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Key Points:  

• Forward modeling for characterizing physical rules was embedded into the network 
training, and data misfit was used as a loss function. 

• Several variants of the network architecture have been designed to fit various data forms 
under different observation devices. 

• Deep learning inversion was successfully applied to field data using a transfer learning 
method. 
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Abstract 
The direct-current (DC) resistivity method is a commonly used geophysical technique for 
surveying adverse geological conditions. Inversion can reconstruct the resistivity model from 
data, which is an important step in the geophysical survey. However, the inverse problem is a 
serious ill-posed problem that makes it easy to obtain incorrect inversion results. Deep learning 
(DL) provides new avenues for solving inverse problems, and has been widely studied. 
Currently, most DL inversion methods for resistivity are purely data-driven and depend heavily 
on labels (real resistivity models). However, real resistivity models are difficult to obtain through 
field surveys. An inversion network may not be effectively trained without labels. In this study, 
we built an unsupervised learning resistivity inversion scheme based on the physical law of 
electric field propagation. First, a forward modeling process was embedded into the network 
training, which converted the predicted model to predicted data and formed a data misfit to the 
observation data. Unsupervised training independent of the real model was realized using the 
data misfit as a loss function. Moreover, a dynamic smoothing constraint was imposed on the 
loss function to alleviate the ill-posed inverse problem. Finally, a transfer learning scheme was 
applied to adapt the trained network with simulated data to field data. Numerical simulations and 
field tests showed that the proposed method can accurately locate and depict geological targets. 

Plain Language Summary 
The direct current (DC) resistivity survey is a geophysical method for imaging the resistivity 
model corresponding to an underground medium and solving geological problems. The process 
of reconstructing the resistivity model from observational data is ill-posed, which can easily lead 
to incorrect interpretations. In this study, we propose a physics-based deep learning (DL) 
inversion method that incorporates the law of electric field propagation into a neural network. 
This method directly approximates the inversion process and builds a nonlinear mapping from 
the survey data to the resistivity model. The introduction of physical laws can not only alleviate 
the dependence of DL methods on a large amount of training data but also eliminate the need for 
real models. Therefore, this method is more suitable for an actual scenario where the real 
resistivity model is challenging to obtain. This method was verified through numerical 
simulations and physical model tests. Furthermore, we applied this method to advanced tunnel 
surveys. In several cases, the inversion results were consistent with the geological conditions 
present after the excavations. 

1 Introduction 
The direct-current (DC) resistivity method is one of the most commonly used solutions in 
geophysical surveys (Slater, 2007; Loke et al., 2013). This method is characterized by low 
economic cost, high survey efficiency, and strong sensitivity to water-bearing structures. It has 
been widely used for various purposes, including traffic engineering (Donohue S et al., 2011; 
Guo et al., 2019; Pang et al., 2022), dam surveys (Kim et al., 2007; Bedrosian et al.,2012), and 
environmental engineering (Coscia et al., 2011; Bellmunt et al., 2016). An effective inversion 
method is key to improving the reliability of imaging techniques. Currently, linear inversion is 
the mainstream method used for inverting real-world data. It predicts model per the physical 
laws of geoelectric fields. However, its inversion results are highly dependent on the initial 
model, and the local optimal solution is obtained using this method. Its imagining results usually 
contain artifacts that influence the geological interpretation of the results.  



 

Using nonlinear inversion methods can mitigate such problems because of their strong capacity 
for global search. Applications of nonlinear inversion methods in inverting DC resistivity data 
have been widely studied, including the use of genetic algorithms (Liu et al., 2012), ant colony 
algorithms (Zhang & Liu, 2011), and simulated annealing algorithms (Santos et al.,2006) to 
obtain globally optimal solutions. However, these methods have not been popularized for 
inverting real-world data because of their slowness in outputting solutions. In contrast, Neural 
network methods operate relatively quickly and enable well-fitted nonlinear mapping between 
input data (potential or apparent resistivity) and output data (resistivity model) by extracting 
information from large training sample sets (Singh et al., 2010; Neyamadpour et al., 2010; Jiang 
et al., 2018). The method is only time-consuming during training, and the trained networks have 
an extremely high inversion efficiency during inference, which makes them suitable for 
resistivity surveys. In recent years, with the significant optimization of artificial intelligence 
algorithms and computing performance, an upgraded version of neural networks, deep learning 
(DL), has rapidly developed (Hinton & Salakhutdinov, 2006). DL has a greater ability to 
construct complex nonlinear mappings than older neural networks methods. Solving geophysical 
inversion problems using DL has gradually become a research hotspot (Araya-Polo et al., 2018; 
Wu et al., 2019; Puzyrev, 2019; Huang et al., 2021). Currently, research on DL inversion for 
real-world data from electrical surveys is still in the exploratory stage. Liu et al. (2020) studied 
DL inversion using convolutional neural networks (CNNs) for resistivity survey data. In DL 
inversion methods, depth weighting and smoothing constraints are added to the loss function to 
alleviate the ill-posed problems. For synthetic data, the neural network achieves better inversion 
results than traditional linear inversion without involving linearization theory. Based on this, a 
variable convolution kernel is used to adapt the apparent resistivity image features, further 
improving the imaging performance of complex models (Liu et al., 2021). Aleardi et al. (2021) 
combined CNN inversion with a Monte Carlo simulation framework to estimate model 
uncertainty caused by noisy data. Vu and Jardani (2021) extended DL inversion to 3D surface 
survey imaging.  

Currently, most DL-based resistivity inversions are purely data-driven and trained in a 
supervised manner, making their performance heavily dependent on an extensive training set. 
This poses two challenges when applying these methods to real-world data. (1) Resistivity model 
information corresponding to real geological models is difficult to collect. In other words, 
supervised training with real-world data and corresponding models is difficult. A commonly 
used solution is to train networks with a synthetic dataset and fine-tune them with a few field 
samples to adapt them to real scenarios; this method is called, transfer learning. (2) Even for 
synthetic datasets, the resistivity model covering generic realistic exploration scenarios should be 
massive and exhaustive. Owing to limitations in time and computing resources, this type of 
synthetic dataset is difficult to generate. Deep neural networks trained only by a dataset with 
insufficient samples may not be able to accurately approximate nonlinear mapping between 
survey data and resistivity models. In other words, the networks may not comply with the 
physical laws of inversion (e.g., electric field propagation). Therefore, DL based on physical 
laws is more promising for the inversion of DC resistivity data. This idea has been adopted for 
seismic inversion problems such as those outlined by Jin et al. (2021). They embedded a forward 
modeling module at the end of a neural network to form a data misfit and realize unsupervised 
learning. Colombo et al. (2021) applied unsupervised learning inversion to transient 
electromagnetics and obtained high-resolution resistivity models for synthetic and field data. Liu 



 

et al. (2022) incorporated the physical laws of magnetotelluric wave propagation into a purely 
data-driven DL approach and successfully applied this method to field data.  
To the best of our knowledge, an unsupervised DL method based on physics has not been 
reported for DC resistivity data inversion. This novel method, driven by physical laws, is 
expected to have promising applications in resistivity survey data. However, there are three 
crucial issues related to using physics-driven unsupervised DL for DC resistivity inversion that 
must be addressed: (1) How can the laws governing electric field propagation be adopted in deep 
neural networks to achieve unsupervised learning? (2) How can prior information constraints be 
used to ensure the convergence of the network training process? (3) How can the method be 
applied to field data when the size of the real-world training dataset is too small to support the 
network training? 
In this study, to address the first problem listed above, we constructed a physics-driven resistivity 
data inversion network (PhResNet) that combines the architectures of widely used CNNs and 
fully connected neural networks (FCNNs). In this network, the forward operator simulating 
electric field propagation is applied to the inversion architecture, which helps guide the network 
training by fitting the forward results of the prediction model with the survey data. On this basis, 
a dynamic smoothness constraint is imposed on the loss function to solve the second problem 
listed in the previous paragraph. Finally, we proposed the use of a transfer learning method for a 
small amount of resistivity survey data to solve the third problem listed in the previous 
paragraph. PhResNet was successfully applied to real-world data collected during an advanced 
tunnel survey. The inversion results of the field tests matched the excavation disclosures, 
validating the feasibility and effectiveness of PhResNet. 

2 Methods 
In this section, we present a physics-based network for unsupervised resistivity inversion 
(PhResNet). First, we designed the overall network architecture to enable unsupervised learning. 
Subsequently, we designed two specific encoders for different types of DC resistivity data. To 
obtain an effective inverse network, we proposed a dynamic smoothing constraint to guarantee 
training convergence. Finally, we improved the transfer learning method by applying 
unsupervised inversion to real-world data. 

2.1 Overall Architecture of PhResNet 
The objective of this study was to achieve unsupervised learning by introducing physical 

laws. The goal was to eliminate the dependence on labels (resistivity model) and improve the 
generalization ability of the inversion network. For DC inversion, the physical law is represented 
by an electric field distribution obeying Poisson's equation. Forward modeling can transform a 
geoelectric model into observational data using Poisson's equation and boundary conditions. 
Therefore, forward modeling was added to the neural network as an effective way to introduce 
the physical laws of electric field propagation. Among the existing unsupervised learning 
methods, self-supervised learning using only observed data is common. In this method, forward 
modeling enables the mapping process from the output model to the data. We used data misfit as 
the loss function after the prediction model was mapped to the data. The advantage is that the 
training process using this loss function does not require labels. Based on the above analysis, 
forward modeling was added to the network. Finally, a large number of samples were used to 



 

train the network parameters through the loss function for the network to fully learn the physical 
laws. 

The training sample set included N groups of resistivity models Label
im ( i N∈ ) and their 

corresponding survey data obs
id ( i N∈ ). The neural network parameters were represented by w . 

The purpose of the inversion network is to construct a mapping F of obs
id  to Label

im  by training 
w . 

obs( , )i iF →d w m .       (1) 
A typical supervised learning pipeline is illustrated in Figure 1. The resistivity model and 

survey data were used as the input information for the neural network. The loss function was set 
to the residuals of the prediction model pre

im  and the real model Label
im . Network gradients were 

calculated to update the network parameters. 

 
Figure 1. Inversion network framework of supervised learning. The real model and survey 
data taken in pairs from the training sample set are used as network input. The predicted 
model is generated from the observed data using an inversion network, and then added to 
the loss function together with the real model. Finally, the inversion network parameters 

are updated using the loss function. 
However, resistivity models are typically unavailable during field surveys, and 

supervised inversion networks cannot be trained owing to the lack of resistivity model labels. 
Therefore, it is difficult for supervised inversion networks to produce good inversion results 
using real-world data. The inverse network framework for unsupervised learning was designed 
by adding forward modeling to the inverse network framework (Figure 2). Unlike the inversion 
network framework of supervised learning, only survey data are available in the training sample 
set in the case of unsupervised learning. The forward modeling module was placed after the 
predicted model. The forecast data generated by forward modeling had the same array form as 
that of the predicted data. The input of the loss function as changed from the model to the data, 
i.e., the network parameters were updated by fitting the predicted data to the observed data.  

 
Figure 2. Inversion network framework of unsupervised learning. The survey data taken 
from the training sample set is used as the network input. The predicted model obtains 
predicted data using forward modeling. The predicted data and the observed data are 



 

added to the loss function together. Finally, the inversion network parameters are updated 
using a data-driven loss function. 

Forward modeling is based on the physical laws of electric field propagation. The 
governing equation for the propagation of the electric field is shown below (Dey & Morrison, 
1979): 

( )
( ) ( ) ( ) ( )0 0 0= x y z

V
x

x y z
x

δ δ δ
ρ

 ∇Φ Ι −∇ − − −     ∆  

,y,z

,y,z
.     (2) 

Equation (2) is a Poisson equation derived from Ohm's law and the conservation of 
current, which governs the relationship between electrical resistivity ρ and potentialΦ . Ι is the 
current in amperes and (x0, y0, z0) are the coordinates of the point source of the injected charge. 

V∆ is the unit volume and ( )δ   represents the Dirac delta function. 
The potential is solved using a resistivity model ρ using governing equations and 

boundary conditions. This process is called forward modeling in DC resistivity surveys. We 
applied the finite element method to solve the forward model discretely. This is because the 
finite element method is more accurate than the finite difference method in dealing with 
nonuniform continuum and complex shapes. Thus, this method is suitable for target detection.  

2.2 Extracting Information from Potential Data 
In this section, data feature extraction methods are proposed to adapt to various 

observation devices in DC resistivity surveys; additionally, the data from different observation 
devices have different array forms. Data can be roughly classified into image and nonimage data. 
For example, the apparent resistivity of surface surveys is image data, and the potential surveyed 
in holes is non-image data. 

PhResNet-i for Image Data 

Image data have a spatial correspondence with the resistivity model (Liu et al., 2020), 
which is suitable for feature extraction using CNNs. U-Net architecture based on CNNs has good 
localization and feature representation capabilities (Ronneberger et al., 2015). Therefore, we 
used U-Net to extract features from the image data. U-Net is usually composed of two parts: an 
encoder and decoder. In particular, shallow features (encoder part) and deep features (decoder 
part) were jointly used for inversion using the shortcut. The physics-driven resistivity inversion 
network of the PhResNet-i image data (PhResNet-i) is shown in Figure 3. First, the network 
parameters were initialized randomly. Subsequently, multiple apparent resistivity image data 
were simultaneously fed into the encoder network to extract features through batch processing. A 
prediction model corresponding to the input data was generated by the decoder network. 
Furthermore, the prediction data were computed using a forward modeling. Finally, the average 
gradients of the multiple models were computed using the loss function. This model gradient was 
back propagated along the red line to update all network parameters. 



 

 
Figure 3. Physics-driven resistivity inversion network for image data (PhResNet-i). 

 

PhResNet-n for Non-image Data 
It is difficult to construct a spatial correspondence with the resistivity model for non-

image data; therefore, CNNs are unsuitable for nonimage data. An FCNN can be used to extract 
features from non-image data, but its fully connected neurons will result in a large number of 
parameters and affect the training efficiency. Drawing on the method of splitting data by shot 
points in seismic DL inversion (Li et al., 2020), we attempted splitting the non-image data 
(potential) according to current electrodes. Each split dataset was processed using the same 
network parameters to reduce the total network parameters. However, unlike seismic survey data 
(time series), each DC resistivity survey data point usually corresponds to four electrodes (two 
current electrodes and two potential electrodes). That is, each datum contains the information of 
four electrodes with thousands of location data. This is difficult for the network to learn. As 
shown in Figure 4, we attempted to address this problem by implementing the following 
measures:  



 

 
Figure 4. Schematic diagram of encoder network operation. 

(1) The location information was supplemented by the apparent resistivity data. As 
shown in the left column of Figure 4, the input data was a collection of resistivity potential and 
apparent data. The apparent resistivity data incorporating the geometric factor carried spatial 
information, which was beneficial for the neural network to reduce the search range of the 
solution. Note that both apparent resistivity and potential data were used as inputs to the neural 
network, unlike traditional methods that use only one type of input data. Because the values of 
the apparent resistivity and potential are significantly different, two network input paths were 
constructed. 

(2) Inversion networks distinguish data powered by different holes by grouping them. As 
shown in the left column of Figure 4, the data for the two holes is divided into two parts. The 
data split by the current electrode needed to be split twice according to the position of the 
borehole where the current electrode was located. This is because the values and trends of the 
data are similar when the current electrode is located in the same borehole. For the groups with 
current electrodes that were not in the same borehole, the data values and trends were 
considerably different. Therefore, the data from different boreholes were not processed using the 
same network parameters. 

(3) The information lost after grouping was compensated for with the extracted 
neighborhood information. The features between different sets of data were ignored after the 
split operation was performed. To solve this problem, the split data were sorted according to the 
current electrode's spatial order. The difference in electric fields between adjacent groups was 
generated by moving the current electrode. This difference in electric field difference was 
regarded as neighborhood information. As shown below the middle column of Figure 4, we 
extracted this neighborhood information using convolution operations to supplement more 
effective information at the network input. 

By combining the three measures listed above, an encoder network for non-image data 
was designed, as shown in Figure 4. Based on cross-hole electrical resistance tomography, the 
two boreholes were numbered #1 and #2, respectively. Electrodes were placed in the boreholes 
and used either as current or potential electrodes. Neighborhood information was extracted by 
the convolution of the apparent resistivity data. Further, the merged data were obtained by 



 

splicing the neighborhood information and potential data. Finally, a feature map proportional to 
the size of the resistivity model was generated after incorporating the fused data into the FCNN. 
Feature maps contain both low- and high-dimensional data features, based on which the 
prediction model was directly obtained by inputting the feature map into CNNs. 

The physically driven resistivity inversion network for nonimage data (PhResNet-n) that 
we developed is shown in Figure 5. The main difference between PhResNet-n and PhResNet-i is 
the use of an FCNN-based encoder network instead of a U-Net. The two network architectures 
implemented the inversion of image/non-image data. This means that the DL methods were no 
longer limited to observation devices. 

 
Figure 5. Physics-driven resistivity inversion network for non-image data (PhResNet-n). 

2.3 Gradient Calculation Based on Dynamic Smooth Constraint 
Drawing from traditional linear inversion, a smoothness constraint was added to the loss 

function to ensure that the network training process converged. The loss function of PhResNet 
includes a data term and a model term, as follows: 

( ) ( ) ( ) ( )( ) ( ) , 1 2n nLoss f f nλ= − − + ∂ ∂ =
T Tobs obsm d m d m m or  .           (3) 

( )f  represents forward modeling mapping. m is predicted model. λ is a regularization 
factor that balances the data and model terms. The model gradients were solved using the Gauss-
Newton method for the above equations. 

( ) ( )1T T T obs( )fδ λ
−

= + −J C C J m dm J ,                                      (4) 

where J  is the Jacobian matrix and C  is the smooth constraint matrix. 

Smooth constraints are double-edged swords. Weak constraints may not guarantee 
convergence in the inversion process. Although strong constraints may alleviate the multi-
solution problem of inversion, its predicted model was too smooth and could not accurately 
reflect the abnormal areas. To solve this problem, we attempted to use a gradient-calculation 



 

strategy with dynamic-smoothness constraints. In the early stage of network training, the 
gradient calculation process was unstable because the predicted model was noticeably different 
from the real model. Therefore, the smoothness constraint was enhanced by a larger 
regularization factor,λ . Furthermore, the influence of smooth constraints was reduced in late 
training to achieve accurate imaging of the target regions. The dynamic regularization factor 
calculation formula is as follows:  

0= (1.0 - epoch max_epoch ) µλ λ ×  .                               (5) 

Where 0λ  is the initial value, max_epoch  is the maximum number of training times, and 
µ  is the rate of change factor. 

2.4 Transfer Learning 
In a real resistivity survey, the number of DC resistivity survey data cannot meet the 

requirements of network training. Transfer learning is a common method in DL to solve this 
issue. We tried to devise a new transfer learning method suitable for a small amount of DC 
resistivity survey data. The network parameters trained by the synthetic samples were used as the 
starting point of the transfer learning process, followed by fine-tuning a part of the network 
parameters with a small number of real samples. 

There are two popular methods for transfer learning: (1) full fine-tuning, i.e., updating the 
parameters for all layers of the network. (2) Linear probing: retraining the last linear layer. Full 
fine-turning can improve the feature extraction of pre-trained networks using real-world data, 
whereas linear probing directly inherits the feature extraction method of synthetic data, and may 
not be effectively applied to real-world data. Full fine-tuning generally has higher accuracy than 
linear probing (Kornblith et al., 2019; He et al., 2020). However, for the problem of DC 
resistivity survey data, the search range of the pre-trained network relies on training samples 
with synthetic data. If the deviation between the real resistivity model and trained samples is 
large, the inversion results cannot easily approach the real model. Linear probing has a better 
global search ability than full fine-tuning, which was expected to alleviate the above problems. 
Therefore, we devised a transfer learning strategy that combined the advantages of full fine-
tuning and linear probing, a schematic of which is shown in Figure 6. First, the pre-trained 
network was linearly explored using real-world data to expand the search for solutions. Second, 
the network was fully fine-tuned to improve feature extraction from real-world data. Finally, the 
network was iteratively trained and inverted on the new input (target data) multiple times until a 
set number of times or a convergence value was reached. The proposed transfer learning strategy 
had two positive outcomes: 1) the network parameters were further adjusted to better adapt to the 
target data; 2) the optimized network was enabled to generate more accurate resistivity models. 



 

 
Figure 6. The transfer learning flow chart for the real-world data of electrical method 

3 Synthetic Inversion Tests 
In this section, we compare the proposed PhResNet with traditional linear inversion 

methods using numerical tests. We did not make comparisons with other deep learning methods 
because they all require supervised training using real resistivity models. 

3.1 Training details 
We employed the SGD (Ruder S, 2016) optimizer with a momentum parameter β1=0.9 

and a weight decay of 1×10−4 to update all parameters of the network. The initial learning rate 
was set to 0.2×10−4. The size of the minibatch was set to 8. All network layers were initialized 
randomly. During the network training, dropout techniques were used to avoid overfitting the 
training data. The implementation  of network training was conducted using Pytorch on a 
desktop system (Intel(R) Xeon(R) Gold6148 CPU @2.40GHz, 512GB RAM. GPU: NVIDIA 
TITAN RTX). This configuration was used for all the tests conducted in this study. 

3.2 3D Surface ERT 
A synthetic dataset for a 3D surface survey was built using random disturbance and 

discrete combinations. The inversion area consisted of a grid of 2 m×2 m×2 m, with a range of 
16 m(X)×66 m(Y)×16.5 m(Z). Four survey lines were placed at a distance of 4 m from each 
other. In total, 128 electrode points, each separated by 2 m, were used. The background 
resistivity of the resistivity model was 1000 Ohm·m. Figure 7 shows the possible shapes of the 
low-resistance target from a left-hand side view. Its resistivity was 20 Ohm·m. To obtain 
sufficient information, we used observation devices including the Wenner-Schlumberger, 
Dipole-Dipole, and Pole-Dipole. The dataset contained a total of 4626 samples. It was divided 
into training, validation, and test sets in a ratio of 10:1:1. 



 

 
Figure 7. Schematic and parameters of models for 3D surface survey. 

The inversion results are shown in Figure 8. It comprised three parts: the real resistivity 
model, the prediction model, and slice map. The predictive model obtained using the linear 
approach showed only one target. This may be because the signal of the shallow target was 
stronger than that of the deep target, causing the deep signal to be masked. PhResNet-i has strong 
information mining ability and can extract information effectively from weaker signals. 
Consequently, both targets could be described and differentiated. The resistivity value of the 
target area was close to the actual value. 

 
Figure 8. Inversion comparison test of geoelectric model with two targets. 

3.3 2D Cross-hole ERT 
Similar to that described in the previous section, a synthetic dataset for a 2D cross-hole 

ERT was built. The inversion area consisted of a grid of 1 m×1 m, with a range of 16 m(X)×32 
m(Z). Two survey lines were 14 m apart from each other. A total of 64 electrode points with a 
spacing of 1 m were used. The background resistivity of the resistivity model was 200 Ohm·m. 
Figure 9 shows the possible shapes of the low-resistance target in a left-hand view. Its resistivity 
was 20 Ohm·m. To obtain sufficient information, we used the following observation devices: a 
bipole-bipole, a dipole-dipole, and a pole-pole. The potential and apparent resistivity data were 
obtained using forward modeling. The dataset contained 4880 samples. It was divided into 
training, validation, and test sets according in the ratio 10:1:1. 



 

 
Figure 9. Schematic and parameters of models for 2D Cross-hole survey. 

The cross-hole survey data were processed using PhResNet-n because they contained 
non-image data. Figure 10 shows the inversion results for two low-resistivity targets that were 
close to each other. Horizontal resolution using cross-hole ERT is generally poor. When the 
horizontal distance between two targets at the same depth is small, the imaging results of the two 
targets can be easily combined using linear inversion. Because the inversion process falls into a 
local optimum, it is difficult to jump out of the local optimum, even if the number of iterations is 
increased. The unsupervised inversion network PhResNet-n had a strong global convergence 
ability because it was trained using a large number of samples. PhResNet-n can accurately 
discriminate between and image multiple objects. As shown in Figure 10, the results obtained 
using PhResNet-n were close to the actual model in terms of size, shape, and resistivity values. 

 
Figure 10. Inversion comparison test using cross-hole ERT with two closely targets. 

4 Model Test 
Unsupervised learning inversion was applied to real-world data using the transfer 

learning method described in Section 2.4. The specific process followed was: The modeling 
parameters were determined according to the electrode coordinates, observation devices, and 
detection requirements. Training datasets with large amounts of synthetic data were constructed 
based on the geology and the potential anomalies of the surveyed area. ResinvNet was pre-
trained on synthetic datasets to obtain the inversion capabilities for synthetic data. Based on this, 
the network was retrained using the actual data from the previous stage. Finally, the trained 
PhResNet was applied to the new data. The final resistivity model was generated after multiple 
iterations. 



 

4.1 Data Preparation 
We designed a model test to invert the low-resistivity anomalies using cross-hole ERT. 

The low-resistivity body is designed to be the simplest block rather than a complex shape. The 
application of unsupervised learning inversion to real-world data is still at the exploratory stage. 
The number of abnormal bodies found was 1 or 2. The ratio of the model to the engineering 
prototype was 1:20. A comparison of geometric factors is presented in Table 1. 

Table. 1 Comparison of different geometric factors of the model in prototype and experiment. 

Geometric factors Engineering prototype (m) test model (m) 
Model size 16×16×32 0.8×0.8×1.6 

Borehole depth 32 1.6 
Borehole spacing 16 0.8 
Electrode spacing 1.0 0.1 

The model design is shown in Figure 11(a) and the corresponding photographs are shown 
in Figure 11(b). The survey area was 0.8 m (length) × 0.8 m (width) × 1.6 m (depth). It was 
connected to the ground on all four sides, which helped mitigate the boundary effects in the 
electrical tests. Four survey lines were arranged in the survey area. A total of 4×16 electrodes 
were used, with a spacing of 0.1 m on the same survey line. For better coupling, the electrodes 
were packed with wet clay. The survey area was filled with fine-grained soil. The background 
resistivity ranged from 200~400 Ohm·m. 

  
Figure 11. Schematic diagram of model test of aquifer detection 

Clay, salt, and water were used to simulate anomalous bodies. The size of each abnormal 
body was 0.2 m× 0.1 m× 0.1 m. Its resistivity value was maintained at 20~50 Ohm·m by 
controlling the material ratio. The final imaging area consisted of the two diagonal faces of the 
survey area (#1–#3 and #2–#4). Fifty sets of survey data were collected by placing the 
anomalous bodies horizontally or vertically at different depths. A photograph of the test process 
is presented in Fig. 12. 



 

 
Figure 12. Photos of abnormal body filling process. 

4.2 Results 
The imaging results obtained using unsupervised learning inversion and linear inversion 

are shown in Figure 13. The black lines on both sides are the survey lines (located at X=0 m and 
X=1.15 m). The black dots on the measurement line represent the electrodes. The white dotted 
box indicates the actual location of the anomalous body . The results of the linear inversion could 
not differentiate the two anomalies. PhResNet-n effectively located and imaged the two 
abnormal bodies with an error of only 0.1 m. In contrast, the imaging results obtained using 
PhResNet-n were relatively close to real model. 

 
Figure 13. Comparison of inversion results using different models. (a) Unsupervised 

learning inversion (PhResNet-n), (b) Linear inversion. 

5 Field survey 
We conducted a field-test application study to verify the effectiveness of the 

unsupervised learning inversion method in practical engineering. 

5.1 Engineering overview and detection scheme 
The survey area was located in a water diversion project in northwest China. The tunnel 

was excavated using a drill-and-blast method. The survey site in the tunnel was located at the 
bottom of the river. The top of the tunnel was approximately 271 m from the riverbed. There are 
many faults in this area, and groundwater is recharged by rivers. Therefore, the area is prone to 
water inrush disasters during tunnel excavations. Located 12 m in front of the survey site, water 



 

flow occurs in an advanced borehole. The water flow rate reached 1300 m3/h. This water may 
have originated from fissure water because the surrounding rock was intact. The water gushing 
speed decreased after full curtain grouting. After the slurry solidified, the tunnel continued to be 
excavated to the survey site. We performed cross-hole ERT using probe holes to identify 
potential adverse geology. 

A schematic of the advanced survey is shown in Figure 14. The tunnel face was 7.8 
m×7.8 m. Probe holes were designed in the corners to increase the imaging range. The distances 
in the horizontal and vertical directions of the probe holes were 5.0 m and 4.0 m, respectively. 
The probe holes were named H1-H4 clockwise. A total of 16×4 electrodes were used, with a 
spacing of 1.0 m. The survey lines penetrated the probe hole using a pvc tube. 

 
Figure 14. Schematic diagram of advanced survey and field scene. 

5.2 Inversion and excavation results 
The noise level of the data was high owing to the complex tunnel environment. 

Therefore, the regularization factor of the smooth constraint was maintained at a high value to 
guarantee convergence. The inversion results are shown in Figure 15. In the range of 0~8 m, the 
resistivity value of the geological body was high but lower than the normal resistivity value of 
dry rock. The corresponding excavation site is shown in Figure 16(a). The surrounding rock in 
this area was wet. We speculate that the area was filled with water in the early stage, but the 
hidden danger of the water effluent was eliminated after grouting treatment. In the range of 8–10 
m, there are distinct low-resistivity regions in both the imaging results (H1-H3 and H2-H4). A 
small fault was discovered at this location during an earlier investigation. The fault was then 
treated using approximately 150 t of grouting. Therefore, we speculate that fissure water still 
exists at this location. The corresponding excavation site is shown in Figure 16(b). We observed 
consolidated slurry and fissure water, which is consistent with the inversion results. There was 
no obvious low-resistivity anomaly at 10~16 m. The area was excavated later, with no water 
coming out. 



 

 
Figure 15. The inversion results of advanced cross-hole ERT. 

 
Figure 16. Geological conditions revealed by excavation 

It should be noted that the effect of transfer learning is limited because of the lack of data 
in the early stages of the project. This rendered the unsupervised inversion network insufficient 
for processing real-world data. In addition, owing to the high level of data noise, the imaging 
resolution was low. The inversion result could only roughly reflect the range of the abnormal 
body but could not be imaged in detail. 

6 Discussion 
Unlike the model misfit in the original method, the data misfit is more beneficial for the 

network to learn the physical laws. As shown in Equation 6, the partial derivatives of the loss 
function based on the model misfit to the model parameters are independent of each other: In 
other words, the update of each model parameter is free. Training is prone to overfitting owing to 
the lack of constraints.  

( ) ( )( )Label T Label
L_m =

i i i i

i i

∂ − −∂
∂ ∂

m m m m

m m
                                           (6) 

As shown in Equation 7, Ndata represents the total amount of data: the partial derivatives 
of the model parameters based on the loss function of the data misfit are related to all the data. 
The data distribution was constrained by the physical laws of the electric field. In other words, 
the updates of the model parameters were indirectly constrained by the physical laws of the 
electric field. Therefore, the network is expected to learn the physical laws of the electric field 
driven by a data misfit through a large number of training samples. 
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7 Conclusions 
In this study, we developed a new inversion method based on unsupervised learning to 

process the DC resistivity survey data. This method uses a data misfit as a loss function to guide 
the training of the inversion network by embedding physical rules (of forward modeling) into the 
network structure. In addition, a dynamic smoothness constraint was added to the loss function to 
stabilize the training process. Based on this, a transfer learning method was proposed to improve 
the ability of the inversion network to deal with complex realistic exploration scenarios. The 
results of the numerical simulations and model tests demonstrate that unsupervised learning 
inversion can accurately reconstruct nonlinear mapping from the input (potential or apparent 
resistivity) to the output (resistivity model). 

Compared with the existing DL-based resistivity inversion methods, the method we 
devised eliminates the dependence on the real resistivity model in the training set. Considering 
that a real resistivity model is difficult to obtain, this method is more suitable for real survey 
scenarios. Compared to the traditional linear method, the proposed method has two advantages: 
(1) The inversion time of the trained network is only 1 s. An efficient processing speed can 
satisfy engineering requirements, especially for large-scale surveys. (2) It has a global search 
ability and no longer relies on the initial model. However, with a limited number of studies, it is 
too early to conclude that unsupervised learning inversion is superior to traditional linear 
methods. Furthermore, network training requires millions or even billions of forward models, 
whereas the linear method requires only dozens of forward models. Such an efficiency 
disadvantage can be mitigated using computer hardware and algorithms. 

Real survey data need to be accumulated for future studies. The effect of transfer learning 
was improved by building a high-quality sample library. Finally, we believe that this method can 
be effectively applied to real survey scenarios. 
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