
0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2702632, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Design-Phase Buffer Allocation for Post-Silicon
Clock Binning by Iterative Learning

Grace Li Zhang, Bing Li, Jinglan Liu, Yiyu Shi Senior Member, IEEE and Ulf Schlichtmann, Member, IEEE

Abstract—At submicron manufacturing technology nodes, pro-
cess variations affect circuit performance significantly. To counter
these variations, engineers are reserving more timing margin to
maintain yield, leading to an unaffordable overdesign. Most of
these margins, however, are wasted after manufacturing, because
process variations cause only some chips to be really slow,
while other chips can easily meet given timing specifications.
To reduce this pessimism, we can reserve less timing margin
and tune failed chips after manufacturing with clock buffers to
make them meet timing specifications. With this post-silicon clock
tuning, critical paths can be balanced with neighboring paths in
each chip specifically to counter the effect of process variations.
Consequently, chips with timing failures can be rescued and the
yield can thus be improved. This is specially useful in high-
performance designs, e.g., high-end CPUs, where clock binning
makes chips with higher performance much more profitable. In
this paper, we propose a method to determine where to insert
post-silicon tuning buffers during the design phase to improve
the overall profit with clock binning. This method learns the
buffer locations with a Sobol sequence iteratively and reduces the
buffer ranges afterwards with tuning concentration and buffer
grouping. Experimental results demonstrate that the proposed
method can achieve a profit improvement of about 14% on
average and up to 26%, with only a small number of tuning
buffers inserted into the circuit.

Index Terms—Process Variations, Post-Silicon Tuning, Clock
Binning, Yield, Iterative Learning

I. INTRODUCTION

At advanced technology nodes, process variations have
become relatively larger, and thus caused expensive overdesign
due to timing margins reserved during the design phase. To
meet the challenges imposed by process variations, previ-
ous methods model process variations as random variables
and incorporate them into timing analysis directly, leading
to a boom of research on statistical static timing analysis
(SSTA) in the last decade [2]. With the knowledge of the

This work was partly supported by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research Centre “Invasive
Computing” (SFB/TR 89).

A preliminary version of this paper was published as [1] in the Proceedings
of the Design, Automation and Test in Europe (DATE) conference, 2016.
The major improvement of this paper over [1] is to process multiple samples
with an iterative learning procedure using a low-discrepancy sample sequence
(Sobol sequence).

Grace Li Zhang, Bing Li, and Ulf Schlichtmann are with the In-
stitute for Electronic Design Automation, Technical University of Mu-
nich (TUM), Munich 80333, Germany (e-mail: grace-li.zhang@tum.de;
b.li@tum.de; ulf.schlichtmann@tum.de).

Jinglan Liu and Yiyu Shi are with the Department of Computer Sci-
ence and Engineering, University of Notre Dame (e-mail: jliu16@nd.edu;
yshi4@nd.edu).

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

scanin 0 1 2
shift

scanout

configuration bits

CLK IN CLK OUTdelay elements

Fig. 1. Post-silicon tuning buffer in [4] with three configuration bits.

distributions of process variations, SSTA methods produce a
performance-yield curve with which designers have a chance
to make a tradeoff between different design goals. To alleviate
the effect of process variations, many researchers have also
worked on circuit structure level to introduce special devices
and mechanisms. For instance, the Razor method [3] boosts
circuit performance up to the limit where timing errors occur
during circuit operation. Another technique to counter process
variations is to use post-silicon tuning devices to adapt chips
individually according to the effect of process variations after
manufacturing.

A widely used post-silicon tuning technique is clock tuning
with delay buffers. For example, the structure of the delay
buffer used in [4] is illustrated in Fig. 1. The delay of
this buffer can be changed by setting the configuration bits
in the three registers. In high-performance designs, tuning
buffers like this are inserted during the design phase. After
manufacturing, the delay values of these buffers are configured
to allot critical paths more timing budget by shifting clock
edges toward the stages with smaller combinational delays.
These critical paths might be different in individual chips
due to process variations, so that only post-silicon tuning can
counterbalance them efficiently. By balancing delay budgets
across consecutive register stages, chips that might have failed
to meet timing specifications can be revitalized, leading to an
increased yield at the expense of additional area taken by these
buffers. This post-silicon tuning technique works seamlessly
with other optimization techniques, e.g., gate/wire sizing and
timing-driven placement, since it mainly deals with delay
imbalance introduced in manufacturing by process variations
instead of during the design phase.

Post-silicon clock tuning buffers have various implemen-
tations and characteristics. The tuning buffer proposed in
[5] provides precise adjustable delays of less than 30 ps by
voltage-controlled driver strength. The design in [6] uses a
delay line to generate delays with 1 ps resolution. The de-skew
buffer in [7] consists of CMOS inverters and arrays of passive

ar
X

iv
:1

70
5.

04
99

5v
1

 [
cs

.A
R

]
 1

4
M

ay
 2

01
7

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2702632, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

loads and is capable of creating a 170 ps tunable delay range
in 8.5 ps steps. The controlled contention design [4] provides
a 140 ps delay range with 8 steps. After manufacturing, these
delays can be adjusted through the test access port (TAP) to
tune individual chips.

In recent years, several methods have been proposed for
statistical timing analysis and optimization of circuits with
post-silicon clock tuning buffers. In [8] a clock scheduling
method is developed and clock tuning buffers are selectively
inserted to balance the skews due to process variations. In
[9] algorithms are proposed to insert buffers into the clock
tree to guarantee a given yield, while either the number of
buffers or the total area of all buffers is minimized. The
optimization problem is solved by evaluating the yield gradient
with simultaneous perturbation and Monte Carlo simulation.
In [10] the yield loss due to process variations and the total
cost of clock tuning buffers are formulated together for gate
sizing. The resulting optimization problem is solved using a
stochastic cutting-plane method with an STA scheme based on
Monte Carlo simulation. In [11], the placement of clock tuning
buffers is investigated and a considerable benefit is observed
when the clock tree is designed using the proposed tuning
system. In addition, the work in [12] proposes an efficient
post-silicon tuning method by searching a configuration tree
combined with graph pruning, and an insertion algorithm to
group buffers into clusters. The yield of a circuit with clock
tuning buffers can be evaluated efficiently using the method
in [13], and post-silicon testing methods for such circuits have
been discussed in [14], [15].

The methods above are applied as pre-silicon optimization
or post-silicon adjustment before shipping the manufactured
chips to customers. Several other methods [16]–[18] have
exploited these tuning buffers to improve circuit performance
and reliability online, i.e., while the circuit is running. The
method in [16] adjusts clock skews when the circuit is running
according to timing errors to achieve a better performance in
timing-speculative circuits. The method in [17] explores the
insertion of clock tuning buffers and in-system configuration
to reduce performance degradation due to aging. In addition,
the method in [18] applies clock tuning buffers to compensate
dynamic delay variations induced by temperature.

In order to take advantage of post-silicon tuning, these
buffers should be inserted into the circuit during the design
phase. Since they take die area and require special treatment
during physical design, the number of tuning buffers in the
circuit should be small to provide a good yield/profit improve-
ment. This is essentially a statistical optimization problem
when process variations are considered. Previous methods
[9], [10] solve this problem by path search or the cutting
plane method. In these methods, yield values of different
combinations of buffer locations are evaluated using Monte
Carlo simulation. New combinations of buffer locations are
then selected to evaluate according to the yield gradient. This
is in fact a statistical extension of linear programming. Since
Monte Carlo simulation is used at many branching points, this
direct extension requires a large runtime to determine buffer
locations, though the calculated buffer locations may still fall
into a local optimum in the problem space due to the nature

of path search.
In this paper, we propose a method to determine buffer

locations by iterative learning. In each iteration we try to
capture the buffers that are important to the yield/profit of the
circuit. Afterwards, we refine the identified buffer locations
and compress buffer ranges to reduce area cost. The contribu-
tions of the proposed method are as follows:
• Instead of searching along a few paths in the prob-

lem space to find a set of buffer locations, we use
representative sample points to identify the buffers that
are important to the yield/profit directly. Using a low-
discrepancy sample sequence, the proposed method can
identify the proper buffer locations efficiently.

• We introduce a new way to model yield in representative
samples to convert a statistical optimization problem into
an ILP problem, so that heuristic statistical optimization
can be avoided.

• We model the overall profit optimization problem instead
of the yield at a given clock period. Consequently,
the produced method can determine the buffer locations
with respect to multiple clock bins in high-performance
designs. When only one bin is used, this method is
equivalent to the yield improvement problem with respect
to a single clock period.

• The proposed sampling-based method produces tuning
values in the representative chip samples. With these
values, buffers can be grouped according to their tuning
correlation to reduce area cost further.

• Compared with other methods, the proposed method is
much faster, thanks to several acceleration techniques,
even when the intermediate sample batches are not par-
allelized

The rest of this paper is organized as follows. We give an
overview of timing constraints for circuits with post-silicon
clock tuning buffers in Section II and formulate the buffer
allocation problem in Section III. We explain the proposed
method in detail in Section IV. Experimental results are
shown in Section V. Conclusion and future work are given
in Section VI.

II. TIMING CONSTRAINTS WITH CLOCK BUFFERS

In a circuit with post-silicon tuning buffers, the delays of
clock paths to flip-flops can be adjusted after manufacturing
for each chip individually. The concept of this tuning can be
explained using the example in Fig. 2a, where four flip-flops
are connected into a loop by combinational paths. Without
post-silicon clock tuning, the minimum clock period of this
circuit is 8. If clock edges can be moved by adjusting the
delays of these tuning buffers, the minimum clock period can
be reduced to 5.5. For example, the buffer value x2 shifts
the launching clock edge at F2 0.5 units later and the buffer
value x3 shifts the launching clock edge at F3 3 units later.
Therefore, with a clock period of 5.5, the combinational path
between F2 and F3 now has 5.5-0.5+3=8 time units to finish
signal propagation. This shifting of the clock edge reduces
the timing budget of the path between F3 and F4 by 3 units,

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2702632, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

3

6

F1 F2

F4 F3

0.5
85

x3x4

x1 clk x23

33.5

3

6

F1 F2

F4 F3

85
x3x4

x1 clk x2

2.53

02.5

3

6

F1 F2

F4 F3

85
x3x4

x1 clk x20

00.5

-2.5

(a) (b) (c)

Fig. 2. Performance improvement using post-silicon tuning buffers. Minimum achievable clock period is 5.5. Tuning values in (a) and (b) are constrained in
[0, 4]. Setup time and hold time are assumed as 0 for simplicity. (a) Tuning configuration without reduction. (b) Reduced tuning configuration. (c) Reduced
tuning configuration with negative tuning values.

but this path still works with the clock period 5.5 because the
buffer value x4 moves the clock edge at F4 further later.

The timing imbalance between combinational paths as in
Fig. 2a potentially appears when process variations become
large in advanced technology nodes. For an individual chip,
this post-silicon clock tuning is similar to the concept of useful
clock skews [19]. The difference is that the tuning values are
specific to each individual chip after manufacturing, so that the
effects of process variations can be dealt with specifically for
each chip. If the skew schedule problem in [19] is formulated
with process variations, the skew to a flip-flop should still be
identical in all manufactured chips, so that there is no chance
to tune the chips with respect to the individual effect of process
variations after manufacturing.

In Fig. 2a, four tuning buffers are used. However, all the
delays of the buffers can be reduced by 0.5 time units and
the circuit still works with the clock period 5.5. This way,
the number of buffers can be reduced by one, as shown in
Fig. 2b. Furthermore, we can reduce the number of buffers
even to two, if we can move the clock edge at F2 2.5 time
units earlier, so that the timing slack of the path between F1
and F2 can be shifted to the path between F2 and F3 directly,
as in Fig. 2c. This negative delay can be implemented by
shortening the original clock path in advance to introduce
a negative delay in reference to the predefined arrival time
of clock signals. With negative clock delays allowed, timing
budgets can be balanced in both the clockwise direction
and the counterclockwise direction, so that the number of
required buffers can be lowered to reduce area and post-silicon
configuration cost. The task of buffer allocation during the
design phase is thus to identify the smallest set of buffers
with which chips after manufacturing can be tuned to a higher
performance.

The timing constraints with clock tuning buffers can be
explained using Fig. 3, where two flip-flops with buffers are
connected by a combinational circuit. Assume that the clock
signal switches at reference time 0. Then the clock events at
flip-flops i and j happen at time xi and xj , respectively. To
meet the setup time and hold time constraints, the following
inequations must be satisfied.

xi + dij ≤ xj + T − sj (1)

xi + dij ≥ xj + hj (2)

xjxi

clki

clk

clkj

comb. circuitFF FF

clkj

clk

clki

reference time 0

xj

hj
sj

xi

T

i j

Fig. 3. Timing of circuits with tuning buffers.

where xi and xj are delay values of tuning buffers, dij (dij)
is the maximum (minimum) delay of the combinational circuit
between flip-flops i and j, sj (hj) is the setup (hold) time of
flip-flop j, and T is the clock period. Here the clock buffers
introduce two delay variables into the constraints (1) and (2).
Without them, the two inequations fall back to the normal
timing constraints of digital circuits.

Owing to area constraints, the configurable delay of a clock
buffer usually has a limited range. Assume that the lower
bound of the tuning values of buffer i is ri and the upper
bound is ri + τi, where τi is the size of the buffer. The delay
value of buffer i can thus be constrained by a range window
as

ri ≤ xi ≤ ri + τi. (3)

Unlike [9], we model the range window of the tuning values
as asymmetrical with respect to 0 to achieve a maximal
flexibility. Furthermore, xi may take only discrete values due
to implementation limitations.

To guarantee the proper function of a circuit with clock
tuning buffers, the constraints (1), (2) and (3) are created for
each pair of flip-flops. For a chip after manufacturing, the
variables dij , dij , sj and hj in (1) and (2) become fixed
values. These delays and timing properties in manufactured
chips can be measured using frequency stepping [20], such as
in [14], [15], [21]. A detailed discussion of this technique can
be found, e.g., in [21]. After the delays and timing properties
are measured, the values of xi and xj that make a chip work

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2702632, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

with a given clock period T can be found easily using the
Bellman-Ford algorithm [22] or using linear programming.

In this paper, we only focus on determining buffer locations
during the design phase. Consequently, the path delays, setup
times and hold times should be considered as random variables
modeled using data provided by foundries. With process
variations considered, the tuning delays xi and xj also become
statistical, because the clock buffers are subject to process vari-
ations too. These variations can be decomposed and merged
with the random variables representing dij , dij , sj and hj ,
e.g., using the canonical form in [23]. For convenience, we
assume that a tuning delay can be configured to a fixed value in
the following discussion. The task of buffer allocation is thus
to determine the locations of buffers that can make as many
chips as possible meet the given timing specification after
manufacturing, using only the statistical timing information
available during the design phase.

III. PROBLEM FORMULATION

In applying the post-silicon tuning technique, we need to
insert the buffers after logic synthesis is finished and before
physical design is started. Since buffers take precious die area,
and require additional test to configure them, the number
of buffers in a design should be limited. In addition, the
ranges of the buffers should be reduced as much as possible.
Furthermore, in high-performance designs such as CPUs,
chips are tested after manufacturing and assigned into bins
of different performance grades, and the price of a chip from
a bin of high speed is higher than that from a low-speed bin.
In this scenario, it is more important to improve the overall
profit of all bins than to improve the yield of the circuit with
respect to a single clock period.

The important notations that appear in this paper are listed
in Table I, and the problem of buffer allocation is formulated
as follows.
Input:
• Circuit structure and statistical path delays;
• Buffer specification, including the maximum allowed size
τi of buffers defined in (3) and the number of discrete
steps in the tunable delay range;
• The maximum number of buffers allowed in the circuit
Nb;
• The number of performance bins Np. For the mth bin, an

upper bound Tm,u and a lower bound Tm,l are defined
by the designer. After manufacturing, a chip with a clock
period T assigned to the mth bin should meet Tm,l <
T ≤ Tm,u. For a chip in the mth bin, the average profit
is given as pm. For convenience, we order the bins from
high performance to low performance, so that Tm,u =
Tm+1,l.

Output:
• A set of flip-flops at which tuning buffers should be

inserted on the their clock paths;
• The sizes of the buffers inserted into the circuit. These

sizes must be no larger than the given maximum size τi.
Constraints:

TABLE I
NOTATIONS

ri, τi Lower bound and size of a buffer range
Nb Upper bound of the number of buffers
Np Number of performance bins

Tm,l, Tm,u Lower and upper bounds of the mth bin
pm Average profit of a chip in the mth bin
ym Percentage of chips in the mth bin
P Overall profit

xki , x
k
j Tuning values for the kth sample

d
k
ij , dkij Sampled delays
skj , hkj Sampled setup time and hold time
Tk Clock period of the kth sample
ci 0-1 variable indicating whether the ith flip-flop has a buffer
bkm 0-1 variable indicating whether the kth sample is assigned

to the mth bin
gkm Auxiliary 0-1 variable to express bkm
Ns Number of samples in the low-discrepancy sequence
Nf Number of samples in the low-discrepancy sequence after

prefiltering
Nt Number of samples in one batch processed together
B,B′ Buffer sets saving the allocation candidates

• For any pair of flip-flops i and j with combinational paths
between them, the constraints (1)–(3) hold;

• The number of buffers inserted in the circuit must not
exceed Nb.

Objectives:
• Maximize the overall profit

P =

Np∑

m=1

pmym (4)

where ym is the percentage of the chips that are assigned
into the mth bin after manufacturing;

• Reduce the sizes of the inserted buffers while maintaining
the overall profit P .

In the definition of bins, the first bin has the highest
performance, and it has no lower bound for the clock period
T , so that T1,l can be set to any value no larger than zero.
After manufacturing, if a chip cannot be assigned to any of
those bins, i.e., T > TNp,u, this chip is considered as a part
of yield loss. The definition (4) is very general. If only one
bin is used, this problem falls back to the yield improvement
problem with respect to a single clock period.

In the problem formulation above, we do not include
the number of tuning buffers as a part of the optimization
objective, because the relation between profit and the number
of buffers is very complex. With our formulation, designers
can generate several combinations of buffer number and profit,
and select the most appropriate setting according to their own
cost model. If necessary, however, the number of buffers can
also be moved from a constraint into the optimization objective
(4), and the proposed method can still work with only a slight
modification.

The predominant challenge in solving the optimization
problem above comes from the random variables in (1) and

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2702632, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

(2), because only statistical timing information are available
during the design phase when the buffers are allocated. The
profit in (4) is thus defined similar to an expected value, which
is slightly larger than the actual profit after manufacturing
because statistical delays and timing properties cannot be
measured exactly [21]. Another challenge is that the variables
xi and xj in (1) and (2) may take only discrete values in the
range window defined by (3). For example, the de-skew buffer
in [7] can be configured to only 20 discrete delays. In this
case, integer linear programming (ILP) becomes almost the
only method available to deal with the constraint set defined
by (1)–(3) after the random variables are fixed by sampling.

To deal with the large number of samples in the problem
space, learning-based methods have been applied in the design
automation field extensively, e.g., for statistical path selection
considering large process variations [24], for sensor placement
in dynamic noise management systems [25], and for paramet-
ric yield estimation for analog/mixed signal circuits [26]. In
the following section, we will introduce an efficient iterative
learning-based method to capture buffer locations for yield
improvement.

IV. BUFFER ALLOCATION USING REPRESENTATIVE
SAMPLING

The buffer allocation problem is essentially a statistical
optimization problem. In the linear constraints in (1)–(3) the
path delays, setup times and hold times are correlated random
variables. Instead of using path search or the cutting plane
method as in previous methods, we solve this problem using
statistical sampling. The basic idea is that we use a set of
representative samples and model the numbers of samples in
the different performance bins directly. We then determine
buffer locations by maximizing the overall profit calculated
from the yield values of these bins and the profit per chip
for each bin. By sampling the random variables directly we
can transform the statistical optimization problem into an ILP
problem. Therefore, the relation between the statistical vari-
ables and the profit of the circuit can be established directly.
With this relation, we can then capture buffer locations that
are sensitive to yield/profit.

The flow of the proposed method is illustrated in Fig. 4. In
this flow, we first generate a low-discrepancy sample sequence
(Sobol sequence) and filter out the samples that are not
affected by any buffers. Thereafter, we try to capture buffer
locations and refine them iteratively. The ranges of buffers are
compressed and the number of buffers is reduced by grouping
in the end to reduce area cost. This flow will be explained in
detail in the following sections.

A. Sampling-based ILP modeling between statistical delays
and profit

Consider the case that we generate Ns samples from the
joint distribution of all the random variables in the opti-
mization problem. If Ns is large enough, these samples can
actually emulate the chips after manufacturing. If we have
tuning buffers at the clock paths to some flip-flops, we can
introduce intentional clock skews customized for each sample,

Generate a Sobol sequence

Prefilter fast samples and

Calculate sample size Nt

Yes

dNf/Nte No
reduced?

of Ns length

must fail samples for a reduced

for each subsequence

for i = 1, . . . dNf/Nte do
Solve (16)–(17) on B and update B′

Nt ← 1

B′ ← ∅

If no buffer can be added into B′

break;

B ← B′

Init:
B ← all buffer locations

in the last three iterations then

return B and the profit P

O
uter

loop Inner
loop

sequence of Nf length

Tuning range compression and grouping

Fig. 4. Prefiltering and iterative buffer allocation flow.

or emulated chip, individually, to make the failing samples
work again, or to move low-performance samples into high-
performance bins. For each emulated chip we can now evaluate
how performance can be improved because the statistical
variables in the constraints become fixed in the samples. This
way, we can establish the relation between buffer locations
and the profit, and use an ILP solver to determine the optimal
buffer allocation.

For the kth sample from the Ns samples, the constraints
(1)–(3) become

xki + d
k

ij ≤ xkj + T k − skj (5)

xki + dkij ≥ xkj + hkj (6)

ri ≤ xki ≤ ri + τi (7)

where d
k

ij , d
k
ij , s

k
j and hkj are the kth sample values of random

variables dij , dij , sj and hj ; xki and xkj are intentional clock
skews for this specific sample introduced by configuring the
corresponding tuning buffers after manufacturing to improve
the performance, in other words, to reduce the minimum clock
period T k. Note in (7) ri and τi are not indexed by k, because
if a buffer is inserted on the clock path to a flip-flop, it appears

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2702632, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

in all the chips after manufacturing, and its range in all chips
is also the same.

To indicate whether there is a buffer inserted on the clock
path to the ith flip-flop, we assign a binary variable ci to it. If
there is no buffer inserted, ci is set to 0; otherwise, ci is set to
1. Because a post-silicon clock skew can be added only when
a buffer appears, the skew or the tuning value of the buffer at
the ith flip-flop can be written as

xki =

{
0 if ci = 0,

any valve ∈ [ri, ri + τi] when ci = 1.
(8)

According to the definition of ci, we need only to force xki
to be 0 to disable the potential clock tuning when ci is equal
to 0. The constraint (8) can thus be transformed to

xki ≤ ciΓ (9)

−xki ≤ ciΓ (10)

where Γ is very large constant. If ci is set to 0, xki must be set
to 0 to meet (9) and (10). If ci is set to 1, these two constraints
have no effect because Γ is a predetermined constant larger
than any possible value of xki or −xki . In this case, xki is
actually constrained by (7).

With ci defined to indicate the appearance of a buffer at
the ith flip-flop, we can constrain the number of buffers in the
circuit easily as ∑

i

ci ≤ Nb (11)

where the sum on the left adds the ci variables for all flip-flops
in the circuit together, and Nb is the given upper bound of the
number of buffers allowed in the circuit.

To evaluate the performance of an emulated chip, we need
to compare the minimum clock period T k of the kth sample
with the upper and lower bounds of the performance bins. If
T k falls into the mth bin by meeting Tm,l < T k ≤ Tm,u, the
number of the chips in this bin is increased by one. Instead of
comparing T k with the bounds of the bins directly, we take
advantage of the fact that the yield values of the circuit in
different bins are a part of the optimization objective defined in
(4) and the price of a chip in a high performance bin is higher
than that in a low performance bin. We define the 0-1 variables
gkm, m = 1, . . . , Np to represent whether the minimum clock
period T k of the kth sample is smaller than the upper bound
of the mth bin. Therefore, gkm can be constrained as

gkm = 1⇐⇒ T k ≤ Tm,u,m = 1, 2, . . . , Np. (12)

We then use gkm to define another 0-1 variable bkm which
indicates whether the kth sample falls into the mth bin meeting
Tm,l < T k ≤ Tm,u, as

bkm =

{
gkm m = 1,

gkm − gkm−1 m = 2, . . . , Np.
(13)

The constraint (12) can be transformed into

T k − Tm,u ≤ (1− gkm)Γ,m = 1, 2, . . . , Np (14)

where Γ is very large positive constant.

The constraints (13) and (14) can be explained as follows.
If T k is no larger than the upper bound of the mth bin Tm,u,
the left side of (14) is negative, so that gkm can be either 0
or 1; otherwise, gkm must be 0. Since the objective of the
optimization problem is to increase the numbers of chips in
high-performance bins as much as possible, the solver will
assign all gkm, g

k
m+1, . . . , g

k
Np

to 1 if T k ≤ Tm,u, because the
bins are arranged in the high performance to low performance
order so that T k is also smaller than Tm+1,u, . . . , TNp,u.
Therefore, the constraint (13) only keeps the bkm for the fastest
bin to which the sample can be assigned to be 1, and for the
slower bins it is set to 0. Consequently, bkm represents whether
the chip is assigned to the mth bin.

With bkm we can calculate the numbers of emulated chips
in all bins easily, and the yield or the percentage ym for the
mth bin can be expressed as

ym =

Ns∑

k=1

bkm

/
Ns (15)

where Ns is the total number of samples.
With the constraints defined above, the problem to optimize

the overall profit can be expressed as

maximize
Np∑

m=1

pmym (16)

s.t. (5)–(7), (9)–(11), (13)–(15),

w.r.t. all flip-flops pair indexed by (i, j), (17)
and k = 1, . . . , Ns.

The basic idea of this formulation is that we use a given
number of samples to emulate chips after manufacturing and
model the bin assignment process. We then use an ILP solver
to maximize the profit in this simulated scenario to determine
which flip-flops should have buffers. Since the relation be-
tween the locations of buffers and the yield assignment is
established in this formulation, we can determine the locations
of buffers directly by solving the optimization problem above.
In previous methods [9], [10], the relation between buffer loca-
tions and yield is not analyzed directly. Instead, these methods
consider this relation as a separate evaluation problem, and
the yield values for different combinations of buffer locations
are calculated using Monte Carlo simulation, and only used
as a metric to determine the next decision points in the path
search or cutting plane methods. Consequently, Monte Carlo
simulation have to be executed many times, resulting in a large
runtime.

If the number of emulated samples Ns in the integer linear
optimization problem (16)–(17) is large enough, the profit can
be modeled accurately and the values of ci in the solution
indicate the optimal locations to insert tuning buffers for
the maximum profit. However, a large Ns may increase the
number of constraints in (17) to the degree that the size of
the ILP problem exceeds the capacity of all existing ILP
solvers. To deal with this scalability problem, we apply two
techniques: 1) we reduce the number of emulated samples
Ns by using a low-discrepancy sample sequence instead of
a purely random sampling sequence; 2) we split the problem

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2702632, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

(16)–(17) into subsets and use them to learn the locations of
buffers iteratively. After each iteration, the candidates of buffer
locations can be refined.

B. Reducing the number of emulation samples using a low-
discrepancy sequence

The sampling-based concept above requires a large number
of samples to guarantee the quality of the resulting buffer
locations. Consider the extreme case where we use only two
samples, which have different probabilities to appear in the
manufactured chips. In the formulation (16)–(17), however,
we do not differentiate these two samples with respect to their
probabilities so that the two samples have the same influence
on the selection of buffers. Consequently, the formulation loses
accuracy because the calculated optimal profit deviates from
the real profit.

In traditional Monte Carlo simulation methods, this dis-
crepancy problem is solved by using a large number of
samples. Since the samples are generated according to the joint
distribution of the variables, the number of points falling into
a part of the sampling space corresponds to the probability
of that region. The effect of probability can thus be handled
by (16)–(17) implicitly, because samples from regions with
large probabilities in the problem space appear more often
than samples from other regions. Another way to solve this
discrepancy problem is to use the probability of representative
samples as further coefficients of the yield values in the
objective (16) directly. But it is not clear how many samples
should be generated to guarantee the quality of the result.

The third method to solve the problem of a large sampling
number is to use a low-discrepancy sequence such as studied
in [27]. In such a sequence, the number of samples in a given
part of the sampling space is proportional to the probability
of that region. The advantage of such a sequence is that this
quasi-random sequence ensures the low discrepancy even with
a small number of samples, so that it is widely used in quasi-
Monte Carlo methods to reduce runtime. In statistical timing
analysis, this method also demonstrates a strong advantage,
e.g., more than 20 times acceleration has been achieved in
[28]. In this paper, we use the Sobol sequence in [29] to reduce
the number of samples Ns. The effect of this sequence can
be demonstrated using the examples in Fig. 5, where Fig. 5a
shows a purely random number sequence of 256 samples
for two uniform-distributed variables. Fig. 5b demonstrate
that the Sobol sequence with the same number of samples
spreads more evenly in the space. The original Sobol sequence
follows uniform distribution, and it can be transformed to other
distributions easily using methods such as the Box-Muller
transform [30]. In our method, we use 1000 samples in the
Sobol sequence, which are one tenth of the usually used 10,000
samples of random variables in statistical static timing analysis
[2]. In practice, test cases can converge even earlier with fewer
than 1000 samples.

C. Buffer allocation with prefiltering and iterative learning

In the Ns samples, some might be fast enough to be
assigned into the fastest bin without tuning; others might be

(a) (b)

(c) (d)

Fig. 5. Purely random sequence and Sobol low-discrepancy sequence. (a)
256 random samples of two uniform variables. (b) 256 samples of a Sobol
sequence for two uniform variables. (c) The first 128 samples from the Sobol
sequence in (b). (d) The next 128 samples from the Sobol sequence in (b).

too slow to be tuned into the slowest bin, even with all flop-
flops connected with tuning buffers. In both scenarios, tuning
buffers play no role in improving the overall profit. Therefore,
we exclude these samples from the ILP formulation (16)–(17)
to reduce the number of variables and constraints.

To filter out the samples of the first type, we need only
to set all values of tuning buffers, xki and xkj in (5) and (6)
to 0, and calculate the clock period T kmin for this sample as
T kmin = maxi,j{d

k

ij + skj }. If T kmin is smaller than the upper
bound of the fastest bin, this sample is fast enough and no
tuning is required. The constraint (6) is checked similarly. If
all these constraints can be met without tuning buffers, this
sample is excluded.

To filter out the samples that are too slow to be assigned to
a bin even with extensive buffer tuning, we evaluate each path
delay in a sample by verifying whether it is possible to tune
this path to meet the upper bound of the slowest bin without
considering the other paths. In the constraint (5), the sum of
the path delay d

k

ij+s
k
j and xki−xkj should be no larger than T k.

We set buffer values xki and xkj to the smallest and the largest
values that are possible according to buffer specifications,
respectively, and check whether the resulting clock period T k

is smaller than the upper bound of the slowest bin. If this
still does not hold, there is no chance that this sample can be
assigned to one of the bins and the corresponding sample is
not included in the profit optimization problem. We repeat this
prefiltering checking using (6) to exclude samples that do not
work in any case due to unavoidable hold time violations.

After prefiltering, the remaining samples are used to de-
termine buffer locations by solving the optimization problem
(16)–(17). The number of these remaining samples is denoted
as Nf . For a large circuit, the number of remaining variables

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2702632, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

and constraints in this ILP problem may still be too large
to be dealt with by a modern solver. To reduce the scale of
the ILP problem further, we split the ILP problem (16)–(17)
into subproblems and determine the buffer locations with an
iterative flow based on: 1) a subsequence of a Sobol sequence
still exhibits a good low discrepancy as shown in Fig. 5c-d;
2) in a circuit only a small number of buffers can be inserted
due to area cost. The iterative flow is illustrated in Fig. 4.

The first fact above shows that we may solve the ILP
problem (16)–(17) with only a part of the Sobol sequence,
meaning that we can capture the buffer locations only using a
subset of samples. Therefore, we partition the whole Sobol
sequence into several parts so that each part contains Nt
samples which are processed together in one ILP problem
(16)–(17). We call the samples processed in one ILP problem a
batch. In our implementation, the number of samples Nt in one
batch is determined by evaluating the numbers of variables and
constraints and the capacity of the ILP solver. Since variables
in an ILP problem define the dimension of the problems
space, they carry more complexity into the ILP problem
than constraints. Therefore, we consider the complexity of a
variable to be five times that of a constraint, and the total
number of the equivalent constraints should be smaller than a
constant, 2× 106 for Gurobi [31] used in our experiments.

Though the samples in subsequences generally have lower
discrepancy compared with a purely random sequence, there
are still some slight patterns in these subsequences because of
the small number of samples in one subsequence, as shown
in Fig. 5c-d. Consequently, a subsequence with a limited
number of samples may not capture all the buffer locations.
We alleviate this problem by combining the buffer locations
captured by different subsequences into a buffer set B′. Once
we finish solving (16)–(17) with all sample batches, the buffer
locations in B′ are the possible locations to insert buffers,
as shown in the inner loop in Fig. 4. In this loop, we also
relax the number of buffers from Nb to βNb in the constraint
(11) (β = 1.5 in our experiments) to increase the coverage of
potential buffer locations captured by the subsequences. We
will use a group technique to reduce the number of buffers
back to Nb after all location candidates are captured. The inner
iterative flow stops if no new buffer is added into the buffer
set B′ in the past three iterations.

After processing all sample batches in the inner loop, we
execute the iterative buffer allocation flow as the outer loop
in Fig. 4. In these iterations, only the buffer candidates in
B need to be modeled with variables ci as in (8) and only
the delays of paths connected to these buffer candidates need
to be sampled as (5)–(7). Consequently, more samples can
be processed in one iteration so that the number of batches
dNf/Nte can be reduced. With these outer iterations, buffer
locations are gradually refined and the outer loop finishes if
the number of batches cannot be decreased.

D. Reducing buffer area by tuning concentration and grouping

The iterative optimization flow in Fig. 4 only determines
the locations to insert buffers for profit improvement after
manufacturing. But the sizes of the buffers are not addressed.

In this section, we introduce a method to concentrate tuning
values toward each other and to group buffers thereafter.

The concept of area reduction can be explained using Fig. 6.
After executing the iterative buffer allocation in Fig. 4, the
tuning values of a buffer in all samples may be scattered
in a wide range such as in Fig. 6a, because the solver only
minimizes the number of buffers, but does not consider the
relation between the tuning values of different samples, so that
it only returns one of the many feasible tuning combinations.
If we can concentrate the tuning values toward each other, the
real ranges of the buffers which cover all the tuning values
appearing in the samples can be reduced. In addition, the
concentrated tuning values may exhibit a high correlation by
forming similar trends of tuning values as in Fig. 6c. This
resemblance can thus be used to group buffers.

To push the scattered tuning values into a narrower range,
we minimize their absolute values in the optimization, as
illustrated in Fig. 6a. In this way, the solver tries to return
the buffer values around 0 as much as possible using only the
buffer candidates in B and guaranteeing the profit P calculated
by executing the flow in Fig. 4. This process is formulated as
follows.

minimize
∑

i∈IB,k
|xki | (18)

s.t. (5)–(7), (9)–(11), (13)–(15),

w.r.t. all flip-flops pair indexed by (i, j), (19)
and k = 1, . . . Nf , and
Np∑

m=1

pmym ≥ P (20)

where IB is the index set of all buffer locations in B. The
objective function (18) can be transformed into a linear form
easily as explained in [32].

The difference between the optimization problem (18)–
(20) and the optimization problem (16)–(17) includes: 1) the
objective becomes the sum of the absolute values of all tuning
values; 2) the buffer candidates are narrowed as the buffer set
B returned by the flow in Fig. 4; 3) the profit becomes a
constraint to guarantee the tuning range concentration does
not affect the profit. By solving the problem (18)–(20), all
tuning values are pushed toward zero as illustrated in Fig. 6b,
so that the buffer ranges become more compact.

Another technique to reduce area cost is to group buffers
that have similar tuning patterns into one buffer. For example,
if two buffers have very similar tuning values in all samples,
only one buffer needs to be built in the circuit and the
delayed clock signal is connected to two flip-flops. To make
the patterns in buffer tuning more obvious, we first calculate
the weighted average of all tuning values of a buffer after
solving (18)–(20). Afterwards, the buffer tuning values are
pushed further toward this average. This process makes the
number of different tuning values smaller, so that it is easier for
two buffers to have similar tuning patterns. The result of this
step is that buffer tuning values may form a peak at the tuning
average as illustrated in Fig. 6c. This step is very similar to the

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2702632, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

-5 5 10 15

num. of occurrences

adj. values0

lower bound ri
(a)

concentrate delay values

5 10

num. of occurrences

adj. values

buffer range

0

(c)

5 10 15

num. of occurrences

adj. values

reduced adjustment range

0

(b)

concentrate delay values
toward 0 toward average

xavg,i

Fig. 6. Concentrating tuning values of a buffer in all samples. The x-axis represents the adjusted delays of the buffer in all samples, and the y-axis the
number of occurrences of the discrete delay values. (a) Scattered tuning values. (b) Tuning values concentrated toward zero. (c) Reduced buffer range after
concentrating tuning values toward the average.

problem formulation in (18)–(20), except that the optimization
objective is replaced by

minimize
∑

i∈IB,k
|xki − xavg,i| (21)

where xavg,i is the weighted average of all tuning values
calculated from the result of solving (18)–(20).

After tuning values are concentrated, we try to cover all
the tuning values using the smallest range window. The upper
bound of the size of this range window is predefined as τi
in (3). As shown in Fig. 6c, the range window slides along
the x-axis. Since the y-axis represents the numbers of the
corresponding tuning value occurrences in all samples, the
total number of buffer tunings covered by the window is
the sum of the tuning occurrences in the window. For yield
improvement, we select the range window that covers the
largest number of tunings, meaning that these tuning values
are feasible in post-silicon configuration. The other values that
fall out of the window are discarded. With this step, both the
buffer size τi and the lower bound ri in (3) are determined.

In the last step of buffer insertion, we group buffers with
similar tuning values to reduce the number of buffers inserted
into the circuit. Buffers in the same group are implemented
by only one physical buffer and the tuning values are shared
by all the flip-flops connected to the buffer. The concept of
grouping is illustrated in Fig. 7.

In grouping buffers, we first calculate the correlation co-
efficients of tuning values of buffer pairs. If the mutual
correlation coefficients between several buffers are all above
the threshold r(i, j) and their distance is smaller than d(i, j),
they are grouped together and implemented with only one
physical buffer. In practice, designers can also constrain the
total number of buffers in the circuit as Nb. If the number of
buffers after grouping still exceeds the specified number, the
buffers with the fewest tunings are removed until the number
of buffers meets the specification.

E. Acceleration techniques

To improve the efficiency of the proposed method, we
sample statistical delays between flip-flops directly instead
of sampling delays of combinational gates. For example, the
delays in (1) and (2) are calculated using a statistical timing
engine only once. We then generate a Sobol sequence from

highly

r(i, j) ≥ 0.8

group buffers

d(i, j) ≤ 10

small
FF FFi j

buffer grouping

FF

FF

i

j
(xi, yi)

(xj , yj)

Manhattan distance

correlated

distance

Fig. 7. Buffer grouping according to tuning correlation and distance.
Correlation threshold r(i, j) is set to 0.8. Distance threshold d(i, j) between
buffers is set to ten times of the minimum distance between flip-flops.

these statistical delays directly, instead of executing a static
timing analysis algorithm for each sample.

In addition, we filter connections between flip-flops accord-
ing to their statistical distributions. If the 3σ delay of a path
is still small enough not to affect the circuit performance, this
path is not included when creating the constraints (1)–(2). For
example, in the constraint (1) we first set xi to the largest value
and xj to the smallest value in the range windows, respectively,
and dij and sj to their 3σ values. If this extreme setting still
allows this path to work with a clock period in the fastest bin,
this path is simply discarded from the problem formulation.
Similarly, we also filter hold time constraints (2) according to
the -3σ values of path delays.

V. EXPERIMENTAL RESULTS

The proposed method was implemented in C++ and tested
using a 3.20 GHz CPU with one thread. We demonstrate the
results using circuits from the ISCAS89 benchmark set and
from the TAU 2013 variation-aware timing analysis contest.
The number of flip-flops and the number of logic gates are
shown in the columns ns and ng in Table II, respectively.

The benchmark circuits in our experiments were sized using
a 45 nm library. We assumed that the maximum allowed buffer
ranges were 1/8 of the original clock period and tuning delays
of the buffers were discrete with 20 steps, as in [7]. The
standard deviations of transistor length, transistor width and
oxide thickness were set to 15.7%, 11.1% and 5.3% of the
nominal values, respectively. We used Gurobi [31] to solve
the optimization problems in the proposed method.

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2702632, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

TABLE II
RESULTS OF BUFFER ALLOCATION FOR POST-SILICON BINNING

Circuit Buffer With Buffer Allocation Runtime
ns ng nb sb Yb1 Yb2 Yb3 YµT+σT Yinc(%) Pinc(%) tc(s)

s9234 211 5597 2 18.00 52.31% 18.80% 13.72% 84.83% 0.70% 3.37% 20.83
s13207 638 7951 6 13.83 63.40% 13.55% 11.03% 87.98% 3.85% 18.47% 34.93
s15850 534 9772 5 7.20 67.93% 14.01% 10.16% 92.10% 7.97% 26.18% 56.81
s38584 1426 19253 14 12.52 63.79% 16.33% 10.71% 90.83% 6.70% 20.62% 71.03
mem ctrl 1065 10327 10 13.06 58.41% 17.49% 12.93% 88.83% 4.70% 12.76% 164.62
usb funct 1746 14381 17 14.71 54.61% 17.58% 14.03% 86.22% 2.09% 6.67% 147.88
ac97 ctrl 2199 9208 21 13.08 57.96% 16.45% 12.85% 87.26% 3.13% 11.39% 115.93
pci bridge32 3321 12494 33 8.08 60.02% 16.84% 12.00% 88.86% 4.73% 14.87% 1816.81

Average 12.56 59.80% 16.38% 12.18% 88.36% 4.23% 14.29%
Yield without buffers 50.00% 19.15% 14.98% 84.13%

We used three bins in the experiments to improve the overall
profit. The boundaries between these bins were set to µT ,
µT + 0.5σT and µT + σT , where µT and σT are the mean
value and the standard deviation of the clock period of the
original circuit without clock buffers. Chips with clock period
larger than µT + σT were considered as yield loss. With this
setting, the original yield values of these three bins without
tuning buffers are 50%, 19.15%, and 14.98%, respectively. In
all these test cases, the numbers of allocated buffers Nb were
constrained as lower than 1% of the numbers of flip-flops
in the circuits, as shown in the nb column. After allocating
post-silicon tuning buffers using the proposed method, we ran
Monte Carlo simulation with these circuits to verify the yield
improvement. In the simulation, we generated 10 000 samples.
For each sample we calculated its minimum clock period
using an ILP solver due to the appearance of tuning buffers,
and assigned the sample to one of the performance bins. The
yield value of a circuit in a bin is the number of samples in
that bin divided by 10 000. The samples in our experiments
are conceptually different from the samples discussed in Sec-
tion IV, because they were only used to emulate post-silicon
measurements. For each sample, we verify whether a chip can
be assigned into a bin by solving the classical skew scheduling
problem in [19]. In reality, the delays and timing properties
cannot be measured exactly from the manufactured chips, so
that the actual yield is slightly smaller than the reported yield,
as discussed in [21]. This yield, however, still serves as a good
indicator to determine buffer locations.

The yield values of the three bins are shown in the columns
Yb1, Yb2 and Yb3 in Table II, respectively. Compared with the
yield values without clock buffers, we can see that the yield in
the first bin is increased significantly but the yield values of the
other two bins are smaller, because with tuning buffers chips
have a better chance to be tuned to a higher performance.
Adding the yield values of the three bins together, we can
calculate the yield of a circuit with respect to µT +σT , shown
in the YµT+σT

column. Compared with the original yield
84.13%, the yield increase is shown in the column Yinc, with
an average 4.23%.

With these yield values in the three bins, we can calculate
the profit using (4). In the experiments, we set the profit per
chip of the three bins to 6, 2, and 1, respectively. The overall

2000

4000

R
un

tim
e

(s
)

Number of samples in a batch

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

mem ctrl usb funct ac97 ctrl

Fig. 8. Scalability trend of the proposed method with a fixed number of
samples in each batch.

profit increase is shown in the column Pinc, with an average
14.29%. If we compare the column Pinc and the column
Yinc, we can see that the improvement of profit is much
more significant than the overall yield improvement due to
the introduced tuning buffers and clock binning. To achieve
this profit improvement, the number of buffers in the circuit
is still less than 1% of the number of flip-flops. If we assume
that a buffer takes 10 times area of a flip-flop and flip-flops
take 5% of the die area, the area cost of these buffers is about
0.5% of the die area. Therefore, we can expect a good overall
revenue improvement, even when we consider the potential
cost of post-silicon configuration. A concrete evaluation of
this cost will be our future work.

In the proposed method, we also reduced the buffer sizes
by concentrating tuning values. The average buffer sizes in
the benchmark circuits are shown in the column sb. Compared
with the maximum allowed size 20, the buffer sizes have been
reduced effectively by the proposed method while maintaining
a good profit improvement. The execution time of the proposed
method is shown in the last column of Table II. The largest
execution time of the proposed method is 1816.81 seconds,
which is already acceptable because the proposed method is
executed offline only for a few times.

Since the runtime of solving an ILP problem depends on
the structure of constraints as well as their relations, it is
difficult to analyze the scalability of the proposed method
theoretically. Instead, we tested this method by fixing the
number of samples in each batch to solve the buffer insertion

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2702632, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

s13207
s15850

s38584
mem ctrl

usb funct
ac97 ctrl

80%

90%

Y
ie

ld
brute-force method proposed method

(a)

s13207
s15850

s38584
mem ctrl

usb funct
ac97 ctrl

>
2

hours

1000

2000

3000

4000

5000

R
un

tim
e

(s
)

brute-force method proposed method

(b)

Fig. 9. Yield and runtime comparison between the proposed method and the
brute-force method with 10 000 samples. (a) Yield comparison. (b) Runtime
comparison.

problem with respect to a given clock period µT +σT as used
in Table II. The relation between the number of samples in
a batch and the runtime is illustrated in Fig. 8. pci bridge32
did not finish due to memory limitation, so that it was not
included in this evaluation. According to these results, the
runtime increases exponentially with respect to the number
of samples, especially with large circuits. In the proposed
method, the number of samples in each batch is limited to
Nt as discussed in Section IV-C. This limitation might lead
to a yield degradation because the optimization problem is
split into several small problems. To verify the quality of
the results produced by the proposed method, we compared
them with the yield results of a brute-force method processing
10 000 samples as a whole, as shown in Fig. 9a. With this
comparison, it can be observed that the yield degradation of
the proposed method is negligible, because the proposed work
flow in Fig. 4 first tries to capture all the buffer locations that
have a potential to affect the yield. Afterwards, only these
locations are considered in further iterations so that a batch can
contain more samples, still leading to a good yield result. The
runtime of the brute-force method, however, is much larger
than the proposed method, as shown in Fig. 9b.

In the profit definition (4), if we use only one bin, the
problem formulation becomes the problem to improve the
yield with respect to a single clock period. In our experiments,
we tested this single-bin setting using µT , µT + 0.5σT , and
µT + σT as the upper bounds of the single bins, respectively.
The results of yield improvement are shown in Fig. 10. In
all these test cases, the yield values have been improved
effectively, up to 18.19% for the circuit s15850 in the µT
bin. In these test cases, the yield improvement is consistently
better for bins with higher performance, because in these bins

s13207
s15850

s38584
usb funct

ac97 ctrl
pci bridge32

10%

20%

Y
ie

ld
Im

pr
ov

em
en

t

µT µT + 0.5σT µT + σT

Fig. 10. Yield improvement with clock tuning buffers with respect to µT ,
µT + 0.5σT and µT + σT , compared with the yield values without tuning
buffers.

0.5

0.6

0.7

0.8

0.9

1.0

Y
ie

ld
at

µ
T

Yield w/o buffers=0.5
s13207

s15850
s38584

usb funct
ac97 ctrl

pci bridge32

1% 3% 5%

(a)

0.5

0.6

0.7

0.8

0.9

1.0

Y
ie

ld
at

µ
T

+
σ

T

Yield w/o buffers=0.84

s13207
s15850

s38584
usb funct

ac97 ctrl
pci bridge32

1% 3% 5%

(b)

Fig. 11. Yield increase with respect to different numbers of tuning buffers.
(a) The target clock period is set to µT . (b) The target clock period is set to
µT + σT .

the original yield values without tuning buffers are lower so
that there is a large potential for the tuning buffers to take
effect.

In our experiments, we constrained the number of buffers
to be smaller than 1% of the number of the flip-flops. If
this number can be increased, we can expect an increase of
yield because there are more chances to tune the chips after
manufacturing. To show the effect of more tuning buffers, we
tested the numbers of buffers equal to 1%, 3%, and 5% of
the number of flip-flops. For each of these buffer numbers,
we calculated the yield values with respect to the single clock
periods µT and µT + σT , respectively. The results are shown
in Fig. 11. According to these experiments, we can see that the
yield generally increases when the number of buffers inserted
into the circuit increases. Similar to the trend of the yield
improvement with respect to different clock periods in Fig. 10,
the yield improvement with respect to µT in Fig. 11a is more
obvious compared with the yield improvement with respect to

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2702632, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

TABLE III
RUNTIME COMPARISON W/O AND W/ ACCELERATION TECHNIQUES

Circuit s15850 s38584 ac97 ctrl pci bridge32
Without acceleration (s) 3411.29 8435.14 15967.7 > 8h

With acceleration (s) 56.81 71.03 115.9 1816.811

s13207
s15850

s38584
usb funct

ac97 ctrl
pci bridge32

80%

90%

Y
ie

ld

method in [12] proposed method

Fig. 12. Yield comparison with the buffer insertion method in [12].

µT +σT in Fig. 11b. For the former, the average improvement
of the 5% setting to the 1% setting is 6.78%, but for the
latter this improvement is only 2.75%. Consequently, we can
conclude that post-silicon buffers are more useful in high-
performance designs, specially with clock binning, where the
potential for profit/yield improvement is large.

To reduce the execution time of the proposed method, we
introduced several acceleration techniques. With the Sobol
sequence, the inner loop of the iterative flow in Fig. 4
converged with the test cases usb funct and pci bridge32,
while the other cases used up all the samples. To demonstrate
the efficiency of the acceleration techniques, we disable all of
them and show the execution time in Table III. According to
this comparison, it is obvious that the proposed acceleration
techniques can shorten the execution time effectively.

The buffer insertion problem is also addressed in [9] with a
direct statistical model. For comparison, we show the results
from their paper and the results of our method applied to
the same set of circuits in Table IV. The N1 column shows
the number of buffers in [9], and the N2 column that of our
method. Note their method is designed for a clock network
with a tree structure and they do not group buffers as we do.
Consequently, there is a large difference between the numbers
of buffers. The columns Y1 and Y2 show the yield values
from their method and our method with the same clock period
setting. In this comparison, the proposed method outperforms
the method in [9] with a higher yield, while the number of
clock tuning buffers is much smaller. Furthermore, we have
implemented the method in [12] and the yield comparison is
shown in Fig. 12. In this comparison, the numbers of inserted
buffers are equal, so that we can conclude that the proposed
method outperforms the method in [12] consistently.

In the last step of the proposed method, we group buffers
according to the correlation between tuning values. This
correlation information is a natural result of the sampling-
based method. In [12], a grouping algorithm is also proposed
according to circuit structure and distances between flip-flops.
We compare the results of our correlation-based grouping

TABLE IV
YIELD COMPARISON WITH [9]

Circuit N1 Y1 N2 Y2

s9234 8 96.94% 2 98.57%
s13207 18 98.95% 6 99.40%
s15850 21 99.24% 5 99.96%
s38584 162 98.17% 14 99.70%

TABLE V
YIELD COMPARISON OF DIFFERENT GROUPING ALGORITHMS

Circuit s15850 s38584 ac97 ctrl pci bridge32
Y1 84.57% 85.43% 84.67% 84.16%
Y2 93.51% 92.33% 88.01% 89.10%

method with theirs and the results are shown in Table V, where
Y1 is the yield with the grouping algorithm in [12] and Y2 is
the yield with the proposed correlation-based grouping. For
comparison, we have changed the numbers of buffers in the
proposed method so that they are equal to the ones in [12].
From this comparison, we can see that our method produces a
better yield, because we have the correlation information from
emulated samples.

The method proposed in [1] uses the same concept in this
paper, but it captures the locations of buffers by processing
emulated samples once at a time. Therefore, the relation
between tuning values in different samples is not incorporated.
In addition, the method in [1] uses a purely random sequence
so that the number of samples is still large. To verify the
improvement of the proposed method, we mapped the circuits
used in [1] to the same library and tested the yield improve-
ment with respect to µT . The results are shown in Fig. 13a,

s13207
s15850

s38584
usb funct

ac97 ctrl
pci bridge32

70%

80%

Y
ie

ld

yield in [1] yield of this method

(a)

s13207
s15850

s38584
usb funct

ac97 ctrl
pci bridge32

2500

5000

E
xe

cu
tio

n
T

im
e

(s
)

runtime in [1] runtime of this method

(b)

Fig. 13. Comparison with [1]. (a) Yield improvement with the same setting.
(b) Comparison of execution time of both methods.

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2702632, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 13

where we can see that the proposed method produces a better
yield improvement than [1] with the same number of buffers.
Furthermore, we show the execution time of these methods in
Fig. 13b. It is clear that the extended method in this paper is
more efficient than [1].

VI. CONCLUSION

In this paper, we propose a sampling-based method to
determine locations and ranges of post-silicon tuning buffers
in a circuit to improve the overall profit with clock binning. By
establishing the relation between buffer locations and the yield
with an ILP model directly, the proposed method can learn
the buffer locations for yield improvement effectively. With
acceleration techniques such as a low discrepancy sequence,
the proposed method takes much less time than previous
methods. Experimental results confirm that the profit of the
circuit after manufacturing can be improved significantly with
a small number of buffers. Future tasks of this work include
post-silicon testing and configuration of delays buffers to
achieve the given clock period or profit. The major challenge
is to make a good tradeoff between test cost and profit
improvement.

REFERENCES

[1] G. L. Zhang, B. Li, and U. Schlichtmann, “Sampling-based buffer
insertion for post-silicon yield improvement under process variability,”
in Proc. Design, Autom., and Test Europe Conf., 2016, pp. 1457–1460.

[2] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer, “Statistical timing
analysis: from basic principles to state of the art,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 27, no. 4, pp. 589–607, Apr.
2008.

[3] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: A low-power
pipeline based on circuit-level timing speculation,” in Proc. Int. Symp.
Microarch., 2003, pp. 7–18.

[4] S. Naffziger, B. Stackhouse, T. Grutkowski, D. Josephson, J. Desai,
E. Alon, and M. Horowitz, “The implementation of a 2-core, multi-
threaded Itanium family processor,” IEEE J. Solid-State Circuits, vol. 41,
no. 1, pp. 197–209, Jan. 2006.

[5] E. Takahashi, Y. Kasai, M. Murakawa, and T. Higuchi, “Post-fabrication
clock-timing adjustment using genetic algorithms,” IEEE J. Solid-State
Circuits, vol. 39, no. 4, pp. 643–650, Apr. 2004.

[6] P. Mahoney, E. Fetzer, B. Doyle, and S. Naffziger, “Clock distribution
on a dual-core, multi-threaded Itanium R©-family processor,” in Proc.
Int. Solid-State Circuits Conf., 2005, pp. 292–293.

[7] S. Tam, S. Rusu, U. Nagarji Desai, R. Kim, J. Zhang, and I. Young,
“Clock generation and distribution for the first IA-64 microprocessor,”
IEEE J. Solid-State Circuits, vol. 35, no. 11, pp. 1545–1552, Nov. 2000.

[8] J.-L. Tsai, D. Baik, C. C.-P. Chen, and K. K. Saluja, “A yield im-
provement methodology using pre- and post-silicon statistical clock
scheduling,” in Proc. Int. Conf. Comput.-Aided Des., 2004, pp. 611–
618.

[9] J.-L. Tsai, L. Zhang, and C. C.-P. Chen, “Statistical timing analysis
driven post-silicon-tunable clock-tree synthesis,” in Proc. Int. Conf.
Comput.-Aided Des., 2005, pp. 575–581.

[10] V. Khandelwal and A. Srivastava, “Variability-driven formulation for
simultaneous gate sizing and postsilicon tunability allocation,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 4, pp.
610–620, 2008.

[11] K. Nagaraj and S. Kundu, “A study on placement of post silicon clock
tuning buffers for mitigating impact of process variation,” in Proc.
Design, Autom., and Test Europe Conf., 2009, pp. 292–295.

[12] Z. Lak and N. Nicolici, “A novel algorithmic approach to aid post-silicon
delay measurement and clock tuning,” IEEE Trans. Comput., vol. 63,
no. 5, pp. 1074–1084, May 2014.

[13] B. Li and U. Schlichtmann, “Statistical timing analysis and criticality
computation for circuits with post-silicon clock tuning elements,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 34, no. 11, pp.
1784–1797, 2015.

[14] K. Nagaraj and S. Kundu, “An automatic post silicon clock tuning sys-
tem for improving system performance based on tester measurements,”
in Proc. Int. Test Conf., 2008, pp. 1–8.

[15] D. Tadesse, J. Grodstein, and R. I. Bahar, “Autorex: An automated post-
silicon clock tuning tool,” in Proc. Int. Test Conf., 2009, pp. 1–10.

[16] R. Ye, F. Yuan, and Q. Xu, “Online clock skew tuning for timing
speculation,” in Proc. Int. Conf. Comput.-Aided Des., 2011, pp. 442–
447.

[17] Z. Lak and N. Nicolici, “On using on-chip clock tuning elements to
address delay degradation due to circuit aging,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 31, no. 12, pp. 1845–1856, Dec.
2012.

[18] A. Chakraborty, K. Duraisami, A. V. Sathanur, P. Sithambaram,
L. Benini, A. Macii, E. Macii, and M. Poncino, “Dynamic thermal clock
skew compensation using tunable delay buffers,” IEEE Trans. VLSI Syst.,
vol. 16, no. 6, pp. 639–649, Jun. 2008.

[19] J. Fishburn, “Clock skew optimization,” IEEE Trans. Comput., vol. 39,
no. 7, pp. 945–951, Jul. 1990.

[20] K. S. Kim, S. Mitra, and P. G. Ryan, “Delay defect characteristics and
testing strategies,” IEEE Des. Test. Comput., vol. 20, pp. 8–16, Sep.
2003.

[21] G. L. Zhang, B. Li, and U. Schlichtmann, “EffiTest: Efficient delay test
and statistical prediction for configuring post-silicon tunable buffers,” in
Proc. Design Autom. Conf., 2016, pp. 60:1–60:6.

[22] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. MIT Press, 1990.

[23] C. Visweswariah, K. Ravindran, K. Kalafala, S. Walker, and S. Narayan,
“First-order incremental block-based statistical timing analysis,” in Proc.
Design Autom. Conf., 2004, pp. 331–336.

[24] J. Xiong, Y. Shi, V. Zolotov, and C. Visweswariah, “Statistical multilayer
process space coverage for at-speed test,” in Proc. Design Autom. Conf.,
2009, pp. 340–345.

[25] T. Wang, C. Zhang, J. Xiong, and Y. Shi, “Eagle-eye: a near-optimal
statistical framework for noise sensor placement,” in Proc. Int. Conf.
Comput.-Aided Des., 2013, pp. 437–443.

[26] F. Gong, H. Yu, Y. Shi, and L. He, “Variability-aware parametric yield
estimation for analog/mixed-signal circuits: Concepts, algorithms, and
challenges,” IEEE Design & Test, vol. 31, no. 4, pp. 6–15, 2014.

[27] A. Singhee and R. A. Rutenbar, “From finance to flip flops: A study of
fast quasi-monte carlo methods from computational finance applied to
statistical circuit analysis,” in Proc. Int. Symp. Quality Electron. Des.,
2007, pp. 685–692.

[28] V. Veetil, K. Chopra, D. Blaauw, and D. Sylvester, “Fast statistical
static timing analysis using smart Monte Carlo techniques,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 6, pp. 852–865,
2011.

[29] I. M. Sobol, “The distribution of points in a cube and the approximate
evaluation of integrals,” U.S.S.R. Comput. Math. Math. Phys., vol. 7,
no. 4, pp. 86–112, 1967.

[30] G. E. P. Box and M. E. Muller, “A note on the generation of random
normal deviates,” Ann. Math. Statist., vol. 29, no. 2, pp. 610–611, 1958.

[31] Gurobi Optimization, Inc., “Gurobi optimizer reference manual,” 2013.
[Online]. Available: http://www.gurobi.com

[32] D. Chen, R. Batson, and Y. Dang, Applied Integer Programming:
Modeling and Solution. Wiley, 2011.

Grace Li Zhang received the master’s degree from
the school of microelectronics, Xidian University,
Xi’an, China, in 2014. She is currently pursuing
the Ph.D. degree with the Institute for Electronic
Design Automation, Technical University of Mu-
nich (TUM). Her research interests include high-
performance and lower-power design, as well as
emerging systems.

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2702632, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 14

Bing Li received the bachelor’s and master’s de-
grees in communication and information engineer-
ing from Beijing University of Posts and Telecom-
munications, Beijing, China, in 2000 and 2003,
respectively, and the Dr.-Ing. degree in electrical
engineering from Technical University of Munich
(TUM), Munich, Germany, in 2010. He is currently
a researcher with the Institute for Electronic Design
Automation, TUM. His research interests include
high-performance and lower-power design, as well
as emerging systems.

Jinglan Liu received her B.E. degree in Communi-
cation Engineering from Beijing University of Posts
and Telecommunications, Beijing, in 2014. She is
currently pursuing the Ph.D. degree in Department
of Computer Science and Engineering at University
of Notre Dame, Notre Dame, Indiana. Her research
interests focus on low-power system design, machine
learning applications on interdisciplinary fields.

Yiyu Shi (SM’06) is currently an associate professor
in the Departments of Computer Science and Engi-
neering and Electrical Engineering at the University
of Notre Dame. He received his B.S. degree (with
honors) in Electronic Engineering from Tsinghua
University, Beijing, China in 2005, the M.S and
Ph.D. degree in Electrical Engineering from the Uni-
versity of California, Los Angeles in 2007 and 2009
respectively. His current research interests include
three-dimensional integrated circuits, and machine
learning on chips. In recognition of his research, he

has received many best paper nominations in top conferences. He was also
the recipient of IBM Invention Achievement Award in 2009, Japan Society
for the Promotion of Science (JSPS) Faculty Invitation Fellowship, Humboldt
Research Fellowship for Experienced Researchers, IEEE St. Louis Section
Outstanding Educator Award, Academy of Science (St. Louis) Innovation
Award, Missouri S&T Faculty Excellence Award, National Science Foun-
dation CAREER Award, IEEE Region 5 Outstanding Individual Achievement
Award, and the Air Force Summer Faculty Fellowship.

Ulf Schlichtmann (S’88–M’90) received the Dipl.-
Ing. and Dr.-Ing. degrees in electrical engineering
and information technology from Technical Univer-
sity of Munich (TUM), Munich, Germany, in 1990
and 1995, respectively. He was with Siemens AG,
Munich, and Infineon Technologies AG, Munich,
from 1994 to 2003, where he held various technical
and management positions in design automation,
design libraries, IP reuse, and product development.
He has been a Professor and the Head of the Institute
for Electronic Design Automation with TUM, since

2003. He served as the Dean of the Department of Electrical and Computer
Engineering, TUM, from 2008 to 2011. His current research interests include
computer-aided design of electronic circuits and systems, with an emphasis
on designing reliable and robust systems.

