the probability of

(B-1) is at most
pq

2ρ
+

pq

2ρ′ .

For (B-2), consider distinct (wi, bi, zi), (wj , bj , zj) ∈ QO.

Note that even if we condition on the value of R, the values

zi, zj are uniform and independent. Thus,

Pr[σ(wi ⊕ wj)⊕ (bi ⊕ bj) ·R = zi ⊕ zj] = 2−k.

834

Taking a union bound over all distinct pairs of queries, we see

that the probability of (B-2) is at most q2/2k+1.

Fix a good transcript (Qπ,QO, R). The probability that the

ideal world is consistent with this transcript is given by (1).

The probability that the real world is consistent with this

transcript is

Pr[∀(w, b, z) ∈ QO : Occr
R (w, b) = z | π
 Qπ]

(2k)p
· PrR[R].

We can express the numerator of the above as

q∏
i=1

Pr[Occr
R (wi, bi) = zi | π
 Qπ∧∀j < i : Occr

R (wj , bj) = zj].

Note that Occr
R (wi, bi) = zi iff M̂MO

π

σ(R ⊕ wi) ⊕ biR = zi,
i.e., π(σ(R⊕wi)) = σ(R⊕wi)⊕biR⊕zi. Since the transcript

is good there is no query of the form (σ(R ⊕ wi), �) in Qπ

(since (B-1) does not occur), nor is π(σ(R⊕wi)) determined

by the fact that Occr
R (wj , bj) = zj for all j < i (since D does

not make two queries to Occr
R with the same wi). Similarly,

there is no query of the form (�, σ(R⊕wi)⊕ biR⊕zi) in Qπ

(since (B-1) does not occur), nor is π−1(σ(R⊕wi)⊕biR⊕zi)
determined by the fact that Occr

R (wj , bj) = zj for all j < i
(since (B-2) does not occur). Thus, for all i we have

Pr[Occr
R (wi, bi) = zi | π
 Qπ∧∀j < i : Occr

R (wj , bj) = zj]

= 1/(2k − p− i+ 1) ≥ 1/2k.

It follows that

Pr[∀(w, b, z) ∈ QO : Occr
R (w, b) = z | π
 Qπ] ≥ 1/2kq,

and so the probability that the real world is consistent with

the transcript is at least (1). This completes the proof.

Instantiating σ. There are various ways σ can be instantiated.

Viewing {0, 1}k as the field F2k , it is easy to show that for

α
= 0, 1 the map σ(x) = α · x is a linear orthomorphism. (A

common choice is α = 2.) A more efficient solution, however,

is given by σ(xL‖xR) = xR⊕xL‖xL where xL and xR are the

left and right halves of the input, respectively. This orthomor-

phism has received a lot attention in the context of symmetric-

key cryptography [12], and we show in Section VIII that it

can be implemented using a small number of instructions on

modern CPUs.

D. Tweakable (Circular) Correlation Robustness

We show here a construction of a hash function that is

tweakable circular correlation robust, and hence also tweak-

able correlation robust. (It is an interesting open question

to come up with a more efficient construction satisfying the

weaker notion only.) Define

TMMOπ(x, i) = π(π(x)⊕ i)⊕ π(x).

Note that TMMOπ can be computed using only two calls to π.

Theorem 6. Let p < 2k/2. If π is modeled as a random
permutation then TMMOπ is (p, q, ρ, ε)-tweakable circular
correlation robust, where

ε =
4q(p+ q)

2k
+

5q2

2k+1
+

pq

2ρ
+

q

2k
.

Proof. Fix a deterministic distinguisher D making queries to

two oracles. The first is a random permutation on {0, 1}k
(and its inverse); in the real world, the second oracle is

Otccr
R (w, i, b) = TMMOπ(R ⊕ w, i) ⊕ b · R (for R sampled

from R), but in the ideal world it is a random function

from {0, 1}2k+1
to {0, 1}k. Following the notation from

Section VII-A, denote the transcript of D’s interaction by

Q = (Qπ,QO, R). We only consider attainable transcripts.

We say a transcript (Qπ,QO, R) is bad if:

• (B-1) There is a query (wj , ij , bj , zj) ∈ QO and a query

of the form (R⊕ wj , �) in Qπ .

• (B-2) There is a query (wj , ij , bj , zj) ∈ QO such that

bjR⊕ zj = 0k.

• (B-3) There are distinct (wj , ij , bj , zj), (w�, i�, b�, z�) ∈
QO such that bjR⊕ zj = b�R⊕ z�.

It is immediate that the probability of (B-1) in the ideal world

is at most pq/2ρ. Since each zj is uniform and independent

of R, it is similarly easy to see that the probability of (B-2) in

the ideal world is at most q/2k, and the probability of (B-3)

in the ideal world is at most q2/2k+1.

Fix a good transcript Q = (Qπ,QO, R). Letting QO =
{(w1, i1, b1, z1), . . .} as above, define uj = R ⊕ wj for 1 ≤
j ≤ q, and set U = {u1, . . . , uq}. Fixing some π
 Qπ , we

may define vj = π(uj), sj = vj ⊕ ij , and tj = zj ⊕ vj ⊕ bjR;

set V = {v1, . . . , vq}. Define a predicate Bad(π) on π, which

is true if any of the following hold:

• (C-1) For some 1 ≤ j ≤ q, there is a query of the form

(sj , �) in Qπ , or sj ∈ U .

• (C-2) For some 1 ≤ j ≤ q, there is a query of the form

(�, tj) in Qπ , or tj ∈ V .

• (C-3) There are distinct i, j, with 1 ≤ j < � ≤ q, such

that sj = s� or tj = t�.

We bound the probability of the above events when π is a

uniform permutation, conditioned on π
 Qπ .

Consider (C-1). Fixing some index j, recall that

sj = vj ⊕ ij = π(R⊕ wj)⊕ ij .

Since Q is good, π(R⊕wj) is uniform in a set of size at least

2k − p (and thus so is sj). Therefore,

Pr[∃(x, y) ∈ Qπ : sj = x] ≤ p

2k − p
≤ 2p

2k
,

using p < 2k/2. Similarly,

Pr[sj ∈ U] ≤ |U|
2k − p

≤ 2q

2k

(note that U is defined independent of π). Taking a union

bound over all j, we see that the probability of (C-1) is at

most 2q(p+ q)/2k.

835

Next consider (C-2). Fixing some index j, recall that tj =
zj ⊕ vj ⊕ bjR = zj ⊕ π(R ⊕ wj) ⊕ bjR and so, arguing as

above, we have

Pr[∃(x, y) ∈ Qπ : tj = y] ≤ p

2k − p
<

2p

2k
.

Fixing some v� ∈ V , we have tj = v� iff

zj ⊕ π(R⊕ wj)⊕ bjR = π(R⊕ w�).

The above can only possibly occur if j
= � since, if not, then

zj ⊕ bjR = 0k in contradiction to (B-2). But if j
= � then

π(R⊕w�) is uniform in a set of size at least 2k − p− 1 even

conditioned on the value of π(R⊕ wj) and thus

Pr[tj = v�] ≤
1

2k − p− 1
≤ 2

2k

(using p < 2k/2). Taking a union bound over all v� ∈ V
we see that the probability that tj ∈ V is at most 2q/2k.

Finally, taking a union bound over all j (and considering both

sub-cases above) shows that the probability of (C-2) is at

most 2q(p+ q)/2k.

To analyze (C-3), fix distinct j, �. Then sj = s� iff π(R ⊕
wj) ⊕ ij = π(R ⊕ w�) ⊕ i�. If wj = w� then ij
= i� and so

sj = s� is impossible. Otherwise, π(R ⊕ wj) is uniform in

≥ 2k−p−1 values even conditioned on the value of π(R⊕w�),
and thus

Pr[sj = s�] ≤
1

2k − p− 1
≤ 2

2k
.

The event tj = t� occurs iff

zj ⊕ π(R⊕ wj)⊕ bjR = z� ⊕ π(R⊕ w�)⊕ b�R.

The above can only possibly occur if j
= � since, if not, then

bjR⊕zj = b�R⊕z� in contradiction to (B-3). But if wj
= w�

then π(R ⊕ wj) is uniform in a set of at least 2k − p − 1
values, even conditioned on π(R⊕w�), and so Pr[sj = s�] ≤
2
2k

. Taking a union bound over all distinct j, � shows that the

probability of (C-3) is at most 2q2/2k. In summary, we have

Pr[Bad(π) | π
 Qπ] ≤
4q(p+ q) + 2q2

2k
. (2)

The probability that the ideal world is consistent with the

good transcript Q is exactly (1). The probability that the real

world is consistent with the transcript is

Pr[∀(w, i, b, z) ∈ QO : Otccr
R (w, i, b) = z | π
 Qπ]

(2k)p
·PrR[R].

Write π
j Q if π
 Qπ and Otccr
R (w�, i�, b�) = z� for all

� ≤ j. The numerator above is at least

Pr[π
q Q ∧ ¬Bad(π) | π
 Qπ]

≥
(
1− Pr[Bad(π) | π
 Qπ]

)

·
q∏

j=1

Pr[π
j Q | ¬Bad(π) ∧ π
j−1 Q]. (3)

Consider any π such that π
 Qπ and ¬Bad(π). Note that

Otccr
R (wj , ij , bj) = zj iff π(sj) = tj (for sj , tj as defined

before). If ¬Bad(π), there is no query of the form (sj , �)
or of the form (�, tj) in Qπ . Moreover, since neither (C-1)

nor (C-2) occur, neither π(sj) nor π−1(ti) is determined by

the input/output relations {π(uj) = vj}j=1,...,q . Furthermore,

since (C-3) does not occur, neither π(sj) nor π−1(tj) is

determined by the fact that π
j−i Q or, equivalently, the

fact that π(s�) = t� for all � < j. Thus, for all j we have

Pr[π
j Q | ¬Bad(π) ∧ π
j−1 Q] ≥ 1/2k,

and therefore

Pr[π
q Q | ¬Bad(π) ∧ π
 Qπ] ≥ 1/2kq.

It follows from (3) that the ratio of the probability that the

real world is consistent with Q to the probability that the ideal

world is consistent with Q is at least

1− Pr[Bad(π) | π
 Qπ].

Using (2) completes the proof.

VIII. EVALUATION

In this section we evaluate the performance of our hash-

function constructions from Section VII both on their own as

well as when they are used in various protocols. The primary

goal of our work is security, not efficiency. Nevertheless,

we show that our work results in noticeable performance

improvements over the state-of-the-art.

All timing results were obtained using an Intel(R) Xeon(R)

Platinum 8124M CPU running at 3.00GHz. This CPU uses a

Skylake architecture with hardware support for AES, where

AES-NI has a latency of 4 cycles with a throughput of

1 cycle per instruction. All tests use only a single core. The

implementations evaluated here are all publicly available [49].

A. Implementing the Hash Functions

Our constructions of correlation robust and tweakable (cir-

cular) correlation robust hash functions from Section VII only

involve XORs and calls to AES. Our construction of a circular

correlation robust hash function from Section VII-C, however,

also requires a linear orthomorphism σ. We implement σ
as described in that section using the mm shuffle epi32

instruction that is available since SSE2. This instruction allows

for arbitrary permutations of the four 32-bit integers that

comprise a 128-bit value. We can thus implement σ via

σ(a) = mm shuffle epi32(a, 78) ⊕ and si128(a, mask),
where mask = 164‖064 is a constant. In the CPU we used

for our experiments, the mm shuffle epi32 instruction

executes in 1 cycle, while the other two instructions need

0.33 cycles each, so our implementation of σ requires just

1.66 cycles. This is in contrast to prior instantiations of a

linear orthomorphism based on finite-field doubling [5], which

require 3.66 cycles on the same CPU.

In Table III we compare the performance of our hash

functions with other symmetric-key primitives. These are:

• “SHA-256” (resp., “SHA-3”) refers to computing SHA-

256 (resp., SHA-3) on a 256-bit input. The implementa-

tions from openssl are used. (In Appendix D we discuss

836

Batch size 1 2 4 8

SHA-3 1375 1381 1374 1432
SHA-256 588 584 594 588

AES + key-sched. 81 55 37 37
XORP 48 27 22 22

doubling 51 28 16 13.5
Fixed-key AES 41 21 11 10

MMOπ 43 26 13 12

M̂MO
π

σ 46 26 14 13
TMMOπ 81 45 25 21

TABLE III: Performance of symmetric-key primitives. Amortized cost per
call, measured in CPU cycles, on an Intel Xeon processor.

why the concrete security of this approach is comparable

to the concrete security of our constructions.)

• “AES + key-sched.” refers to performing key scheduling

for AES-128 (using optimizations of Gueron et al. [25])

followed by a single AES evaluation.

• “doubling” refers to computation of the function

H(x, i) = π(2x⊕ i)⊕ 2x⊕ i, where π is AES-128 with

a fixed key.

• “XORP” refers to computation of H(x) = π1(x)⊕π2(x),
where π1, π2 are both AES-128 with fixed keys.

• “Fixed-key AES” is simply AES-128 with a fixed key.

The final three rows of the table refer to the hash functions we

construct in Section VII, implemented as discussed. In each

case, π is instantiated using AES-128 with a fixed key.

We evaluated the performance of the above primitives on

different batch sizes (i.e., evaluating the primitive multiple

times in parallel) to explore the benefit of instruction-level

pipelining. We tested batch sizes as high as 32, but found little

improvement above a batch size of 8. All numbers reported

in the table are an average over 225 experiments.

We also evaluated the performance of SHA-256 when

using the SHA-NI instruction. (Note that SHA-NI is currently

available only in AMD platforms and low-end Intel processors

like Pentium and Celeron.) Our results (see Appendix E) show

that SHA-NI is 30× slower than AES-NI and hence roughly

22× slower than MMOπ and 13× slower than TMMOπ .

Discussion. We find that M̂MO
π

σ is almost as efficient as

MMOπ , while TMMOπ is roughly 2× slower. We can also

see that M̂MO
π

σ is roughly 3× faster than nonfixed-key AES,

which directly translates to a 3× improvement in the applica-

tions described in Section VI. For example, an implementation

of the GGM tree using MMOπ takes roughly 6 ms to expand

a 128-bit seed into one million 128-bit values, while the

implementation using nonfixed-key AES takes about 21 ms

for the same task. Finally, TMMOπ is 28× faster than SHA-

256; as we discuss further in the next section, this leads to a

significant improvement in OT-extension protocols.

XORP is competitive with MMOπ and M̂MO
π

σ for low batch

sizes, though is roughly twice slower for a batch size of 8. We

stress that XORP is non-compressing, and therefore does not

achieve tweakable (circular) correlation robustness; for that

Protocols
Malicious Semi-honest

High Med. Low High Med. Low

S-OT (prior) 2.03 1.74 0.49 9.10 2.46 0.50
S-OT (here) 8.50 2.35 0.49 9.10 2.46 0.50

C-OT (prior) 2.04 1.76 0.74 2.17 1.84 0.74
C-OT (here) 9.17 3.60 0.74 10.9 3.66 0.74

R-OT (prior) 3.7 2.85 1.13 3.7 2.91 1.14
R-OT (here) 12.1 6.27 1.43 14.6 6.61 1.46

TABLE IV: Performance of OT-extension protocols. Numbers reported
are in millions of OTs per second, and include the time for 128 base OTs.

reason, it should not be compared with TMMOπ .

B. OT Extension

As discussed in Section IV, prior constructions of malicious

OT extension either rely on a cryptographic hash function like

SHA-256 (modeled as a random oracle), or are constructed

from fixed-key AES in an unprincipled—and often insecure—

way. We can use our hash-function constructions in place of

SHA-256 to achieve provable security (if we model fixed-

key AES as a random permutation) with better efficiency.

(We stress that malicious OT extension requires tweakable
correlation robustness, and so XORP is inapplicable here.)

The actual improvement depends on the network speed.

We benchmark the performance of our OT protocols in three

settings: “High” (a 5 Gbps network), “Medium” (a 1 Gbps net-

work), and “Low” (a 200 Mbps network). Results are summa-

rized in Table IV, and are averaged over 225 executions. S-OT,

C-OT, and R-OT refer to standard-OT extension, correlated-

OT extension, and random-OT extension, respectively. The

table shows that we obtain a 3–4× improvement, except for the

case of semi-honest standard-OT extension (where the existing

implementation by Zahur et al. based on fixed-key AES is

secure). End-to-end performance evaluations are presented in

Appendix E.

ACKNOWLEDGMENTS

Chun Guo is a post-doc funded by Francois-Xavier Stan-

daert via the ERC project SWORD (724725). Work of

Jonathan Katz was supported in part by DARPA and SPAWAR

under contract N66001-15-C-4065. Work of Xiao Wang was

supported in part by the MACS NSF project, the RISCS

institute at Boston University, and a gift from PlatON net-

work. Work of Yu Yu was supported in part by the Na-

tional Natural Science Foundation of China (Grant numbers

61872236 and 61572192), the National Cryptography De-

velopment Fund (Grant number MMJJ20170209), and the

Anhui Initiative in Quantum Information Technologies (Grant

number AHY150100).

REFERENCES

[1] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient
oblivious transfer and extensions for faster secure computation,” in ACM
Conf. on Computer and Communications Security (CCS). ACM, 2013,
pp. 535–548.

837

[2] ——, “More efficient oblivious transfer extensions with security for
malicious adversaries,” in Advances in Cryptology—Eurocrypt 2015,
Part I, ser. LNCS, vol. 9056. Springer, 2015, pp. 673–701.

[3] Bar Ilan Cryptography Research Group, “libscapi: The Secure Compu-
tation API,” 2016.

[4] D. Beaver, “Correlated pseudorandomness and the complexity of private
computations,” in 28th Annual ACM Symposium on Theory of Comput-
ing (STOC). ACM Press, 1996, pp. 479–488.

[5] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient
garbling from a fixed-key blockcipher,” in IEEE Symposium on Security
and Privacy, 2013, pp. 478–492.

[6] S. Bhattacharya and M. Nandi, “Full indifferentiable security of the xor
of two or more random permutations using the χ2 method,” in Advances
in Cryptology—Eurocrypt 2018, Part I, ser. LNCS. Springer, 2018, pp.
387–412.

[7] A. Biryukov and D. Wagner, “Advanced slide attacks,” in Advances in
Cryptology—Eurocrypt 2000, ser. LNCS, vol. 1807. Springer, 2000,
pp. 589–606.

[8] J. Black, M. Cochran, and T. Shrimpton, “On the impossibility of highly-
efficient blockcipher-based hash functions,” Journal of Cryptology,
vol. 22, no. 3, pp. 311–329, 2009.

[9] D. Bogdanov, L. Kamm, B. Kubo, R. Rebane, V. Sokk, and R. Talviste,
“Students and taxes: A privacy-preserving study using secure computa-
tion,” Proc. Privacy Enhancing Technologies, no. 3, pp. 117–135, 2016.

[10] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen,
M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I.
Schwartzbach, and T. Toft, “Secure multiparty computation goes live,” in
Financial Cryptography and Data Security (FC), ser. LNCS. Springer,
2009, pp. 325–343.

[11] E. Boyle, N. Gilboa, and Y. Ishai, “Function secret sharing,” in Advances
in Cryptology—Eurocrypt 2015, Part II, ser. LNCS, vol. 9057. Springer,
2015, pp. 337–367.

[12] S. Chen, R. Lampe, J. Lee, Y. Seurin, and J. P. Steinberger, “Minimizing
the two-round Even-Mansour cipher,” in Advances in Cryptology—
Crypto 2014, Part I, ser. LNCS, vol. 8616. Springer, 2014, pp. 39–56.

[13] S. Chen and J. P. Steinberger, “Tight security bounds for key-alternating
ciphers,” in Advances in Cryptology—Eurocrypt 2014, ser. LNCS, vol.
8441. Springer, 2014, pp. 327–350.

[14] S. G. Choi, J. Katz, R. Kumaresan, and H.-S. Zhou, “On the security
of the “free-XOR” technique,” in Theory of Cryptography Confer-
ence 2012, ser. LNCS, vol. 7194. Springer, 2012, pp. 39–53.

[15] H. Corrigan-Gibbs, D. Boneh, and D. Mazières, “Riposte: An anony-
mous messaging system handling millions of users,” in IEEE Symposium
on Security and Privacy, 2015, pp. 321–338.

[16] W. Dai, V. T. Hoang, and S. Tessaro, “Information-theoretic indistin-
guishability via the chi-squared method,” in Advances in Cryptology—
Crypto 2017, Part III, ser. LNCS. Springer, 2017, pp. 497–523.

[17] D. Demmler, T. Schneider, and M. Zohner, “ABY—A framework for
efficient mixed-protocol secure two-party computation,” in Network and
Distributed System Security Symposium, 2015.

[18] Y. Dodis, L. Reyzin, R. L. Rivest, and E. Shen, “Indifferentiability
of permutation-based compression functions and tree-based modes of
operation, with applications to MD6,” in Fast Software Encryption
(FSE) 2009, ser. LNCS. Springer, 2009, pp. 104–121.

[19] J. Doerner and A. Shelat, “Scaling ORAM for secure computation,” in
ACM Conf. on Computer and Communications Security (CCS). ACM,
2017, pp. 523–535.

[20] X. Fan, C. Ganesh, and V. Kolesnikov, “Hashing garbled circuits for
free,” in Advances in Cryptology—Eurocrypt 2017, Part III, ser. LNCS.
Springer, 2017, pp. 456–485.

[21] A. Faz-Hernández, J. López, and A. K. D. S. de Oliveira, “SoK: A
performance evaluation of cryptographic instruction sets on modern
architectures,” in Proc. 5th ACM on ASIA Public-Key Cryptography
Workshop. ACM, 2018, pp. 9–18.

[22] T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, and R. Trifiletti,
“TinyLEGO: An interactive garbling scheme for maliciously secure two-
party computation,” Cryptology ePrint Archive, Report 2015/309, 2015,
http://eprint.iacr.org/2015/309.

[23] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random
functions,” J. ACM, vol. 33, no. 4, pp. 792–807, Oct. 1986.

[24] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game or A completeness theorem for protocols with honest majority,” in
19th Annual ACM Symposium on Theory of Computing (STOC). ACM
Press, 1987, pp. 218–229.

[25] S. Gueron, Y. Lindell, A. Nof, and B. Pinkas, “Fast garbling of
circuits under standard assumptions,” in ACM Conf. on Computer and
Communications Security (CCS). ACM, 2015, pp. 567–578.

[26] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic, “SoK:
General purpose compilers for secure multi-party computation,” in IEEE
Symposium on Security and Privacy, 2019.

[27] B. Hemenway, S. Lu, R. Ostrovsky, and W. Welser IV, “High-precision
secure computation of satellite collision probabilities,” in Intl. Conf. on
Security and Cryptography for Networks (SCN), ser. LNCS. Springer,
2016, pp. 169–187.

[28] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious
transfers efficiently,” in Advances in Cryptology—Crypto 2003, ser.
LNCS, vol. 2729. Springer, 2003, pp. 145–161.

[29] M. Keller, E. Orsini, and P. Scholl, “Actively secure OT extension with
optimal overhead,” in Advances in Cryptology—Crypto 2015, Part I, ser.
LNCS, vol. 9215. Springer, 2015, pp. 724–741.

[30] ——, “MASCOT: Faster malicious arithmetic secure computation with
oblivious transfer,” in ACM Conf. on Computer and Communications
Security (CCS). ACM, 2016, pp. 830–842.

[31] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR
gates and applications,” in Intl. Colloquium on Automata, Languages,
and Programming (ICALP), ser. LNCS. Springer, 2008, pp. 486–498.

[32] A. Lapets, F. Jansen, K. D. Albab, R. Issa, L. Qin, M. Varia, and
A. Bestavros, “Accessible privacy-preserving web-based data analysis
for assessing and addressing economic inequalities,” in Proc. 1st ACM
SIGCAS Conference on Computing and Sustainable Societies. ACM,
2018, pp. 48:1–48:5.

[33] J. Lee, “Indifferentiability of the sum of random permutations toward
optimal security,” IEEE Trans. Info. Theory, vol. 63, no. 6, pp. 4050–
4054, 2017.

[34] M. Liskov, R. L. Rivest, and D. Wagner, “Tweakable block ciphers,”
Journal of Cryptology, vol. 24, no. 3, pp. 588–613, Jul. 2011.

[35] S. Lucks, “The sum of PRPs is a secure PRF,” in Advances in
Cryptology—Eurocrypt 2000, ser. LNCS, vol. 1807. Springer, 2000,
pp. 470–484.

[36] A. Luykx, B. Mennink, B. Preneel, and L. Winnen, “Two-permutation-
based hashing with binary mixing,” J. Mathematical Cryptology, pp.
139–150, 2015.

[37] A. Mandal, J. Patarin, and V. Nachef, “Indifferentiability beyond the
birthday bound for the xor of two public random permutations,” in
Progress in Cryptology—Indocrypt 2010, ser. LNCS. Springer, 2010,
pp. 69–81.

[38] U. M. Maurer, R. Renner, and C. Holenstein, “Indifferentiability, im-
possibility results on reductions, and applications to the random oracle
methodology,” in Theory of Cryptography Conference, ser. LNCS, vol.
2951. Springer, 2004, pp. 21–39.

[39] B. Mennink and B. Preneel, “On the XOR of multiple random per-
mutations,” in Intl. Conference on Applied Cryptography and Network
Security (ACNS), ser. LNCS. Springer, 2015, pp. 619–634.

[40] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in IEEE Symposium on Security and
Privacy, 2017, pp. 19–38.

[41] J. B. Nielsen, T. Schneider, and R. Trifiletti, “Constant round maliciously
secure 2PC with function-independent preprocessing using LEGO,” in
Network and Distributed System Security Symposium, 2017.

[42] J. Patarin, “The “coefficients H” technique (invited talk),” in Annual
International Workshop on Selected Areas in Cryptography (SAC), ser.
LNCS. Springer, 2009, pp. 328–345.

[43] M. O. Rabin, “How to exchange secrets with oblivious trans-
fer,” Cryptology ePrint Archive, Report 2005/187, Aiken Computa-
tion Lab, Harvard University, Tech. Rep. TR-81, 1981, available at
http://eprint.iacr.org/2005/187.

[44] P. Rindal, “libOTe: an efficient, portable, and easy to use
Oblivious Transfer Library,” https://github.com/osu-crypto/libOTe,
41c55052627081363364370ba7f7893b3c413951.

[45] Unbound Tech, “Protecting cryptographic signing keys
and seed secrets with multi-party computation.” https:
//github.com/unbound-tech/blockchain-crypto-mpc, 2018,
94d5b83dc83e920a668d6e737c0a720c3abca7dc.

[46] University of Bristol, “Apricot: Advanced protocols for
real-world implementation of computational oblivious
transfers.” https://github.com/bristolcrypto/apricot, 2016,
3760dda51b0080ee0fb79c7184cbe2c00762c2b8.

838

[47] ——, “Multiparty computation with SPDZ, MASCOT, and overdrive of-
fline phases (inactive).” https://github.com/bristolcrypto/SPDZ-2, 2016,
721abfae849625a02ea49aabc534f9cf41ca643f.

[48] F. Wang, C. Yun, S. Goldwasser, V. Vaikuntanathan, and M. Zaharia,
“Splinter: Practical private queries on public data,” in 14th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
17), 2017, pp. 299–313.

[49] X. Wang, A. J. Malozemoff, and J. Katz, “EMP-toolkit: Efficient
MultiParty computation toolkit,” https://github.com/emp-toolkit, 2016.

[50] X. Wang, S. Ranellucci, and J. Katz, “Authenticated garbling and
efficient maliciously secure two-party computation,” in ACM Conf. on
Computer and Communications Security (CCS). ACM, 2017, pp. 21–
37.

[51] ——, “Global-scale secure multiparty computation,” in ACM Conf. on
Computer and Communications Security (CCS). ACM, 2017, pp. 39–
56.

[52] A. C.-C. Yao, “How to generate and exchange secrets (extended ab-
stract),” in 27th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 1986, pp. 162–167.

[53] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole—
reducing data transfer in garbled circuits using half gates,” in Advances
in Cryptology—Eurocrypt 2015, Part II, ser. LNCS, vol. 9057. Springer,
2015, pp. 220–250.

[54] R. Zhu and Y. Huang, “JIMU: Faster LEGO-based secure computation
using additive homomorphic hashes,” in Advances in Cryptology—
Asiacrypt 2017, Part II, ser. LNCS. Springer, 2017, pp. 529–572.

APPENDIX A

RANDOM-OT EXTENSION

Random OT is similar to correlated OT except that both

“messages” of the sender are chosen uniformly by the ideal

functionality; see Figure 6. It also has applications to secure

computation [1]. In Figure 7 we show a protocol realizing this

functionality in the FΔ-ROT-hybrid model, in both the semi-

honest and malicious settings.

Theorem 7. If H is cr (resp., tcr) then protocol ΠR-OT

securely realizes FR-OT for semi-honest (resp., malicious)
adversaries in the FΔ-ROT-hybrid model.

Proof. The proof is very similar to the proof of Theorem 2. As

in that case, security for a corrupted PA is perfect and easy to

show, and we thus focus on a corrupted PB. We consider the

malicious setting; the semi-honest setting follows similarly.

The simulator S for a malicious PB is as follows:

1-2. S obtains the inputs (x1, . . . , xm), as well as the values

{bi}i∈[m], that A sends to FΔ-ROT,

S also chooses a uniform Δ and answers A’s global key

query (if any) using Δ.

3. S sets mxi
i := H(bi, i) and sends (x1, . . . , xm) and

{mxi
i } to FR-OT.

A proof of indistinguishability follows as in the proof of

Theorem 1.

APPENDIX B

ON DEFINING CORRELATED OT

We give an explicit attack showing that the protocol for

correlated-OT extension by Asharov et al. [2] does not realize

their correlated-OT functionality in the malicious setting. A

similar attack also works for random-OT extension.

In Figure 8 we show the original correlated-OT functionality

as defined by Asharov et al. [2]. Compared to our version of

the ideal functionality in Figure 4, this ideal functionality is

Functionality FR-OT

Upon receiving (Extend) from PA and (x1, . . . , xm) from PB

with xi ∈ {0, 1} do:

1) For each i ∈ [m], sample uniform m0
i ,m

1
i ∈ {0, 1}k.

2) If PA is corrupted, wait for A to send {(m0
i ,m

1
i)}.

If PB is corrupted, wait for A to send {mxi
i }.

3) Send {(m0
i ,m

1
i)} to PA and {mxi

i } to PB.

Fig. 6. Functionality FR-OT.

Protocol ΠR-OT

Inputs: PB has x1, . . . , xm with xi ∈ {0, 1}.
Protocol:

1) PA chooses uniform Δ and sends (Init,Δ) to FΔ-ROT; PB

sends (Init) to FΔ-ROT.
2) PB sends (x1, . . . , xm) to FΔ-ROT, which returns

a1, . . . ,am to PA and b1, . . . ,bm to PA.
3) Semi-honest security: For i ∈ [m] and b ∈ {0, 1}, PA

computes mb
i := H(ai ⊕ bΔ); PB sets mxi

i := H(bi).

Malicious security: For i ∈ [m] and b ∈ {0, 1}, PA

computes mb
i := H(ai⊕bΔ, i); PB sets mxi

i := H(bi, i).

Fig. 7. Protocol ΠR-OT.

Functionality F ′
C-OT

Upon receiving (Δ1, . . . ,Δm) from PA and (x1, . . . , xm) from
PB with xi ∈ {0, 1} do:

1) For each i ∈ [m], sample uniform m0
i and set m1

i :=
m0

i ⊕Δi.
2) Send {(m0

i ,m
1
i)} to PA and {mxi

i } to PB.

Fig. 8. The original functionality F ′
C-OT for correlated OT proposed by

Asharov et al. [1, 2].

stronger since it does not allow the adversary to specify the

output it receives. In particular, a malicious PB is no longer

allowed to specify the values {mxi
i }. Asharov et al. propose

a protocol that is the same as ours (cf. Figure 5), and claim

security when H is modeled as a random oracle.

Since a malicious PB can fully determine the values of bi,

however, it can clearly choose them in such a way that each

of the {mxi
i } satisfy some predicate, e.g., so that the least-

significant bit of mxi
i is equal to 0 for all i. This holds true

regardless of how H is instantiated.

APPENDIX C

ATTACK ON MASCOT

Recall that the MASCOT paper [30] recommends instanti-

ating the hash function as H(x, i) = π(x) ⊕ x, and this was

implemented by SPDZ-2 [47]. In Section II, we showed an

attack on the OT-extension protocol using this H . Here, we

show that the same ideas can be used to attack the triple-

generation protocol used in MASCOT in the FΔ-ROT hybrid

model, which in turn can be used to violate privacy of the

overall MASCOT protocol.

839

The attack on MASCOT discussed in Section II focuses on

standard OT, but applies to random OT as well. In particular, a

corrupted receiver can send the same choice bits (denoted as x)

and messages (denoted as b) to FΔ-ROT across all executions i.
In this case, the ai values obtained by the sender are also the

same for all i since ai = bi ⊕ xiΔ = b ⊕ xΔ. Thus, the

output of the sender (namely, m0
i and m1

i) is also the same

for all i, since they are computed as a deterministic function

of ai and Δ and are independent of i if the hash function H
does not depend on i.

This can be used to attack the triple-generation proto-

col in MASCOT. Roughly, the MASCOT triple-generation

protocol works by having each party Pi choose random

a
(i)
1 , . . . , a

(i)
τ , b(i) in a field F, where b(i) will be the share

of the (secret) b-value of the output triple, and some linear

combination of a
(i)
1 , . . . , a

(i)
τ will be the share of the (secret) a-

value of the output triple. Party Pj then obtains some random

pads q
(j,i)
0,h , q

(j,i)
1,h by playing the role of a sender in an execution

of random OT, and later sends q
(j,i)
0,h − q

(j,i)
1,h + b(j) to Pi. If

Pi is corrupted, and the adversary makes q
(j,i)
0,h , q

(j,i)
1,h the same

across two executions of the triple-generation protocol, then

the adversary can easily learn the difference of the b-values

used in two output triples. When such triples are used in the

online phase, this allows the attacker to learn the difference

of two secret values.

In detail, the attack works on Protocol 4 of the MASCOT

paper, which is used to generate authenticated SPDZ triples.

For simplicity, assume there are only two parties P1 and P2.

(The attack can be easily generalized to any number of parties),

and the adversary corrupts P1. The attack proceeds as follows.

The adversary first picks a bit a and a κ-bit string b.

1) In step 2(a), the adversary (acting as the receiver in an

execution of random OT) sends (a, a, ..., a) ∈ Fτκ
2 to the

FΔ-ROT ideal functionality, and requests FΔ-ROT to use

the same string b for all h. By doing so, the adversary

obtains the value s
(1,2)
h that is the same across for all h,

denoted as sa.

2) The ideal functionality in step 2(b) sends q
(2,1)
0,h , q

(2,1)
1,h ∈ F

to the sender. Due to the above attack, we know that

q
(2,1)
a,h = sa for all h, and for some (random) value sā it

holds that q
(2,1)
ā,h = sā for all h.

3) In step 2(c), the adversary receives d
(2,1)
h values from the

honest party that are all equal (since d
(2,1)
h = q

(2,1)
0,h −

q
(2,1)
1,h + b(2) = s0 − s1 + b(2)).

4) For each triple, the adversary uses the same values of

a and b, which forces all s0, s1 to be same same. So

for generation of two triples, where the honest party uses

b(2) and b′(2), the d values sent from the honest party

are d = s0 − s1 + b(2) and d′ = s0 − s1 + b′(2), where

b(2) − b′(2) can be computed by the adversary.

The above allows the adversary to learn all the SPDZ triples

except for the first. Since these are used in the online phase to

mask private inputs, this means that if the attacker knows one

bit of the honest party’s input then it can deduce the honest

Batch size 1 2 4 8

SHA-3 1166 1188 1160 1163
SHA-256 (SHA-NI) 223 179 185 252
AES + key-sched. 78 58 34 34

XORP 45 29 18 12
doubling 51 29 16 10

Fixed-key AES 38 22 11 6

MMOπ 40 29 13 8

M̂MO
π

σ 42 25 15 9
TMMOπ 79 46 25 14

TABLE V: Performance of symmetric-key primitives. Amortized cost per
call, measured in CPU cycles, on an AMD processor with SHA-NI enabled.

party’s entire input. (Equivalently, without knowing anything

a priori the attacker learns that the honest party’s input is one

of two possibilities.)

APPENDIX D

CONCRETE SECURITY OF CORRELATION ROBUSTNESS

Our constructions in Section VII all achieve concrete secu-

rity O((pq+q2)/2k), assuming R is uniform for simplicity. We

show that no hash function H can achieve concrete security

better than O(pq/2k) for correlation robustness—even if H
is a random oracle. For applications of correlation robustness

to secure computation one would generally have p � q, and

the concrete security of our constructions is asymptotically

optimal when that holds.

We show a explicit attack with p queries to H and q
queries to Ocr

R(x) = H(R ⊕ x) that has distinguishing

advantage O(pq/2k):

1) Evaluate H on p uniform inputs, i.e., compute the values

z∗1 = H(v∗1), . . . , z
∗
p = H(v∗q).

2) Query Ocr
R on q uniform inputs, i.e., obtain the results

z1 = O(x1), . . . , zq = O(xq).
3) If z∗i = zj for some i, j, then set R∗ = v∗i ⊕ xj as a

candidate guess for R. This guess can be verified using

one additional query to each of H and Ocr
R.

(This is a “slide with a twist attack” [7] adapted to our setting.)

The distinguishing advantage of this attack is O(pq/2k).

APPENDIX E

ADDITIONAL PERFORMANCE EVALUATIONS

A. Microbenchmarks on AMD CPUs

We measured the performance of various primitives using an

AMD EPYC 7000 CPU available on an Amazon EC2 instance

of type m5ad.xlarge. Here, the implementation of SHA-

256 is from openssl and uses SHA-NI. When running multiple

evaluations of SHA-256, we take advantage of pipelining

using the implementation of Faz-Hernández et al. [21]. We

observe a 20% improvement in running time when using a

batch size of 2, but the performance is worse when the batch

size is larger. This is consistent with the results reported by

Faz-Hernández et al., who explained that this is due to the

840

High Med. Low

MASCOT

Prior work (SHA-256) 4.29 s 6.7 s 18.2 s
Here (AES) 1.92 s 4.3 s 16.1 s

Improvement 2.2× 1.6× 1.1×
SecureML

Prior (SHA-256) 270 ms 320 ms 700 ms
This work (AES) 68 ms 150 ms 700 ms

Improvement 4.0× 2.1× –

TABLE VI: Performance of two OT-based triple-generation protocols
on an Intel processor.

limited CPU register size. The results of our experiments are

summarized in Table V.

B. End-to-end Performance Improvement

To evaluate the performance improvement when using our

improved design in end-to-end MPC protocols, we bench-

marked the performance of MASCOT and SecureML [40]

when using our optimized OT-extension protocols. MASCOT

is a state-of-the-art protocol for multi-party computation with

malicious security that relies on SPDZ-triple generation based

on OT extension; SecureML uses OT extension for (semi-

honest) generation of Beaver matrix triples. Since triple gen-

eration dominates the overall cost in either case, we focus on

the performance of that step.

Similar to the performance of OT extension, the actual

improvement depends on the network speed, and the perfor-

mance is measured in three settings: “High” with a 5 Gbps

network, “Medium” with a 1 Gbps network, and “Low” with

a 200 Mbps network. In Table VI, we show the performance

of these two triple-generation protocols in various network

settings. The running time for MASCOT is for generating 104

128-bit SPDZ triples, and the running time for SecureML is

for generating Beaver matrix triples of dimension 128× 128,

where each element is 64-bits long. Over a high-bandwidth

network, we observe around 4.0× improvement for SecureML

and 2.2× improvement for MASCOT; as for a medium-

bandwidth network, we observe an 2.1× improvement for

SecureML and 1.6× for MASCOT. We also performed the

same benchmark on an AMD platform with SHA-NI, with

results reported in Table VII.

We remark that the recent secure-computation protocols

based on authenticated garbling [50, 51] do not use the same

type of OT protocols described in this paper. Instead, they rely

on the globally correlated OT-hybrid model [41], which does

not need any (tweakable) correlation robust hash function.

Therefore our improvements do not apply to their protocols.

High Med. Low

MASCOT

Prior work (SHA-256) 2.8 s 5.13 s 16.8 s
Here (AES) 1.64 s 3.99 s 15.6 s

Improvement 1.7× 1.3× 1.07×
SecureML

Prior (SHA-256) 170 ms 220 ms 700 ms
This work (AES) 70 ms 144 ms 700 ms

Improvement 2.4× 1.5× –

TABLE VII: Performance of two OT-based triple-generation protocols
on an AMD processor.

841

