
Exploiting Operand Availability for
Efficient Simultaneous Multithreading

Joseph J. Sharkey, Student Member, IEEE, and Dmitry V. Ponomarev, Member, IEEE

Abstract—We propose several schemes to improve the scalability, reduce the complexity and delays, and increase the throughput of

dynamic scheduling in SMT processors. Our first design is an adaptation of the recently proposed instruction packing to SMT.

Instruction packing opportunistically packs two instructions (possibly from different threads), each with at most one nonready source

operand at the time of dispatch, into the same issue queue entry. Our second design, termed 2OP_BLOCK, takes these ideas one step

further and completely avoids the dispatching of the instructions with two nonready source operands. This technique has several

advantages. First, it reduces the scheduling complexity (and the associated delays) as the logic needed to support the instructions with

two nonready source operands is eliminated. More surprisingly, 2OP_BLOCK simultaneously improves the performance as the same

issue queue entry may be reallocated multiple times to the instructions with at most one nonready source (which usually spends fewer

cycles in the queue) as opposed to hogging the entry with an instruction which enters the queue with two nonready sources. For

schedulers with the capacity to hold 64 instructions on a 4-way SMT, the 2OP_BLOCK design outperforms the traditional queue by

14 percent, on average, and at the same time results in a 10 percent reduction in the overall scheduling delay. We also present

mechanisms to support speculative scheduling with 2OP_BLOCK and introduce the hybrid scheme that dynamically switches between

2OP_BLOCK and instruction packing modes depending on the workload characteristics, to achieve further performance gains.

Index Terms—Issue queue, simultaneous multithreading.

Ç

1 INTRODUCTION

SIMULTANEOUS Multithreading (SMT) is an effective
technique to increase the throughput of a traditional

superscalar processor via the simultaneous sharing of the
key data path components among multiple threads [41],
[42]. Such sharing elevates the pressure on these resources
and increases their utilization, necessitating the use of a
larger number of entries in these components to realize the
full performance potential afforded by SMT. Unfortunately,
the additional complexities that are incurred by the
implementation of these larger structures may exacerbate
the critical timing paths and negatively impact the
processor’s cycle time. As a careful balance must be found
between the instruction-level parallelism (ILP) and the cycle
time to achieve maximum performance, it is important to
reduce the complexity of these critical resources without
significantly impacting the ability to extract the ILP.

One such critical data path structure that experiences

elevated pressure due to sharing in an SMT processor is the

issue queue (IQ). Fig. 1 shows how the processor

throughput scales with the size of the IQ for both the

superscalar and the 4-threaded SMT machines, based on

our simulations (details of our simulation framework are

presented in Section 2). Results are shown in the form of the

commit IPC improvements over the respective baseline

with a 32-entry IQ. The trends clearly indicate that the

performance of a superscalar machine (depicted by the bars

on the left) increases only slightly as the number of entries
in the IQ is increased beyond 32. On average, across the full
set of SPEC 2000 benchmarks, the difference between the
performance of the processors with 32-entry and 256-entry
IQs is only 9.3 percent. The situation is, however, quite
different for an SMT machine, where four threads execute
simultaneously and much higher pressure is exerted on the
IQ. On average, there is a 20 percent IPC difference as the
IQ size increases from 32 to 64 entries, an additional
14 percent if the IQ size is 128 entries, and a further
23 percent for the 256-entry IQ.

Thus, SMT machines require very generously sized IQs
to realize their full performance potential. However, it is
well documented in the recent literature that the wake-up
and selection operations associated with the IQ lie on the
critical timing path in modern microprocessors [21], [27],
[39] and the delays of both increase proportionately with
the number of entries in the IQ. Consequently, increasing
the number of entries beyond a certain limit may negatively
impact the processor’s clock frequency. Largely due to these
constraints, even modern processor implementations use
rather modestly sized IQs. It is therefore important to
investigate techniques that can provide the illusion of larger
scheduling windows without physically enlarging the IQ.

All of the existing solutions for optimizing the IQ
efficiency on SMT processors do so indirectly by controlling
the quality of instructions that are fetched into the pipeline
from multiple threads, e.g., ensuring that none of the
threads clog the issue queue. For example, the I-Count
fetching policy [41] gives priority to threads with fewer not-
yet-executed instructions already in the pipeline. Some
optimizations to the I-Count policy that further increase the
efficiency of the IQ usage have also been proposed in the
literature. Fundamentally, these solutions attempt to avoid
clogging the queue with instructions that reside there for a

208 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 2, FEBRUARY 2007

. The authors are with the Department of Computer Science, State
University of New York, Binghamton, NY 13902-6000.
E-mail: {jsharke, dima}@cs.binghamton.edu.

Manuscript received 20 Dec. 2005; revised 18 June 2006; accepted 7 July 2006;
published online 20 Dec. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0454-1205.

0018-9340/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

large number of cycles before being issued. For example,
FLUSH [40], FLUSH++ [11], and the Data Miss Gating
technique of [14] combine I-count with a special treatment
of threads that experienced misses in various levels of the
cache hierarchy. While all these mechanisms are effective to
some extent, their inherent limitation lies in the reliance on
information that is available at the time of instruction fetch.
However, much more effective and precise control can be
exercised over the IQ usage if these fetch-centric approaches
are augmented with some dynamic register-specific infor-
mation about the instructions, which is readily available
after the register renaming stage. Specifically, we show that
the instructions with two nonready source operands at the
time of dispatch (we assume an ISA with two source
operand instructions for this study) spend a significantly
larger number of cycles in the IQ than other instructions
and most of these cycles are spent waiting for the arrival of
the first source. If such instructions are kept outside of the
IQ until one of the source operands becomes available, then
the pressure on the IQ will be greatly reduced and the
performance will improve. All previous proposals do not
make use of such information and treat all instructions
equally, regardless of the number of ready source operands
at the time of dispatch.

The focus of this paper is to consider the mechanisms
that augment the existing fetch-centric approaches with
dynamic microarchitectural information to exercise a more
effective control of how and when the instructions are placed
in the IQ. To this end, we propose several solutions. First,
we extend the previously introduced instruction packing
mechanism [34], [35] to SMT. Instruction packing opportu-
nistically places two instructions into the same IQ entry
provided that each of these instructions has at most one
nonready source operand at the time of dispatch. We show
that the percentage of instructions entering the scheduling
window with two nonready source operands is smaller on
an SMT machine than it is on a superscalar and, therefore,
instruction packing is more amenable to SMT processors.
Second, we take these ideas one step further and completely
disallow the dispatch of instructions with two nonready
source operands. This design (called 2OP_BLOCK in the
rest of the paper) reduces the scheduler complexity as the
capability to support the instructions with two nonready
source operands is not needed. Furthermore, 2OP_BLOCK
improves the performance as the same IQ entry may be
reallocated multiple times to instructions with at most one
nonready source (which tend to spend fewer cycles in the
queue) rather than clogging the entry for a long time with
one instruction that has two nonready sources. Third, we
propose adaptive hybrid technique that dynamically
switches between instruction packing and 2OP_BLOCK

regimes to mitigate the performance losses on 2-threaded
workloads. We investigate various triggers that dictate
when such switching should occur. Fourth, we present
mechanisms to support speculative scheduling and asso-
ciated instruction replays in the data path that uses
2OP_BLOCK or instruction packing scheduling logic.

The rest of the paper is organized as follows: Our
simulation methodology is described in Section 2. Section 3
reviews instruction packing mechanism as proposed for
superscalars in [35]. Our dynamic scheduler designs for
SMT are described in Section 3. The scheduler designs that
improve the SMT efficiency are presented in Section 4.
Section 5 presents the adaptive technique to dynamically
switch between instruction packing and 2OP_BLOCK
modes to sustain the performance in the environment with
a limited number of threads. Our results are presented in
Section 6. In Section 7, we show how the schemes proposed
in this paper can be used in a data path with speculative
instruction scheduling. We describe the related work in
Section 8 and offer the concluding remarks in Section 9.

2 SIMULATION METHODOLOGY

For estimating the performance impact of the schemes
described in this paper, we used M-Sim [37]: a significantly
modified version of the Simplescalar 3.0d simulator [5] that
supports the SMT processor model. In the SMT model, the
threads share the IQ, the pool of physical registers, the
execution units, and the caches, but have separate rename
tables, program counters, load/store queues, and reorder
buffers. While each thread has its own logical reorder
buffer, the number of total ROB entries in the machine is
kept to 512 and statically partitioned among the executing
threads. Specifically, for 2-threaded workloads, each thread
has 256 ROB entries, for 3-threaded workloads, each thread
has 170 ROB entries, and, for 4-threaded workloads, each
thread has 128 ROB entries. Each thread also has its own
branch predictor. The details of the studied processor
configuration are shown in Table 1. In the baseline SMT
model, the I-Count fetch policy [41] was implemented and
fetching was limited to two threads per cycle.

We simulated the full set of SPEC 2000 integer and
floating-point benchmarks [18], using the precompiled
Alpha binaries available from the Simplescalar Web site
[5]. We skipped the initialization part of each benchmark,
using the procedure prescribed by the Simpoints tool [38],
and then simulated the execution of the following
100 million instructions. For multithreaded workloads, we
stopped the simulations after 100 million instructions from
any thread had committed.

SHARKEY AND PONOMAREV: EXPLOITING OPERAND AVAILABILITY FOR EFFICIENT SIMULTANEOUS MULTITHREADING 209

Fig. 1. Average performance improvements for superscalar and 4-way SMT machines for various IQ sizes with respect to the corresponding

baseline machine with 32-entry IQs.

Our multithreaded workloads contain a subset of the
possible combinations of the simulated benchmarks. In
selecting the multithreaded workloads, we first simulated
all benchmarks in the single-threaded superscalar environ-
ment and used these results to classify them as low, medium,
and high ILP, where the low ILP benchmarks are memory
bound and the high ILP benchmarks are execution bound.

In total, we simulated 12 4-threaded workloads, 12 3-
threaded workloads, and 12 2-threaded workloads. All
workloads were created by mixing the benchmarks with
different ILP levels in various ways. Tables 2, 3, and 4
depict the specific benchmarks that constituted each of our
workloads. The ILP level of each benchmark is also shown.
Note that some differences in the results of this paper
compared to the conference version [43] stem from the fact
that, in this paper, we eliminated the mcf benchmark from
4-threaded mixes 1 and 7 due to an extremely low IPC of that
benchmark.

We used several metrics for evaluating the performance
of the multithreaded workloads throughout this paper. The
first metric is the total throughput in terms of the commit
IPC rate. However, this metric does not accurately reflect
changes that favor a thread with high IPC at the expense of
significantly hindering a thread with low IPC [25], [41].
Therefore, we also present the “fairness” metric of
“harmonic mean of weighted IPCs” [25], [41], which
accounts for individual per-thread performance.

For estimating the delays of the various schedulers, we
developed handcrafted and highly optimized VLSI layouts
of the IQ. Layouts were designed in a 0.18m 6-metal layer
TSMC process using Cadence design tools.

3 INSTRUCTION PACKING

In this section, we briefly describe instruction packing as
proposed for superscalar machines in [34], [35] to provide
sufficient background for the rest of the paper. Fig. 2a
shows the format of an IQ entry used in traditional designs.
The following fields comprise a single entry:

1. entry allocated bit (A),
2. payload area (opcode, FU type, destination register

address, literals),
3. tag of the first source, associated comparator (tag

CAM word 1, hereafter just tag CAM 1, without the
“word”) and the source valid bit,

4. tag of the second source, associated comparator (tag
CAM 2) and source valid bit, and

5. the ready bit.

The ready bit, used to raise the request signal for the
selection logic, is derived by AND-ing the valid bits of the
two sources.

If at least one of the source operands of an instruction
entering the IQ is ready at the time of dispatch, the tag
CAM associated with this operand’s slot remains unused.

210 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 2, FEBRUARY 2007

TABLE 1
Configuration of the Simulated Processor

TABLE 2
Simulated 4-Threaded Workloads

To exploit this idle tag CAM, instruction packing [34], [35]

shares one issue queue entry between two such instruc-

tions. With instruction packing, an entry in the IQ can hold

one or two instructions, depending on the number of ready

operands in the stored instructions at the time of dispatch.

The key difference between instruction packing and the

previously proposed Tag Elimination mechanism of [15] is
that the queue partitioning into the entries with various
numbers of comparators is done dynamically in the former
scheme and statically in the latter.

Fig. 2b shows the format of an issue queue entry that
supports instruction packing. Each IQ entry is comprised of
the “entry allocated” bit (A), the ready bit (R), the mode bit
(MODE), and the two symmetrical halves: the left half and
the right half. The structure of each half is identical, so we
will use the left half for the subsequent explanations.

The left half of each IQ entry contains the following

fields:

. Left half allocated (AL) bit. This bit is set when the
left half-entry is allocated.

. Source tag and associated comparator (Tag CAM).
This is where the tag of the nonready source
operand for an instruction with at most one
nonready source is stored.

. Source valid left bit (VL). This bit signifies the
validity of the corresponding source operand con-
nected to the comparator in this half of the entry,
similarly to traditional designs. This bit is also used
to indicate if the instruction residing in a half-entry
is ready for selection (as explained later).

. Payload area. The payload area contains the same
information as in the traditional design, namely,
opcode, bits identifying the FU type, destination
register address, and literal bits. In addition, the
payload area contains the tag of the second source.
Notice that the tag of the second source does not

SHARKEY AND PONOMAREV: EXPLOITING OPERAND AVAILABILITY FOR EFFICIENT SIMULTANEOUS MULTITHREADING 211

TABLE 3
Simulated 2-Threaded Workloads

TABLE 4
Simulated 3-Threaded Workloads

Fig. 2. Formats of (a) a traditional IQ entry and (b) an entry of the IQ that

supports instruction packing.

participate in the wake-up because, if an instruction
is allocated to a half-entry, the second source must
be valid at the time of dispatch. Compared to the
traditional design, the payload area is increased by
the number of bits used to represent a source tag.

The process of instruction wake-up remains exactly the
same as in the traditional design for an instruction that
occupies a full IQ entry (i.e., enters the queue with two
nonready register sources). Here, the ready bit (R) is set by
AND-ing the valid bits of both sources. For instructions that
occupy half of an IQ entry, the wake-up simply amounts to
setting of the valid bit corresponding to the source that was
nonready when the instruction entered the IQ. The contents
of the source valid bits are then directly used to indicate
that the instruction is ready for selection (the validity of the
second source is implicit in this case).

An increase in the complexity of the selection logic is
avoided by sharing one request line between the R and the
VR bits. The shared request line is raised if at least one of
the bits (the R or the VR) is set. The R and the VR bits are
both connected to the shared request line through a
multiplexer, which is controlled by the “mode” bit of the
IQ entry (Fig. 2b). In order to avoid additional delays
during instruction issue (due to the ambiguity in the
location of register tags needed to start the register file
read access), the following solution is used. When an
instruction with two nonready sources is allocated to the IQ,
the tag that is connected to the left half comparator is also
replicated in the payload area storage for the second tag in
the right half. As a result, both tags will be present in the
right half of the queue, so these tags can simply be used for
register file access, without regard for the IQ entry mode.

More details describing this technique can be found
elsewhere [34], [35]. In the next section, we discuss the
application of instruction packing to SMT processors and
show that it is an even more effective technique for those
machines.

4 SCHEDULER DESIGNS FOR SMT

This section describes our proposed designs to maximize
the scheduling efficiency of SMT processors.

4.1 Instruction Packing on SMT

Our first step is to simply apply instruction packing to the
SMT machine. As follows from the discussions in Section 3,
the effectiveness of instruction packing directly depends on
the percentage of instructions that enter the scheduling
window with two nonready sources: The lower this
percentage is, the better the trade-offs are that can be
realized by packing.

Fig. 3 presents the percentage of instructions that are
dispatched with zero, one, and two nonready source
operands for both superscalar (Fig. 3a) and SMT (Fig. 3b)
processors. While about 20 percent of the instructions are
dispatched with two nonready sources on a superscalar
machine, this percentage drops to 13 percent on a 4-
threaded SMT configuration. It is not surprising that the
percentage of such instructions is lower on an SMT machine
than it is on a superscalar. The fundamental reason behind
this lower percentage is that each thread runs relatively
slower on SMT, which in turn increases the likelihood of a
source operand being produced before the consuming
instruction is dispatched. As a result, fewer instructions
require a full-width entry in the instruction packing
scheduler on SMT, allowing for a more efficient use of the
available comparators.

Fig. 4 compares the performance achieved by using
various configurations of the traditional schedulers as well
as the schedulers supporting instruction packing for both
superscalar (SS) and SMT processors. When comparing the
different scheduler designs throughout the paper, we adopt
the following notation: Each particular scheduler is referred
to as N-Scheme, where N refers to the maximum number of
instructions that the scheduler can hold simultaneously (or its
capacity) and Scheme refers to the scheduling mechanism

212 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 2, FEBRUARY 2007

Fig. 3. Distribution of nonready operands at the time of dispatch in (a) superscalar and (b) 4-threaded SMT machines for 32-entry IQs.

that is in use (traditional, packing, or 2OP_BLOCK). For
example, 64-traditional refers to the traditional issue
queue with 64 entries and 64-packing refers to the
scheduler that supports instruction packing and has a
capacity to hold up to 64 instructions. Note that, in terms
of the logic presented in Fig. 2b, such a scheduler will only
have 32-entries in the traditional sense and each of these
entries will support up to two instructions. In practice, the
maximum number of instructions held by this scheduler is
often less than 64 because some instructions occupy full-
sized entries. Note further that this terminology is different
from that used in our previous work [34], [35].

While instruction packing provides some benefits for a
superscalar machine (the set of bars on the left), the
advantages are generally limited to the schedulers of
smaller sizes because the superscalar’s performance is
virtually insensitive to the IQ size if that exceeds 32 entries
on our simulation framework. In contrast, one can observe
that, on an SMT machine, instruction packing continues to
be a very effective technique even for much larger
schedulers, as there are significant IPC improvements when
the IQ size is increased in the baseline SMT case up to at
least 256-entry queues. For SMT processors, a 32-entry IQ
represents a large performance bottleneck—the difference
between the performance of the machines with a 32-entry
IQ and a 64-entry IQ is 22 percent on average.

In all of the cases considered and depicted in Fig. 4 (the
set of bars on the right), the performance of the N-packing
scheduler comes within a few percentage points of the
performance of the N-traditional scheduler. This is not
surprising as almost 90 percent of the instructions (see
Fig. 3b) can be actually packed within the IQ entries and do
not require a separate entry of their own. Specifically, the
64-packing scheduler achieves IPC within 2 percent of the
64-traditional scheduler. Results of a similar nature are
achieved for other IQ sizes.

While achieving essentially the same performance levels
as the traditional queue with the same maximum capacity,
instruction packing significantly reduces the access delays
and, therefore, presents a more attractive solution to scaling
the dynamic scheduling logic than simply increasing the
number of entries in the queue. The reduced amount of
associative logic in the packing scheduler results in a drastic
reduction of the wake-up access delays compared to the
traditional designs of similar capacity. Even though the
delays of the selection logic are slightly increased (due to
the extra MUX), the overall reduction in the scheduling
delays is still substantial. Specific delays of instruction

packing schedulers are presented elsewhere [35], the
important result to note at this point is that the difference
in the scheduling delay between N-traditional and
2�N-traditional designs is roughly twice as much as the
difference in the delay between N-traditional and
2�N-packing schedulers. Therefore, simply applying instruc-
tion packing to a traditional queue achieves almost the same
maximum capacity and the same performance as doubling
the queue, but with significantly less additional delay.

4.2 2OP_BLOCK: Blocking Instructions with Two
Nonready Source Operands

To motivate our next technique, we first present the
microarchitectural-level statistics related to the number of
cycles that the instructions spend in a 32-entry IQ of the
SMT processor as a function of the number of nonready
register source operands at the time of instruction dispatch.
Fig. 5 shows this data.

The leftmost set of bars in Fig. 5 depicts the number of
cycles spent in the IQ by the instructions which enter the
queue with two nonready register sources. On average,
such instructions wait 20 cycles before being issued. The
next set of bars shows the average number of cycles elapsed
between the dispatch of such instructions into the queue
and the arrival of the first source. It is interesting to observe
that most of the cycles are spent waiting for the first-
arriving source operand. After that, the instruction typically
issues very fast (in two cycles on average). Finally, the third
set of bars in Fig. 5 shows the number of cycles spent in the
queue by all other instructions (the ones that enter with at
least one register source ready or have no more than one
such source in the first place). As can be seen, the
instructions encapsulated by the third bar spend signifi-
cantly fewer cycles in the queue—they reside in the queue
for only 10 cycles as opposed to 20 cycles spent in the queue
by the instructions that enter with two nonready sources.

We now examine how to exploit the statistics presented in
Fig. 5 to increase the efficiency of the SMT scheduling logic.
First, we observe that the SMT environment opens up an
additional dimension for maximizing the performance and
efficiency of instruction scheduling. Specifically, when one of
the threads is expected to supply instructions which will
spend a large number of cycles in the IQ, the dispatching of
instructions from that thread can be temporarily suspended.
In contrast to the single-threaded execution in a superscalar
processor, such thread suspension will not result in
performance degradation if the supply of instructions
from other threads can be sustained.

SHARKEY AND PONOMAREV: EXPLOITING OPERAND AVAILABILITY FOR EFFICIENT SIMULTANEOUS MULTITHREADING 213

Fig. 4. Performance of instruction packing on superscalar (SS Harmonic Mean) and 4-way SMT (SMT Harmonic Mean) machines for various

IQ configurations.

Existing techniques partially take advantage of this
opportunity by controlling the order in which instructions
are fetched from multiple threads [11], [40], [41]. However,
in a typical deeply pipelined machine, the number of stages
between the fetch and dispatch (i.e., insertion into the IQ)
can be significant (we assume five such stages in our
simulations). As a result, the specific situation that led to the
decision not to fetch from a certain thread can be completely
reversed by the time the fetched instructions actually reach
the IQ. Furthermore, additional dynamic microarchitectural
information about the instruction (i.e., the status of its
physical registers) is readily available after register renam-
ing. Consequently, if the final decision regarding which
instructions to place into the IQ is postponed until after the
register renaming stage, then the information presented in
Fig. 5 can be directly exploited by not dispatching
instructions with two nonready source operands into the
queue, but instead blocking the dispatching from such a
thread until one of the operands becomes ready.

Following these observations, we propose a design
where the instructions can only enter the scheduling
window if they have no more than one nonready register
source operand, i.e., will only require one comparator. All
instructions with two nonready operands (and their
corresponding threads) will stall until one of the sources
becomes ready. In the rest of the paper, we refer to this
design as 2OP_BLOCK.

While, generally, the two design targets of improving the
performance and reducing the complexity are at odds with
each other, the 2OP_BLOCK scheduler, surprisingly,
achieves both of these goals at the same time. The scheduler
complexity is reduced because each entry in the IQ can be
simplified to have only one set of comparators. A more
nonintuitive result is the increased IPC performance
compared to a similarly sized traditional IQ. Despite the
fact that the dispatch stage can be completely blocked in
some cycles (when all threads have their oldest nondis-
patched instructions with two nonready source operands at
the same time), higher overall performance is still realized,
even for fairly sizable IQs, because the queue is utilized
much more efficiently. Specifically, the same IQ entry can
be reused multiple times by the instructions with at most
one nonready source operand instead of allowing a single
instruction with two nonready sources to occupy the entry
for a long time. Since the instructions with two nonready
register sources are likely to wait for a long time in the IQ
anyway, it is more beneficial for performance to have them

wait at the dispatch stage, freeing up the valuable space in
the scheduler for other instructions which are likely to be
issued faster (such as the instructions from other threads
which enter with some of their source operands ready).

Notice that, while one thread is blocked, the other
threads can continue moving through the front end as long
as they do not encounter instructions with two nonready
sources. Every cycle when the instructions from a blocked
thread are considered for dispatching, the ready bits
associated with the source operand registers of the blocked
instruction are reexamined. If one of these registers
becomes ready, the thread is unblocked and further fetches,
renames, and dispatches from that thread resume. Notice
that such checking of the ready bits is nothing unique to our
scheme; such checks are routinely performed in the baseline
machine to determine the status of the source register
operands before the instruction is moved into the IQ.

This mechanism naturally works in a data path that has
completely separate front-end pipelines (including the fetch
buffers and register renaming logic) for each thread. In our
evaluations, we assume this model. However, even if the
rename logic is shared among the threads, the selective
blocking of certain threads can be accomplished as follows:
Consider Intel’s Hyperthreaded P4 [44], which implements
a fully shared pipeline from fetch to commit. In this design,
the rename bandwith is shared between the threads, but
separate fetch buffers per thread are used before the rename
stage in order to allow the stalling of one thread in the
buffer without disrupting the processing of instructions
from the other threads. To support the 2OP_BLOCK design
on such a pipeline, we propose keeping the instructions in
the per-thread fetch buffers during the rename process and
only invalidate the entries in the fetch buffers after the
instructions are successfully placed into the IQ. If an
instruction with two nonready operands is encountered, it
is not placed into the IQ and, instead, its fetch-buffer entry
is marked as “not-sent” again so that it will be resubmitted
when one of the operands arrives. In this way, instructions
from the other threads can still harness the full rename
bandwidth without being disturbed by the blocked thread.
Finally, in order to unblock a thread from the fetch buffer,
we maintain one bit per logical register in the rename table
called the offending_source_bit. This bit is set to 1 for each
source register of an offending instruction. When a register
value is produced and the register is marked as “ready,” the
corresponding offending_source_bit is checked. If this bit is
set, the “unstall” signal is sent to the fetch buffer for that

214 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 2, FEBRUARY 2007

Fig. 5. Number of cycles spent by the instructions in the IQ for the 4-way SMT machine.

thread and processing of instructions from the thread
continues.

4.3 Synergy of 2OP_BLOCK with Instruction
Packing and Timing Issues

While the 2OP_BLOCK scheduler can be described and
implemented completely independently of instruction
packing (as presented in the previous section), additional
advantages, primarily from the timing and power perspec-
tives, can be realized if the physical layout of the IQ which
supports instruction packing (and is shown in Fig. 2b) is
leveraged. In this section, we describe the synergistic
advantages of instruction packing and 2OP_BLOCK.

The 2OP_BLOCK mechanism simplifies the instruction
packing scheduler of Fig. 2b in a number of ways. First, as
only instructions with at most one nonready operand are
present in the scheduler, both the multiplexer and the
p-device that drive the request signals to the select logic are
no longer needed. Second, the MODE bit, the A bit, and the R
bit can be removed. Furthermore, the AND gate (shown at the
bottom of Fig. 2b) is not required as the readiness of the
instruction is manifested by the ready bit of a single operand.
Finally, the capability of searching several allocation bits in
parallel in the course of setting up the IQ entries is no longer
necessary. The resulting combination of 2OP_BLOCK and the
instruction packing scheduler is also less complex than the
traditional scheduler because of the use of fewer compara-
tors, shorter tag buses, and the absence of the AND gates to
drive the final match signal. It is important to understand that
the IPC advantages of the 2OP_BLOCK design come only
because of the more efficient usage of the queue and have
nothing to do with the underlying circuitry (such as
instruction packing logic). The instruction packing logic only
provides additional advantages in terms of lower access
delay and power dissipation.

We now examine the delays of the 2OP_BLOCK
scheduler (which uses the simplified IQ layout derived
from instruction packing, as described above) and compare
it to that of the traditional IQ as well as the IQ supporting a
full-fledged implementation of instruction packing (as
presented in Fig. 2b). Fig. 6 presents the wake-up, selection,
and overall delays for various schedulers with the max-
imum capacity of 64 instructions relative to the traditional
scheduler design with 32 entries. As seen from the graph,
for the same capacity, the 2OP_BLOCK design has the
lowest overall delay, which is 9.5 percent smaller than the
delay of the 64-traditional queue and 3.5 percent smaller
than the delay of the full-fledged packing queue. Compared
to packing, this delay reduction comes from two main
sources. The wake-up delay is reduced because the AND
gate used to drive the final match signal in both traditional

and instruction packing designs has been eliminated (this is
also the reason why the wake-up delay of 64-2OP_BLOCK
is somewhat smaller than the wake-up delay of the 32-
traditional design). Second, the selection delay is reduced
because of the elimination of the multiplexer.

5 ADAPTIVE TECHNIQUES FOR SUPPORTING A

LIMITED NUMBER OF THREADS

The 2OP_BLOCK scheduler increases the efficiency of the
IQ usage, but relies on the abundant instruction supply
from multiple threads to overcome the performance
barriers imposed by blocking the instruction dispatching
from some threads for possibly prolonged periods of time.
With a small number of threads from which to choose the
instructions, such a limitation can have a huge impact on
performance. The extreme situation occurs, of course, when
only a single thread is executing, in which case, the
performance losses are very significant (up to 40 percent,
on average, for 64-entry schedulers).

To address the issues of 2OP_BLOCK performance in the
environments with a limited number of threads (the case of
a single-threaded execution being an extreme example), one
can deploy the full-fledged instruction packing logic to
implement the queue (as opposed to the simplified circuitry
that only supports instructions with at most one nonready
source) and dynamically switch between the packing mode
and the 2OP_BLOCK mode depending on the number of
active threads. Using the instruction packing circuitry from
Fig. 2b in conjunction with the 2OP_BLOCK design is
especially attractive because, as seen in the results pre-
sented by Fig. 6, the increase of the circuit delay is very
small if the full-fledged packing is implemented as opposed
to the simplified logic, which does not support the
instructions with two nonready source operands.

The switch between the two modes is a simple matter of
changing instruction dispatch to allow or disallow the
instructions with two nonready sources to enter the
scheduler. In this simple implementation, when the number
of threads is no greater than two, the scheduler always
operates in the packing mode; otherwise, it switches to the
2OP_BLOCK regime.

This switch between the packing mode and the 2OP_
BLOCK mode can even be done dynamically, depending on
the program phases and corresponding microarchitectural
statistics, to better address the scheduling needs of the
specific workloads or the phases thereof. In this paper, we
evaluate such dynamic switching between packing and
2OP_BLOCK modes.

SHARKEY AND PONOMAREV: EXPLOITING OPERAND AVAILABILITY FOR EFFICIENT SIMULTANEOUS MULTITHREADING 215

Fig. 6. Circuit delays of various scheduler configurations (relative to the 32-traditional design).

The central aspect of such a hybrid packing/2OP_
BLOCK scheme is in identifying the right triggers to force
the switching between two modes. We experimented with
several alternatives and our best results (presented in
Section 6) were achieved for the following scheme:

Two separate counters are maintained for aiding in the
decision to switch between packing and 2OP_BLOCK
modes. These counters are sampled at the end of a periodic
timing interval, which is called the SAMPLING_PEROID. In
our experiments, we tried various sampling periods and
present results in Section 6 for the period of 1,024 cycles,
which provided the best performance.

The first counter is used to determine when to switch out
of 2OP_BLOCK mode (and into packing mode). For this
trigger, the number of cycles at which the dispatch of all
threads is stalled due to the presence of instructions with
two nonready operands is used. If this count exceeds
64 cycles (5 percent of the sampling period; the reason for
such selection will become clear when one examines the
trends presented in Fig. 9, Section 6) at the end of
SAMPLING_PERIOD, then the 2OP_BLOCK mode is
exited. The intuition here is that the 2OP_BLOCK mode
alone fails to perform well when the amount of TLP is not
sufficient. In these cases, the number of cycles at which the
dispatch of instructions from all threads is stalled due to the
presence of instructions with two nonready operands
becomes very large and is not sufficiently compensated
for by the TLP. For such workloads (or such phases), it is
beneficial to operate in the packing mode.

The second counter is used for the decision to switch out
of packing mode and into 2OP_BLOCK mode. For this, a
counter of the average IQ occupancy is used. If the average
occupancy at the end of the sampling period exceeds
90 percent of the IQ size, then packing mode is exited. In
these cases, the IQ is highly utilized and, thus, there may be
sufficient parallelism in the workload to benefit from the
2OP_BLOCK mode.

The implementation of these triggers requires two
counters. The first counter (which counts the number of
dispatch stalls due to the 2OP_BLOCK condition) can be
implemented as anN-bit saturating counter for the sampling
periodT , whereN ¼ log2ðT � 5%Þ. For the sampling period of
1,024 cycles, this requires a 6-bit saturating counter. The
second counter, which maintains the average IQ occupancy,
requires a counter of log2ðIQ Size � Sampling PeriodÞ bits.
For an IQ size of 64 entries and the sampling period of 1,024,
this requires 16 bits.

Finally, note that, when the queue operates in packing
mode, then only the queue occupancy counter is monitored.

When the queue operates in the 2OP_BLOCK mode, only
the counter of the number of dispatch stalls is examined.
For this reason, the physical implementation can only
require one counter to be maintained—this counter is reset
in the beginning of every SAMPLING_PERIOD and it is
used in the next period in the fashion determined by the
current mode of operation.

6 RESULTS AND DISCUSSIONS

As mentioned previously, when we compare the perfor-
mance of different schedulers, the sizes of the IQ are
measured in terms of the maximum number of instructions
that may be present in the queue simultaneously. Specifically,
an N-traditional IQ holds up to N instructions; an
N-2OP_BLOCK scheduler can store up to N instructions,
each with at most one nonready source; and an N-packing
scheduler can hold up to N-instructions (if all the instruc-
tions have at most one nonready source), but typically holds
fewer than N instructions due to the presence of some
instructions with two nonready source operands.

Fig. 7 presents the IPC improvements of various
scheduler designs considered in this paper with the total
capacity of 64 instructions. The results are shown as relative
improvements over the baseline IQ with 32 entries. On
average, across all simulated workloads, the performance
gains with respect to the 32-traditional design are 17 percent,
18 percent, and 28 percent for 64-packing, 64-traditional,
and 64-2OP_BLOCK schedulers, respectively. It is interest-
ing to observe that the 2OP_BLOCK design outperforms the
traditional scheduler of the same capacity in all simulated
mixes, except for mixes 6, 8, and 12. On the average,
64-2OP_BLOCK outperforms 64-traditional scheduler by
14 percent. Some mixes show especially large gains, up to
39 percent on mix 1.

Fig. 8 presents similar results in terms of the fairness
metric (which is a harmonic mean of weighted IPCs). Here,
the relative difference between the various schedulers is
somewhat smaller, but, still, the 2OP_BLOCK design
outperforms the traditional queue on all but three mixes
(mixes 3, 8, and 12) as well as on average. On average, the
performance of the 64-2OP_BLOCK is better than the
performance of 64-traditional design by 10 percent accord-
ing to the fairness metric.

While the 2OP_BLOCK scheduler disallows all instruc-
tions with two nonready operands from entering the
scheduling window, the thread-level parallelism present
in SMT designs naturally allows such limitations to be
overcome. Even as the dispatch from one thread may be

216 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 2, FEBRUARY 2007

Fig. 7. Speedups (in terms of throughput IPC) over the 32-traditional IQ for various scheduler designs for the 4-way SMT machine.

stalled, dispatch from other threads may continue. Our
results show that 2OP_BLOCK is effective when the
percentage of cycles in which the dispatch of all threads is
stalled due to the presence of instructions with two
nonready sources is rather small. In these cases, the
advantages of the 2OP_BLOCK scheme outweigh its
potential limitations.

Fig. 9 presents the scalability analysis of the 2OP_BLOCK
scheduling logic. Results show the relative performance
increase of the 2OP_BLOCK scheduler compared to the
traditional scheduler of the same total capacity for various
sizes of the IQ and are presented in terms of both
throughput IPC and the fairness metric (y-axis on the left)
and the percentage of cycles in which the dispatch was
stalled because the oldest not-yet-dispatched instructions
from all threads had both of their source operands in the
nonready state (y-axis on the right). As seen from the graph,
the 2OP_BLOCK design outperforms the traditional queue
for up to 96-entry schedulers. Note that the gains are
especially high for smaller schedulers: For example, the
32-2OP_BLOCK IQ outperforms the 32-entry traditional IQ
by as much as 33 percent on average across all simulated
mixes according to the throughput IPC metric and by
27 percent according to the fairness metric. As the size of
the traditional queue increases beyond 96 entries, the
dispatch stalls introduced by 2OP_BLOCK start to dom-
inate its advantages and the resulting performance is
actually lower than that of the traditional designs. In
particular, the percentage of cycles during which the supply
of instructions completely stops because all threads have
instructions with two nonready source operands increases
dramatically as the IQ size is increased beyond 96-entries.
These stalls prevent the 2OP_BLOCK design from fully

utilizing the entries for very large IQs, resulting in a
performance degradation compared to the traditional
queue of the same capacity. Essentially, at large IQ sizes,
the extent to which 2OP_BLOCK relieves the IQ pressure is
minimal (because the IQ itself is less of a bottleneck), but,
instead, additional dispatch stalls are introduced. The
percentage of cycles when all threads are simultaneously
blocked at dispatch due to the conditions imposed by
2OP_BLOCK increases significantly with larger scheduling
windows, as seen in Fig. 9. This is because the larger
number of nonexecuted instructions buffered in the
scheduler increases the number of nonready registers.

We now evaluate the performance of 2OP_BLOCK on
3-threaded and 2-threaded workloads. The respective
results, in terms of both throughput IPC and fairness,
are presented in Figs. 10 and 11. For 2-threaded work-
loads (Fig. 10), 2OP_BLOCK consistently underperforms
the baseline machine for all examined IQ sizes. This is
not surprising as the amount of thread-level parallelism is
limited and the percentage of cycles when dispatch stalls
due to the 2OP_BLOCK-induced conditions increases. On
3-threaded workloads, 2OP_BLOCK outperforms the
baseline scheduler for small schedulers (up to 64 entries),
but, for larger schedulers, 2OP_BLOCK still shows some
performance degradations, although the extent of this
degradation is much smaller than for 2-threaded work-
loads. Specifically, 2OP_BLOCK exhibits performance
gains of 18.2 percent, 12.1 percent, and 3.7 percent in
terms of throughput IPC and 11.2 percent, 7.0 percent,
and 0.6 percent in terms of the fairness metric for the IQ
sizes of 32, 48, and 64-entries, respectively. For the
scheduler sizes of 96 and 128 entries, the 2OP_BLOCK

SHARKEY AND PONOMAREV: EXPLOITING OPERAND AVAILABILITY FOR EFFICIENT SIMULTANEOUS MULTITHREADING 217

Fig. 9. Speedups of the N-2OP_BLOCK scheduler over the N-traditional scheduler in terms of both throughput IPC and harmonic mean of weighted

IPC (axis on the left) and the percentage of cycles in which the dispatch is stalled for all threads (axis on the right) for schedulers of various sizes on

the 4-way SMT machine.

Fig. 8. Fairness improvements (in terms of the harmonic mean of weighted IPC) over the 32-traditional IQ for various scheduler designs for the 4-way

SMT machine.

design degrades performance by 3 percent and 7 percent,
respectively.

To mitigate the performance degradations experienced
by 2OP_BLOCK for workloads without sufficient paralle-
lism, we now present the results for the hybrid scheme that
was introduced in Section 5. Figs. 12, 13, and 14 present the
throughput IPCs for 4-threaded, 3-threaded, and 2-threaded
workloads, respectively, for the various scheduling schemes
relative to the traditional scheduler of the corresponding
size. Results are presented for packing, 2OP_BLOCK, and
the hybrid scheme that dynamically switches between the
two. Similar trends were observed for the fairness metric;
we do not present those results due to space limitations.

For 2-threaded workloads, instruction packing always
performs better than 2OP_BLOCK and performance of the
hybrid scheme comes very close to the performance of
packing. Specifically, for 64-entry schedulers, the perfor-
mance of the hybrid scheme comes within 0.4 percent of
that of the instruction packing, which represents a
3.2 percent gain over the 2OP_BLOCK design of the same
size. The opposite is true for the 4-threaded workloads,
where the performance of the hybrid scheme is almost
identical to that of 2OP_BLOCK, and both significantly
outperform packing. For the schedulers with the capacity to
hold up to 64-instructions, the performance of the hybrid
scheme comes within 2 percent of that of the 2OP_BLOCK
scheduler. The most interesting situation happens for
3-threaded workloads (Fig. 14). Here, the hybrid scheme
actually outperforms both packing and 2OP_BLOCK on
average. This is because, for 3-threaded workloads, packing
outperforms 2OP_BLOCK on some mixes, while 2OP_
BLOCK outperforms packing on others. To clarify, the
hybrid scheme does not provide performance that is better
than both instruction packing and 2OP_BLOCK for any one

individual workload, but is able to improve the average
performance by selecting the best for each workload (which
may be instruction packing for some and 2OP_BLOCK for
others). In this manner, the hybrid scheme is able to harness
both the benefits of instruction packing and 2OP_BLOCK to
provide a scheduler design that is scalable with both the IQ
size and the number of threads.

Figs. 15, 16, and 17 present the detailed, per-workload IPC
improvements for various scheduler configurations. The bars
in these graphs depict the performance of the instruction
packing design, the hybrid technique from Section 5, and the
basic 2OP_BLOCK design. Also, for comparison purposes,
we present the performance of the Tag Elimination design
proposed in [15]. In that design, some IQ entries have two
comparators, others have just one comparator, and yet others
have zero comparators. For this comparison, the 64-entries of
the Tag Elimination scheduler were partitioned according to
the percentage of instructions with zero, one, and two
nonready operands presented in Fig. 3b. Specifically, this
scheduler has eight entries with two tag comparators,
28 entries with one tag comparator, and 28 entries with no
tag comparators. All the results in Figs. 15, 16, and 17 are
presented as relative speedups (slowdowns) with respect to a
traditional 64-entry scheduler.

The results for the 2-threaded workloads are presented
in Fig. 15. As seen from the graph, instruction packing
nearly always outperforms the 2OP_BLOCK design. The
performance of the hybrid scheme is close to that of
instruction packing and both noticeably outperform the Tag
Elimination mechanism of [15]. For 3-threaded workloads
(Fig. 16), the 2OP_BLOCK design outperforms packing on
some mixes (mixes 1, 2, 4, 7, 8, 9, 10, and 12) and
underperforms packing on all other mixes. Consequently,
the hybrid scheme, which dynamically adapts to the better

218 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 2, FEBRUARY 2007

Fig. 10. Performance of 2-threaded workloads with 2OP_BLOCK compared to the baseline machine.

Fig. 11. Performance of 3-threaded workloads with 2OP_BLOCK compared to the baseline machine.

of the two, outperforms both packing and 2OP_BLOCK on
average. For 4-threaded workloads (Fig. 17), 2OP_BLOCK
outperforms packing for all mixes except mixes 3 and 8.

Table 5 shows the percentage of the execution cycles that
the hybrid scheme spends in the 2OP_BLOCK mode for the
various IQ sizes and various number of simultaneous
threads. The percentage is higher for the workloads with
larger number of threads and smaller IQ sizes, as, in those
configurations, the pressure on the IQ and the efficiency of
the 2OP_BLOCK design is higher. For 2-threaded work-
loads (particularly with the larger IQ sizes), most of the
cycles are spent in the packing mode, as expected.

Finally, we briefly discuss the implications of the
proposed designs on the power consumption. It has been
shown in [34], [35] that instruction packing achieves a
significant reduction in the power dissipation of the
scheduling logic for superscalar machines—in fact, power
reduction was the primary goal of those works. Naturally,
these results still hold true for SMT if we compare similarly
sized instruction packing and traditional schedulers. The
2OP_BLOCK scheduler results in slightly more power
reduction even compared to the instruction packing

scheduler. This is because some logic (such as the AND
gate, the allocation bit vectors, etc.) is eliminated. However,
this power reduction is expected to be small (within a few
percentage points) because the scheduling power is
dominated by the dissipations expended in the course of
wake-up tag broadcasts as well as within the logic of the
selection tree. None of these components are affected by the
2OP_BLOCK scheduler compared to instruction packing.
For more detailed power-related comparisons between the
instruction packing and the traditional scheduler, we refer
the readers to [34], [35].

7 SUPPORTING SPECULATIVE SCHEDULING AND

INSTRUCTION REPLAYS

For the sake of clarity in presenting the concepts of the SMT
scheduler designs, our discussions in the previous sections
ignored the issues that arise when the scheduling logic with a
reduced number of tags (such as instruction packing, 2OP_
BLOCK, or tag elimination technique of [15]) is incorporated
into the data path that supports speculative scheduling based

SHARKEY AND PONOMAREV: EXPLOITING OPERAND AVAILABILITY FOR EFFICIENT SIMULTANEOUS MULTITHREADING 219

Fig. 13. Throughput IPC speedup of 3-threaded workloads for various scheduling schemes compared to the baseline machine.

Fig. 12. Throughput IPC speedup of 2-threaded workloads for various scheduling schemes compared to the baseline machine.

Fig. 14. Throughput IPC speedup of 4-threaded workloads for various scheduling schemes compared to the baseline machine.

on load latency prediction. In such designs, the instructions

dependent on a load (and possibly their dependents as well)

are scheduled speculatively, assuming that the load will hit

into the L1 D-cache or relying on a more elaborate hit/miss

prediction information. Upon a misprediction, the prema-

turely scheduled instructions need to be reexecuted

(replayed). A comprehensive treatment of such scheduling
mechanisms and various associated replay schemes is
presented in [45]. As the number of stages between issue
and execution increases in deeply pipelined high clock rate
designs, it is virtually imperative that scheduling techniques
support instruction replaying.

Associative instruction schedulers with a reduced number
of tags, such as the ones described in this paper, present
complications in this respect because the source operand tags
of some instructions do not have the associated comparators
and cannot participate in the wake-up process during a
replay following a load-latency misprediction [45]. The
problem arises when these instructions need to be replayed
following a load latency misprediction and the source
operand that was (speculatively) determined to be ready in
the course of the initial instruction dispatching is no longer

220 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 2, FEBRUARY 2007

Fig. 15. Throughput IPC speedup of the 2-way SMT machine for various scheduler designs relative to the 64-entry traditional IQ.

Fig. 16. Throughput IPC speedup of the 3-way SMT machine for various scheduler designs relative to the 64-entry traditional IQ.

Fig. 17. Throughput IPC speedup of the 4-way SMT machine for various scheduler designs relative to the 64-entry traditional IQ.

TABLE 5
Percentage of Cycles Spent in the 2OP_BLOCK Mode

for the Hybrid Scheduler of Various Capacities

ready after the misprediction. This occurs when the source
operand in question depends, directly or indirectly, on the
mispredicted load. In such a situation, the wake-up buses
need to be monitored during replay to determine the
readiness of the source in a nonspeculative manner. How-
ever, since the comparator is not available, such monitoring is
impossible. The Tag Elimination mechanism of [15] has a
similar problem.

Following a load-latency misprediction, all affected
instructions typically get replayed, either from the main
IQ or from a separate buffer [45], [46]. In [46], Ernst and
Austin describe how such a replay mechanism can be used
with tag elimination. The schemes proposed in this paper
can trivially support instruction replays using a similar
buffer. Due to the space limitation, we not discuss this
particular implementation of replay mechanism further in
detail and instead refer the readers to [45], [46] for more
detailed discussions and the associated power/perfor-
mance trade-offs.

For solutions where both regular and replaying instruc-
tions are issued out of the same IQ, we use the
nonspeculative version of the “register ready” bit-vector
to make the decision regarding the IQ allocation actions. A
nonspeculative ready bit associated with a physical register
is only set when the instruction producing that register
value is no longer subject to the load-latency related
replays. Basically, the speculative and the nonspeculative
ready bits will be set a few cycles apart from each other and
that difference is determined by the number of stages
between instruction issue and execution. If the nonspecu-
lative versions of the ready bits are checked to make the IQ
allocation decisions, then instruction packing and 2OP_
BLOCK can trivially support speculative scheduling and
various forms of replays (such as squash recovery [45] or
selective recovery [45], [46]) without any problems.

Fig. 18 shows the performance difference if the spec-
ulative versions of the ready bits are used instead of
nonspeculative. For comparison with the idealistic case that
uses speculative ready bits, we, of course, used a perfect
predictor because, otherwise, speculative scheduling cannot
be supported with packing or 2OP_BLOCK. For all other
experiments, realistic nonideal predictors were used. On
average, there is less than 1 percent IPC difference for
instruction packing and less than 5 percent difference for
2OP_BLOCK. Therefore, the use of nonspeculative ready
bits can support speculative scheduling with minimal
impact on performance even if a separate replay queue is
not used. Note that, in all previously presented graphs, we used
the nonspeculative ready bits, therefore the presented results fully

support speculative scheduling. Additional gains could be
realized if speculative ready bits were used with some
additional smart logic to support replays, but these gains
are minimal (Fig. 18).

8 RELATED WORK

Various fetching policies have been proposed in the
literature to ensure the supply of instructions for building
the most efficient execution schedules. The I-Count [41]
gives fetching priority to the threads with fewer not-yet-
executed instructions. One deficiency of the I-Count is that
it does not effectively handle situations where the instruc-
tions pile up in the IQ following an L2 cache miss. As a
result, the IQ entries are occupied by such instructions for a
long time. Several optimizations of I-Count have been
proposed to address this deficiency. STALL [40] prevents
the thread from fetching further instructions if it experi-
enced an L2 cache miss. FLUSH [40] extends STALL by
squashing the already dispatched instructions from such a
thread, thus making the shared IQ resources available for
the instructions from other threads. FLUSH++ [11] com-
bines the benefits of STALL and FLUSH and uses the cache
behavior of threads to dynamically switch between these
two mechanisms. The Data Gating technique of [14] avoids
fetching from threads that experience an L1 data miss.
Predictive Data Gating goes one step further and avoids
fetching from the thread if it is predicted (during the early
stage) that a cache miss will soon occur. While all these
mechanisms are effective to various degrees, they do not
exploit dynamic microarchitectural information about the
instructions available after register renaming. In this paper,
we show that additional benefits can be realized if such
information is considered.

Several works proposed specific optimizations for the
SMT processors. El-Moursy and Albonesi [14] explored new
front-end policies that reduce the required integer and
floating-point issue queue sizes in SMT architectures. Their
techniques limit the number of nonready instructions in the
queue from each thread and also block further instruction
fetching from a thread if that thread experiences an L1
cache miss. As a result, the queue occupancy is reduced
significantly (by about 33 percent) for the same level of
performance. In [33], a partitioned version of the oldest-first
issue policy is proposed, where separate issue queues are
used to buffer the instructions from different threads. In
[32], the effect of partitioning the data path resources,
including the issue queues, across multiple threads is

SHARKEY AND PONOMAREV: EXPLOITING OPERAND AVAILABILITY FOR EFFICIENT SIMULTANEOUS MULTITHREADING 221

Fig. 18. IPC impact of using speculative versus nonspeculative ready bits for instruction packing and 2OP_BLOCK on the 4-way SMT machine.

discussed. In [10], a more fine-grained dynamic control over
SMT resources is proposed.

Researchers have proposed several ways to reduce the
complexity and the power consumption of the issue logic in
superscalar processors. Dynamic adaptation techniques [2],
[6], [7], [17], [29] partition the queue into multiple segments
and deactivate some segments periodically when the
applications do not require the full issue queue to sustain
the commit IPCs. The issue queues used in the SMT
processors are generally less amenable to such optimiza-
tions because the occupancy of the queue is typically high
as it is shared among multiple threads. Energy-efficient
comparators, which dissipate energy predominantly on a
tag match, were proposed in [30], [31]. Also in [30], the issue
queue power was reduced by using zero-byte encoding and
bitline segmentation. All of these techniques can be
naturally applied to the SMT processor without any
changes. In [20], the associative broadcast is replaced with
indexing to enable only a single instruction to wake-up.

The observation that many instructions are dispatched
with at least one of their source operands ready is not new
—it was used in [15], where the scheduler design with a
reduced number of comparators was proposed. In that
scheme, some IQ entries have two comparators, others have
just one comparator, and yet others have zero comparators.
While the work of [15] statically partitions the queue into
the groups of entries with various numbers of tag
comparators, instruction packing achieves this partitioning
dynamically; thus it can better adjust to the characteristics
of the executing programs and results in lower performance
degradation, as shown in [35].

In [22], the tag buses were categorized into fast buses and
slow buses such that the tag broadcast on the slow bus takes
one additional cycle. While the technique proposed in [22]
can be trivially adapted to SMT, the design proposed in this
paper (2OP-BLOCK scheme, in particular) completely
eliminates the second set of comparators and, therefore,
obviates the need to perform last-tag speculation and
maintain fast and slow wake-up buses. The capacitive
loading on all tag buses is reduced because half of the
comparators are offloaded from every tag bus.

Several techniques have been proposed to pipeline the
scheduling logic on a superscalar machine into separate
wake-up and selection cycles without commensurate
degradation in the IPCs [21], [39]. Other proposals have
introduced new scheduling techniques with the goal of
designing scalable dynamic schedulers to support a very
large number of in-flight instructions [3], [12], [23], [24],
[28]. Brown et al. [4] proposed removing the selection logic
from the critical path by exploiting the fact that the number
of ready instructions in a given cycle is typically smaller
than the processor’s issue width. The technique of [4] is less
likely to be applicable to SMT as the number of ready
instructions increases.

Scheduling techniques based on predicting the issue cycle
of an instruction [1], [8], [9], [16], [19], [24], [26], [36] remove
the wake-up delay from the critical path and remove the CAM
logic from instruction wake-up, but need to keep track of the
cycle when each physical register will become ready. In [13],
the wake-up time prediction occurs in parallel with the
instruction fetching. Future research is needed to determine
the effectiveness of these techniques on an SMT processor.

9 CONCLUDING REMARKS

We examined several mechanisms for improving the
scalability, reducing the complexity and delays, and
increasing the throughput of the instruction schedulers in
multithreaded processors. We demonstrated that the
instruction packing—a technique to pack multiple instruc-
tions into the same issue queue entry—is more effective on
an SMT than it is on a superscalar. This is because the
percentage of instructions that enter the scheduling window
with two nonready register source operands on a 4-way
SMT is significantly lower than on a superscalar machine.
We then proposed the 2OP_BLOCK scheduler—a schedul-
ing technique that completely disallows the dispatch of
instructions with two nonready sources, thus significantly
simplifying the IQ logic. This mechanism works well for
SMTs because it often allows the reuse of the same IQ entry
multiple times for the instructions with no more than one
nonready source rather than tying up the entry with an
instruction with two nonready sources (which typically
spend a longer time in the queue). We also proposed a
hybrid scheduling scheme that combines the advantages of
packing and 2OP_BLOCK by dynamically switching be-
tween these two modes. Such dynamic switching provides
good performance, even in the environments with limited
number of threads. Finally, we considered the implications
of the proposed techniques on a data path that employs
speculative instructions scheduling based on load latency
prediction. We showed that all the proposed schemes
support such speculative scheduling.

ACKNOWLEDGMENTS

This paper is an extension of a paper which appeared in the
Proceedings of the International Symposium on High Perfor-
mance Computer Architecture (HPCA), 2006.

REFERENCES

[1] J. Abella and A. Gonzalez, “Low-Complexity Distributed Issue
Queue,” Proc. 10th Int’l Symp. High Performance Computer
Architecture (HPCA), 2004.

[2] P. Bose et al., “Early Stage Definition of LPX: A Low Power Issue-
Execute Processor,” Proc. Power Aware Computer Systems Workshop
(PACS), 2002.

[3] E. Brekelbaum et al., “Hierarchical Scheduling Windows,” Proc.
Int’l Symp. Microarchitecture (MICRO), 2002.

[4] M. Brown et al., “Select-Free Instruction Scheduling Logic,” Proc.
34th Int’l Symp. Microarchitecture (MICRO), 2001.

[5] D. Burger and T. Austin, “The SimpleScalar Tool Set: Version 2.0.,”
technical report, Dept. of Computer Science, Univ. of Wisconsin-
Madison, June 1997.

[6] A. Buyuktosunoglu et al., “A Circuit-Level Implementation of an
Adaptive Issue Queue for Power-Aware Microprocessors,” Proc.
Great Lakes Symp. VLIS, 2001.

[7] A. Buyuktosunoglu et al., “Energy-Efficient Co-Adaptive Instruc-
tion Fetch and Issue,” Proc. Int’l Symp. Computer Architecture
(ISCA), 2003.

[8] R. Canal and A. Gonzalez, “A Low-Complexity Issue Logic,” Proc.
Int’l Conf. Supercomputing (ICS), 2000.

[9] R. Canal and A. Gonzalez, “Reducing the Complexity of the Issue
Logic,” Proc. Int’l Conf. Supercomputing (ICS), 2001.

[10] F. Cazorla et al., “Dynamically Controlled Resource Allocation in
SMT Processors,” Proc. Int’l Symp. Microarchitecture, 2004.

[11] F. Cazorla et al., “Improving Memory Latency Aware Fetch
Policies for SMT Processors,” Proc. Int’l Symp. High Performance
Computing, 2003.

[12] A. Cristal et al., “Out-of-Order Commit Processors,” Proc. Int’l
Symp. High Performance Computer Architecture (HPCA), 2004.

222 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 2, FEBRUARY 2007

[13] T. Ehrhart and S. Patel, “Reducing the Scheduling Critical Cycle
Using Wakeup Prediction,” Proc. Int’l Symp. High Performance
Computer Architecture (HPCA), 2004.

[14] A. El-Moursy and D. Albonesi, “Front-End Policies for Improved
Issue Efficiency in SMT Processors,” Proc. Int’l Symp. High-
Performance Computer Architecture (HPCA), 2003.

[15] D. Ernst and T. Austin, “Efficient Dynamic Scheduling through
Tag Elimination,” Proc. Int’l Symp. Comp. Architecture (ISCA), 2002.

[16] D. Ernst et al., “Cyclone: A Broadcast-Free Dynamic Instruction
Scheduler with Selective Replay,” Proc. Int’l Symp. Computer
Architecture (ISCA), 2003.

[17] D. Folegnani and A. Gonzalez, “Energy-Effective Issue Logic,”
Proc. Int’l Symp. Computer Architecture (ISCA), 2001.

[18] J. Henning, “SPEC CPU2000: Measuring CPU Performance in the
New Millennium,” Computer, vol. 33, no. 7, pp. 28-35, July 2000.

[19] J. Hu et al., “Exploring Wakeup-Free Instruction Scheduling,”
Proc. Int’l Symp. High Performance Computer Architecture (HPCA),
2004.

[20] M. Huang et al., “Energy-Efficient Hybrid Wakeup Logic,” Proc.
Int’l Symp. Low-Power Electronics Design (ISLPED), 2002.

[21] I. Kim and M. Lipasti, “Macro-Op Scheduling: Relaxing Schedul-
ing Loop Constraints,” Proc. Int’l Symp. Microarchitecture (MICRO),
2003.

[22] I. Kim and M. Lipasti, “Half-Price Architecture,” Proc. Int’l Symp.
Computer Architecture (ISCA), 2003.

[23] A. Lebeck et al., “A Large, Fast Instruction Window for Tolerating
Cache Misses,” Proc. Int’l Symp. Computer Architecture (ISCA),
2002.

[24] Y. Liu et al., “Scaling the Issue Window with Look-Ahead Latency
Prediction,” Proc. Int’l Conf. Supercomputing (ICS), 2004.

[25] K. Luo et al., “Balancing Throughput and Fairness in SMT
Processors,” Proc. Int’l Symp. Performance Analysis of Systems and
Software, 2001.

[26] P. Michaud et al., “Data-Flow Prescheduling for Large Instruction
Windows in Out-of-Order Processors,” Proc. Int’l Conf. High
Performance Computer Architecture (HPCA), 2001.

[27] S. Palacharla et al., “Complexity-Effective Superscalar Proces-
sors,” Proc. Int’l Symp. Computer Architecture (ISCA), 1997.

[28] S. Raasch et al., “A Scalable Instruction Queue Design Using
Dependence Chains,” Proc. Int’l Symp. Computer Architecture, 2002.

[29] D. Ponomarev et al., “Reducing Power Requirements of Instruc-
tion Scheduling through Dynamic Allocation of Multiple Data-
path Resources,” Proc. Int’l Symp. Microarchitecute (MICRO), 2001.

[30] D. Ponomarev et al., “Energy-Efficient Issue Queue Design,” IEEE
Trans. VLSI Systems, Nov. 2003.

[31] D. Ponomarev et al., “Energy-Efficient Comparators for Super-
scalar Datapaths,” IEEE Trans. Computers, vol. 53, no. 7, July 2004.

[32] S. Raasch et al., “The Impact of Resource Partitioning on SMT
Processors,” Proc. Parallel Computing Technologies Conf. (PACT),
2003.

[33] B. Robatmili et al., “Thread-Sensitive Instruction Issue for SMT
Processors,” Computer Architecture News, 2004.

[34] J. Sharkey et al., “Reducing Delay and Power Consumption of the
Wakeup Logic through Instruction Packing and Tag Memoiza-
tion,” Proc. Fourth Workshop Power-Aware Computer Systems, 2004.

[35] J. Sharkey et al., “Instruction Packing: Reducing Power and Delay
of the Dynamic Scheduling Logic,” Proc. Int’l Symp. Low Power
Electronics and Design (ISLPED), 2005.

[36] J. Sharkey and D. Ponomarev, “Instruction Recirculation: Elim-
inating Counting Logic in Wakeup-Free Schedulers,” Proc. ACM/
IEEE Euro-Par Conf., 2005.

[37] J. Sharkey, “M-Sim: A Flexible, Multi-Threaded Simulation
Environment,” Technical Report CS-TR-05-DP1, Dept. of Compu-
ter Science, State Univ. of New York Binghamton, 2005.

[38] T. Sherwood et al., “Automatically Characterizing Large Scale
Program Behavior,” Proc. Architectural Support for Programming
Languages and Operating Systems Conf. (ASPLOS), 2002.

[39] J. Stark et al., “On Pipelining Dynamic Instruction Scheduling
Logic,” Proc. Int’l Symp. Microarchitecture (MICRO), 2000.

[40] D. Tullsen et al., “Handling Long-Latency Loads in a Simulta-
neous Multi-Threaded Processor,” Proc. Int’l Symp. Microarchtiec-
ture, 2001.

[41] D. Tullsen et al., “Exploiting Choice: Instruction Fetch and Issue
on an Implementable Simultaneous Multithreading Processor,”
Proc. Int’l Symp. Computer Architecture, 1996.

[42] D. Tullsen et al., “Simultaneous Multithreading: Maximizing On-
Chip Parallelism,” Proc. Int’l Symp. Computer Architecture, 1995.

[43] J. Sharkey and D. Ponomarev, “Efficient Instruction Schedulers for
SMT Processors,” Proc. 12th Int’l Symp. High Performance Computer
Architecture (HPCA), 2006.

[44] D. Marr et al., “Hyperthreading Technology Architecture and
Microarchitecture,” Intel Technology J., vol. 6, no. 1, Feb. 2002.

[45] I. Kim and M. Lipasti, “Understanding Scheduling Replay
Schemes,” Proc. Int’l Symp. High Performance Computer Architecture
(HPCA), 2004.

[46] D. Ernst and T. Austin, “Practical Selective Replay for Reduced-
Tag Schedulers,” Proc. Second Ann. Workshop Duplicating, Decon-
structing, and Debunking (WDDD-2), June 2003.

Joseph J. Sharkey received the BS degree in
computer science from the State University of
New York (SUNY) Binghamton in 2004 and the
MS degree in computer science from SUNY
Binghamton in 2005. He is currently a PhD
student in the Department of Computer Science
at SUNY Binghamton. His research interests are
in computer architecture, specifically reliable
and power-aware microarchitectures. He is a
student member of the IEEE, the IEEE Compu-

ter Society, and the ACM.

Dmitry V. Ponomarev received the systems
engineering degree from the Moscow State
Institute of Electronics and Mathematics, Rus-
sia, in 1996, the MS degree in computer and
information science from the State University of
New York (SUNY), Institute of Technology at
Utica/Rome, in 1995, and the PhD degree in
computer science from SUNY Binghamton in
2003. He is currently an assistant professor in
the Department of Computer Science at SUNY

Binghamton. His research interests are in computer architecture,
particularly in the optimizations of high-end microprocessors for energy
efficiency. He is a member of the IEEE, the IEEE Computer Society, and
the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SHARKEY AND PONOMAREV: EXPLOITING OPERAND AVAILABILITY FOR EFFICIENT SIMULTANEOUS MULTITHREADING 223

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

