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Abstract—This paper is concerned with performance analysis
for data association, in a target tracking environment. Effects
of misassociation are considered in a simple (linear) multiscan
framework so as to provide closed-form expressions of the
probability of correct association. In this paper, we focus on
the development of explicit approximations of this probability.
Via rigorous calculations the effect of dimensioning parameters
(number of scans, false measurement positions or densities)
is analyzed, for various modelings of the false measurements.
Remarkably, it is possible to derive very simple expressions of
the probability of correct association which are independent of
the scenario kinematic parameters.

INDEX OF PRINCIPAL NOTATIONS:
• ca: correct association , fa: false association, DTMC: discrete

time Markov chain.
• erfc(x) =

∫ +∞
x
N (0, 1)(x) dx , N (m,σ): normal density

mean m, s.d. σ.
• I: identity matrix , 1: indicator function , 11: a vector made of

1.
• N : scan number, l: a scan index, λ: the false alarm distance.
• ∆f,c: difference of association costs , K: number of false

measurements.
I. INTRODUCTION

A fundamental problem in multi-target tracking is to
evaluate the performance of the association algorithms.
However, it is quite obvious that tracking and association
are completely entangled. In this context, a key performance
measure is the probability of correct association. Generally,
track accuracy has been considered without consideration
of the association problem. However, remarkable exceptions
exist. Very roughly, they can be divided in two categories.
The first one deals with track divergence. In particular,
important efforts have been done for performance of
the Nearest Neighbor (NN) filter. In some approaches,
the tracking error is modeled as a diffusion process [1].
Fundamental contributions deals with the analysis of the
dynamic process of tracking divergence [2], applied to NN
filter performance[3] or the expected track life of the PDAF
[4] in clutter [5]. Equally important are contributions devoted
to the performance evaluation of track initiation in dense
environments [6], [7].

The second category is scan-wise oriented, which means
that for each set of measurements, the algorithm calculates
an optimal track-to-measurement assignment and propagate
only the best ”hypothesis”. Since it uses an optimal track-
to-measurement assignment it should provide better tracking

performance than NN or PDA [8], [9]. However, this work
is essentially oriented toward a modeling of misassociations
via the effect of permutations, from a 0-scan viewpoint
and its propagation [7]. Here, we focus on the effect of
the ”contamination” of a target track due to extraneous
measurements, within a multiscan framework. In fact, a
”contamination” results in a change of the estimates of the
track parameters, which could render misassociations more
likely than the true one. It is certain that only measurements
situated in the immediate vicinity of the target track would
have a severe effect. This is the case for dense target
environment or for situations where these close outliers are
intentionally generated (e.g. decoys) [10].

Here, our analysis is devoted to multiscan association
analysis. For easing calculations the target motion is generally
assumed to be deterministic, while we are concerned with
batch performance. The linear estimation framework has
been used so as to allow us to obtain explicit closed-form
expressions of the probability of correct association, which
is the only aim of this contribution. Then, track purity
can be seen as the probability that the proportion of false
measurements ”included” in the system track be under a
certain level (percentage). False measurements are modeled
either as deterministic or random.

This paper is organized as follows. In Section 2 the
elementary multiscan association scenario is presented. We
have then to calculate the association costs under the two
hypotheses (correct and false associations). This is the
object of Section 3. The major result of this section is the
calculation of (exact) closed-forms for these association costs
via elementary linear algebra, which will be of constant use
subsequently.

The true problem is now to derive from Section 3 results
an accurate closed-form approximation of the probability
of correct association. This is precisely the aim of Section
4, which plays the central role in this paper. The way we
derive this approximation is detailed. It is based upon an
approximation of the normal density via a sum of indicator
(step) functions. The final result is a very simple closed-form
approximation, whose accuracy is testified by Section 5
(simulation results). Note, however, that these results are
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limited to a single false association within the whole batch
period.

It is the aim of Section 6 to extend the analysis to multiple
false measurements. The approach we developed for approx-
imating the probability of correct association in the unique
false measurement case is no longer valid. In particular,the
method we used for approximating the integrals no longer
holds. So, we have to resort to a different approach. Roughly,
we consider that the mean and variance of the difference
of association costs are characterized by their distributions,
themselves depending on random parameters. It is shown that
the probability of correct association is highly dependent of
the number of false measurements lying in the vicinity of the
target trajectory.

II. PROBLEM FORMULATION

A target is moving with a rectilinear and uniform motion.
Noisy measurements consisting of Cartesian positions are
represented by the points:

P̃1 = (x̃1, ỹ1) , P̃2 = (x̃2, ỹ2) , · · · , P̃N = (x̃N , ỹN ) , (1)

at time periods t1, t2,· · · ,tN , which are called ”scans”. Under
the correct association hypothesis, the position measurements
are the exact Cartesian positions Pi = (xi, yi), corrupted by a
sequence of independent and identically normally distributed
noises (denoted εxi , εyi ), i.e.:

P̃i = (x̃i, ỹi) = (xi + εxi , yi + εyi) . (2)

We assume that the observation noises εx and εy are
uncorrelated, with a variance σ2. When a target is
(sufficiently) isolated from others, there is no ambiguity
about the measurement origin. This is not true if a second
target lies in the vicinity of the first target. In this case, it
becomes possible to make a mistake about the origin of
an observation by associating it to the wrong target, thus
corrupting target trajectory estimation. But the question is to
give a more precise meaning to the term ”sufficiently isolated”.

target

P1

P2

λ

P̃1

P̃2

Pf ,N

P̃N

PN

Figure 1. The association scenario. Dotted line: correct association, dashed
line: false association.

Thus, the aim of this article is to give a closed-form expres-
sion for the probability of correct association of measurements
to a target track, as a function of the number of scans and the
distance of the outliers observations. In order to simplify the
scenario, we consider that the outlier measurements Pf are
located close to the true target position Pl = (xl, yl) at time
period tl, with a distance λ1. Throughout this paper λ stands
for the ratio λ/σ. The general problem setting and definitions
are depicted in fig. 1.
Let us denote δ = ti+1− ti, the inter-measurement time, and:

v = (vx, vy)
T
,

the two components of the constant target velocity on the
Cartesian axis. Then, in the deterministic case, the target
trajectory is defined by the state vector (x1, y1, vx, vy).

III. PROBLEM ANALYSIS

Under the correct association (ca) hypothesis and denoting
τi

∆
= i δ, the position measurements P̃i are represented by the

following equation2:



x̃1

ỹ1

x̃2

ỹ2

...
x̃N
ỹN


︸ ︷︷ ︸

Z̃ca

=


I2 02

I2 τ1I2
...

...
I2 τN−1I2


︸ ︷︷ ︸

X


x1

y1

vx
vy


︸ ︷︷ ︸

β

+



εx1

εy1

εx2

εy2

...
εxN
εyN


︸ ︷︷ ︸

ε̃ca

(3)

With these definitions and under the correct association hy-
pothesis, the measurement model simply stands as follows:

Z̃ca = X β + ε̃ca . (4)

A. The regression model [12]

Consider the following linear regression model:

Z̃ = X β + ε̃ , (5)

where Z̃ are the data, X are the regressors and β is the vector
of parameters, to be estimated. Generally, the estimation of β
is made via the quadratic loss function:

L2(β) =
(
Z̃ −X β

)T (
Z̃ −X β

)
= ‖Z̃ −X β‖2 . (6)

If the matrix X TX is non-singular, then L2(β) is minimum
for the unique value β̂ of β such that:

β̂ = (X T X )−1X T Z̃ . (7)

1For the sake of brevity, we assume that measurements are resolved (see
[11])

2I: identity matrix
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From the estimation β̂ of β, let Ẑ be the estimator of the
mean X β of the random vector Z̃ defined by:

Ẑ = H Z̃ ,
with :
H = X (X TX )−1 X T .

The vector of the residuals ε̂ ∆
= Z̃ − Ẑ is given by:

ε̂ =M Z̃ , (8)

withM = I−H , and I the identity matrix. It is easy to check
thatM is a projection matrix (i.e.MT =M andM2 =M).
We also recall the following classical identities, which will be
used subsequently [13]:

MX = 0 , and: ε̂ =M ε̃ . (9)

B. Evaluation of the correct association probability

Assume that the outlier measurement Pf,l = (xf , yf ) is
located at the point (1 ≤ l ≤ N , see fig. 1):{

xf = xl ,
yf = yl − λ .

The correct association is then defined by the association of
points

{
P̃1, · · · , P̃l, · · · , P̃N

}
∆
= Z̃ca, whereas the wrong

association is defined by
{
P̃1, · · · , P̃f,l, · · · , P̃N

}
∆
= Z̃fa (the

lowercase f stands for false association). The vectors Ẑca and
Ẑfa are similarly defined from Z̃ca, Z̃fa and the regression
equation (eq. 8).

The vectors of residuals are ε̂ca = Z̃ca − Ẑca under the
correct association hypothesis (ca) and ε̂fa = Z̃fa − Ẑfa under
the false association hypothesis (fa). They are deduced from
a linear regression, leading to the following definition of the
costs of correct association (denoted Cca) and false association
(denoted Cfa) :

Cca = (Z̃ca − Ẑca)
T (Z̃ca − Ẑca) , (10)

= ε̃TcaM ε̃ca .

In the same way, we have also:

Cfa = ε̃TfaM ε̃fa . (11)

Let us define now ∆f,c the difference between the correct and
wrong costs, i.e.:

∆f,c
∆
= Cfa − Cca . (12)

Then, the probability of correct association is defined by the
probability that ∆f,c ≥ 0 (denoted P (∆f,c ≥ 0)). The aim
of this article is to give closed-form expressions for this
probability.

Let be ε̃com the vector of components that the vectors
ε̃ca and ε̃fa have in common, and define ε̃l and fal as the
complementary vectors 3, so that:

3 This means that vectors ε̃l and fal are made of zeroes, excepted in the
l positions

ε̃ca = ε̃com + ε̃l , ε̃fa = ε̃com + fal . (13)

With these notations, the difference between the correct and
wrong costs ∆f,c can be written:

∆f,c = faTl M fal − (ε̃l)
TM(ε̃l) ,

−2 (ε̃l − fal)
TM(ε̃com) .

(14)

Since the components of the vector ε̃com are normally
distributed and supposed independent, this vector is normal
(ε̃com ∼ N (O,Σcom) ), and similarly for ε̃l (ε̃l ∼ N (O,Σl)
).

Assuming that the vector ε̃l is set to a fixed value el, the
law of the difference of costs L(∆f,c| ε̃l = el) is normal with
characteristics:

L (∆f,c| ε̃l = el) = N
[
faTl Mfal − (el)

TMel,

4(el − fal)
TΦ(el − fal)

]
,
(15)

where: Φ
∆
=MΣcomMT . Integrating this conditional density

w.r.t. the Gaussian vector ε̃l, yields:

P (∆f,c(l) ≥ 0) = Eε̃l

[
erfc

(
el
TMel − faTl M fal

2
√

(el − fal)TΦ(el − fal)

)]
(16)

Considering eq. 16, it is not surprising that it is the func-
tional Ψ(el):

Ψ(el) =
(el)

TMel − faTl M fal

2
√

(el − fal)TΦ(el − fal)
, (17)

which will play the fundamental role for analyzing the proba-
bility of correct association. However, though eq. 16 is simple
and general, it has the great inconvenient to involve the
integration of the erfc function, so there is no hope to derive
a closed-form expression of P (∆f,c(l) ≥ 0) by this way. So,
we shall first turn toward a different approcah based on eq.
15. To that aim, our developments follow the following steps:

• Calculation of a closed form expression for the mean and
variance of L (∆f,c| ε̃l) (see eq. 15) (see section III-C).

• Approximation of L (∆f,c| ε̃l) as a sum of indicator
functions, see section IV-A.

• Approximation of the integration domains for the indica-
tor functions, see section IV-B.

C. A closed-form for the mean and variance of L (∆f,c| ε̃l)
Let us concentrate first on the case of a unique false as-

sociation. Using elementary matrix calculations, the following
results have been obtained (see Appendix A):

faTl Mfal − (el)
TMel =

[
2
(

2N+1−6l+ 6l2

N

)
(N+1)(N+2) − 1

] (
‖el‖2 − ‖fal‖2

)
.

(el − fal)
TΦ(el − fal) = 1

(N+1)2(N+2)2 [Q1(l, N) + 2l δQ2(l, N)

+l2 δ2Q3(l, N)
]
‖el − fal‖2 .

(18)
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where the Q1, Q2 and Q3 polynomials have the following
expression:∣∣∣∣∣∣∣∣∣
Q1(l, N) = 4N3 − 50N2 +N(48l − 18) + l(24− 36l) + 4 ,

Q2(l, N) = − 6
δ

[
N2 − 5N − 2 + 4l(1 + 1

N − 3l
N )
]

Q3(l, N) = 36
δ2

[
N
3 − 1 + 2

N ( 1
3 + 2 l − 2 l

N2 )
]
.

Considering eq. 16 (last row), we can notice that the variations
of Ψ(el) as a function of l are not very important. Actually,
it is easily seen that N2

2 (N3−3lN2+3l2N)1/2 is varying between
√
N
2 and

√
N
4 as l varies between 0 and N . Now, the erfc

function is quite flat for large values of N , which means that
P (∆f,c(el) ≥ 0) is almost independent of the l value.

The previous calculations can be rather easily extended to
multiple false associations. Let FAK = (lk)Kk=1, be the vector
made by indices lk of the (possible) false associations. A
closed-form expression of the numerator of eq. 17 is:

eTKMeK − FATKMFAK =

K∑
k=1

K∑
k′=1

αN (lk, lk′)
(
〈elk , elk′ 〉 − 〈falk , falk′ 〉

)
,

with:

αN (lk, lk′) =

(
1{k=k′} − 2(2N+1−3 lk′−3 lk+

6 lklk′
N )

(N+1)(N+2)

)
.

(19)
Similarly, for the denominator DΨK of ΨFAK

, we have:

(eK − FA)
TM (eK − FA) =

2
√∑K

k=1

∑K
k′=1 θ(lk, lk′) 〈elk − falk , elk′ − falk′ 〉 ,

with:
(N + 1)2(N + 2)2 θ(lk, lk′) = [Q∗1(FAK , N)

+(lk + lk′)Q
∗
2(FAK , N) + lklk′ Q

∗
3(FAK , N)] .

(20)
The polynomials Q∗1, Q∗2 and Q∗3 stand as follows:

∣∣∣∣∣∣∣∣∣∣∣

Q∗1(FAK , N) =
∑N
l=0,l/∈FAK

(4N + 2− 6l)2 ,

Q∗2(FAK , N) = − 6
δ

[∑N
l=0,l/∈FAK

(4N + 2− 6l)(1− 2 l
N )
]
,

Q∗3(FAK , N) = 36
δ2

[∑N
l=0,l/∈FAK

(1− 2 l
N )2

]
.

IV. CLOSED-FORM APPROXIMATIONS OF THE
PROBABILITY OF CORRECT ASSOCIATION: UNIQUE FALSE

MEASUREMENT

As shown in section 3, it has been possible to obtain
closed-form expressions of the Ψ functional. However, even
in the unique false measurement case, it is still necessary
to perform an integration of the erfc(Ψ(el) ) functional.
Though this is possible numerically, no analytic insight can
be gained by this way. Actually, it is hopeless to consider
approximations of the erfc function and we have to turn
toward a radically different approach based on approximating
the normal density by a sum of stepwise (indicator) functions.

For the sake of simplicity, the error measurement compo-
nents ε̃x,l and ε̃y,l will be simply denoted as x and y. We have

now to deal with convenient approximations of the association
cost difference ∆f,c

∆
= Cfa − Cca. We restrict us to a single

outlier measurement. At this point, it is worth recalling that it
is conditionally distributed as a normal density (see eq. 15):

∆f,c| ε̃l = el ∼ N (m,σ). (21)

The conditional mean m and variance σ2 have been made
explicit in section III-C (eq. 18), yielding:

m =

[
2
(

2N+1−6 l+ 6 l2

N

)
(N+1)(N+2) − 1

] (
‖el‖2 − ‖fal‖2

)
∆
= αN (l)

(
‖el‖2 − ‖fal‖2

)
,

σ2 = (N+1)2(N+2)2

[Q1(l,N)+2lδQ2(l,N)+l2δ2Q3(l,N)] ‖el − fal‖2
∆
= βN (l) ‖el − fal‖2 .

(22)

From eq. 22, we see that ∆f,c(N) is normally distributed with
an almost constant mean (roughly

(
‖fal‖2 − ‖el‖2

)
), while

its variance is proportional to σN = 1
N ‖el − fal‖, which

will be of constant use from now. The situation is depicted
in fig. 2. In this figure, we see that m is almost constant as
N increases, while its variance σ increases. This results in
an increase of P (∆f,c(N) ≥ 0) since the darked area on
the left of the ) threshold is decreasing. This section will be

m

σN2

σN1

N2 > N1

0

Figure 2. P (∆f,c ≥ 0) as a function of N .

divided in three subsections corresponding to the main steps
of the development. The first idea consists in approximating
the above normal density by a sum of indicator functions.
Then, we have to calculate specific integrals (named Ai and
Bi integrals). This will constitute the major difficulty since
these integrals are defined on an implicitly defined domain.

A. Approximating the normal density by a sum of indicator
functions

A first step will consist in approximating the density
L (∆f,c| ε̃l = el) (see eqs. 21, 22) by a weighted sum of n
indicator functions (denoted ϕi). Thus considering a ”3σ”4

support of this approximation centered on the mean m of this

4Of course, the choice of 3σ is completely arbitrary and extending our
calculations to a κσ support is quite straightforward. Moreover, a 3σ support
is quite sufficient under the Gaussian assumption.
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normal density, i.e. [m− 3σ,m+ 3σ] leads to:

L (∆f,c| ε̃l = el) '
n∑
i=1

γi

6 in σ(x, y)
ϕi(x, y) ,

where:
ϕi(x, y)

∆
= 1∆f,c∈[biinf(x,y) , bisup(x,y)] , el = (x, y)T .

(23)

This means that the supports of these n indicator functions
vary from [−3 σ

n , 3
σ
n ], to [−3σ, 3σ], and that we have the

following definitions (see fig. 3):

σ(x, y) = 2

√
(el − fal)

T
Φ(el − fal) ,

= 2
√
βN (l) [(x)2 + (y + λ)2 ] ,

bisup(x, y) = m(x, y) + 3
i

n
σ(x, y) ,

= faTMfa− (el)
TM(el) +

3i

n
σ(x, y) ,

= αN (l)(x2 + y2 − λ2) +
3i

n
σ(x, y)

biinf(x, y) = faTMfa− (el)
TM(el)−

3i

n
σ(x, y) ,

= αN (l)(x2 + y2 − λ2)− 3i

n
σ(x, y) . (24)

The scalar parameters αN (l) and βN (l) are given by (see eq.
18): 

αN (l) = [
2(2N+1−6l+6 l

2

N )

(N+1)(N+2) − 1] ,

βN (l) = Q1(l,N)+2lδQ2(l,N)+l2δ2Q3(l,N)
(N+1)2(N+2)2 .

(25)

For instance, for l = N , we have more simply : αN = N(1−N)
(N+1)(N+2) ≈ −1 ,

βN = 4N3+226N2−66N+4
(N+1)2(N+2)2 ≈ 4

N (N � 1) .

The fact that βN (l) is small (w.r.t. 1) will play a central role
for deriving closed form approximations of P (∆f,c ≥ 0). The
definition and meaning of the ϕi functions are represented
on fig. 3. With these definitions, we thus have the following

���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������

���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������

b1inf b1sup b3supb3inf

αN(x
2+ y2−λ2)

ϕ1

ϕ2

ϕ3

Figure 3. The approximation scheme: the ϕi functions

approximation:

Proposition 1. Consider the approximation of
P (∆f,c ≥ 0| ε̃l = el) as a sum of indicator functions
(see eq. 23), the following equality holds true:

P (∆f,c ≥ 0| ε̃l = el) =
n∑
i=1

γi

[
bisup(x, y)

2 3i
n den(x, y)

1bisup(x,y)≥0 −
biinf(x, y)

2 3i
n den(x, y)

1biinf(x,y)≥0

]
,

=

n∑
i=1

γi
2

(
1bisup(x,y)≥0 + 1biinf(x,y)≥0

)
+ n

12
αN√
βN

(x2+y2−λ2)√
((x−λ)2+y2)

n∑
i=1

γi
i

(
1bisup(x,y)≥0 − 1biinf(x,y)≥0

)
.

(26)
Moreover, we have:

bisup(x, y) ≥ 0⇐⇒ f(x, y) ≤ −6i

n

√
βN
αN

. (27)

where:

f(x, y) = x2+y2−λ2√
x+(y+λ)2

.

Proof: For the sake of completeness, a short proof is now
presented. First, consider eq. 26 and assume that ∆(u) ∈
[binf , bsup]. Then:∫

∆≥0

1∆(u)∈[bi,bs]du = (bsup − binf )1binf≥0

+bsup(1bsup≥01binf≥0) ,
= bsup

(
1binf≥0 + 1bsup≥01binf≤0

)
−binf 1binf≥0 ,

= bsup

1bsup≥0

(
1binf≥0 + 1binf≤0

)︸ ︷︷ ︸
1


−binf 1binf≤0 ,

= bsup1bsup≥0 − binf1binf≥0 .
(28)

The first part of eq. 26 is thus proved. The second part of
eq. 26 is a straightforward consequence of the expressions of
bisup(x, y) and biinf(x, y) as given by eq. 24.
The second part of Prop. 1 is also quite straightforward (notice
that αN (l) is negative):

bisup(x, y) ≥ 0 ⇐⇒ αN (x2 + y2 − λ2)

+ 6i
n

√
βN
√
x2 + (y + λ)2 ≥ 0 ,

⇐⇒ f(x, y) ≤ −6i
n

√
βN
αN

.
(29)

� � �

The {γi} coefficients are obtained as the solution of an
optimization problem (e.g. least squares, see Appendix B).
We stress that these {γi} coefficients are considered as fixed
whatever the value of the el vector. So, integrating over all
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the possible values of the el vector, we obtain:

P (∆f,c ≥ 0) =

∫
R2

P (∆f,c ≥ 0| ε̃l = el) dx dy ,

=

n∑
i=1

γi
2
Ai +

αN√
βN

n

12

n∑
i=1

γi
i
Bi , (30)

where:
Ai =

∫
R2

N(0,1)(x, y)

[
1
f(x,y)≤− 6i

√
βN

nαN

+ 1
f(x,y)≤ 6i

√
βN

nαN

]
dxdy,

Bi =

∫
R2

N(0,1)(x, y)f(x, y)

[
1
f(x,y)≤− 6i

√
βN

nαN

− 1
f(x,y)≤ 6i

√
βN

nαN

]
dxdy ,

(31)
For reasons which will clearly appear soon, it is worth to

rewrite the Ai and Bi integrals as:

Bi =

∫
6i
√
βN

nαN
≤f(x,y)≤− 6i

√
βN

nαN

N(0,1)(x, y) f(x, y) dxdy ,

Ai =

∫
6i
√
βN

nαN
≤f(x,y)≤−6i

√
βN

nαN

N(0,1)(x, y) dxdy +

2

∫
f(x,y)≤ 6i

√
βN

nαN

N(0,1)(x, y) dxdy .

(32)
So, now the problem we have to face is to obtain accurate
closed form approximations of the Bi and Ai integrals.

B. Approximating the Bi integrals

It is clear that deriving a general closed-form expression for
the Bi (or Ai) integrals is hopeless5. However, an accurate
closed-form approximation can be obtained thanks to the fol-
lowing remark. When the scan number N becomes great, then
the ratio ρ =

√
βN
αN

is close to zero. Now, the numerator of the
f(x, y) function is zeroed on a circle (equation x2 +y2 = λ2).
This leads us to consider the following parametrization of the
(x, y)-plane. {

x = (−λ+ ε) sin(θ) ,
y = (−λ+ ε) cos(θ) .

(33)

The function f(x, y) is then changed in a f(ε, θ) function
defined below, which leads to the following changes for the
Bi integral:

f(ε, θ) = −ε(2λ−ε)√
4λ sin2(θ/2)(λ−ε)+ε2

exp
(
−x2+y2

2

)
= exp

(
− (λ−ε)2

2

)
,

dxdy = |λ− ε| dε dθ .
(34)

Now, since we are considering only the small values of the f
function (numerator (f) = −ε(2λ− ε)), it is quite legitimate
6 to restrict our analysis to small values of ε. More precisely,
we assume ε � λ. Then, the second order expansion of the

5There does not exist a primitive function of N(0,1)(x, y) f(x, y) and the
integral is implicitly defined

6Actually, there are two values of ε zeroing the numerator of f(ε, θ), ε = 0
and ε = 2λ. However, both are represented by a unique transformation (see
eq. 33)

f(ε, θ) functional is :

f(ε, θ)
2
=

−ε
|sin(θ/2)| . (35)

Practically, this is rather important since the integration do-
main which was previously implicitly defined is now explicitly
defined; i.e. it simply becomes:

− |sin(θ/2)| ηi,N ≤ ε ≤ |sin(θ/2)|
(−6i

√
βN

n αN

)
︸ ︷︷ ︸

ηi,N

,

0 ≤ θ
2 ≤ π .

(36)
The accuracy of this approximation is illustrated by fig. 4. We
can notice that the integration domain is well approximated.
The integration having been conveniently approximated, we

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Approximation for the integration of f
Real Area (Purple), First Order approximation (Black), Second Order (Red)

X

Y

Figure 4. The f(x, y) function and its approximation (real: purple;
approximations: continuous red and black)

consider also a second order expansion of the integrand
F (ε, θ) of the Bi integral, i.e. with:

F (ε, θ) = f(ε, θ)N (ε, θ) |J(ε, θ)| ,
and |J(ε, θ)| = |λ − ε| the Jacobian of the (x, y) → (ε, θ)
transform, we have:

F (ε, θ)
2
= −λε e−λ

2/2

|sin(θ/2)| +
(1− 2λ2)

2 |sin(θ/2)|e
−λ2/2 ε2 . (37)

Considering on the first hand the effect of changing ε into −ε
for this 2-nd order expansion and the integration domain on
the second one, the effect of the ε term is zero, so that:

Bi = 1
2π

∫
θ

∫ ε=ηi,N sin(θ/2)

ε=−ηi,N sin(θ/2)

(1− 2λ2)

2 |sin(θ/2)| e
− (λ)2

2 ε2 dε dθ ,

= (1−2λ2)
2π e−

(λ)2

2
η3
i,N

3

∫
θ

(sin(θ/2))
2
dθ ,

(38)
where ηi,N = −6 i

n

√
βN
αN

(see eq. 36). Thus, a very simple
closed-form approximation of the Bi integral has been
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obtained, from which the following approximation of the

part αN√
βN

n
12

n∑
i=1

γi
i
Bi of P (∆f,c ≥ 0) (see eq. 30) is deduced:

αN√
βN

n
12

n∑
i=1

γi
i
Bi ' 3(1− 2λ2)e−λ

2/2 βN
α2
N


n∑
i=1

i2 γi

32 n2

 .

Thus, we see that an accurate approximation of the term
αN√
βN

n
12

n∑
i=1

γi
i
Bi is proportional both to the ratio βN

α2
N
∝ 1

N

and the fixed term 3(1− 2λ2)e−λ
2/2.

C. Approximating the Ai integrals

We have now to turn toward the Ai terms. First, we remark
that:

1f(x,y)≤−ηi,N + 1f(x,y)≤ηi,N = 1−ηi,N≤f(x,y)≤ηi,N
+2
(
1f(x,y)≤0 − 1−ηi,N≤f(x,y)≤0

)
,

(39)

so that, we have:

Ai = 2

∫
R2

N(0,1)(x, y) (1f(x,y)≤0 − 1−ηi,N≤f(x,y)≤0)dxdy︸ ︷︷ ︸
Ai,1

,

+

∫
R2

N(x, y)1−ηi,N≤f(x,y)≤ηi,Ndxdy︸ ︷︷ ︸
Ai,2

.

We use the same change of variable (see eq. 34) as previously.
For the Ai,1 integral the normal density is integrated over the
(ε, θ) domain [0, 2λ]× [0, 2π]; while for the Ai,2 integral it is
[0, ηi,N |sin(θ/2)|]× [0, 2π]. We thus have:

Ai,1 = 1
π

∫ 2π

0

[e−(λ−ε)2/2]λ0 − [e−(λ−ε)2/2]2λλ dθ ,

+ 1
π

∫ π

0

[e−(λ−ε)2/2]
ηi,N |sin(θ/2)|
0 dθ ,

' 2− e−λ2/2 [2 + 2 ηi,N − (λ2−1)
4 η2

i,N ]

(40)

For the Ai,2 integral, we proceed in the same way that for Bi,
i.e. :

Ai,2 = 1
2π

∫ 2π

0

[
e−

(λ−ηi,N |sin(θ/2)|)2

2 − e−
(λ+ηi,N |sin(θ/2)|)2

2

]
dθ ,

' 2λe−λ
2/2

π ηi,N .
(41)

Gathering the above results, we have just obtained a closed
form approximation of the Ai term:

Ai =

(
−2π + (2λ− 2π)ηi,N + π

4 (λ2 − 1)η2
i,N

π

)
e−λ

2/2 .

(42)

D. The closed-form approximations of P (∆f,c ≥ 0)

Summarizing the previous calculations, we are now in
position to present the following result, which constitutes also
the principal result of this paper.

Proposition 2. Let us consider that the possible false associa-
tion can occur at unique time period (denoted l), then a closed-
form approximation of the probability of correct association
is:

P (∆f,c ≥ 0) = 1 + (a+ b λ+ c λ2) e−
λ2

2

where:

a = − 1
2π

[
1 +

√
βN (l)

αN (l)

n∑
i=1

γi
i

+
66π

32n2

βN (l)

α2
N (l)

n∑
i=1

i2 γi

]
,

b = 1
2π

[
6
n

√
βN (l)
αN (l)

n∑
i=1

i γi

]
,

c = 15
16n2

βN (l)
α2
N (l)

n∑
i=1

i2 γi .

(43)
The scalars αN (l) and βN (l) are given by eq. 25.

This formula is quite simple and relevant. We can notice
also that P (∆f,c ≥ 0) is independent of the kinematic
scenario parameters, since it involves only the ratio λ/σ (here
simply denoted λ), and the number of scans N (via αN (l) and
βN (l)).
Since we have βN ∝ 1

N and αN ∝ −1, the asymptotic

value of P (∆f,c ≥ 0) is simply 1 − e−
λ2

2

2 π . This rough
approximation is valid for values of N as small as 30 − 40.
Not surprisingly, we see that the dimensioning parameter for
P (∆f,c ≥ 0) is the ratio λ/σ.

Since βN is small, it is the elementary increment. So, the
slope (denoted slo) of P (∆f,c ≥ 0) as a function of N is the

factor 7 of the ratio
√
βN (l)

αN (l) , i.e. it is:

slo = 1
2π

(
6
n

n∑
i=1

i γi −
n∑
i=1

γi
i

)
.

so that :

P (∆f,c ≥ 0)
1' 1−

(
1− slo

√
βN (l)

αN (l)

)
e−

λ2

2 .

(44)

Note that, for N ”great” (30 − 40) the approximation given
by eq. 44 is less precise that the approximation given by eq.
43. However, its main interest is to put in evidence the effect
of the N parameter. If the {γi} coefficients are determined
by minimizing a least square criterion, then slo can be easily

7The superscript f
′

denoting the derivative,
√
x
′

= 1
2
√
x

while x
′

= 1
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calculated (see Appendix B), and is obviously positive (see
eq. 92).

E. The case of a random λ

Up to now, it was assumed that the parameter λ was
deterministic. However, it is more realistic to model this
seducing measurement by a normal density N (λ0, σ0). Let
∆̄f,c be the (extended) cost difference for this λ modeling,
conditioning on λ, we then have:

P (∆̄f,c ≥ 0) = Eλ [Pλ(∆f,c ≥ 0)|λ] ,
with:
Pλ(∆f,c ≥ 0) = 1 + (a+ bλ+ cλ2)e−λ

2/2 .

(45)

Performing straightforward calculations, we obtain:

P (∆̄f,c ≥ 0) = 1 + 1√
σ2

0+1

[
a+ bλ̄0 + c(λ̄2

0 + s2
0)
]
e
− λ2

0
2(σ2

0+1) ,

where:
λ̄0 = 1

σ2
0+1

λ0 , s2
0 =

σ2
0

σ2
0+1

.

(46)
So, for N sufficiently large, we have P (∆̄f,c ≥ 0) ≈
1 − 1√

σ2
0+1

e−
λ̄2

0
2

2 π . Thus, we see that the effect of this

randomization of λ is far to be negligible.

F. A system analysis perspective

Using the previous results, we are now turning our effort
toward the steady-state behavior of the association process via
a Discrete Time Markov Chain (DTMC) analysis. We consider
that at each time period there is a binary decision process,
defined by:{

[ca] : event: correct association , [fa] : event: false association ,
pfa

∆
= probability of false association.

(47)
Note that closed form approximations pfa have been already
obtained. We assume furthermore that pca = 1− pfa and that
this decision process can be modeled by an homogeneous
DTMC. We are interested now in the evaluation of the prob-
ability that k consecutive false associations occur. We shall
focus on the case k = 2. To that aim, let us define the random
variable X which can take 4 states, defined by:∣∣∣∣ state: (1) : [ca, ca] , state: (2) : [ca, fa] ,

state: (3) : [fa, ca] , state: (4) : [fa, fa] .
(48)

It is easily shown that X is also a DTMC, whose transition
matrix (denoted P2) stands as follows:

P2 =


1− pfa pfa 0 0
0 0 1− pfa pfa
1− pfa pfa 0 0
0 0 1− pfa pfa

 (49)

Considering the transition matrix P2, we see that this
DTMC is aperiodic and irreducible, ensuring the existence of
a stationary distribution [14]. State 4 is especially relevant
for our analysis, since it corresponds to two consecutive false
associations. The structure of the matrix P2

2 is quite enlight-
ening and is a characteristic feature. Indeed, straightforward

calculations yield:

P2
2 =

[
(1− pfa)2

11, pfa(1− pfa) 11, pfa(1− pfa) 11, p2
fa 11
]
,

where: 11
∆
= (1, 1, 1, 1)

T
.

(50)
Thus, P2

2 admits the following factorization:

P2
2 = V WT ,

where:

V = (1− pfa) 11 , WT =
(

1− pfa, pfa, pfa, p2
fa

(1−pfa )

)
.

(51)
Furthermore, it is easily shown that WT P2 = WT . Thus, we
have:

P2
3 =

(
V WT

)
P2 , (52)

= V
(
WT P2

)
,

=
(
V WT

)
= P2

2 .

And more generally, whatever n ≥ 4 we have P2
n =

P2
2 P2

n−2 = P2
4 = P2

2, yielding the following result:

Proposition 3. Whatever n ≥ 2, the following equality holds
true:
P2

n = P2
2.

So, whatever the initial distribution X0, described by the
row vector X0 = (x1, x2, x3, x4), we have (∀n ≥ 2):

X0
(n) = X0 P2

n = X0 P2
2 , (53)

= (X0 V) WT ,

= (1− pfa) (X0 11)︸ ︷︷ ︸
=1

WT = (1− pfa) WT ,

=
(

(1− pfa)2 , pfa (1− pfa) , pfa (1− pfa) , p2
fa

)
.

Similarly, let us consider the (asymptotic) stationary distribu-
tion π, then π is a solution of the balance equation π = π P2.
Not surprisingly, it is easily shown that:

π =
(
(1− pfa)2 , pfa (1− pfa) , pfa (1− pfa) , p2

fa

)
. (54)

We are now in position for studying the behavior of this
DTMC. Since the state 4 is particularly important, let us recall
the following classical result [14], [15].

Proposition 4. Assume the DTMC is irreducible and let π its
stationary distribution, then the mean inter-visit time mj,j is
given by

mj,j =
1

πj
, 1 ≤ j ≤ N .

Thus, we have here m4,4 = 1
π4

= 1
p2
fa

, a value which
is usually very weak if pfa is small. Consider now a slight
modification of the DTMC. If the state 4 is attained , then
the DTMC remains on (the absorbing) state 4. The associated
transition matrix P̃2 reads:

P̃2 =


1− pfa pfa 0 0
0 0 1− pfa pfa
1− pfa pfa 0 0
0 0 0 1

 (55)

The aim of this modeling is to investigate the probability that
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the system be at least one time in state 4, during a given time
interval. To this aim, calculations are greatly simplified if the
following rewriting of the P̃2 matrix is considered:

P̃2 =

(
Q v1

0T 1

)
, (56)

where Q is a 3 × 3 left-up matrix. Elementary calculations
yield:

P̃n2 =

(
Qn vn
0T 1

)
. (57)

If we are able to provide an explicit expression of Qn, there
is no need to calculate the vector vn since the matrix P̃n2 is
stochastic. The eigensystem of the Q matrix is quite simple,
i.e. :∣∣∣∣∣∣∣∣∣∣∣∣∣

eigenvalues eigenvectors

λ1 = 0 uT1 =
(
−pfa
1−pfa , 1, 0

)
λ2 = 1

2

(
1− pfa −

√
δ
)

uT2 =
(

1, (1−pfa)
λ2

, 1
)

λ3 = 1
2

(
1− pfa +

√
δ
)

uT3 =
(

1, (1−pfa)
λ3

, 1
)

δ =
(
1 + 2 pfa − 3 p2

fa

)
.

(58)

From which the following equality is deduced8:

Qn = λn2
(
u2u

T
2

)
+ λn3

(
u3u

T
3

)
. (59)

Consequently, admitting an initial distribution X = (1, 0, 0, 0)
of the system state, the probability that the state 4 has been
attained at least at one time within the temporal interval [0, n]
is:

P̃n2 (1, 4) = 1−λn+1
2

(
2λ2 + 1− pfa

2λ2
2 + (1− pfa)2

)
+λn+1

3

(
2λ3 + 1− pfa

2λ2
3 + (1− pfa)2

)
.

(60)
A second order expansion (w.r.t. pfa) gives us P̃n2 (1, 4) '
(n+ 1)p2

fa + pfa
3 . To complete this analysis, let us denote Na

the number of visits to the transient states, before visiting the
absorbing state (state 4 here), then we have:

P (Na = n) = XT0 Qn−1 (Id− Q) 11 , n ≥ 1. (61)

Hence, the expected number of visits to the absorbing state is
simply:

E(Na) =
∑

n≥1
n P (Na = n) = XT0 (Id− Q)

−1
11 ,

with:

(Id− Q)
−1

11 =
(

1+pfa
p2
fa
, 1
p2
fa
, 1+pfa

p2
fa

)
.

(62)
As pfa is rather small for our application, we thus have
E(Na) ' 1

p2
fa

, whatever the initial distribution of the transient
states. Extending the previous analysis to an arbitrary value of
k is straightforward and we simply refer to [16].
The advantage of this analysis is its simplicity. However, a
strong assumption is that the pfa at time t+ 1 is not modified
if a false association has occurred at time t. If k and the pfa
are sufficiently small, this is a realistic assumption. If a large
number of consecutive false associations occurs the parameters
of the regression are changed and we have to turn to a more

8after normalization of the u2 and u3 vectors

precise approach. This will be the aim of section VI.

V. SIMULATION RESULTS (UNIQUE FALSE ASSOCIATION)

Once we have get the main result (eq. 43), we have to
test the accuracy of our approximations. For doing that, we
just have to consider the variations of the two dimensioning
parameters (λ and N ). For the first one (λ), the number
of scans (N ) is a fixed value (N = 20 and N = 40).
Then, we compare the exact value of P (∆f,c ≥ 0) and its
approximation as given by eq. 43, for increasing values of
the λ parameter. Note that λ represents in fact the ratio λ/σ
where λ is the distance between the exact target position and
the position of the ”false” target, while σ is the observation
noise standard deviation. The result is displayed on fig.
5. We can see that our approximation (eq. 43) performs
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Figure 5. The probability of correct association (dashed) P (∆f,c ≥ 0) and
approximated (in red: N = 20, in blue N = 40), versus λ (x− axis).

quite satisfactorily in general, but is better as N increases.
This is not surprising, especially if we remind that our
approximations were based on the fact that the integration
bounds ηi,N were small, meaning that N was sufficiently
great.
This approximation is valid for value of λ as small as
1, which has only a mathematical meaning since for this
value of λ it is quite likely that measurements are merged.
A complete derivation of the probability density function
(pdf) of merged measurements has been performed in [11],
[17]. However, it seems hopeless to include unresolved
measurement pdf in our calculations for a closed form
approximation of P (∆f,c ≥ 0). We can see that for λ values
between 1 and 2, the slope of P (∆f,c ≥ 0)(λ) is almost
constant and rather important. When λ becomes close to
3, then the probability of correct association is very close to 1.

Thus, it remains to analyze the effect of the N parameter.
This is done in fig.6. Results are restricted to fixed values
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of λ, that is equal to 1.5, 2 and 2.5, because they are
the most interesting values, representing the more common
association problem. We can see that when N exceeds 30, the
approximation is very good. The difference is less than 0.05,
which is quite satisfactory. Moreover, for greater values of
N , exact values and approximations cannot be distinguished.
However, the behavior of the more accurate approximation
(see eq. 43) is not satisfactory for small values of N , since
P (∆f,c ≥ 0)(N) begins to decrease as N increases.
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Approximation for the probability of correct association
Distance=1.5(blue), D=2(red) and D=2.5(green)

Figure 6. The probability of correct association P (∆f,c ≥ 0) (exact:
dashed) and approximated (continuous) versus N (x axis), for various values
of λ: in blue λ = 1.5, in red λ = 2., in green λ = 2.5.

Now, considering the first order approximation of P (∆f,c ≥
0)(N) given by eq. 44, the dependency of P (∆f,c ≥ 0)(N) to
N is satisfactorily taken into account for ”reasonable” values
of N (say 10 ≤ N ≤ 40) , as seen on fig. 7. In particular, the
calculated slope (slo, eq. 44) is close to the actual one.
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Figure 7. The probability of correct association P (∆f,c ≥ 0)(N) versus
N (x axis), λ = 2. Blue: exact value, red: 1-st order approximation (eq. 44).

Finally, we present the results for a random λ (see subsec-

tion IV-E), on fig. 8 . The values of P (∆̄f,c ≥ 0) are plotted
on the y-axis, versus the mean value of λ (λ0), for two values
of the σ0 parameters (1 and 3). Not surprisingly, the effect of
this randomization is noteworthy.
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Figure 8. The probability of correct association P (∆̄f,c ≥ 0) for a
random λ versus λ̄0 x− axis, N = 40. Dashed: deterministic λ (σ0 = 0),
continuous: random λ (−o−: σ0 = 1, −+−: σ0 = 3).

VI. THE MULTIPLE FALSE MEASUREMENTS CASE

Just like in the first part, a target is moving with a rectilinear
and uniform motion. The hypotheses we made in the first
part are unchanged. In fact, we consider more specifically
the section 3 framework. In this part, we focus on multiple
false measurements, and our aim is again to determine the
probability for deciding the right association.
We have seen previously (see section 3.4) that a closed form
of ∆f,c could be obtained (see eq. 20). Thus, calculation of
the probability of correct association (P (∆f,c ≥ 0) can be
extended to the general case. However, deriving convenient
approximations lead us to encounter severe difficulties. So, the
feasible approaches will rely on the same principles but with
fundamental simplifications. More specifically, we assume that
there is at most one false measurement for each time-period.
The scenario we consider here is depicted on figure 9.

Mesured Position

False Alarm

Figure 9. The multiple false measurement scenario

In order to investigate the difficulties we have to face, let us
consider the numerator of ΨFAK (denoted N(ΨFAK ) . Opposite
to the unique false measurement case, this numerator cannot
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be considered (or approximated) by a unique quadratic form
(see section 4.2). Actually, we have (see eq. 20):

N(ΨFAK ) =

K∑
k=1

K∑
k′=1

αN (lk, lk′)
(
〈elk , elk′ 〉 − 〈falk , fal′k〉

)
.

(63)
A first problem is that N(ΨFAK ) can be small while,
simultaneously, elementary terms

(
〈elk , elk′ 〉 − 〈falk , fal′k〉

)
can be (relatively) large, but of opposite signs. The change of
variable approach which is instrumental for deriving explicit
closed form approximations of the Bi and Ai integrals is
then clearly unfeasible.

So, we have to turn to a radically different approach based
upon normal approximations. A key feature of the normal
densities is that there are exhaustively represented by their
two first moments. Then, we will see that these moments can
be easily calculated. In order to give the general scheme, let
us recall the general (linear regression) result (see eq. 20):

L (∆FAK | ε̃l1 = el1 · · · , ε̃lK = elK ) = N [m1, v1] ,
where :

m1 =

K∑
k=1

K∑
k′=1

αN (lk, lk′)
(
〈elk , elk′ 〉 − 〈falk , falk′ 〉

)
,

v1 = 4

K∑
k=1

K∑
k′=1

θ(lk, lk′) 〈elk − falk , elk′ − falk′ 〉 .

(64)
Assuming that the mean (m1) and the variance (v1) of ∆FAK

are random, thanks to the (elk ) terms, but with determined
law, we deduce an expression of the posterior law of the ∆FAK

random variable. More precisely, assume that we have:

m1 ∼ L1(θ1) and: v1 ∼ L2(θ2) ,

with θ1 and θ2 deterministic parameters. Assume also that the
density function for L1 is g1 with support S1 and that for L2

it is g2 with support S2. Then, the posterior density of ∆FAK

simply reads:

h (∆FAK
) =

∫
S1

∫
S2

f(∆ | m1, v1)gθ2(v1)gθ1(m1) dv1dm1 .

(65)
The great advantage we have now is that though we do not
have the right expression of the posterior law, we just have
to consider a double integration. So, the problem we have to
face now is to obtain convenient approximations of gθ1 and
gθ2 .

First, we will approximate the law of the mean m1 with a
normal distribution. For a great number of random variables,
the central limit theorem allows us to make this approximation.
Then, we assume now that m1 ∼ N (m0, σ

2
0). The distribution

of v1 will be discussed later. As both ∆FAK
and m1 are

normally distributed, we have a precise knowledge of the

posterior density of ∆FAK
(see Appendix C):

h (∆FAK
) =

∫
S1

∫
S2

f(∆FAK
| m1, v1) g2(v1)g1(m1)dv1dm1 ,

=

∫
S2

fN (m0,σ2
0+v1)(∆) g2(v1)dv1

(66)
Thus, we have:

P (∆FAK
≥ 0) =

∫
S2

erfc

(
m0√
σ2

0 + v1

)
g2(v1)dv1 .

(67)
This expression is quite simple and easily computable.
Moreover, in this setup, the accuracy of the approximation
increases with K, thanks to the central-limit theorem. Our
problem being to render h (∆FAK

) (see eq. 66) as explicit as
possible, we have to perform integration w.r.t. the variance
v1. To that aim, we have to choose a law for the variance v1.
We shall consider two solutions:

The first one is to use again the central-limit theorem, and
to model v1 via a Gaussian distribution9. The second solution
is to calculate the right law of v1, which should be a kind of
Chi-2.

Considering the expression of v1, we notice (see eqs. 20,
64 ) that it is a weighted sum of elementary quadratic forms
of normal vectors (〈elk − fak, elk′ − fak′〉), with weights
θ(lk, lk′). Each elementary quadratic form is Chi-square dis-
tributed. However, when the weights are different, a tractable
distribution of the weighted sum is not available (see [18]).
So, a first simplification is to consider that these weights are
approximately equal altogether10. In this setup, we consider
that v1 is Chi-square distributed with 2K degrees of freedom,
and we have:

P (∆FAK
≥ 0) =

∫
R+

erfc

(
m0√
σ2

0 + v1

)
fχ2(2K)(v1)dv1

= 1
2KΓ(K)

∫
R+

erfc

(
m0√
σ2

0 + v1

)
vK−1

1 e−v1/2dv1

(68)
Turning now toward the first solution (normal approximation
of v1, ie v1 ∼ N (v0, s

2
0)), yields:

P (∆FAK
≥ 0) =

∫
R+

erfc

(
m0√
σ2

0 + v1

)
fN (v0,s20)(v1)dv1 ,

(69)
where the parameters m0, σ2

0 , v0 and s2
0 are given by (see

9The limitation of that approach is that if we consider that law, the variance
will have non-zero probability to be negative!

10A reasonable assumption, with our assumptions.
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Appendix D):∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m0 = 2

K∑
k=1

αN (lk, lk)−
K∑
k=1

K∑
k′=1

αN (lk, lk′) λlk λlk′ ,

σ2
0 = 4

[
K∑
k=1

K∑
k′=1

αN (lk, lk′)

]2

,

v0 = 4

K∑
k=1

θ (lk, lk)
(
2 + λ2

lk

)
+ 4

K∑
k=1

K∑
k′=1,k′ 6=k

θ(lk, lk′)λlkλlk′ ,

s2
0 = 2

[
K∑
k=1

K∑
k′=1

θ(lk, lk′)(1 + λlk)(1 + λlk′ )

] [
K∑
i=1

K∑
i′=1

θ(li, li′)

]
.

(70)
However, even if convenient approximations of the erfc(x)
functions exist, they dont lead, in general, to simple closed
form approximations. So, it seems difficult to obtain a more
explicit closed-form approximation for the multiple false mea-
surement case. Some insights can be gained by approximating
the αN (lk, lk) and θ(lk, lk′) (see eqs. 19, 20), under the
assumption that the ratio K/N is sufficiently small w.r.t. 1,
yielding:∣∣∣∣∣ αN (lk, lk) v

(
1− 1

N

)
K θ(lk, lk′) v

(
P (N3,K3)

N4

)
K ,

m0 v
(
1− 1

N

)
K2(2− λ2K) σ2

0 v 4 K6 ,
(71)

where P (N3,K3) is a polynomial in K and N , whose maxi-
mal order in N and K is 3. Thus, we notice the fundamental
importance of the K and λ parameters. Similarly to the unique
false measurement case (see eq. 44), the effect of N appears
as a slope factor toward the steady-state value.

A. Exponential Law Assumption

We wrote in the previous paragraph:

P (∆FAK
≥ 0) =

∫
S2

erfc

(
m0√
σ2

0 + v1

)
g2(v1)dv1 .

(72)
We can use the following Taylor development:

erf(z) =
2√
π

∞∑
n=0

(−1)n

n!(2n+ 1)
z2n+1 (73)

And we then have to calcultate:

P (∆FAK
≥ 0) = 1− 2√

π

∑∞
n=0

(−1)n

n!(2n+1)

∫
S2

(
m0√
σ2

0 + v1

)2n+1

g2(v1)dv1 .

(74)
If we assume that v1 follows an exponential law, we then
have to calculate that simple integral:

I2n+1 =

∫
R+

(
m0√
σ2

0 + v1

)2n+1

v0e
−v1v0dv1 (75)

Performing calculations, we then have:

I2n+3 = v0m
2n+3
0 − v0m

2
0σ

2n+1
0 I2n+1 (76)

And then,

I2n+1 = v2
0m

5
0

1− (−v0m
4
0σ0)n

1 + v0σ0m4
0

− vn0m2n
0 σn−1

0 I1(77)

Which can be used in the sums to calcumate the final
expression of the probability:

P (∆FAK
≥ 0) = 1− erf(1)− erf(−v0m

4
0σ0)

v0σ0m4
0

(78)

+
erf(v0m

2
0σ0)

m2
0v0σ2

0

I1 (79)

VII. SIMULATIONS: THE MULTIPLE FALSE
MEASUREMENTS CASE

A. Multiple false measurements and the probability of correct
association

We consider here the framework which has been develop
in the section VI. First, we have to consider the validity of
the normal (m1) and v1 approximations (see eqs 68 and 69).
For a value of K (number of false measurements) as small as
2 and a constant λ, this is presented in fig. 10, for N =
30. The result is quite satisfactory, even for this small value
of K. In figure 11, we consider the difference between four
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Figure 10. Approximation of the Probability of correct association for
multiple (consecutive) false measurements (K = 2, χ2 approximation eq.
68). P

(
∆FAK

≥ 0
)

in the y-axis, λ on the x-axis, N = 40.

and eight false measurements. This difference looks like a
simple translation. The main result is that having eight false
measurements, at a constant distance of 3.5 is equivalent to
a double false measurement scenario, with distance 2.5 and
only one false measurement, with a distance of 1.8.
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Approximation for the probability of correct association in the multiple case
4 False Alarms(Blue), 8 FA(Red)

Figure 11. Probability of correct association for various number of
consecutive false alarms (K = 4 and K = 8). P

(
∆FAK

≥ 0
)

in the y-
axis, λ on the x-axis, N = 40.

VIII. CONCLUSION

Deriving accurate closed-form approximations of the prob-
ability of correct association is of fundamental importance
for understanding the behavior of data association algorithms.
However, though numerous association algorithms are avail-
able, performance analysis is rarely considered from an analyt-
ical point of view. Actually, this is not too surprising when we
consider the difficulties we have to face even in the simplistic
framework of linear regression.
So, the main contribution of this paper is to show that such
derivations are possible. This has been achieved via elementary
though rigorous derivations, developed in a common frame-
work. Multiple extensions and applications render it quite
attractive for a wide variety of contexts (close targets, clutter,
intentionally generated false measurements, ECM, etc.).

APPENDIX A

The aim of this appendix is to provide an explicit closed
forms of the two quadratic forms defining the mean and
the variance of L (∆f,c| ε̃l = el) (see eq. 15). The first step
consists in calculating a closed form for the Ψ(el) numerator.
Considering the special forms11 of the vectors el and fal, only
a closed form expression of the Ml,l (2 × 2) l−th diagonal
block matrix of theM matrix is required. Routine calculations
yield:

Ml,l =

[
1− 2

(
2N+1−6 l+ 6 l2

N

)
(N+1)(N+2)

]
I2 ,

so that:

el
TMel − faTl M fal =

[
1− 2

(
2N+1−6l+ 6l2

N

)
(N+1)(N+2)

] (
‖el‖2 − ‖fal‖2

)
.

(80)
In the second step, the Ψ(el) denominator is considered. First,
it is worth recalling the form of the Φ matrix:

Φ = (I −H)Σcom(I −HT ) ,

= Σcom − ΣcomHT −HΣcom︸ ︷︷ ︸
Φ1

+HΣcomHT . (81)

Noticing that the (2 × 2) sub-matrix Φ1(l, l) is zero, we can
restrict to the (l, l) (2×2) sub-matrix of theHΣcomHT matrix.
Straightforward calculations yield:

HΣcomHT = X CΣcomCT X T ,
with:

C =

(
(4N + 2)I2 . . . (4N + 2− 6(k − 1))I2 . . .

− 6
δ I2 . . . − 6

δ (1− 2(k−1)
N )I2 . . .

)
(82)

For the sake of simplicity, it is assumed that we have Σcom =

diag

I2, · · · , I2︸ ︷︷ ︸
l−1

, 0, I2, · · · , I2︸ ︷︷ ︸
N−l−1

. Then, routine calculations

yield a simple expression for the 4× 4 matrix CΣcomCT :

CΣcomCT = 1
(N+1)2(N+2)2

(
Q1(l, N)I2 Q2(l, N)I2
Q2(l, N)I2 Q3(l, N)I2

)
,

(83)
from which, we deduce finally (Φl,l l-th 2× 2 diagonal block
of the Φ matrix):

Φl,l = 1
(N+1)2(N+2)2×[

Q1(l, N) + 2l δQ2(l, N) + l2 δ2Q3(l, N)
]
I2 ,

(84)

where the Q1, Q2 and Q3 polynomials have the following
expression:

∣∣∣∣∣∣∣∣∣
Q1(l, N) = 4N3 − 50N2 +N(48l − 18) + l(24− 36l) + 4 .

Q2(l, N) = − 6
δ

[
N2 − 5N − 2 + 4l(1 + 1

N − 3l
N )
]

Q3(l, N) = 36
δ2

[
N
3 − 1 + 2

N ( 1
3 + 2 l − 2 l

N2 )
]
.

11These two vectors are made of zeros except for x and y l-th components
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Finally, we have thus obtained:

(el − fal)
TΦ(el − fal) =

‖el − fal‖2
(N + 1)2(N + 2)2

× (85)[
Q1(l, N) + 2l δQ2(l, N) + l2 δ2Q3(l, N)

]
APPENDIX B

This appendix deals with the calculation of the coefficients
γi for the least square criterion. Denoting ϕi (i = 1, · · · , n)
the functions defined by ϕi

∆
= n

6i den 1[biinf ,b
i
sup]

, the coefficients
γi are the solutions of the following optimization problem:

min
γi
‖g −

n∑
i=1

γiϕi‖22 , (86)

where g is the normal density given by eq. 64, and ‖ − ‖2 is
the L2 norm. It is then known that the γi are the solutions of
the following linear system:

γ1‖ϕ1‖22 + γ2〈ϕ2, ϕ1〉+ · · ·+ γn〈ϕn, ϕ1〉 = 〈g, ϕ1〉 ,
...
γ1〈ϕ1, ϕn〉+ γ2〈ϕ2, ϕn〉+ · · ·+ γn‖ϕn‖22 = 〈g, ϕn〉 .

(87)
The norms ‖ϕi‖22, as well as the scalar products 〈ϕi, ϕj〉 are

straightforwardly calculated , yielding:

〈ϕi, ϕj〉 =
n

6 inf(i, j)

1

den
. (88)

and solving the linear system given by eq. 87:
n∑
i

γi = 〈g,1[b1inf ,b
1
sup]
〉γi = i(i−1)〈g, ϕi−1−ϕi〉−i(i+1)〈g, ϕi−ϕi+1〉 .

(89)
Then, from the above equation (eq. 89), we have:

n∑
i=1

iγi = 2 〈g,
n∑
i=1

i 1[biinf ,b
i
sup]
〉 ,

n∑
i=1

γi
i

=
1

n
〈g,1[bninf ,b

n
sup]
〉 .

(90)

From eq. 90, we deduce the slope of P (∆̄f,c ≥ 0) as a
function of N (see eq. 44):

slo =
6

n

n∑
i=1

iγi −
n∑
i=1

γi
i
, (91)

=
1

n

(
12 〈g,

n∑
i=1

i 1[biinf ,b
i
sup]
〉 − 〈g,1[bninf ,b

n
sup]
〉
)
.(92)

Obviously, the slope slo is positive (see eq. 92).

APPENDIX C

Here, our iam is simply to recall a classical statistical
result. Assume that the random variable X has the following
(conditional) distribution:

X | m ∼ N (m,σ2) , (93)

with m ∼ N (θ, s2). Then, integrating over m, we have:

h(x) =

∫
R
f(x | m)g(m) dm ,

=

∫
R

1

2πσs
e
−
(
x−m√

2σ2

)2
−
(
m−θ√

2s2

)2

dm

(94)

Performing the integration w.r.t. the m parameter is quite easy
since it involves a quadratic form in m and the result is as
simple as:

h(x) =
1

2π(s2 + σ2)
exp

[
− 1

2(s2 + σ2)
(x− θ)2

]
, (95)

which shows that the random variable X is normally dis-
tributed, with mean θ, and variance (σ2 + s2). So, the uncer-
tainty in the mean m simply results in an incresed variance.

APPENDIX D

The aim of this appendix is the calculation of the values of
m0, σ2

0 , v0 and s2
0. Calculations are a bit long but elementary,

so we then just express here the main stages to perform the
results. First, we have:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m0 = EXY

[
K∑
k=1

K∑
k′=1

αN (lk, lk′)(xlkxl′k + ylk yl′k − λlk λl′k)

]
,

σ2
0 = VXY

[
K∑
k=1

K∑
k′=1

αN (lk, lk′)(xlk xl′k + ylk yl′k − λlk λl′k)

]
,

v0 = 4EXY

[
K∑
k=1

K∑
k′=1

θ(lk, lk′)
(

(ylk − λlk) (yl′k − λl′k) + xlk xl′k

)]
,

s2
0 = 16VXY

[
K∑
k=1

K∑
k′=1

θ(lk, lk′)
(

(ylk − λlk)(ylk′ − λl′k) + xk xk′
) ]

.

(96)
These calculations are routine exercises, only the last calcu-

lation require (a bit) more attention. In the independent case:

VXY (xy) = V(x)E(y2) + V(y)E(x2) . (97)

The (small) problem we have to solve is the calculation of
the second term. This is achieved via classical results about
moments of a normal random variable:

VY
[
(yk − λk)2

]
= E

[
(yk − λk)4

]
− E2

[
(yk − λk)2

]
,

= E
[
y4
k − 4 y3

kλk + 6 y2
kλ

2
k − 4 ykλ

3
k + λ4

k

]
− (1 + λ2

k)2 ,
= 3 + 6λ2

k + λ4
k − 1− 2λ2

k − λ4
k ,

= 2 + 4λ2
k .

(98)
Finally, we have:

s2
01 = 64

∑K
k=1 θ

2(k, k)(1 + λ2
k) (99)
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1. He is currently a post-doctoral fellow in CMIS,
CSIRO in North Ryde, Australia. Before joining
CSIRO he lectured at Université de Paris-Dauphine
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