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Abstract

A deep learning assisted sum-product detection algorithm (DL-SPDA) for faster-than-Nyquist (FTN)

signaling is proposed in this paper. The proposed detection algorithm works on a modified factor

graph which concatenates a neural network function node to the variable nodes of the conventional

FTN factor graph to approach the maximum a posterior probabilities (MAP) error performance. In

specific, the neural network performs as a function node in the modified factor graph to deal with

the residual intersymbol interference (ISI) that is not considered by the conventional detector with a

limited complexity. We modify the updating rule in the conventional sum-product algorithm so that the

neural network assisted detector can be complemented to a Turbo equalization receiver. Furthermore,

we propose a compatible training technique to improve the detection performance of the proposed DL-

SPDA with Turbo equalization. In particular, the neural network is optimized in terms of the mutual

information between the transmitted sequence and the extrinsic information. We also investigate the

maximum-likelihood bit error rate (BER) performance of a finite length coded FTN system. Simulation

results show that the error performance of the proposed algorithm approaches the MAP performance,

which is consistent with the analytical BER.
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I. INTRODUCTION

Faster-than-Nyquist (FTN) signaling [2]–[4] has long been one of the promising

communication paradigms for future high data rate wireless networks. Different from the

conventional methods of enhancing the data rate, which normally requires more

time/bandwidth/spatial resources, FTN signaling enhances the spectral efficiency by

intentionally transmitting the symbols faster than the Nyquist rate. More importantly, FTN

signaling is able to achieve the ultimate capacity for the signal power spectral density (PSD)

[5]. Therefore, FTN signaling has been widely proposed for various communication

applications, such as satellite communications [6], and beyond 5G communications [7], [8].

A major drawback of FTN signaling is that the higher symbol rate induces inevitable and severe

intersymbol interference (ISI) at the transmitter side. Consequently, a high complexity detector

is usually required at the receiver side [3], [9]–[11]. For example, the number of trellis states

in a Bahl-Cocke-Jelinek-Raviv (BCJR) detector increases exponentially with the constellation

size and number of ISI taps. Moreover, for a coded FTN system, Turbo equalization is usually

applied at the receiver, where iterations are performed between the BCJR detector and channel

decoder. The overall detection/decoding complexity further increases with respect to the number

of iterations. Therefore, designing practical detectors with reduced-complexity is a major research

topic for FTN signaling [12]–[14]. For example, two M-algorithm BCJR (M-BCJR) detectors

were proposed for FTN signaling in [12] based on the Ungerboeck observation model [15], and

they show promising error performance for coded FTN systems by applying Turbo equalization.

Other than the BCJR algorithm, sum-product algorithms (SPA) have also been recognized as

an efficient method to compute the marginal probabilities with a low complexity [16] and it

has been widely used in the decoding of channel codes [17] and signal processing [18]. A

soft-input soft-output (SISO) detection algorithm for linear ISI channels was proposed in [19],

where the sum-product algorithm is applied to a factor graph (FG) of the coded FTN system.

The complexity of the algorithm is linear to the number of interferers during each iteration.

However, reduced-complexity detection algorithms usually undermine the error performance.

For instance, there are mainly two different aspects that may contribute to the performance loss if

we apply the SISO algorithm in [19] for FTN detection. Firstly, due to the complexity limitation,
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the SISO algorithm can only consider a limited number of ISI taps. Note that the number of ISI

taps of FTN signaling can be infinite in theory [3]. Therefore, the unconsidered residual ISI will

degrade the error performance of the system. Secondly, the FG generated from the Ungerboeck

observation model in [19] has shortest cycles of length-6 and the cycles may accumulate the

correlation between the messages during the iterations of detection. This accumulated correlation

is difficult to be predicted by mathematical models and can undermine the error performance.

In light of these two aspects, we consider to utilize a neural network (NN) to compensate for

the performance loss of the SISO algorithm for FTN detection.

Recently, deep learning supplemented communication systems have shown the potential to

further enhance the system’s performance [1], [20]–[23]. In particular, for the detection and

decoding algorithms, the research on autoencoders [24] and the NN optimization schemes

which transform the FGs into NN systems [25], [26], has drawn significant interests. For the

autoencoders, an NN system with multiple layers is employed and trained to overcome the

issues such as multipath interferences and signal distortions [24]. However, since the

connection among the multiple layers of the NN model does not rely on the mathematical

models of the channel, the NN usually needs a large number of training samples. Generally,

more than 2K samples are needed to converge to a good performance [27], where K is the

information sequence length. On the other hand, the "unfolded" NN detection or decoding

algorithms take advantage of the well-developed channel models [25], which lead to specific

NN connections. However, the flexibility of the NN designs is neglected. Such an NN can only

optimize the performance based on a specific graph, which may not lead to the globally

optimized performance. Other than the autoencoders, NN aided algorithms for Turbo

equalization systems have also been reported in the literature. In [28], a deep NN (DNN) was

proposed for Turbo equalization by assuming that the log-likelihood ratios (LLRs) of the

extrinsic information from the decoder follow a consistent Gaussian distribution with a

variance computed by the inverse J-function as introduced in [29]. However, the DNN in [28]

is constructed by a fully-connected network that has inputs of both the decoder’s extrinsic

information and the channel information, which indicates that the extrinsic information from

the decoder is fed into the NN separately from the channel information. Consequently, this

may largely increase the number of neurons in the NN, leading to a high training complexity.
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In this paper, we propose an NN assisted approach to compensate the performance loss for the

SISO algorithm (referred to as the sum-product detection algorithm (SPDA) thereafter) proposed

in [19] for detecting coded FTN signals. We modify the FG of the SPDA by connecting an

arbitrary NN to the variable nodes (VNs) via additional function nodes (FNs), where tunable

parameters over the edges of the FG are optimized through training. The proposed algorithm is

constructed from a neural network system and it can be trained off-line. Therefore, we name it

as deep learning assisted sum-product detection algorithm (DL-SPDA). The inaccuracy of the

messages over the edges of the conventional FG due to the limited number of ISI taps and

short cycles is expected to be compensated by the NN. The main contributions of this paper are

summarized as follows.

• We propose a novel DL-SPDA for FTN detection in a modified FG, where an arbitrary

NN is concatenated to the original FG of the FTN signaling. We also introduce a new

message updating rule to facilitate the application of the proposed DL-SPDA in Turbo

equalization receivers. Consequently, the proposed DL-SPDA can be directly applied to a

Turbo equalization without considering any particular channel decoding algorithms.

• We propose a new compatible training technique for NN that is specifically designed for

Turbo equalization receivers. The compatible training technique combines the channel

information and the extrinsic information from the decoder before training. The extrinsic

information is sampled from a consistent Gaussian distribution, where the variance is

computed by the inverse J-function [29]. As a result, the NN is more robust to the

variations of extrinsic information from the actual decoder while the training complexity

is acceptable.

• Besides demonstrating that the proposed DL-SPDA can obtain a BER performance gain

compared to the conventional FG based FTN detection algorithm, we show the

computational complexity analysis of the proposed NN structure.

• We also derive the theoretical bit error rate (BER) performances for convolutionally

encoded FTN systems in order to demonstrate the effectiveness of the proposed

DL-SPDA. Specifically, we focus on the case where the detector is imperfect in the sense

that only a limited number of ISI taps is considered. By applying approximations, we

show that the derived analytical BERs are accurate even for a short block with 250 bits.
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Figure 1. System model.

Meanwhile, the derived analytical BERs also verify that the proposed DL-SPDA

approaches the maximum-likelihood (ML) performance.

The rest of this paper is organized as follows. In the next section, we will briefly introduce

the system model and review the sum-product detection algorithm proposed in [19]. Then, in

Section III, we will detail the proposed DL-SPDA, including the new FG model, the modified

message updating rules and the compatible training method. The performance analysis for the

convolutionally encoded FTN system is discussed in Section IV. The numerical results for both

the proposed detection algorithm and the analytical estimates are depicted in Section V and

lastly, the concluding remarks are given in Section VI.

II. PRELIMINARIES

A. System model

Without loss of generality, the considered coded FTN system model is shown in Fig. 1.

Let b denote the binary source data with length K. At the transmitter, b is convolutionally

encoded, resulting in a binary codeword c of length N . A sequence of N binary phase-shift

keying (BPSK) symbols x = [x1, x2, ..., xN ]
T is generated after interleaving the bits in c with

xi = (−1)ci for i ∈ {1, ..., N}. The transmitted FTN signals are linear modulation signals of the

form s(t) =
∑

n xnh(t− nτT ), where τ is the time acceleration factor of the FTN signaling [2]

and h(t) is a T -orthogonal root raised cosine pulse with a roll-off factor α.
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Assume that the channel is modelled by additive white Gaussian noises (AWGN) with a zero

mean and a variance of σ2. The received sequence y after a matched filtering and FTN rate

sampling is given by y = Gx+ η, where G is a Toeplitz generator matrix, as shown below,

G =

















g0 g1 · · · gN−1

g−1 g0 · · · gN−2

...
...

. . .
...

g1−N g2−N · · · g0

















. (1)

The generator matrix consists ISI taps gi =
∫∞

−∞
h (t) h∗ (t− iτT ) dt. Specifically, we define L

as the number of channel responses with significant energy. The rest ISI taps with insignificant

energy are therefore negligible and then set to zeros for simplicity, i.e., gi = 0, for |i| > L.

Meanwhile, the term η represents the colored noise samples whose autocorrelation matrix is

E[ηηH] = σ2
G.

Once the sequence y is observed, the receiver performs the Turbo equalization, where the

extrinsic information from the detector and decoder is exchanged iteratively via the interleaver

Π or the deinterleaver Π−1 until the maximum iteration number is reached. The sequence b̂ as

the estimate of b is generated after the Turbo equalization iterations, which is regarded as the

output for the receiver.

B. Sum-product detection algorithm

In this subsection, we briefly review the SPDA proposed in [19]. Given the received sequence

y, the SPDA factorizes the a posterior probabilities (APPs) P (x|y) of the transmitted sequence

x mainly based on three types of FNs:

• Oi(xi) for i ∈ {1, ...N}: The a priori probability for symbol xi being transmitted.

• Ti(xi) for i ∈ {1, ...N}: The symbol likelihood function for symbol xi being transmitted

based on the received symbol yi.

• Ii,j(xi, xj) for j ∈ {1, ...N} and i ∈ {j, ...N}: The FN that conveys the messages from

node i to the interfering node j.

The functions of Ti(xi) and Ii,j(xi, xj) are defined as [19]:

Ti(xi) = exp

[

1

σ2
Re

{

yix
∗
i −

Gi,i

2
|xi|2

}]

, (2)
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Figure 2. Message updating in the factor graph of SPDA.

Ii,j(xi, xj) = exp

[

− 1

σ2
Re
{

Gi,jxix
∗
j

}

]

, (3)

where x∗
i refers to the conjugate of the symbol xi, Re{·} represents the function that returns

the real part of a value, and Gi,j = gi−j is the (i− j)-th ISI tap. It is derived in [19] that

P (x|y) ∝∏N
i=1

[

Oi(xi)Ti(xi)
∏

j<i Ii,j(xi, xj)

]

.

Define qi,j(xi) as the message from the FN Ii,j to the VN xi, pi,j(xi) as the message from

the VN xi to the FN Ii,j(xi, xj), o(xi) as the message from the VN xi to the FN Oi, and Qi(xi)

as the product of all messages incoming to the VN xi, respectively. Here, Qi(xi) indicates the

proportional probability of the (approximated) APP P (xi|y) [19]. An example of part of the FG

is given in Fig. 2, where the messages are updated according to [19]:

Qi(xi) = Oi(xi)Ti(xi)
∏

j 6=i

qi,j(xi), (4)

oi(xi) =
Qi(xi)

Oi(xi)
, (5)

pi,j(xi) =
Qi(xi)

qi,j(xi)
, (6)

qi,j(xi) =
∑

xj

Ii,j(xi, xj)pj,i(xj) (7)

The messages {pi,j} and {qi,j} are initialized to the same positive values and the messages are

updated iteratively until the maximum number of iterations is reached. Note that the detection

complexity of the SPDA is linear to the degree of VNs, i.e., the number of the FNs Ii,j(xi) linked
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to each VN xi. Therefore, the SPDA provides a trade-off between the detection performance

and detection complexity by intentionally choosing the degree LE of VNs, where the VN degree

LE ≤ L corresponds to the number of ISI taps considered by the SPDA. On the other hand,

as we will discuss in Section IV, the coded FTN system’s performance is restrained by the

number of ISI responses considered by the detector. If only a small number of ISI responses

is considered by the detector, an error floor may occur in the high signal-to-noise ratio (SNR)

region due to the existence of residual ISI [30].

It should also be noted that the short cycles contained in the FG will accumulate the

correlation between the messages during the iterative update, which may undermine the overall

error performance [31]. Therefore, to compensate for the potential performance degradation,

we propose a deep learning assisted SPDA, the details of which will be discussed in the

following section.

III. DEEP LEARNING ASSISTED SUM-PRODUCT DETECTION ALGORITHM

In this section, the proposed DL-SPDA is introduced. The basic idea of the proposed DL-

SPDA is to transform the SPDA into an NN with additional tuneable multiplicative weights and

neuron FNs nested to the VNs. More specifically, we modify the FG by connecting an NN FN

on top of the original FG and then unfold the modified FG into an NN system for training. Note

that the NN FN is directly connected to all VNs. Therefore, the influence of the residual ISI

and short cycles can be compensated by the NN. Furthermore, we also modify the message-

passing rules to make the DL-SPDA be suitable for Turbo equalization receivers. This allows

us to train the DL-SPDA without the prior knowledge of the decoder. Moreover, we propose a

compatible training method to improve the performance of the DL-SPDA for Turbo equalization

receivers. With the compatible training method, the NN is optimized in terms of the mutual

information between the extrinsic information and the transmitted sequence with an acceptable

training complexity.

A. New FG model and modified message updating rule

Conventional NN assisted detection or decoding algorithms introduce tuneable multiplicative

weights to the FG and then unfold the message-passing algorithm to an NN system for training
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and optimization [25]. In terms of the SPDA, trainable weights can be attached to the messages

pi,j(xi) in the corresponding FG, so the updating rule in (7) is modified as:

qi,j(xi) =
∑

xj

Ii,j(xi, xj)ςj,ipj,i(xj), (8)

where ςj,i is the weight attached to the message pj,i(xj) in the corresponding FG. During the off-

line training, since Ii,j(xi, xj) is the interfering node that is irrelevant to the message pj,i(xj),

Ii,j(xi, xj)ςj,i is treated as the trainable parameters in the neural network. Training with the

additional weights has shown to improve the sum-product algorithm’s performance in a high

SNR region [25]. However, merely tuning the additional weight ςj,i attached to the message

pj,i(xj) will not change the connections in the FG. Therefore, the performance improvement by

attaching tuneable weights to the NN is limited. To this end, we propose to connect an NN FN

Φ(x1, ..., xN ) to the VNs in the FG to compensate for the effects of the residual ISI responses and

the correlation induced along the short cycles. As shown in Fig. 3, different from the traditional

FG, we nest an NN FN to the VNs xi of the FG, for i ∈ {1, ..., N}. The aim of nesting an NN

to the FG is two-fold:

• The NN connects to all the VNs. It is expected that all the ISI components among the VNs

are considered by the NN.

• The correlation induced during the iteration is expected to be compensated by the NN. The

APPs computation for all the VNs in each iteration can be optimized after tuning the parameters

in the NN.

Define ui(xi) as the message from the variable node xi to the FN Φ(x1, ..., xN) and vi(xi)

as the message from the FN Φ(x1, ..., xN ) to the variable node xi as shown in Fig. 3. The

conventional sum-product algorithm sums all the intrinsic information for each variable node

before passing the extrinsic information to the FN for further processing. This indicates that in

a conventional sum-product algorithm, ui(xi) = Oi(xi)Ti(xi)
∏

j 6=i qi,j(xi). However, in terms

of Turbo equalization, the extrinsic information from the decoder will be passed to the detector.

Therefore, the NN needs to be trained with respect to the specific decoder, i.e., the decoding

algorithm becomes part of the NN, so that the global optimality can be obtained. Nevertheless,

optimizing the NN which consists of both the detector and decoder has two major problems.

Firstly, the training complexity will be largely increased if the decoder is also included by the
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Figure 3. Deep learning assisted sum-product algorithm with LE = 2.

NN layers. Secondly, the optimization of the NN needs to consider the specific channel decoding

algorithms, which is inflexible from the design perspective, and undermines the generality of

the ISI detector. Therefore, in order to deal with the extrinsic information from the decoder for

Turbo equalization, without introducing any extra off-line training complexity, we propose a new

message updating rule for the messages to be passed to the neural network as follows:

ui(xi) =
∏

j 6=i

qi,j(xi). (9)

Correspondingly, the accumulated APPs for each symbol becomes:

Qi(xi) = Oi(xi)Ti(xi)vi(xi)
∏

j 6=i

qi,j(xi). (10)

The message passed from each VN xi to the NN FN does not include the messages from

Oi(xi) or Ti(xi), only the message from the FN Ii,j(xi, xj) is passed to the NN FN.

According to the proposition, the APP Qi(xi) is given by:

Qi(xi) = Oi(xi)Ti(xi)vi(xi)
∏

j 6=i

qi,j(xi). (11)

Compared with the APP update rule in (4), (11) contains the message vi(xi) from the NN to

the VN xi. Since in each iteration of the Turbo equalization, the priori information Ti(xi) is

constant, the messages from Ti(xi) will not be passed to the NN for further processing. We

expect the new message updating rule tunes the APPs during each iteration according to the

output messages vi(xi) of the NN FN. We summarize the DL-SPDA as follows:

Step 1: Update all the a posterior probabilities {Qi} as in (11);

Step 2: Update the messages {pi,j} from the VN xi to the FN Ij,i, as in (6);
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Step 3: Update the messages {qi,j} from the FN Ij,i to the VN xi, as in (7);

Step 4: Update the messages {ui} from the VN xi to the NN FN Φ(x1, ..., xN ), as in (9);

Step 5: Compute the messages {vi} based on the trained Φ(x1, ..., xN);

Step 6: If the maximum number of iterations is not reached, then go back to Step 1;

B. DL-SPDA with a convolutional NN and its training procedure

As introduced in Section. II, the generator matrix of the FTN system is a Toeplitz matrix,

which follows a convolutional structure. To explore the convolutional structure of the FTN

signaling, we propose to employ a simplified convolutional NN (CNN) to be performed as the

NN FN to assist the SPDA [32]–[34]. CNNs are widely used in image recognition systems

[32]. Traditional CNNs usually involve several convolutional layers (Conv) and max-pooling

layers. The convolutional layer performs the convolution operation of the filters (kernels), where

the filters convolve and stride over the input. The max-pooling layer performs downsampling

to reduce the spatial size of the convolved features. A dense layer is appended after the max-

pooling layer to provide possibly nonlinear functions [32]. In [33], a pure CNN based detection

algorithm was proposed, where both the max-pooling layers and the dense layer are removed to

reduce the training complexity, but a large number of convolutional layers and filters are kept.

In this paper, for the sake of reducing the training complexity of the additional NN FN, we

remove the max-pooling layer and simplify the CNN to have only two convolutional layers and

one dense layer. The convolutional layer explores the features of the NN FN input message

ui(xi). The dense layer is appended to process the features and then delivers the output to the

VNs. As shown in Fig. 4, the first convolutional layer has fn1 filters and each filter has a size of

fl1 , where fl1 indicates that fl1 messages are considered by the filter during each convolutional

step. Let fs1 denote the stride of the sliding window in the first convolutional layer. With the

attachment of zero padding, the output dimension of the first convolutional layer reduces to

⌈N/fs1⌉. The filter convolves with the messages from u1(x1) to uN(xN) to compensate any

detrimental effect in the message passing that may degrade the detection performance. A similar

operation of filtering is performed in the second convolutional layer which has a corresponding

hyper-parameter set of (fn2 , fl2, fs2). The output of the convolutional layer is sent to the dense

layer to combine and process the filters’ results before delivering the messages to the VNs. The
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. . .

. . .
Figure 4. Simplified CNN function node Φ(x1, ..., xN ).

dense layer processes all the filters’ results and outputs the message vi(xi) for i ∈ {1, ..., N}.

The negative of a rectified linear activation function (ReLU) is used as the activation function

in the dense layer [35]. During each iteration, the CNN has initial weights and biases randomly

generated from a truncated normal distribution with a standard deviation of σCNN1 and σCNN2

for the first and second CNN layers, respectively. For each iteration, messages ui(xi) will be

updated by using (9) then passed to the CNN. Messages are sent back from the CNN to join

the APPs accumulation according to (11). By unfolding the FG including the NN FN to an NN

system with multiple layers, the overall detector can be trained and optimized.

A loss function in an NN training is defined as the errors between the ground truth label and

the estimated output. The cross-entropy loss function has been widely used for the classification

problems [36] to minimize the errors between two probability distributions. By considering the

BPSK constellation, we define D̂m
i (xi) as the LLR of the VN xi at the m-th iteration and mmax

as the maximum number of iterations of DL-SPDA. The cross-entropy function can be defined

as Fce(D, D̂
m
) = − 1

N

∑N
i=1

(

Dxi
log( 1

1+e
−D̂m

xi

) + (1 − Dxi
)log(1 − 1

1+e
−D̂m

xi

)
)

, where D is the

ground-truth label of the transmitted bits. The multi-loss function introduced in [25] and [37]

can also be setup to train the tuneable parameters in the FG, which includes the tuneable weights

in (8) and the weights and biases introduced in the CNN. The final loss function for training

the NN is then given by:

Λ =

mmax
∑

m=1

γmmax−mFce(D, D̂
m
), (12)

where γ < 1 is a discount factor to adjust the loss at each iteration. During the training phase, a

batch of random transmitted symbols over a range of SNRs is generated as the samples to train

the NN. Once the NN is fully trained, the DL-SPDA can be employed to the Turbo equalization
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receiver to perform as an ISI detector by exchanging the extrinsic information with the decoder.

The extrinsic information from the decoder is passed to the ISI-detector without further tuning

the parameters in the NN.

C. Compatible DL-SPDA Training with Mutual Information Compensation

We have introduced the proposed DL-SPDA in Section III.A, where the FG is modified by

connecting an NN FN and the message updating rule is changed accordingly. However, in our

training phase, we have not considered the extrinsic information passed from the specific decoder.

In other words, the extrinsic information to be conveyed to the DL-SPDA at the ρ-th iteration

of the Turbo equalization is assumed to be an all-zero sequence, i.e. Θρ = 0. It can be observed

that the DL-SPDA is optimized in the sense of ML detection. Nevertheless, it is well-known that

the maximum a posterior (MAP) detection outperforms the ML detection for coded systems.

Therefore, we propose a compatible training technique which considers the extrinsic information

from the decoder.

Inspired by the training technique introduced in [28], we are motivated to deliver the expected

distribution of the extrinsic information from the decoder to the NN by assuming that the extrinsic

information follows a consistent Gaussian distribution [38], where the mean and variance can

be computed from the inverse J-function as introduced in [29]. Note that in [28], the DNN

treats the extrinsic information from the decoder as separate input neurons to the NN, i.e.,

the channel information and the extrinsic information from the decoder are fed into the NN

separately. However, this largely increases the number of neurons in the NN and overloads the

training process of the whole NN. Therefore, we propose to combine the LLRs of the channel

information and the extrinsic information before sending the LLRs to the DL-SPDA, such that

the DL-SPDA uses the combined information for further training.

Let Ψ
(·) and Υ

(·) be the LLR realizations for the channel information and the extrinsic

information to be passed to the detector, respectively. Note that the DL-SPDA accepts both

Ψ
(·) and Υ

(·) as the inputs. Each realization of the channel information Ψ
(·) can be generated

by transmitting a known data sequence x. On the other hand, to generate the extrinsic

information Υ
(·), we adopt the idea from the previous work in [28]. We assume that the

extrinsic information Θ
ρ follows a consistent Gaussian probability density function, i.e.,
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Figure 5. Graphical illustration for the compatible training technique.

Θ
ρ
i ∼ N

(

(−1)xiσ2
E/2, σ

2
E

)

for i ∈ {1, ...N}, where the variance σ2
E can be computed by using

the inverse J-function [29], given the mutual information M(Θρ,x) between the extrinsic

information Θ
ρ and the transmitted sequence x. To maintain the generality of the NN, we

assume that the mutual information M(Θρ,x)) is uniformly ranged between [0, 1]. In practice,

it is sufficient to consider only a set of mutual information Ω = {0, 1/(|Ω| − 1), ..., 1}, where

|Ω| is the cardinality of Ω. Thus, a set of variances can be then determined as

Ξ = {J−1(∂), for ∂ ∈ Ω}. Based on the variance set Ξ and the known transmitted sequence x

in the training phase, we are able to randomly generate a realization of the LLR sequence

Υ
(·)
i ∼ N

(

(−1)xiσ2
E/2, σ

2
E

)

, for i ∈ {1, ..., N}.

Fig. 5 illustrates the concept of the compatible training technique to improve the compatibility

of the DL-SPDA in the sense of Turbo equalization, where the process is divided into two stages,

namely the generation stage and the preprocessing stage. In Fig. 5, as an example, Ω is set to

be Ω = {0, 0.25, 0.5, 0.75, 1} and one LLR realization of the extrinsic information is randomly

sampled by a specific variance σ2
E ∈ Ξ for each realization of the channel information. Note

that during the training phase, based on each variance σ2
E ∈ Ξ, a factor V can be preset so that

V realizations of the extrinsic information Υ
(·) are randomly sampled based on one realization

of the channel information. This results in that V × |Ω| realizations of the extrinsic information
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will be randomly sampled based on one realization of the channel information. We call the stage

above as the generation stage.

As for the preprocessing stage, we combine the extrinsic information and the channel

information. Specifically, let Υ
(i,j) be the j-th realization of the extrinsic information for the

i-th realization of the channel information Ψ
(i), for j ∈ {1, ...,V × |Ω|}. The message that is

passed to the VNs is the combined information sequence, where the elements in Ψ
(i) and

Υ
(i,j) are simply added together. As Fig. 5 demonstrated, each i-th realization of the channel

information is separately added by the sampled extrinsic information Υ
(i,j) for

j ∈ {1, ..., 1 × |Ω|}. After all the realizations have been preprocessed, the batch of sequences

are fed into the NN for further training.

It can be seen that compared to the training method in Section III.B, the compatible training

technique includes two more stages for processing. This indicates that the input training

sequences {Ψ(1) + 0,Ψ(2) + 0, ...} in the previous sections are now changed to

{Ψ(1) +Υ
(1,1), ...,Ψ(1) +Υ

(1,|Ω|),Ψ(2) +Υ
(2,1), ...}. These two stages are the preprocessing of

the NN training. It should be noted that the preprocessing does not add any extra input

neurons to the NN while it provides the priori information for the training. Therefore, a better

error performance can be expected for the DL-SPDA with the compatible training than that

without the compatible training.

IV. PERFORMANCE ANALYSIS FOR CONVOLUTIONALLY ENCODED FTN SYSTEM

As we previously discussed, the DL-SPDA is expected to reduce the detrimental effect of the

residual ISI responses and the accumulated correlations of the detecting messages in the FG.

Therefore, in this section, we aim to theoretically derive the error performance of coded FTN

systems in order to evaluate the error performance of the proposed DL-SPDA. In specific, we

focus on the BER performance of the convolutionally encoded FTN systems with a finite block

length, where the detection algorithm considers a limited number of ISI taps.

As the generation of the FTN signaling follows the convolutional structure, which can be

interpreted by a trellis [3]. For the detection of FTN signaling, we define an error event as a

segment of a path on the FTN trellis that diverges/remerges from/to the correct path [39]. For an

FTN system with a block length of N , multiple error events can happen. Specifically, suppose that
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the output of a correct path on the FTN trellis for a legitimate transmitted sequence is denoted by

x and the output of the erroneous path is another legitimate transmitted sequence denoted by x
′.

Then, for BPSK modulation, we define an error sequence as e = x− x
′, where e ∈ S(N×1) and

S = {0,+2,−2}. According to the derivations in [30], [40], we find the following definitions

and lemma are useful.

Definition 1. (Normalized Euclidean distance): Let Eb be the average energy per information

bit. The normalized Euclidean distance d2(e) of the error sequence e is defined as d2(e) ,

1
2Eb

e
H
Ge.

Definition 2. (Operative Euclidean distance [30]): Denote by F the truncated version of G,

where F is a Toeplitz matrix constructed by circular shift of the vector

{0, ..., 0, g−LE
, ..., g0, ..., gLE

, 0, ..., 0}. The operative Euclidean distance d2ope(e) of the error

sequence e is defined as d2ope(e) ,
1

2Eb
e
H
Fe.

Definition 3. (Hamming error weight): The Hamming error weight w is defined as the number

of non-zero elements of an error sequence e.

Lemma 1. (Error probability for e [15]): Given the transmitted sequence x, the probability

of the ML detector declares the sequence x
′ = x + e as the detection output is given by

Pe = Q(
√

d2(e)Eb

N0
).

In the following, we will evaluate the ML performance of coded FTN system with a short

block length (finite-length). In particular, we consider truncated ISI responses (finite-taps) and

approximately full ISI responses (full-taps). The approximation of full ISI responses means that

we consider L most recent ISI taps as described in Section II.A.

A. Finite-Length Full-Taps Coded FTN system

To begin with, we start from the ML estimation of the uncoded FTN system. Let us consider

that the error sequence e has a Hamming error weight w. Therefore, it is obvious that there are

in total A =
(

N
w

)

2w combinations for e. For the convenience of notation, we use e
(w,j) ∈ S(N×1)

to denote a specific error sequence e with a Hamming error weight w, where j ∈ {1, ...,A}
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indicates the j-th instance of all possible combinations of e. Then, based on Lemma 1, the BER

Pb can be upper-bounded by applying the union bound [39], such as:

Pb <
N
∑

w=1

A
∑

j

w

2wN
Q

(

√

d2(e(w,j))Eb

N0

)

, (13)

where

Q(α) =

∞
∫

α

1√
2π

exp(−ρ2/2)dρ, (14)

is the well-known Q-function [39].

We now consider the convolutionally encoded FTN system, where a uniform interleaver is

assumed to be applied between the convolutional encoder and the BPSK modulator. Suppose

a rate-R binary terminated convolutional code (CC) C′ is utilized. We define Kb bit streams

as the encoder’s inputs and Nb bit streams as outputs, i.e., R = Kb/Nb. According to (13),

the BER performance can be estimated by considering all possible error sequences, i.e., the

distance spectrum. However, conventional methods, which assume that the all-zero sequence is

transmitted, to estimate the BER performance of CC over AWGN channels are not applicable

[39]. This is because the Euclidean distance between coded FTN signals can be different even

for error sequences with the same Hamming error weight [41]. For the ease of presentation, we

refer to the error sequence e = x − x
′ after the FTN modulation as the FTN error sequence,

and refer to the binary error vector of the difference between two legitimate CC codewords

as the CC error sequence. It is obvious that given the pair of CC codewords, the FTN error

sequence and CC error sequence share the same Hammming error weight. Therefore, we aim to

list all the possible CC error sequences and estimate the BER according to the corresponding

FTN error sequences.

In the following, we consider that only a single error event is occurred over the CC trellis. Note

that this simplification is widely considered in the literature [39]. Therefore, we intend to find

out all the possible legitimate FTN error sequences that are induced by a single error event in the

CC trellis. Without loss of generality, we consider CC codewords with information bit length K ′,

which is long enough to contain all the possible codewords covering the CC error events with a

relatively small Hamming error weight w. Define c, c′ ∈ C′ as the instances of the 2K
′

legitimate

codeword. By listing all the possible codewords, we are able to find the CC error sequences
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corresponding to each single error event ε and c. We use U(c, ε) = {ε|Iε = i,Lε = l,Wε = w}
to denote the set of possible single error events for a legitimate codeword c, where each error

event ε in U(c, ε) has an event error length Lε = l and the corresponding CC error sequence has

Hamming error weight Wε = w between c and c
′, corresponding to Iε = i different information

bits.

As a uniform interleaver is assumed to be employed between the convolutional encoder and

the FTN modulator, each possible FTN error sequence corresponding to the CC error sequence

is therefore, equally likely to be considered. Define e
(w,o)|ε as the o-th legitimate FTN error

sequence with a Hamming error weight w for a given CC event error ε and Aε as the total

number of legitimate FTN error sequences for a given CC error event ε. The BER for the

convolutionally encoded FTN system can now be upper bounded by:

Pb .
N
∑

w=dmin

C′
∑

c

U(c,ε)
∑

ε

Aε
∑

o

Iε
NR

(

NR/Kb−Lε+1
1

)

Q

(√

d2
(

e
(w,o)|ε

)

Eb

N0

)

Aε2K
′ , (15)

It can be seen that the denominator part in (15) is due to the assumptions of binary symmetric

inputs of the convolutional encoder and the employment of the uniform interleaver between the

convolutional encoder and the FTN signaling.

B. Finite-Length Finite-Taps Coded FTN system

With the analysis of the finite length coded FTN system which considers full ISI taps, we

can now investigate the error performance for the ML estimate when a finite number of ISI taps

LE < L is considered by the detector. As in the previous section, we firstly consider the case

of uncoded finite-taps FTN signaling. Following [30] and Definition 2, we intend to find the

error probability P
′

e
under the condition that a finite number of ISI responses is considered at the

receiver, which is equivalent of finding the probability of P (Re
{

e
Hη+e

H(G−F)x
}

> Ebd
2
ope(e)).

It can be seen that eH(G−F)x represents the influence of the residual ISI that is not considered

by the matrix F. Define the term ℘ , Re
{

e
Hη+ e

H(G−F)x
}

. In particular, the term ℘ can be

modeled as a Gaussian variable according to the central limit theorem and it can be shown that

E[℘] = 0 and the variance E[℘℘H] = N0Ebd
2(e) + 2Ebσ

2
R,e, where σ2

R,e refers to the variance of

the term e
H(G−F)x induced by the residual ISI taps for a given error sequence e. In specific,



19

we have σ2
R,e =

1
2Eb

E[xH(G−F)eeH(G−F)H
x] [30]. Based on the derivations in [30], the error

probability for an ML detection if finite taps of ISI responses are considered by the detector is

approximated by the following lemma:

Lemma 2. (Error probability for e with finite ISI responses) : Given the transmitted sequence

x and assume that the ML detector considers finite ISI responses with a length of LE , the

probability of the ML detector declares the sequence x
′ = x+e as the detection output is given

by P
′

e
≈ Q

(

√

Ebd2ope(e)

N0

d2ope(e)

d2(e)+
2σ2

R,e

N0

)

.

Finding the expectation over all the possible transmitted sequence x for a given e can be

computationally prohibitive. In the following, we introduce a theorem that obtains the lower

bound σ2
RL,e

for σ2
R,e.

Theorem 1. For BPSK modulation, given an error sequence e ∈ S(N×1), define P as the set

of non-zero elements’ positions in e, the normalized variance of the term x
H(G−F)e is lower

bounded by σ2
R,e ≥ σ2

RL,e
= 1

2Eb

[
∑

j∈P xj · [(G− F)e]j
]2

.

Proof. Please refer to Appendix A for the details.

Based on Theorem 1, we further obtain the following corollary.

Corollary 1. Any two error sequences e and e
′ with the same normalized Euclidean distance,

d2(e) = d2(e′), and operative Euclidean distance, d2ope(e) = d2ope(e
′), have identical values of

lower bounds σ2
RL,e

and σ2
RL,e′

, i.e., σ2
RL,e

= σ2
RL,e′

.

Proof. Please refer to Appendix B for the details.

Based on Lemma 2, we are able to derive the analytical BERs for the coded FTN signaling,

where the ML detector considers finite ISI responses. As previously described, σ2
R,e is derived

by computing the expectation over all the possible transmitted sequences x, while σ2
RL,e

is

determined based on the error sequence e. It is reasonable to employ σ2
RL,e

to estimate the

error probability for e. Moreover, to simplify the computation complexity, the distance

spectrum of the FTN signaling can be searched based on the FTN error events [12], [42], [43].

For instance, given a CC error event ε and a Hamming error weight w, let
{

(

D1ε , d
2(ẽ(w,1)|ε), d2ope(ẽ

(w,1)|ε)
)

, ...,
(

DMε
, d2(ẽ(w,M)|ε), , d2ope(ẽ

(w,M)|ε)
)

}

be the distance
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spectrum for the CC error event ε, where Doε denotes the corresponding number of error

sequences which have the same Euclidean and operative distance as ẽ
(w,o) and Mε denotes the

total number of considered error sequences. According to Corollary 1, any two error sequences

with the same Euclidean distance and operative Euclidean distance have the same values of

σ2
RL,e

. Therefore, the BER for a convolutionally encoded FTN system with a finite number of

ISI responses can be approximated by:

Pb ≈
N
∑

w=dmin

C′
∑

c

U(c,ε)
∑

ε

Mε
∑

o

1

Aε2K
′

Iε

NR

(

NR/Kb − Lε + 1

1

)

Doε·

Q

(√

√

√

√

Ebd2ope(ẽ
(w,o)|ε)

N0

d2ope(ẽ
(w,o)|ε)

d2(ẽ(w,o)|ε) +
2σ2

RL,(ẽ(w,o)|ε)

N0

)

(16)

Note that the analytical BER in (16) is an approximation of the real BER due to the use

of the lower bound of σ2
R,e. As will be shown in the numerical results, in a high SNR region,

using σ2
RL,e

has achieved a close estimate to the error performance of the ML detection and

decoding. More importantly, the lower bound σ2
RL,e

becomes closer to σ2
R,e, if the influence of

the residual ISI tends to be insignificant. Furthermore, (16) demonstrates that the ML performance

is restricted by the number of ISI taps considered by the detection algorithm. If full-taps are

considered, then d2ope(e) is identical to d2(e) and the residual ISI term will vanish. In the following

numerical results, we will show that when finite taps are considered by the conventional SPDA,

the performance is limited by the residual ISI taps and an error floor occurs in a high SNR

region when the noise has less impact to the performance than the residual ISI. On the other

hand, simulation results show that the performance of the DL-SPDA approaches to that of the

ML detection and decoding which is consistent with our analysis.

V. NUMERICAL RESULTS

A. Bit-error-rate performance of the proposed DL-SPDA

In this section, we evaluate the performance of the proposed DL-SPDA scheme for

convolutionally encoded FTN systems. Without loss of generality, we consider the coded FTN

systems with τ = 0.5 and τ = 0.6, respectively, where the (7, 5) 4-state rate-1/2 non-recursive

CC is used. At the receiver, Turbo equalization is performed, where the extrinsic information



21

σCNN1
0.03

σCNN2
0.03

(fn1
, fl1 , fs1) (3, 8, 5)

(fn2
, fl2 , fs2) (1, 3, 1)

Optimizer Root Mean Square Propagation

SNR Range (dB) [6, 8]

Learning Rate 0.001

Batch per SNR 60

Compatible Training Factor V 12

Ω {0.2, 0.4, 0.6, 0.8, 1}

γ 0.9

mmax 6

Table I

HYPER-PARAMETERS FOR TRAINING THE DL-SPDA.

is exchanged between the DL-SPDA detector and the BCJR decoder for CC. Compatible

training method is applied to the DL-SPDA.

To have a fair comparison, we also perform the SPDA [19] and the channel shortening (CS)

method as proposed in [44]. Furthermore, truncated-BCJR detection algorithm [45] for FTN

detection is also evaluated to demonstrate the accuracy of the analytical bound, i.e., (15) and

(16), when a limited number of ISI taps is considered by the detection algorithm. Note that, in

order to improve the error perforamnce, the BCJR algorithm usually requires a terminated trellis

[39]. Therefore, in our simulation, we intentionally transmit additional symbols to terminate the

ISI trellis. Specifically, four additional code symbols are transmitted for the BCJR decoder for

CC, while 2 × LE additional symbols are transmitted for the truncated-BCJR algorithm. The

analytical BER of a specific code rate R is summed over the CC minimum Hamming distance

w = dmin = 5 to a Hamming error weight 8 and the approximate full-taps BERs consider L = 11

ISI responses.

The corresponding code rate R with the implementation of the truncated-BCJR detection

algorithm and BCJR decoding algorithm is provided in the figures for reference, which is also

used for the calculation of analytical BERs. In this paper, the hyper-parameters to train the NN

system are shown in Table I.

Note that for a BPSK modulation, the LLR values can be computed by ui(xi) for
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i ∈ {1, ..., N}, where the LLR values serve as the input of the CNN FN.

The error performance of various detection algorithms for the FTN systems is shown in

Figs. 6, 7, 8 and 9. Let ρmax indicate the number of iterations of the Turbo equalization and LE

denotes the number of truncated ISI taps. DL-SPDA(ρmax, LE) indicates the proposed DL-SPDA

detection method, and BCJR(ρmax, LE) refers to the corresponding truncated-BCJR detection

algorithm [45]. Both DL-SPDA and SPDA utilize 6 iterations for updating the messages. Unless

specially notified, we compare the error performance at BER ≈ 1× 10−5.

In Fig. 6, the comparison between analytical bound and the proposed algorithm of an FTN

system with τ = 0.6 and N = 250 is shown, where we can observe that DL-SPDA(15, 3) has

achieved a closed performance to the analytical bound with a code rate R = 0.492. Furthermore,

we demonstrate the correctness of the derived analytical BERs by performing BCJR(15, 7), where

the error performance has a close match to the analytical BERs with a code rate R = 0.466.

In Fig. 7, the simulation results of an FTN system with τ = 0.6 and N = 250 are provided.

It can be seen that DL-SPDA(15, 3) provides 0.35 dB gain compared to the SPDA(15, 3) at a

BER = 3.2× 10−6, where both algorithms consider the same number of ISI taps in the original

Tanner graph. This is due to the fact that after the off-line training, the DL-SPDA algorithm

has “learned” the residual ISIs which are not considered by the original FG. Meanwhile, the

error performance of CS(15, 6) is also provided in Fig. 7. As observed from the figure, both

DL-SPDA(15, 3) and CS(15, 6) achieve almost the same error performance that is close to

the analytical bound. However, the proposed DL-SPDA requires less complexity, which will be

discussed in Section V.B.

In Fig. 8, we provide the comparison between the analytical BERs for finite-length finite-tap

ML estimate and the simulation results for coded FTN signaling. The truncated-BCJR

detection algorithm and BCJR decoding algorithm are employed. The codeword length is

N = 250 and τ = 0.6. In order to demonstrate that an NN FN is capable to capture the

interference characteristics throughout the off-line training, we set the DL-SPDA to consider 2

ISI taps based on the Tanner graph and we expect the NN FN learns all the ISI taps leading to

an error performance that approachs the analytical bound. The simulation results in the low

SNR region show close performances to the analytical BERs. Since a lower bound for σ2
R,e is

implemented as in (16), the BERs are slightly lower than the simulation results of the BCJR
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Figure 6. The BER of FTN signaling with τ = 0.6, α = 0.3, CC(7, 5) and N = 250.

algorithm in the high SNR region, when 2 taps are considered by the truncated-BCJR

algorithm. It can be seen that the SPDA(15, 2) has an error floor at a BER = 2 × 10−7 due to

the insufficient considered ISI taps, while with the help of the concatenated neural network,

DL-SPDA(15, 2) shows a promising performance with no noticeable error floor at a BER

< 10−7.

Fig. 9 depicts the error performance of an FTN system with a more difficult ISI, e.g. N = 250

and τ = 0.5. The DL-SPDA(15, 3) outperforms SPDA(15, 3) by 0.75 dB at a BER = 2.5×10−5.

We observe that DL-SPDA(15, 3) has a close performance to the CS(15, 6). From Fig. 9, we

observe that for conventional SPDA, the performance is poor due to the strong ISI and the short

codeword length. On the other hand, DL-SPDA can compensate the strong correlation that exists

in the detecting messages and help the detector converges to a better performance.

In Fig. 10, the normalized average training loss for every 103 training batches for an FTN

signaling of τ = 0.5 and N = 250 with the DL-SPDA(15, 3) is shown. Define ξaavg as the average

loss from (a−1)×5×103 to a×5×103 batches (ξ0avg = 1) and define ξacg = |(ξaavg−ξa−1
avg )/ξa−1

avg |
as the percentage of the absolute change on the average loss (ξ0cg = 0), where a ∈ Z. Define that

a stable performance of the training is reached after a × 5 × 103 batches, if ξa
′

cg < 0.1 for any

integer a′ > a. From Fig. 10, we can see that the training phase of the proposed algorithm takes

roughly 180×70000 = 1.26×107 training samples to converge to a relative stable performance.

Benefited from the derived FG and simplified NN model, this number of training samples is
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Figure 7. The BER of FTN signaling with τ = 0.6, α = 0.3, CC(7, 5) and N = 250.
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Figure 8. The BER of FTN signaling with τ = 0.6, α = 0.3, CC(7, 5) and N = 250.

much smaller than the conventional NN decoders which generally need more than 2K training

samples to converge to a good performance.

B. Computational complexity of the proposed DL-SPDA

Previous simulation results demonstrate the potential BER performance gain that can be

acquired by the proposed DL-SPDA based on the structure of conventional SPDA. In this

section, we discuss the computational complexity of the proposed DL-SPDA. We mainly

compare the computational complexity with the SPDA and the maximum a posteriror (MAP)

detection algorithm, i.e., log-BCJR algorithm [46]. Compared to the conventional SPDA,
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Figure 9. The BER of FTN signaling with τ = 0.5, α = 0.3, CC(7, 5) and N = 250.

Figure 10. Normalized average loss for every 103 batches of training samples and the absolute change of loss for every 5×103

batches. FTN signaling with τ = 0.5, α = 0.3, N = 250.

DL-SPDA has extra computational complexity introduced by the additional neural network

function node. The multiplicative weights attached to the interference node Ii,j{xi, xj} and the

interference node itself can be considered as one parameter during the message computation.

Therefore, no additional complexity is added by the multiplicative weights of the messages

pj,i(xj) in Section III. In Table II, we show the approximated computational complexity

comparison by the number of addition and look-up table accesses, where the operations of

comparison, multiplication and non-linear process are assumed to be executed through the

look-up table access. According to [46], the log-MAP algorithm has a computational
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complexity that grows exponentionally with the considered number of ISI taps. Comparatively,

the SPDA has a linear complexity with the number of ISI per message-passing iteration. In

Table II, the extra computation complexity that the DL-SPDA requires on top of the SPDA is

shown. For the additions, there are mainly two processes in the DL-SPDA, which are the extra

message vi(xi) at VN xi and the process of the neural function node, respectively. Similar to

the additions, the processes of the convolutional layer, the ReLu non-linear activation function

and the fully connected layer are considered by the look-up table accesses. In our numerical

results, with 6 iterations, DL-SPDA(15, 3) has approximately 2.4× 105 additions and 1.0× 105

look-up table accesses. Comparatively, CS(15, 6) performs linear filtering and the BCJR

algorithm. In specific, the BCJR algorithm requires 2.42 × 105 additions and 1.59 × 105

look-up table accesses, which is 60% more than the DL-SPDA algorithm. Since FTN signaling

theoretically introduces infinite number of ISI responses, the difference of computational

complexity becomes more significant as more ISI responses are considered by the log-MAP

detection algorithm. More importantly, the proposed algorithm offers the flexility of designing

the NN, where the complexity of the proposed algorithm might be further mitigated with

advanced NN designs.

Operations Additions Look-up table accesses

Log-MAP N(15× 2LE + 9) N(10× 2LE − 4)

SPDA N(32LE + 6) 4N × LE

DL-SPDA (extra complexity)

2N + ⌈N/fs1⌉(fl1fn1
+ 1)+

⌈

⌈N/fs1⌉/fs2
⌉

(fl2fn1
fn2

+ 1)+
⌈

⌈N/fs1⌉/fs2
⌉

fn2
N

⌈N/fs1⌉fl1fn1
+

⌈

⌈N/fs1⌉/fs2
⌉

(fl2fn1
fn2

+ 1)+
⌈

⌈N/fs1⌉/fs2
⌉

fn2
N

Table II

COMPUTATIONAL COMPLEXITY COMPARISON PER ITERATION.

VI. CONCLUSION

In this paper, we proposed a DL-SPDA for FTN signaling. An NN FN is concatenated to the

FG of conventional FTN systems to compensate for the detrimental effect of the short cycles

in the FG and the residual ISI that are not considered by the FG. The proposed DL-SPDA

computes the a posterior probability with the assistance of the NN. A new message updating

rule is proposed so that the proposed detection algorithm does not need to be optimized with
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respect to any particular channel decoder. Meanwhile, we propose a compatible training technique

to improve the compatibility of the DL-SPDA in Turbo equalization. Moreover, we analysis the

finite length coded FTN system’s ML BER performance. The proposed DL-SPDA for coded FTN

systems has approached the analytical BERs and the MAP detection and decoding performances.

APPENDIX A

PROOF OF THEOREM 1

We rewrite the residual ISI taps’ variance term x
H(G− F)eeH(G− F)H

x into a format of:

x
H(G− F)eeH(G− F)H

x = [xH(G− F)e]2

=

[

∑

j∈P

xj · [(G− F)e]j +
∑

j 6∈P

xj · [(G− F)e]j

]2

, (17)

where P indicates the set of positions of the non-zero elements in e, [(G− F)e]j indicates the

j-th element of the sequence and · denotes the element-wise multiplication. The variance of the

term e
H
Ge induced by the residual ISI taps for a given error sequence e can now be derived

as σ2
R,e =

1
2Eb

E

{

[

∑

j∈P xj · [(G− F)e]j +
∑

j 6∈P xj · [(G− F)e]j

]2
}

.

Applying the Jensen’s inequality, we have

Ex|e

{

[xH(G− F)e]2
}

≥
[

[Ex|e(x)]
H(G− F)e

]2
(18)

The second term in the second line of (17) vanishes as the expectation over the {xj , for j 6∈ P}
is 0 and the first term is determined on e. Therefore, σ2

R,e ≥ σ2
RL,e

= 1
2Eb

[
∑

j∈P xj ·[(G−F)e]j
]2

.

APPENDIX B

PROOF OF COROLLARY 1

Given two error sequence e and e
′ have the same Euclidean distance and operative Euclidean

distance, then we have 1
2Eb

(e)H
Ge = 1

2Eb
(e′)H

Ge
′. Similar to Theorem 1, the equation can be

transformed into the element-wise summation by:

1

2Eb

∑

j∈P1

ej · [Ge]j =
1

2Eb

∑

j∈P2

e′j · [Ge
′]j, (19)

where P1 and P2 are the sets of positions of the non-zero elements of e and e
′, respectively.

Then, given F is a truncated matrix of G that the elements out of the truncation are filled with
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0s, we have 1
2Eb

∑

j∈P1
ej · [Fe]j = 1

2Eb

∑

j∈P2
e′j · [Fe′]j , which results in 1

2Eb

∑

j∈P1

(

e
(1)
j · [Ge]j−

e
(1)
j [Fe]j

)

= 1
2Eb

∑

j∈P2

(

e′j · [Ge
′]j − e′j · [Fe′]j

)

. It can be modified to

1

2Eb

∑

j∈P1

(

ej · [(G− F)e]j
)

=
1

2Eb

∑

j∈P2

(

e′j · [(G− F)e′]j
)

. (20)

The error sequence e and the transmitted sequence x follow a one-to-one mapping at the non-

zero elements’ positions P1 and P2. Let x and x
′ be the corresponding transmitted sequences

for e and e
′, respectively. Then, the corollary is proved that:

1

2Eb

[

∑

j∈P1

xj · [(G− F)e]j
]2

=
1

2Eb

[

∑

j∈P2

x′
j · [(G− F)e′]j

]2
(21)
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