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Abstract—Classification and spectral unmixing are two impor-
tant techniques for hyperspectral data exploitation. Traditionally,
these techniques have been exploited independently. In this paper,
we propose a new technique that exploits their complementarity.
Specifically, we develop a new framework for semisupervised hy-
perspectral image classification that naturally integrates the in-
formation provided by discriminative classification and spectral
unmixing. The idea is to assign more confidence to the information
provided by discriminative classification for those pixels that can
be easily catalogued due to their spectral purity. For those pixels
that are more highly mixed in nature, we assign more confidence to
the information provided by spectral unmixing. In this case, we use
a traditional spectral unmixing chain to produce the abundance
fractions of the pure signatures (endmembers) that model the mix-
ture information at a subpixel level. The decision on which source
of information is prioritized in the process is taken adaptively,
when new unlabeled samples are selected and included in our
semisupervised framework. In this regard, the proposed approach
can adaptively integrate these two sources of information without
the need to establish any weight parameters, thus exploiting the
complementarity of classification and unmixing and selecting the
most appropriate source of information in each case. In order to
test our concept, which has similar computational complexity as
traditional semisupervised classification strategies, we have used
two different hyperspectral data sets with different characteris-
tics and spatial resolution. In our experiments, we consider two
different discriminative classifiers: multinomial logistic regression
and probabilistic support vector machine. The obtained results
indicate that the proposed approach, which jointly exploits the fea-
tures provided by classification and spectral unmixing in adaptive
fashion, offers an effective solution to improve classification per-
formance in hyperspectral scenes containing mixed pixels.

Index Terms—Discriminative classification, hyperspectral
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I. INTRODUCTION

HYPERSPECTRAL imaging is a widely used technique in
remote sensing that collects hundreds of images, at differ-

ent wavelength channels, for the same area on the surface of the
Earth [1]. The special characteristics of hyperspectral data sets
pose different processing problems [2], [3], which must be nec-
essarily tackled under specific mathematical formalisms, such
as classification [4] and spectral unmixing [5], among others [6].

Hyperspectral image classification has been a very active
area of research in the last few years [7], [8]. Given a set of ob-
servations (i.e., possibly mixed pixel vectors), the goal of classi-
fication is to assign a unique label to each pixel vector so that it
is well defined by a given class [9]. Discriminative approaches
have been widely used in hyperspectral image classification, as
they are usually less complex and can generally obtain better
performance than generative models in the presence of limited
training samples [9]–[12]. For instance, the support vector ma-
chine (SVM) [13], [14] and the multinomial logistic regression
(MLR) [15], [16] are among the most widely used discrimi-
native classifiers in hyperspectral analysis, since these methods
can produce sparse solutions and work effectively in a nonlinear
(or kernel) space to improve class separability [17].

Under the discriminative model, both supervised and semisu-
pervised approaches for hyperspectral image classification have
been developed. As shown by previous studies, supervised
classification is generally a difficult task due to the unbalance
between the high dimensionality of the spectral vectors and the
limited availability of (labeled) training samples a priori [1].
This has fostered the development of semisupervised tech-
niques that are able to exploit unlabeled training samples, which
can be obtained from a (limited) set of available labeled samples
without significant effort/cost [18]. For instance, in [19], trans-
ductive SVMs are used to gradually search a reliable separating
hyperplane (in the kernel space) with a transductive process that
incorporates both labeled and unlabeled samples in the training
phase. In [20], a semisupervised method is presented that ex-
ploits the wealth of unlabeled samples in the image and nat-
urally gives relative importance to the labeled ones through a
graph-based methodology. In [21], a semisupervised SVM is
presented that exploits the wealth of unlabeled samples for re-
gularizing the training kernel representation locally by means of
cluster kernels. A related idea is explored in [22] in the context
of urban classification. In [23], a new semisupervised approach
is presented that exploits unlabeled training samples (selected
by means of an active selection strategy based on the entropy of
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the samples). Here, unlabeled samples are used to improve the
estimation of the class distributions. In [24], a novel context-
sensitive semisupervised SVM is presented that exploits the
contextual information of the pixels belonging to the neighbor-
hood system of each training sample in the learning phase to
improve the robustness to possible mislabeled training patterns.
In [25], a semisupervised self-learning technique (which can
exploit either the SVM or the MLR classifier) is shown to
be able to select the most useful and informative unlabeled
samples for classification purposes. This method is based on
the adaptation of active learning methods (in which a trained
expert actively selects unlabeled samples [26]).

An important problem for hyperspectral image classification
is the presence of mixed pixels [27]. If a pixel is highly mixed,
it is very difficult to determine its class label as it is not easily
separable from other classes. A common way for dealing with
mixed pixels has been spectral unmixing [5], which aims at es-
timating the abundance fractions of a set of pure spectral signa-
tures (called endmembers in unmixing jargon) that can be then
used to determine endmember proportions within the pixel [28].
The mixing effects arise when distinct materials are combined
into a homogeneous or an intimate mixture, which occurs inde-
pendently of the spatial resolution of the sensor [29]. To address
these issues, several techniques for endmember identification
[30], [31] and abundance estimation [32] have been developed
in the literature under the assumption that each pixel vector
measures the response of multiple underlying materials. De-
spite the very important advances reported in spectral unmixing
literature, these approaches still find challenges such as the
determination of the number of spectral endmembers [33] or
the proper identification of the spectral signatures associated
to pure spectral components when the scene is dominated by
mixed pixels [34]. This has recently fostered the idea of jointly
exploiting spectral unmixing and classification for advanced
hyperspectral interpretation.

In order to take advantage of the complementary properties
of spectral unmixing and classification, several approaches have
been studied in the recent literature for the integration of these
two techniques. This is important, as these techniques have
traditionally evolved independently, although they exhibit many
complementary properties. For instance, in [35], spectral un-
mixing was used as a feature extraction strategy prior to clas-
sification. It was found that spectral unmixing can be used to
derive suitable features (i.e., abundance maps [36]) for classi-
fication purposes. This idea was further explored in [37], in
which several spectral unmixing chains (unsupervised and su-
pervised) were used to derive suitable features for classification
purposes. A limitation found in this strategy is that the infor-
mation provided by spectral unmixing is exploited prior to
classification, whereas in certain scenarios, it is important to
take advantage of both sources of information in complemen-
tary fashion. More recently, the synergistic nature of spectral
unmixing and classification has been explored in the context
of a semisupervised framework [38]. This strategy provides an
approach for hyperspectral data interpretation that considers
the information provided by spectral unmixing in order to
select new training samples for classification purposes, where
the relative importance of classification and unmixing can be

controlled by the end user. In this approach, there is a need to
set a parameter that defines the relative weight of classification
to unmixing (and vice versa). The setting of this parameter may
not be straightforward in practice and remains equal for all
the pixels in the scene. In this regard, all the aforementioned
strategies [35], [37], [38] treat all the pixels in the same way,
regardless of the fact that there may be pixels that are not highly
mixed (in which case a discriminative classification step may
be sufficient to characterize them), whereas other pixels may
be highly mixed (here, spectral unmixing can be particularly
useful to enhance the classification).

In this paper, we develop a new strategy for the complemen-
tary integration of discriminative classification techniques and
spectral unmixing, which offers several important contributions
with regard to previous developments in this area. In the follow-
ing, we summarize the main contributions of this paper with
regard to previous efforts in [35], [37], and [38].

• First and foremost, the proposed approach considers sep-
arately the pixels that have high confidence to be char-
acterized by discriminative classification approaches and
the pixels that are more highly mixed in nature. This is im-
portant, as in some cases the information provided by the
discriminative classification is enough to fully character-
ize the pixels (in particular, if they are more spectrally
pure). In this case, we assign more confidence to the pixels
that are discriminable, whereas the pixels that are not
separable are handled by relying more on the information
provided by spectral unmixing. In other words, if a pixel
is well discriminated at the classification stage, we rely
more on the information provided by the discriminative
classifier. For those samples that cannot be well charac-
terized by a discriminative classifier, we rely more on the
information provided by abundance fractions in order to
perform the classification.

• Another important contribution of the proposed approach
is that it does not include any weight parameter to de-
termine the importance of classification and unmixing. In
previous works, such as [38], a weight had to be estab-
lished in advance. Such weight is the same for the scene
as a whole, and the pixels were not treated adaptively
in terms of their information. In our newly proposed ap-
proach, the pixels with high confidence in the discrimina-
tive classification are handled by the classification stage,
whereas spectral unmixing information is used when the
confidence in the classification is not high. This means
that the relative importance of classification and unmixing
is established adaptively for each pixel. This is accom-
plished due to the semisupervised nature of our method,
in which the unlabeled samples are properly generated by
giving more importance to classification or to unmixing as
required. In fact, our proposed semisupervised approach
uses both labeled and unlabeled samples to train the dis-
criminative classifier, whereas active learning techniques
are used to select the most informative unlabeled training
samples automatically (in self-learning fashion) by intel-
ligently exploiting the information provided by classifica-
tion or spectral unmixing.
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• Last but not the least, an important characteristic of our
proposed method is that it naturally (and adaptively) in-
tegrates the information provided by classification and
spectral unmixing. As opposed to the work in [35], both
sources of information receive equal importance a priori
(without any weight parameters) and are exploited at the
same time as needed, i.e., spectral unmixing is used in
those cases in which the discriminative classification does
not offer a sufficiently confident source of information to
categorize a given pixel. In this case, spectral unmixing is
used as an alternative source of information. This provides
a more adaptive and balanced approach with regard to the
methodologies presented in [35], [37], and [38]. At the
same time, the proposed approach remains within similar
computational complexity as the classic semisupervised
discriminative classification. This is because the spectral
unmixing information is fast and easy to obtain, and it
can be derived in advance so that the semisupervised pro-
cess can intelligently decide to resort to this source of
information during the process without adding any com-
putational burden to the overall process.

The remainder of this paper is organized as follows.
Section II presents the proposed framework for complementary
integration classification and spectral unmixing. Here, we par-
ticularly describe how the proposed approach has been blended
with the (supervised and semisupervised) classifiers considered
in this paper. Section III presents our experimental setting, with
emphasis on describing the scenes considered in experiments
and the experimental results conducted with such hyperspectral
scenes in order to validate the presented technique. Section IV
concludes with some remarks and hints at plausible future re-
search lines.

II. PROPOSED APPROACH

Here, we describe the proposed complementary approach for
exploiting discriminative classification and spectral unmixing.
Let X ≡ (x1, . . . ,xn) ∈ R

d×n denote a hyperspectral image,
where n is the number of pixels, and d is the number of bands
in each spectral vector. Let k and p be the number of classes and
spectral endmembers contained in X, respectively. Since our fi-
nal objective is to obtain a classification map y ≡ {y1, . . . , yn},
we assume that the number of classes and the number of end-
members are the same, i.e., k = p. In the remainder of this
paper, we use p to denote both the number of classes and end-
members for simplicity. Let Xc = {x1, . . . ,xt} denote a set of
pixels (samples) that are spectrally pure in nature and, there-
fore, can be modeled using the information provided by a discri-
minative classifier. Similarly, let Xm = {xt+1, . . . ,xn} denote
a set of pixels (samples) that are mixed in nature and, therefore,
need to be modeled using spectral unmixing. For a given spec-
tral vector xi, let pi ≡ [p

(1)
i , . . . , p

(p)
i ] be the classification

probabilities obtained by a discriminative classifier, and let
Φi ≡ [Φ

(1)
i , . . . ,Φ

(p)
i ] be the fractional abundances obtained by

spectral unmixing.
With the aforementioned notations in mind, the proposed

approach can be summarized by the flowchart given in Fig. 1.

Fig. 1. Block diagram illustrating the proposed approach.

As shown in the figure, the proposed approach consists of
two main steps. In the first step, we perform spectral unmix-
ing to estimate the fractional abundances. In the second step,
the classification probabilities for each pixel are obtained via
discriminative classification. The final classification map is
obtained by integrating the sets Xm and Xc resulting from the
first and second steps, respectively. The set Xc can be expanded
with additional unlabeled samples, which are intelligently se-
lected using spatial information and active learning concepts.
This affects the number of samples in Xm, which are finally
exploited for the generation of the final classification map. As
a result, the main issue is how to identify the sets Xm and Xc.
In the following subsections, we provide detailed information
about how to define the sets Xm and Xc and, finally, about how
to exploit the complementarity of classification and spectral
unmixing (in semisupervised fashion) in order to obtain the
final classification map.

A. Spectral Unmixing

The strategy used in this paper for spectral unmixing is based
on the well-known linear mixture model [5]. Under the linear
mixture model assumption, each pixel vector xi in the original
scene can be modeled using the following expression:

xi =

p∑
e=1

Φ
(e)
i ·E(e) + ni (1)

where E(e) denotes the spectral response of endmember e, Φ(e)
i

is a scalar value designating the fractional abundance of the
endmember e at the pixel xi, and ni is a noise vector. Two
physical constraints are generally imposed into the model de-
scribed in (1): the abundance nonnegativity constraint (ANC),
i.e., Φ(e)

i ≥ 0, and the abundance sum-to-one constraint (ASC),

i.e.,
∑p

e=1 Φ
(e)
i = 1 [39].

In this paper, we first obtain a set of endmembers from the
training set using a standard endmember identification algo-
rithm [40]. Since we are extracting the endmembers from the
training set, it is possible that the number of endmembers in
the whole hyperspectral image may be larger than the number
of endmembers represented in the training set. At this point,
it should be noted that the endmembers are obtained from the
training set, and the training samples are randomly selected.
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As a result, the spectral signatures obtained from the set of
training samples associated to each class cannot be considered
a spectrally pure signature in all cases. However, the selection
of the endmembers from the training data offers important ad-
vantages in terms of computational speed (as the search for the
endmembers only needs to be conducted in the labeled set) and
in terms of the characterization of the endmembers (since the
outcome of our proposed approach is ultimately a classification,
it is more intuitive to assume that the endmembers can be used
to characterize the classes). Hence, in this paper, we assumed
that extracting the endmembers from the training set offers a
good compromise in terms of both endmember characterization
and computational performance.

Another important observation is that the ground truth that
defines the labeled samples per class is generally not available
for the entire hyperspectral scene. As a result, our assumption
is that additional spectrally pure constituents may be available
in the portions of the hyperspectral data without ground truth.
In our experiments, we do not specifically ensure that each
endmember is extracted from each different class in the training
set, but instead let the endmember identification algorithm in
[40] perform endmember extraction over the available labeled
pixels in the scene. According to our experiments, in most
cases, all different classes end up being represented by a differ-
ent endmember in the selection process, but we do not nec-
essarily enforce this as there may be different classes that are
similar in spectral terms and could be represented by the same
endmember. As the number of endmembers in the original
image may be actually larger than the number of classes in the
scene, in order to unmix the original image, we need to address
a partial unmixing problem.

A successful technique to estimate abundance fractions in
such partial unmixing scenarios is mixture-tuned matched fil-
tering (MTMF) [41], which combines the best parts of the lin-
ear spectral unmixing model and the statistical matched filter
model while avoiding some drawbacks of each parent method.
From matched filtering, it inherits the ability to map a single
known target without knowing the other background endmem-
ber signatures, unlike the standard linear unmixing model.
From spectral mixture modeling, it inherits the leverage arising
from the mixed pixel model and the constraints on feasibility,
including the ASC and ANC requirements. It is essentially a
target detection algorithm designed to identify the presence (or
absence) of a specified material by producing a score of 1 for
pixels wholly covered by the material of interest, while keeping
the average score over an image as small as possible. It uses
only one endmember spectrum (that of the target of interest)
and therefore behaves as a partial unmixing method that sup-
presses background noise and estimates the subpixel abundance
of a single endmember material without assuming the presence
of all endmembers in the scene, as it is the case with fully con-
strained linear spectral unmixing [39]. If we assume that E(e) is
the endmember to be characterized, MTMF estimates the abun-
dance fraction Φi of E(e) in a specific pixel vector xi of the
scene as follows:

Φ̂
(e)
i =

((
E(e)TR−1E(e)

)−1

R−1E(e)

)T

xi (2)

where R is the matrix

R =
1

n

n∑
i=1

xix
T
i (3)

with n denoting the number of pixels in the original hyperspec-
tral image. The outcome of this step is a set of fractional abun-
dances Φi ≡ [Φ

(1)
i , . . . ,Φ

(p)
i ] for each original pixel vector xi.

B. Classification

In this paper, we have used two different classifiers, which
provide probabilistic outputs with the form pi ≡ [p

(1)
i , . . . ,

p
(p)
i ]. The first one is the MLR classifier [42] that takes advan

tage of a sparsity inducing prior added on the regressors in
order to obtain sparse estimates [43]. In our implementation of
the MLR, we use the logistic regression via splitting and aug
mented Lagrangian algorithm [44] to learn the MLR classifier
as this technique is able to learn directly the posterior class
distributions and deal with high dimensionality of hyperspectral
data in a very effective way. This is particularly important when
the MLR is used for semisupervised learning since, ultimately,
we would like to include as many unlabeled samples as possi-
ble, a task that is difficult from the viewpoint of computational
complexity. An alternative classifier considered in this paper is
the probabilistic SVM in [45] and [46]. We have selected the
SVM as a possible alternative to the MLR since this classifier
is already widely used to analyze hyperspectral data [19], [20],
whereas the MLR has only recently emerged as a feasible
technique for this purpose. The LIBSVM library1 was used in
our SVM experiments.

It should be noted that both classifiers are used in this paper
in both supervised and semisupervised fashion. For the semisu-
pervised mode, we use a self-learning strategy to improve the
selection of unlabeled samples [25]. Specifically, we infer the
candidate set of samples Dc using spatial information (i.e., by
applying a first-order spatial neighborhood on available labeled
samples) so that high confidence can be expected in the class
labels of the obtained candidate set. In a second step, we se-
lect the most informative samples from the candidate set Dc

using an active learning algorithm (adapted here to a self-
learning scenario). It should be noted that many active learning
techniques are available in the literature [26], [47]. In this paper,
we use the well-known breaking ties [16], [48] as a baseline
to implement the proposed method. This algorithm iteratively
finds new unlabeled samples minimizing the distance between
the first two most probable classes.

An important issue worth being discussed at this point is the
number of unlabeled samples per iteration that should be se-
lected in order to keep a good balance between the classification
accuracy and the computational cost of the algorithm. As dis-
cussed in [16] and [48], for supervised active learning, the ideal
case is to include only one unlabeled sample per iteration. How-
ever, this may increase the computational cost. Another relevant
issue is the spatial resolution of the data to be processed. On the
one hand, when the spatial resolution is low, pixels are likely to

1http://www.csie.ntu.edu.tw/cjlin/libsvm/
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be mixed, and the confidence of the candidate set is expected
to be low. Therefore, one single unlabeled sample might lead to
significant errors in the classification. On the contrary, a few un-
labeled samples could balance the propagation error. On the
other hand, when the spatial resolution is high, the classes may
have better separability, and a smaller number of unlabeled
samples per iteration could lead to good classification perfor-
mance. Given the different possibilities available, which are
also linked to the considered case study and application domain,
in this paper, we have decided to test several strategies, i.e.,
1 unlabeled sample per iteration, 10 unlabeled samples per
iteration, and 30 unlabeled samples per iteration, to analyze
the impact of the number of unlabeled samples in the final
classification results.

As for the stopping criterion of the proposed approach, as
discussed in [16] and [48], the ideal case is to stop the process
when convergence is achieved in the active learning process.
However, as shown in [16], the convergence may come with a
large number of unlabeled samples. In this case, computational
issues are involved. In this paper, we decided to use a fixed total
number of unlabeled samples in order to simplify the execution
and experimental evaluation of the proposed approach while
keeping the computational complexity within manageable
limits.

C. Complementary Integration

As mentioned in the previous subsection, our methodology is
designed to exploit the information provided by discriminative
classification and spectral unmixing in complementary fashion,
by intelligently selecting the source of information that is more
appropriate for each pixel. In other words, some pixels will be
assigned to the set Xc, and in this case, the information obtained
by discriminative classification, for example, pi for i = 1, . . . ,
t, will be used. On the other hand, the rest of the pixels will
be assigned to the set Xm, and in this case, the information ob-
tained by spectral unmixing, for example, Φj for j = t+ 1, . . . ,
n, will be used. Since we are using probabilistic classifiers, their
output provides a degree of confidence in the assignment of a
given pixel to each of the available classes, which can be con-
sidered similar to the information provided by spectral unmix-
ing, in which the abundances indicate the fractional coverage of
each class within the given pixel. An important consideration
at this point is that, if we can determine the set of Xc, we
can automatically determine the set Xm as they are mutually
exclusive. Here, our assumption is that the pixels for which we
have high confidence in the discriminative classifier should be
assigned to Xc, whereas the remaining pixels (for which we do
not have enough confidence) should be assigned to Xm.

In the previous subsection, we mentioned that the candidate
set Dc (which provides the pool of candidates for the selection
of unlabeled samples by means of active learning) is expected
to contain samples that are labeled with high confidence. This is
because these samples fulfill both a global and a local criterion,
as the samples are in the spatial proximity of other samples
that have been labeled with high confidence by the probabilistic
classifier. As a result, the samples in Dc are expected to be pro-
perly modeled by the information provided by the discrimi-

Fig. 2. Toy example illustrating the procedure used to select the source of
information (classification or unmixing) for each pixel. (a) Labeled samples.
(b) Probabilistic classification. (c) First-order neighborhood. (d) Set of candi-
dates Dc. (e) Source of information for each pixel.

native classification. In turn, the remaining samples are less
confident, and we cannot guarantee that they can be effectively
characterized by the discriminative classifier. In this case, we
use spectral unmixing as the main source of information to
characterize these pixels.

For illustrative purposes, Fig. 2 shows a toy example illus-
trating the procedure used to select the most appropriate source
of information for each pixel. In Fig. 2(a), we display the origi-
nal image and the available labeled samples for three different
classes, labeled as 1, 2, and 3. These samples are used to train
a probabilistic classifier, which provides a probabilistic output
for each pixel, as illustrated in Fig. 2(b). In Fig. 2(c), we use a
first-order neighborhood system to determine the samples in the
proximity of the most confident samples in Fig. 2(b). Fig. 2(d)
shows the candidate set Dc. It should be noted that not all the
samples in Fig. 2(c) are included in Fig. 2(d) as the probabilis-
tic information in Fig. 2(b) can be used to remove some of the
neighboring samples, according to the aforementioned global
and local criterion. Finally, Fig. 2(e) shows the source of infor-
mation (classification or spectral unmixing) used for each pixel.
In the case of samples included in Dc, we use the probabilities,
i.e., pi, as these samples exhibit high confidence in the classifi-
cation on both a local and a global level (the local level comes
from the fact that these pixels are in the first-order spatial neigh-
borhood, whereas the global level comes from the fact that the
pixels have been assigned to a class by the global discriminative
classifier). For the samples that are not included in Dc, we
use the abundance fractions Φj , as we cannot guarantee that
discriminative classification will be able to properly character-
ize these samples. Based on this observation, during the active
learning iterations, we assign the samples in the candidate pool
Dc to the discriminative set Xc and the remaining samples to the
spectral unmixing set Xm. Furthermore, it is interesting to ob-
serve that the information from two sources is integrated in the
form of chessboard. This is expected as we iteratively enlarge
the candidate pool Dc. At this point, it should be noted that,
as the choice between classification and unmixing is adaptive
and the unmixing part has no straightforward link to the active
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Fig. 3. (a) False color composition of the AVIRIS Indian Pines scene. (b) Ground truth map containing (right) 16 mutually exclusive land cover classes.

learning process, the fractional abundances can be precomputed
in advance, and as a result, the main computational load of
the proposed approach is carried out by the semisupervised
classification process. According to our previous work in [25],
the semisupervised learning stage is quite efficient in compu-
tational terms and able to manage a high number of unlabeled
training samples without significantly increasing the computa-
tional complexity.

In the following section, we evaluate the proposed method-
ology using two different hyperspectral data sets that have
been widely used in the hyperspectral imaging community to
validate the performance of classification algorithms.

III. EXPERIMENTAL RESULT

Here, we describe the experimental results that we have con-
ducted to validate the newly proposed technique. As mentioned
in Section II-B, in this paper, we consider two widely used
discriminative classifiers, namely, MLR and probabilistic SVM,
due to their capacity to produce classification probabilities at a
pixel level. For the MLR classifier, we optimized the parameter
settings according to the procedure indicated in [16]. For the
SVM classifier, we used a Gaussian radial basis function kernel
and carefully optimized the kernel parameters by a grid search
procedure. The optimal parameters were selected by using ten-
fold cross-validation. Both classifiers were carefully optimized
in order to obtain the best possible performance. As it will
be shown, in our experiments, the MLR classifier provided
generally better results than those provided by the SVM.
The spectral unmixing methodology is the one described in
Section II-A. For evaluation purposes, two different data sets,
which are well known in the hyperspectral imaging community,
are considered. First, we study the performance of the pro-
posed approach using a hyperspectral image with relatively low
spatial resolution, collected by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) over the Indian Pines region
in Northwest Indiana. Then, we conduct experiments using a
hyperspectral image with higher spatial resolution, collected by
the Reflective Optics Spectrographic Imaging System (ROSIS)
over the University of Pavia, Italy. All the reported values

of overall accuracy (OA), average accuracy (AA), and kappa
statistic (κ) have been obtained as the average of ten Monte
Carlo runs to guarantee statistical consistency.

A. Hyperspectral Data Sets

Two different real hyperspectral data sets are used in this
paper. Particularly, we have used two different images, which
provide different characteristics in terms of spatial and spectral
resolutions in order to validate the method in very different
scenarios. The scenes are collected by two different sensors:
AVIRIS and ROSIS. The images span a wide range of land
cover use, from agricultural areas in the Indian Pines region
to urban areas in the town of Pavia, Italy. Here, we provide a
description of the two aforementioned data sets.

1) AVIRIS Indian Pines: The first data set used in our ex-
periments was collected by the AVIRIS sensor over the Indian
Pines region in Northwestern Indiana in 1992. This scene, with
a size of 145 lines by 145 samples, was acquired over a mixed
agricultural/forest area, early in the growing season. The scene
consists of 202 spectral channels in the wavelength range from
0.4 to 2.5 μm, nominal spectral resolution of 10 nm, moderate
spatial resolution of 20 m by pixel, and 16-bit radiometric res-
olution. After an initial screening, several spectral bands were
removed from the data set due to noise and water absorption
phenomena, leaving a total of 164 radiance channels to be used
in the experiments. For illustrative purposes, Fig. 3(a) shows
a false color composition of the AVIRIS Indian Pines scene,
whereas Fig. 3(b) shows the ground truth map available for
the scene, displayed in the form of a class assignment for each
labeled pixel, with 15 mutually exclusive ground truth classes.
These data, including ground truth information, are available
online,2 a fact that has made this scene a widely used bench-
mark for testing the accuracy of hyperspectral data classifica-
tion algorithms.

2) ROSIS Pavia University: The second data set used in
experiments was collected by the ROSIS optical sensor over

2http://dynamo.ecn.purdue.edu/biehl/MultiSpec
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Fig. 4. (a) False color composition of the ROSIS Pavia scene. (b) Ground truth map containing nine mutually exclusive classes.

the urban area of the University of Pavia, Italy. The flight was
operated by Deutschen Zentrum for Luftund Raumfahrt (DLR,
the German Aerospace Agency) in the framework of the Hy-
Sens project, managed and sponsored by the European Union.
The image size in pixels is 610× 340, with very high spatial
resolution of 1.3 m per pixel. The number of data channels in
the acquired image is 115 (with spectral range from 0.43 to
0.86 μm). Fig. 4(a) shows a false color composite of the image,
whereas Fig. 4(b) shows nine ground truth classes of interest
from the ground truth.

B. Experiments With the AVIRIS Indian Pines Scene

In the first set of experiments, we use the AVIRIS Indian
Pines scene in Fig. 3(a) for evaluation. Very small sets of la-
beled samples (5, 10, and 15 labeled samples per class) from the
ground truth image in Fig. 3(b) are used as the labeled training
set, and the remaining samples are used for testing. Table I
reports the classification accuracies obtained by the proposed
semisupervised approach in comparison with the supervised
approach in [16] and the semisupervised approach in [25],
using different numbers of labeled samples per class. In the
semisupervised cases, 300 unlabeled samples are considered
for training under three different strategies: in the first one,
we selected one unlabeled sample per iteration, following the
procedure described in [25]; in the second case, we select ten
unlabeled samples per iteration; in the third case, we select
30 unlabeled samples per iteration. As aforementioned, the
latter two strategies are intended to reduce computation
time while, at the same time, evaluating the classifica-
tion performance of our proposed approach using different
configurations.

As shown in Table I, the results obtained by the proposed
semisupervised approach are remarkable, outperforming the
other tested methods in all cases. Another important observa-

tion is that, from the viewpoint of semisupervised learning, the
results are always better when we include one and ten unlabeled
samples per iteration, than in the case in which we included
30 samples per iteration, whereas the results obtained by using
ten unlabeled samples per iteration are better or comparable
with those obtained by using only one unlabeled sample per
iteration. This is expected, since the AVIRIS Indian Pines data
set has coarse spatial resolution of 20 m per pixel, which
results in mixed pixels. In order to increase the confidence
of unlabeled samples in this particular case, using only a few
unlabeled samples can lead to better performance. For the case
in which 30 unlabeled samples per iteration were used, in this
experiment, we observed that the more unlabeled samples we
include per iteration, the less confidence we have in them. As
illustrated in Fig. 2, spectral unmixing can provide comple-
mentary information for the less confident samples, but a high
number of less confident samples can lead to a reduction in
the classification accuracy, as illustrated in Table I. In turn,
by including one or ten unlabeled samples per iteration, we
have higher confidence in the samples, and their associated
information can be exploited more efficiently. Finally, Table I
also reveals that the results obtained by using the MLR clas-
sifier are more competitive than those obtained by using the
probabilistic SVM classifier in case limited training samples are
available. When the number of training samples was relatively
larger, for instance, 15 samples per class, both the MLR and the
SVM obtained very similar results. This is consistent with the
observations from our previous work [25].

For illustrative purposes, Fig. 5 shows some of the obtained
classification maps by the MLR and SVM classifiers by using
ten labeled samples per class. For the semisupervised cases,
300 unlabeled samples (ten per iteration) are included. It should
be noted that the maps displayed in Fig. 5 correspond to
one of the ten Monte Carlo runs conducted in each case. As
shown in Fig. 5, the proposed semisupervised approach clearly
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TABLE I
OVERALL (OA) AND AVERAGE (AA) CLASSIFICATION ACCURACIES AND κ STATISTIC OBTAINED USING DIFFERENT CLASSIFICATION STRATEGIES

(BASED ON 5, 10, AND 15 LABELED SAMPLES PER CLASS) FOR THE AVIRIS INDIAN PINES HYPERSPECTRAL DATA SET WITH MLR AND

SVM CLASSIFIERS. IN ALL CASES, THE RESULTS CORRESPOND TO THE MEAN VALUES OBTAINED AFTER TEN MONTE CARLO RUNS, AND THE

STANDARD DEVIATIONS ARE ALSO REPORTED. THE BEST CLASSIFICATION RESULTS IN TERMS OF OA ARE DISPLAYED IN BOLD TYPEFACE

outperforms the other two considered methods in all cases. In
order to further illustrate the relative importance of discrimina-
tive classification and spectral unmixing in the conducted
experiments, in Fig. 5, we also report the dominant source

of information used for the classification of each pixel in
the classification experiments, using a similar convention with
regard to the one adopted in the toy example given in Fig. 2(e).
These plots provide an indication of the importance of using
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Fig. 5. Classification maps along with the OAs (in parentheses) obtained using different classification strategies (based on ten labeled samples per class) for the
AVIRIS Indian Pines data set with MLR and SVM classifiers. For the semisupervised cases, a total of 300 unlabeled samples (ten new samples per iteration) is
used. For the proposed method (implemented with MLR and SVM), we display the dominant source of information for each pixel, where unmixing is represented
in brown color, and classification is represented in white color.

discriminative classification and spectral unmixing in hyper-
spectral scenes with low spatial resolution. As shown in Fig.
5, the pixels dominated by classification and unmixing infor-
mation tend to interact with each other and appear in the form
of a chessboard distribution. This is because the pixels with
more confidence in the classification (under a local and a global
assumption) are those in the first-order neighborhood, whereas
the other ones that do not hold this assumption require spectral
unmixing as their main source of information. This is similar to
the example reported in Fig. 2(c)–(e), in which the pixel at the
top of the labeled sample corresponding to class number 2 in
Fig. 2(a) is excluded from the set Xc, which means that it
is included in the set Xm. Therefore, it is expected that,
with more iterations, the source map turns to a chessboard
distribution.

Another important observation from the maps showing the
dominant source of information in Fig. 5 is that the samples
that use classification as their main source of information
are mainly extended from the initial labeled samples, which
is consistent with the final classification maps in the sense
that the regions that use classification information are gen-
erally better classified as we have more confidence in those
samples. This is because the generation of the candidate set
Dc depends on the initial training set, which is randomly
selected from the ground truth image. In our experiments, we
terminated the algorithm after 300 unlabeled samples were
selected (as we felt that 300 iterations is a reasonable number
for illustrating the performance of our proposed approach). If
we performed more iterations for the semisupervised learning
process, in order to enlarge the candidate set until the whole
image was considered, we would end up with a full chessboard
image.

C. Experiments With the ROSIS Pavia University Scene

In this second set of experiments, we use the ROSIS Pavia
University data set in Fig. 4(a) to analyze the performance of
the proposed approach in a challenging urban data analysis
scenario with higher spatial resolution. As in the previous expe-
riment, we considered the MLR classifier and the SVM classi-
fier trained with {5, 10, 15} labeled samples per class from the
ground truth image in Fig. 4(b). These samples were used for
training, and the remaining samples were used for validation.
Our semisupervised approach was again compared with the su-
pervised method in [16] and the semisupervised method in [25].
In the semisupervised cases, we selected 300 unlabeled sam-
ples under three selection strategies: 1 unlabeled sample per
iteration, 10 unlabeled samples per iteration, and 30 unlabeled
samples per iteration. The latter two strategies are intended to
reduce computation time while, at the same time, evaluating
the classification performance of our proposed approach using
different configurations. Although we use exactly the same con-
figurations already adopted in the experiments with the AVIRIS
Indian Pines scene, we would like to emphasize that different
numbers of (initial) labeled samples and unlabeled samples per
iteration can be considered according to the considered case
study. However, we decided to use the same configuration in
the experiments with both scenes since we obtained satisfactory
results in both cases, which indicates that the proposed method-
ology does not require significant effort in terms of parameter
settings.

Table II reports the obtained classification accuracies in the
experiments with the ROSIS Pavia University scene. We can
observe in Table II that the proposed approach obtains signifi-
cant improvements over the other compared methods, in par-
ticular, when one unlabeled sample was included per active
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TABLE II
OVERALL (OA) AND AVERAGE (AA) CLASSIFICATION ACCURACIES AND κ STATISTIC OBTAINED USING DIFFERENT CLASSIFICATION STRATEGIES

(BASED ON 5, 10, AND 15 LABELED SAMPLES PER CLASS) FOR THE ROSIS PAVIA UNIVERSITY DATA SET WITH MLR AND SVM CLASSIFIERS.
IN ALL CASES, THE RESULTS CORRESPOND TO THE MEAN VALUES OBTAINED AFTER TEN MONTE CARLO RUNS, AND THE STANDARD DEVIATIONS

ARE ALSO REPORTED. THE BEST CLASSIFICATION RESULTS IN TERMS OF OA ARE DISPLAYED IN BOLD TYPEFACE

learning iteration. However, it can be also noticed that the
performance of the proposed approach decreases significantly
when the number of unlabeled samples per iteration is in-

creased. This is in contrast with the experiments reported for
the AVIRIS Indian Pines scene. This is due to the different
spatial resolutions of the considered scenes. For instance, in the
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Fig. 6. Classification maps along with the OAs (in parentheses) obtained using different classification strategies (based on ten labeled samples per class) for the
ROSIS Pavia University data set with MLR and SVM classifiers. For the semisupervised cases, a total of 300 unlabeled samples (1 new sample per iteration) is
used. For the proposed method (implemented with MLR and SVM), we display the dominant source of information for each pixel, where unmixing is represented
in brown color, and classification is represented in white color.

AVIRIS Indian Pines scene, the agricultural features were very
early in their growth cycle at the time of data collection. As a
result, the linear mixture model can explain most of the pixels
in the scene, and there is no risk in including additional (less
confident) unlabeled samples per iteration since it is expected
that spectral unmixing can properly characterize those samples.
However, in the ROSIS Pavia University scene (despite its
higher spatial resolution), the complexity of the mixtures is
expected to be higher due to the complex urban landscape. As
a result, the confidence in the selected unlabeled samples is
also important. This is achieved when the number of unlabeled
samples selected per iteration is decreased, as more confidence
is assigned to these samples in the discriminative classification
process. A final observation is that, in comparison with the
SVM classifier, the advantages of the MLR classifier decrease
as the number of training samples becomes larger.

For illustrative purposes, Fig. 6 shows some of the classi-
fication maps obtained by the MLR and probabilistic SVM
classifiers, respectively, for the ROSIS Pavia University scene,
using 10 labeled samples and 300 unlabeled samples (one per it-
eration) in the semisupervised cases. These classification maps
correspond to one of the ten Monte Carlo runs conducted for

each experiment. The improvements obtained by the proposed
strategy can be clearly appreciated. These maps reveal that,
even in a hyperspectral image with high spatial resolution,
significant improvements can still be obtained by integrating the
complementary nature of classification and spectral unmixing
in the analysis process.

As in the case with the AVIRIS Indian Pines experiments,
Fig. 6 also reports the dominant source of information (clas-
sification or unmixing) used for each pixel, using a similar
convention with regard to the one adopted in the toy ex-
ample given in Fig. 2(e). These plots provide an indication
of the importance of using discriminative classification and
spectral unmixing in hyperspectral scenes with high spatial
resolution, in which mixed pixels also need to be charac-
terized as indicated by our experiments. Similar conclusions
with regard to the AVIRIS Indian Pines experiments can be
drawn, and a general conclusion is that the proposed ap-
proach can properly take advantage of the complementarity
of spectral unmixing and discriminative classification. This is
an important observation, as these two sources of informa-
tion have been rarely exploited in complementary fashion in
the past.
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IV. CONCLUSION AND FUTURE WORK

In this paper, we have developed a new framework for
the complementary integration of two sources of informa-
tion, i.e., discriminative classification and spectral unmixing,
in the analysis of remotely sensed hyperspectral data sets. A
main innovation of the proposed approach is that it adaptively
uses the information provided by probabilistic classifiers and
spectral unmixing in a semisupervised classification process,
where the samples with high confidence (most likely pure in
spectral terms) are characterized by a discriminative classifier,
and the samples with less confidence (probably mixed in nature)
are characterized by a standard spectral unmixing chain. As a
result, the proposed approach naturally integrates the informa-
tion provided by discriminative classification and spectral un-
mixing adaptively and does not require any weight parameters
while exploiting both classification and unmixing in synergetic
fashion. Our experimental results, conducted using well-known
hyperspectral scenes with different spatial resolutions, indicate
that spectral unmixing and discriminative classification exhibit
great complementarity, which can be exploited (in semisuper-
vised fashion) to obtain competitive classification results with
regard to other similar approaches recently presented in the
literature.

In future work, we are planning on developing strategies to
further reduce the computational complexity of the presented
approaches, although the current complexity is not significantly
higher than the one exhibited by the traditional semisupervised
classification process. Specifically, our approach benefits from
the fact that the spectral unmixing information can be computed
a priori and quite effectively; hence, the complexity of our
approach is driven by semisupervised classification. In future
work, we are also planning on developing high-performance
computing implementations that can take advantage of the
inherent parallel nature of some of the steps of the presented
methodology, to be able to implement the proposed approach
for the whole image samples (in the current experiments, we
only exploited 300 iterations for practical reasons, while a
deeper exploration of the whole scene would be desirable). Ad-
ditional experiments with other scenes with different spatial and
spectral resolutions, also depicting different environments, are
also desirable in future developments of the method. In the fu-
ture, we will use soft classification methods instead of spectral
unmixing methods in order to exploit soft classification labels in
combination with hard classification labels, as suggested
in [49].
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