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Abstract—LiDAR and camera, as two different sensors, supply
geometric (point clouds) and semantic (RGB images) information
of 3D scenes. However, it is still challenging for existing methods
to fuse data from the two cross sensors, making them com-
plementary for quality 3D object detection (3OD). We propose
ImLiDAR, a new 3OD paradigm to narrow the cross-sensor
discrepancies by progressively fusing the multi-scale features of
camera Images and LiDAR point clouds. ImLiDAR enables to
provide the detection head with cross-sensor yet robustly fused
features. To achieve this, two core designs exist in ImLiDAR.
First, we propose a cross-sensor dynamic message propagation
module to combine the best of the multi-scale image and point
features. Second, we raise a direct set prediction problem that
allows designing an effective set-based detector to tackle the
inconsistency of the classification and localization confidences,
and the sensitivity of hand-tuned hyperparameters. Besides, the
novel set-based detector can be detachable and easily integrated
into various detection networks. Comparisons on both the KITTI
and SUN-RGBD datasets show clear visual and numerical im-
provements of our ImLiDAR over twenty-three state-of-the-art
3OD methods.

Index Terms—ImLiDAR, 3D object detection, Cross sensors,
Dynamic message propagation, Set-based detector.

I. INTRODUCTION

With the rapid development of autonomous driving, pro-
found progress has been made in 3D object detection from
monocular images [1]–[3], stereo cameras [4]–[6] and LiDAR
point clouds [7]–[9]. Among these sensors, LiDAR provides
depth and geometric structure information, but its sparsity is
causing degraded performance on small-object and long-range
perception. Camera images usually possess richer color and
semantic information to perceive objects while they lack the
depth information for accurate 3D localization. This provides
an intriguing and practical question of how to present effective
fusion of camera images and LiDAR point clouds for quality
3D object detection.

Recent years have witnessed considerable efforts of infor-
mation fusion from cross sensors. However, it is still non-
trivial to fuse the representations of camera images and LiDAR
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point clouds, due to their extremely different data characteris-
tics. According to different ways of fusion, existing methods
are divided into three categories. (1) Image-level methods
adopt a cascade strategy by exploiting image annotations to
fuse camera images and point clouds in different stages [10],
[13], [14]. (2) BEV-level methods jointly reason over camera
images and the generated BEV data from point clouds [11],
[15]–[17]. (3) Feature-level methods attempt to directly fuse
camera images and point clouds by sharing the extracted
features between 2D and 3D networks [12], [18]–[22]. Among
the three categories, the image-level methods require image
annotations, i.e., 2D bounding boxes, and their performance
is easily restricted by each single stage. And the BEV-level
methods require generating the BEV data via perspective
projection and voxelization; as a result, they usually establish a
relatively coarse correspondence between the image and voxel
features, and suffer from the loss of 3D information when
converting point clouds into the BEV data.

A recent trend in cross-sensor 3D object detection, which
we call feature-level fusion, is to directly fuse the image and
point features extracted by 2D and 3D networks. However,
when encountering challenging (hard) cases such as under-
exposed and occluded instances, the performance of existing
feature-level fusion methods is still far from satisfactory, due
to two major problems. First, their straightforward fusion
strategies assign no weights or coarse weights learned within
limited receptive fields to different features. During fusion,
there are no crucial clues to keep the original geometric
structure without the information loss and avoid introducing
new interfering information. Second, they heavily rely on
the post-processing step of non-maximum suppression (NMS)
to remove redundant and near-duplicate results, leading to
the inconsistency of the classification confidence and local-
ization confidence. Moreover, NMS requires multiple hand-
tuned hyperparameters. For example, a lower threshold of
the predefined IoU misses highly overlapped objects while a
higher one introduces more false positives.

To address the above issues, we present a novel cross-
sensor dynamic message propagation network, dubbed ImLi-
DAR, which contains two novel designs for quality 3D object
detection. First, we propose a cross-sensor dynamic message
propagation (CDMP) module. CDMP targets effective and ef-
ficient fusion of camera images and LiDAR point clouds with
two key dynamic properties. They are dynamically sampling
feature nodes for capturing rich geometric information and
filtering harmful semantic information from data of two cross
sensors, and dynamically predicting filter weights and affinity
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(a) Image (b) F-Pointnet [10] (c) MMF [11] (d) EPNet [12] (e) Ours

Fig. 1. Visualization results by different categories of fusion methods, i.e., the image-level, BEV-level and feature-level methods. For the real outdoor scenes
where the underexposed instance (row 1) and the occluded instance (row 2) exist, ImLiDAR shows clear visual improvements over the three prevailing
cross-sensor methods. From (a) to (f): (a) the camera image, and (b-e) the 3OD results of F-Pointnet, MMF, EPNet and our ImLiDAR. Red box and green
box denote GT and the predicted bounding box, respectively.

matrices as clues for propagating useful image features to
enrich the original point features. Second, we formulate a
direct set prediction problem and accordingly design a set-
based detector to select high-quality 3D bounding boxes with
both high classification and localization confidence. Such a
set-based detector can avoid the post-processing of NMS, and
it can be easily implemented in various detection networks.

Although ImLiDAR does not need additional image anno-
tations, the complex BEV data, and the commonly used NMS
post-processing step, it usually exhibits better performance
over all prevailing cross-sensor methods. For example, when
encountering real outdoor scenes (see Fig. 1), cutting-edge
models suffer from the condition of poor illuminations and
heavy occlusions, while ImLiDAR will not. More results, in
terms of visual quality and quantitative accuracy, will be found
in Section V. In summary, our main contributions are three-
fold:
• We propose a novel cross-sensor 3D object detection

paradigm, namely ImLiDAR, with two core designs, i.e.,
a cross-sensor dynamic message propagation module and
a set-based detector. Extensive experiments in both the
outdoor and indoor scenes show clear improvements of
ImLiDAR over both the LiDAR-based and cross-sensor
methods.

• We propose a cross-sensor dynamic message propagation
module, combining the best of image and point features
without the BEV data or 2D bounding boxes.

• We propose a set-based detector to guarantee the consis-
tency between the classification confidence and localiza-
tion confidence and select high-quality proposals without
non-maximum suppression.

II. RELATED WORK

We first review image-based, point cloud-based and cross-
sensor methods for 3D object detection. Subsequently, we
introduce the recent advance of graph neural networks.

A. Image-based 3D Object Detector

Many methods focus on camera images, e.g., monocular
[23]–[25] and stereo images [2], [5], [26]. They take RGB

images as input to generate 2D bounding boxes and and
estimate the corresponding 3D bounding boxes [1], [3], [27].
Another way is to conduct depth estimation and design multi-
level fusion methods to fuse image features with the depth
maps [2], [28], [29]. Particularly, DSGN [30] provides a simple
and effective one-stage stereo-based 3D detection pipeline that
jointly estimates the depth and detects 3D objects. However,
the performance of the image-based methods is bounded due
to the absence of depth information.

B. Point Cloud-based 3D Object Detector

3D object detection methods usually exploit LiDAR point
clouds, which provide spatial geometry information to locate
the objects. They can be divided into voxel-based [9], [31],
[32], and point-based methods [12], [33]–[37]. Voxel-based
models [9], [38]–[40] group point clouds into regular voxels
and employ 3D CNNs to learn voxel features for the generation
of 3D bounding boxes. To remove 3D CNN layers, PointPillars
[31] elongates voxels into pillars that are arrayed in a BEV per-
spective. Point-based approaches [12], [33], [41]–[45] sample
a fixed number of points as key points via point set abstraction,
and aggregate point features around key points with ball query.
Recently, most of point-based methods [12], [33], [43]–[45]
formulate a two-stage detection framework, which consists of
a region proposal network (RPN) to predict the foreground
points and generate 3D proposals, and a refinement network
to refine the coarse bounding boxes from RPN. However, all
point cloud-based methods suffer from the sparsity of points.

C. Cross-sensor 3D Object Detector

In realistic self-driving situations, it is insufficient to per-
form object detection through single types of sensors. Thus,
many cross-sensor techniques are proposed to alleviate the
shortcomings of single-sensor data. Current studies are cat-
egorized into three groups based on different ways of fusion.

Image-level fusion. Image-level approaches usually exploit
camera images in the first stage and reason in LiDAR point
clouds only at the second stage [10], [13], [14], [46]. F-
PointNet [10] projects 2D detection results to 3D space to
generate 3D frustums and then adopt PointNet [41] to regress
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corresponding 3D boxes from the frustums. V2-SENet [13]
focuses on utilizing the front view images and frustum point
clouds to generate 3D detection results. For these wisdom, the
overall performance is bounded by each stage, since they still
depend on single sensors.

BEV-level fusion. MV3D [16] is the pioneering attempt to
fuse the bird’s eye view (BEV) and front view (FV) represen-
tations of cross-sensor data. The follow-up BEV-level methods
[11], [15]–[17] remove the FV branch and only reason over
the BEV data and camera images. Confuse [15] designs a
continuous fusion layer to achieve the voxel-wise alignment
between the BEV and image feature maps. However, the
complex BEV data generation inevitably causes computation
costs and the information loss.

Feature-level fusion. A new fashion trend is to fuse each
point with the corresponding image pixel instead of fusing the
BEV data and camera images [12], [18]–[22]. For example,
EPNet [12] designs an end-to-end framework with LiDAR-
guided image fusion modules, which assign coarse weights to
image features to guide the feature fusion. Similarly, attention
fusion modules [18] and gated fusion modules [22] are devel-
oped to produce fused features. These methods do not require
the generation of 2D bounding boxes and complex BEV, but
their fusion manners cannot fully exploit the complementary
information of LiDAR point clouds and camera images.

Please note that the proposed ImLiDAR is different from all
the above cross-sensor approaches largely, since it combines
the best of multi-scale features of camera images and LiDAR
point clouds, and does not require any post-processing step of
NMS.

D. Graph Neural Networks

Graph neural network [47] have exhibited its powerful
ability in many vision tasks, because of their robust capacity of
non-local feature aggregation. However, these local-connected
graphs can only capture partial long-range contextual infor-
mation needed for complex vision tasks such as segmentation
[48]–[50] and detection [35], [51]–[53]. Differently, Zhang et
al. [54] propose an efficient dynamic graph learning model
based on the message propagation mechanism to solve this
problem. In this work, we also design a cross-sensor dynamic
message propagation (CDMP) module to effectively fuse the
LiDAR point features with the corresponding image features,
resulting in more comprehensive and discriminative feature
representations.

III. OVERVIEW

Cross-sensor fusion has shown its superiority in various ap-
plications. Primarily, point clouds provide geometric structure
information of 3D scenes, and camera images further enrich
the point clouds by fulfilling semantic information of the 3D
scenes. To effectively fuse the image and point features in
multiple scales for quality 3D object detection, we propose
a new 3D object detection paradigm, called ImLiDAR. The
top level of ImLiDAR, consisting of a two-stream region
proposal network (RPN), a set-based detector, and a refinement
network, is outlined in Fig. 2.

Two-stream region proposal network (RPN). The two-
stream RPN consists of a point stream, an image stream, and
cross-sensor dynamic message propagation (CDMP) modules.
The two-stream RPN combines the best of image and point
features in multiple scales for 3D object detection, as discussed
in Section IV-A.

Set-based detector. Considering that NMS will degrade the
detection performance, we newly design a set-based detector
to filter out redundant and near-duplicate results to avoid such
an NMS step in Section IV-B.

Refinement network. The proposals produced by the set-
based detector are fed into the refinement network for further
box refinement, leading to more precise 3D object detection
results, as discussed in Section IV-C.

A. Preliminary

Despite the success of graph networks in 2D/3D single-
sensor object detection tasks, the attempt to combine advan-
tages from both point clouds and camera images remains
scarce. In Section IV-A, we introduce a cross-sensor dynamic
message propagation (CDMP) module to fuse multi-scale
features of camera images and LiDAR point clouds. Before
going into the details, we will give some basic knowledge of
graph message passing used in CDMP.

Graph message passing. Given an input feature map
interpreted as the latent feature vectors H = {hi}Ni=1, where
N denotes the number of pixels, the goal of the message
passing mechanism is to refine the latent feature vectors H
by extracting hidden structured information among the feature
vectors at different pixel locations. Therefore, the common
message passing network usually converts such feature map
into a graph domain by constructing a feature graph G =
{V,E,A}, where V denotes the node set represented by the
above latent feature vectors, i.e., V = {hi}Ni=1, E is the
edge set, and A ∈ RN×N is a binary or learnable matrix
with self-loops describing the connections between nodes.
The common message passing phase, composed of a message
calculation step M t and a message updating step U t, takes T
iterations. For the latent feature vector h(t)i at the iteration t,
it dynamically samples K nodes to connect and form a local
field vi ⊂ V, vi ∈ RK×C ,K � N , where C denotes the
dimension of the vector. The message calculation step for the
node i is defined as

m
(t+1)
i = M t(Ai,j , {h(t)1 , ..., h

(t)
K }, wj)

=
∑

j∈N (i)

Ai,jh
(t)
j wj

(1)

where Ai,j denotes the connection relationship between latent
nodes h(t)i and h(t)j , N (i) represents a self-included neighbor-
hood of the node h(t)i , and wj ∈ RC×C is a transformation
matrix for message calculation on the hidden node h(t)j . Then
the message updating step U t obtains the updated latent fea-
ture vector h(t+1)

i with a linear combination of the calculated
message m(t+1)

i and the original feature vector h(t)i at the node
position i:

h
(t+1)
i = U t(h

(t)
i ,m

(t+1)
i ) = σ(h

(t)
i + αmi m

(t+1)
i ) (2)
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Fig. 2. The pipeline of our ImLiDAR. ImLiDAR consists of three cascaded branches, i.e., the two-stream RPN, the set-based detector, and the refinement
network. Concretely, the two-stream RPN contains an image stream for extracting image features, a point stream for extracting point features, and well-designed
CDMP modules to fuse the geometric point features and semantic image features for enhancing feature representations. Then the set-based detector attempts
to select high-quality 3D proposals without the NMS post-processing, and feeds them into the refinement network for further box refinement, leading to more
precise 3D object detection results.

GT
LiDAR-Only
Ours (+ Image)

Dynamic Message Propagation 

Learned
Weight&Affinity

(a) (b)

(c) (d)

Fig. 3. Illustration of the cross-sensor dynamic message propagation (CDMP)
module. CDMP first dynamically samples context-aware nodes in the LiDAR
point features (a) and point-wise image features (c), which are extracted by
projecting the source LiDAR (a) onto the image plane (b). Then it predicts
hybrid image-dependent filter weights and affinity matrices as clues for
propagating semantic information to enrich the point features. (d) demon-
strates that our ImLiDAR can effectively fuse the image and point features,
leading to significant improvement of the 3D object detection performance.
Note that white, red and green boxes represent the ground truth, predicted
bounding boxes of the LiDAR-based detector [33] and ours (LiDAR+Image),
respectively.

where αmi denotes a learnable parameter to scale the message,
and σ(.) is a non-linearity function, e.g., ReLU. By propagat-
ing the message on each node with T steps, the module finally
obtains the refined features. Especially, we fuse the image and
point features via the graph message passing mechanism as:

h
(t+1)
i = σ(h

(t)
i ||α

m
i m

(t+1)
i ) (3)

where || denotes the channel-wise concatenation operation.

IV. IMLIDAR

ImLiDAR consists of a two-stream RPN, a set-based detec-
tor, a refinement network, and the defined loss function.

A. Two-stream RPN

Our two-stream RPN consists of a point stream, an im-
age stream, and cross-sensor dynamic message propagation
(CDMP) modules in Fig. 2. The point stream and image
stream are designed for extracting multi-scale geometric point
features and semantic image features, respectively. The CDMP
modules are employed to fuse the image and point features in
different scales, resulting in more robust and discriminative
representations.

Image stream. The image stream, depicted in Fig. 2, takes
camera images as input to extract multi-scale semantic image
features. Concretely, the architecture of the image stream con-
sists of four feature extract blocks (FEBs), which both include
two 3×3 convolution layers followed by a batch normalization
layer and a ReLU activation function. F ki (k = 1, 2, 3, 4)
denotes the multi-scale features extracted from four FEBs,
which provide adequate semantic information to enrich the
point features in different scales. At the end of the image
stream, we feed these multi-scale image features into four
parallel transposed convolution layers to obtain image features
with the same size as the original image, which are used to
enrich the final point features, resulting in the generation of
more high-quality proposals.

Point stream. For the point stream, we employ PointNet++
[42] as our backbone network. The point stream takes LiDAR
point clouds as input and utilizes four set-abstraction (SA)
modules with multi-scale grouping to subsample points into
groups with the sizes of 4096, 1024, 256, 64, and four feature
propagation (FP) modules to recover the point resolution.
Especially, F ks (k = 1, 2, 3, 4) and F kp (k = 1, 2, 3, 4)
represent the outputs of SA and FP layers in different scales,
respectively. With the aid of CDMP (1× 1) modules, we can
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Fig. 4. Illustration of CDMP in a single scale pattern. We first project the
LiDAR points onto the 2D camera image to obtain the corresponding point-
wise image features. Then we sample the dynamic nodes from the image and
point feature graphs, and predict the filter weights and affinity matrices from
image features to propagate the semantic message.

effectively fuse the point features F ks with the image features
F ki at different levels. Further, we apply the CDMP (1 × 4)
module at the end of the point stream, which enables the
point feature vectors F 4

p to possess different level semantic
information from the image features F ki (k = 1, 2, 3, 4).
Similar to PointRCNN [33], given the final point features, we
first append a box regression head for 3D proposal generation
and a segmentation head for foreground point segmentation.
Moreover, we append an additional match head to estimate
the match score for the set-based detector. The match scores
mean that the probability of each predicted 3D bounding box
is retained by the set-based detector.

Cross-sensor dynamic message propagation (CDMP). To
combine the best of multi-scale image and point features, we
design a novel CDMP module. The more detailed scheme of
CDMP is further depicted in Fig. 3. In particular, it includes
three steps: (1) generating the fine-grained point-wise cor-
respondence and point-wise image features; (2) dynamically
sampling on image and point feature graphs to select the most
object-relevant nodes; and (3) dynamically predicting hybrid
filter weights and affinity matrices for message propagation.

The CDMP module in a single scale pattern is shown
in Fig. 4. First, we project the LiDAR points onto the 2D
camera image based on the calibration matrix, which is
usually provided by the benchmark datasets, to generate a finer
point-wise correspondence between LiDAR points and camera
images. Concretely, for a particular point p(x, y, z) in the point
cloud, we obtain its corresponding position p′(x, y) in the
camera image. Then we input both the image feature map and
sampling position p′ into the bilinear interpolation to produce
point-wise image features at the continuous coordinates.

Based on the fine-grained point-wise image features, CDMP
possesses two novel dynamic properties, i.e., dynamically sam-
pling feature nodes and dynamically predicting filter weights
and affinity matrices. We regard the image feature map and
point feature map as two graphs. For each node vi in the point
feature node set V = {vi}N1 , where N is the total number
of pixels, the sampling number K determines its receptive
field. To adaptively sample relevant nodes for vi, we denote
∆di,j ∈ RD as the predicted walk, which makes the module
walk around to sample the relevant node vi,j with j ∈ N (i),
where N (i) contains K number of sampled nodes for vi and
D = 2 represents the space dimension along the height and
width. Especially, we describe such node walk as a matrix

transformation:

∆di,j = Wi,jhi + bi,j (4)

where Wi,j and bi,j both are matrix transformation parameters
learned on point graph nodes, and hi denotes the latent
vector for vi. Due to the difference between point and image
modalities, we generate another walk ∆d̄i,j for uniformly
neighboring nodes on the image feature graph. The dynamic
walk ∆di,j for each point feature node, as well as ∆d̄i,j
for each image feature node, is generated by applying 3 ×
3 convolution layers according to Equation 4. Based on the
above random walks, we adopt the deformable convolution
[55] to obtain dynamic sample nodes v̂li,j and v̄li,j from point
and image feature graphs at the level l, respectively. This
dynamically sampling operation enables to efficiently gather
long-range context information and only select a subset of the
most important feature nodes in the two graphs.

Based on the sampled image feature nodes v̄li,j , we apply
3×3 convolution layers to generate the affinity matrix Ali,j
and transformation matrix wli,j , which are used as clues for
propagating the useful image features to enhance the point
features, which can be formulated as:

{Ali,j ;wli,j} = W̄ l
i,j v̄

l
i,j + b̄li,j (5)

where W̄ l
i,j and b̄li,j are matrix transformation parameters gen-

erated by dynamic sample image nodes. Then the calculated
message is summarized as:

mt+1
i =

∑
l∈L

∑
j∈N (i)

βlA
l
i,j ĥ

l,(t)
j wli,j

=
∑
l∈L

∑
j∈N (i)

βlA
l
i,jδ(ĥ

l,(t)
j |V ; j; ∆di,j)w

l
i,j

(6)

where L denotes the layer from different level stages, ĥl,(t)j

is the latent vector for dynamic point feature nodes v̂li,j
calculated by ∆di,j over the whole nodes V of the point
graph. βl and δ(.) represent the balance weight and bilinear
sampler, respectively. In CDMP (1× 4) module, all messages
are calculated as Equation 6 using group convolution layers
and concatenated into a 1×1 convolution layer. Then the
result is concatenated again with the original point features
to obtain the final refined point features with semantic image
information, as described in Equation 3.

B. Set-based Detector

Most of existing 3D object detectors predict a larger number
of bounding boxes than the number of the real objects in the
scene. In view of such fact, non-maximum suppression (NMS)
is often a necessary post-processing step.

NMS includes two parts: (1) Selecting 3D bounding boxes
with the maximum scores after ranking the proposals accord-
ing to the classification scores. However, NMS may filter out
the bounding boxes with low classification scores but large
overlaps; this leads to the inconsistency of the classification
confidence and localization confidence. (2) Removing any
3D bounding box which possesses an overlap greater than a
predefined IoU threshold. It makes the current detectors with a
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dilemma: a lower threshold leads to missing highly overlapped
objects while a higher one introduces more false positives in
crowded scenes.

Motivated by DETR [56], we design a set-based detector
to address the above problems caused by NMS. We design
three sets of bounding boxes: the set of predicted 3D bounding
boxes Bpre = {b̄}M1 from RPN, the set of GT bounding boxes
Bgt = {b}N1 , and the set of output bounding boxes Bout =
{b̃}N1 , where M and N represent the number of bounding
boxes, and M � N . The number N is larger than or equal to
the number of the real objects in the scene. To obtain the high-
quality bounding box set Bout, we perform a bipartite graph
matching, which is simpler and more effective than NMS. We
compute the match cost for each predicted box b̄ with each
ground truth box b.

Bipartite matching. We define a match cost for a pair of
predicted box b̄ and GT box b, which is formulated as:

Cmatch(b̄, b) = − log(c× Area(b̄ ∩ b)
Area(b̄ ∪ b)

) (7)

where c denotes the classification confidence for b̄. We com-
pute the optimal bipartite matching between all the predicted
boxes b̄ and GT boxes b using the Hungarian algorithm [57].
Therefore, each GT box b is successfully matched with a
predicted 3D bounding box b̄ with both large overlaps and high
classification possibilities. We regard these matched predicted
3D bounding boxes as positive samples and the others as
negative samples. During the training step, these positive
samples constitute the output high-quality bounding boxes
Bout, which are fed into the refinement network. We also
generate a match label vector M̃ ∈ RM×1 according to the
match results. Particularly, if the predicted 3D bounding box
is a positive sample, its corresponding value of M̃ will be set
to 1, and the others are set to 0. Then we adopt the focal loss
[58] between the match label and match score from the match
head of RPN:

LSD = −α(1− cm)γ log cm (8)

where cm represents the probability of the predicted box b̄
is the positive sample, and α = 0.25, γ = 2 are kept as in
[58]. During the testing step, we directly select 3D bounding
boxes with the highest match score to constitute Bout for the
refinement network.

C. Refinement Network

We feed the set of proposals Bout from the set-based
detector into the refinement network to refine the box locations
and orientations for final predictions. Similar to PointRCNN
[33], for each input proposal, we randomly select 512 points
as its 3D RoI feature descriptor. For those proposals with
less than 512 points, the descriptor is padded with zeros.
The refinement network is composed of three SA layers for
extracting a compact global descriptor for each 3D ROI,
and two 1×1 convolution layers as two detection heads for
classifying and regressing the final 3D objects.

D. Total Loss Function

We present the loss functions. We adopt a multi-task loss
function for jointly optimizing the two-stream RPN, the set-
based detector and the refinement network, which can be
defined as:

Ltotal = Lrpn + Lrcnn + λLSD (9)

{Lrpn;Lrcnn} = Lcls + Lreg (10)

where Lrpn and Lrcnn represent the training objective for
the two-stream RPN and the refinement network. They both
contain a classification loss and a regression loss. Concretely,
we adopt the focal loss [58] as the classification loss to balance
the positive and negative samples as:

Lcls = −α(1− ct)γ log ct (11)

where ct represents the probability of the point in considera-
tion belonging to the ground truth category. And we keep the
default settings α = 0.25, γ = 2 as suggested by [58].

In the LiDAR coordinate system, a 3D bounding box is
represented as (x, y, z, h, w, l, θ), where (x, y, z) is the object
center location, (h,w, l) is the object size, and θ denotes the
object orientation. Following PointRCNN [33], we adopt the
bin-based regression loss as our regression loss function to
estimate 3D bounding boxes of objects. Concretely, we split
the neighboring area of each foreground point into several
bins. The bin-based loss first predicts which bin b̃u the center
point belongs to, and regresses the residual offset r̃u within
the bin. Thus, the regression loss is formulated as:

Lreg =
∑

u∈x,z,θ

E(b̃u, bu) +
∑

u∈x,y,z,h,w,l,θ

S(r̃u, ru) (12)

where E and S denote the cross entropy loss and the smooth
L1 loss, respectively. bu and ru denote the ground truth of the
bins and the residual offsets.

V. EXPERIMENTS

Dataset and metric. We conduct experiments on the KITTI
dataset [79] and the SUN-RGBD dataset [80]. KITTI is an
outdoor standard benchmark dataset, which consists of 7,481
frames for training and 7,518 frames for testing. Following the
protocol of [10], [33], we split the 7,481 frames into 3,712
frames for training and 3,769 frames for validation. Three
levels of difficulty are defined in the benchmark according to
size, occlusion, and truncation, i.e., Easy, Moderate, and Hard.
Besides, our results are reported for the car, pedestrian and
cyclist categories and the IoU thresholds are set to 0.7, 0.5, and
0.5, respectively. SUN-RGBD is an indoor benchmark dataset,
which includes 10,335 images with 700 annotated object
categories, including 5,285 images for training and 5,050
images for testing. The IoU thresholds for all ten categories
are set to 0.25. The common Average Precision (AP) is used as
our evaluation metric following the official evaluation protocol
of the KITTI dataset and the SUN-RGBD dataset. Especially,
the 40 recall positions-based metric AP |R40 has been utilized
by the KITTI dataset instead of AP |R11 as before.

Implementation details. Each LiDAR point cloud is
cropped to the range of [-40, 40], [-1, 3], [0, 70.4] meters
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TABLE I
QUANTITATIVE COMPARISONS WITH STATE-OF-THE-ART METHODS ON THE TEST SET OF THE KITTI DATASET.

Car(IoU=0.7) Pedestrian(IoU=0.5) Cyclist(IoU=0.5)Method Modality Easy Moderate Hard mAP Easy Moderate Hard mAP Easy Moderate Hard mAP

SECOND [39] LiDAR 87.44 79.46 73.97 80.29 - - - - - - - -
PointPillars [31] LiDAR 82.58 74.31 68.99 75.29 51.45 41.92 38.89 44.09 77.10 58.65 51.92 62.56
PointRCNN [33] LiDAR 86.96 75.64 70.70 77.76 47.98 39.37 36.01 41.12 74.96 58.82 52.53 62.10

STD [59] LiDAR 87.95 79.71 75.09 80.91 53.29 42.47 38.35 44.70 78.69 61.59 55.30 65.19
3DSSD [60] LiDAR 88.36 79.57 74.55 80.82 54.64 44.27 40.23 46.38 82.48 64.10 56.90 67.82
SA-SSD [61] LiDAR 88.75 79.79 74.16 81.03 - - - - - - - -

PV-RCNN [43] LiDAR 90.25 81.43 76.82 82.83 52.17 43.29 40.29 45.25 78.60 63.71 57.65 66.65
MGAF-3DSSD [62] LiDAR 88.16 79.68 72.39 80.07 50.65 43.09 39.65 44.46 80.64 63.43 55.15 66.40

HVPR [63] LiDAR 86.38 77.92 73.04 79.11 - - - - - - - -
CIA-SSD [64] LiDAR 89.59 80.28 72.87 80.91 - - - - - - - -

CT3D [65] LiDAR 87.83 81.77 77.16 82.25 - - - - - - - -
SASA [66] LiDAR 88.76 82.16 77.16 82.69 - - - - - - - -

SVGA-Net [67] LiDAR 87.33 80.47 75.91 81.23 48.48 40.39 37.92 42.26 78.58 62.28 54.88 65.24
MV3D [16] LiDAR + RGB 74.97 63.63 54.00 64.20 - - - - - - - -

Confuse [15] LiDAR + RGB 83.68 68.78 61.67 71.38 - - - - - - - -
F-Pointnet [10] LiDAR + RGB 82.19 69.79 60.59 70.86 50.53 42.15 38.08 43.59 72.27 56.12 49.01 59.13

MMF [11] LiDAR + RGB 88.40 77.43 70.22 78.68 - - - - - - - -
3D-CVF [22] LiDAR + RGB 89.20 80.05 73.11 80.79 - - - - - - - -

PointPainting [68] LiDAR + RGB 82.11 71.70 67.08 73.63 50.32 40.97 37.84 43.05 77.63 63.78 55.89 65.77
EPNet [12] LiDAR + RGB 89.81 79.28 74.59 81.23 - - - - - - - -

Fast-CLOCs [69] LiDAR + RGB 89.10 80.35 76.99 82.14 52.10 42.72 39.08 44.63 82.83 65.31 57.43 68.53
Focals Conv [70] LiDAR + RGB 90.55 82.28 77.59 83.47 - - - - - - - -

CAT-Det [71] LiDAR + RGB 89.87 81.32 76.68 82.62 54.26 45.44 41.94 47.21 83.68 68.81 61.45 71.31
ImLiDAR LiDAR + RGB 90.98 83.23 77.67 83.96 55.38 46.26 42.38 48.01 84.22 68.89 61.80 71.63

TABLE II
QUANTITATIVE COMPARISONS WITH THE STATE-OF-THE-ART METHODS ON THE TEST SET OF THE SUN-RGBD DATASET.

Method Modality bathtub bed bookshelf chair desk dresser nightstand sofa table toilet mAP

VoteNet [34] LiDAR 74.4 83.0 28.8 75.3 22.0 29.8 62.2 64.0 47.3 90.1 57.7
MLCVNet [72] LiDAR 79.2 85.8 31.9 75.8 26.5 31.3 61.5 66.3 50.4 89.1 59.8
H3DNet [73] LiDAR 73.8 85.6 31.0 76.7 29.6 33.4 65.5 66.5 50.8 88.2 60.1
HGNet [74] LiDAR 78.0 84.5 35.7 75.2 34.3 37.6 61.7 65.7 51.6 91.1 61.6

MLCVNet++ [75] LiDAR 79.3 85.3 36.5 77.1 28.7 31.6 61.4 68.3 50.7 90.0 60.9
Group-Free-3D [76] LiDAR 80.0 87.8 32.5 79.4 32.6 36.0 66.7 70.0 53.8 91.1 63.0

Pointformer [36] LiDAR 80.1 84.3 32.0 76.2 27.0 37.4 64.0 64.9 51.5 92.2 61.1
DSS [38] LiDAR + RGB 44.2 78.8 11.9 61.2 20.5 6.4 15.4 53.5 50.3 78.9 42.1

2D-driven [77] LiDAR + RGB 43.5 64.5 31.4 48.3 27.9 25.9 41.9 50.4 37.0 80.4 45.1
COG [78] LiDAR + RGB 58.3 63.7 31.8 62.2 45.2 15.5 27.4 51.0 51.3 70.1 47.6

PointFusion [14] LiDAR + RGB 37.3 68.6 37.7 55.1 17.2 24.0 32.3 53.8 31.0 83.8 44.1
F-PointNet [10] LiDAR + RGB 43.3 81.1 33.3 64.2 24.7 32.0 58.1 61.1 51.1 90.9 54.0

EPNet [12] LiDAR + RGB 75.4 85.2 35.4 75.0 26.1 31.3 62.0 67.2 52.1 88.2 59.8
MBDF-Net [18] LiDAR + RGB 81.5 84.7 33.0 77.3 31.2 29.0 57.7 65.6 49.9 85.5 59.5

ImLiDAR LiDAR + RGB 80.3 85.3 35.7 79.4 35.4 38.4 65.9 69.9 54.2 91.6 63.6

along (X, Y, Z) axes in the camera coordinate, respectively.
The orientation of θ is set to the range of [−π, π]. Similar
to PointRCNN [33], we subsample 16,384 points from each
3D point cloud scene as the inputs of the point stream. Then
four set abstraction layers with multi-scale grouping are used
to subsample the aforementioned input points into groups with
the sizes of 4096, 1024, 256, 64 respectively, and four feature
propagation layers are employed to obtain the per-point feature
vectors. The image stream takes camera images of the size of
1280 × 384 as input.

Training details. ImLiDAR is trained by SGD with an
initial learning rate being 0.002, the momentum being 0.9,
and the weight decay being 0.001 respectively. We train the
model for around 50 epochs on an Nvidia GeForce RTX 3090
GPU with a batch size of 2 in an end-to-end manner. The

balancing weight λ in the loss function is set to 1.

A. Comparison with the State-of-the-Arts

We evaluate our ImLiDAR with state-of-the-art 3D object
detection methods on the KITTI test set (see Table I) and
the SUN-RGBD test set (see Table II). As shown in Table I,
the point cloud-based methods outperform most of the cross-
sensor methods, indicating that fusing the representations of
camera images and LiDAR point clouds remains a challenging
task. While ImLiDAR achieves remarkable results over the
state-of-the-art methods on all three categories. For the car
category, we improve the baseline PointRCNN [33] by 6.20%
on the mAP metric, and ImLiDAR outperforms all point
cloud-based methods on the mAP metric. Further, ImLiDAR
surpasses all the cross-sensor methods by a large margin.
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Fig. 5. Qualitative results on the val set of the KITTI dataset. We show our detected results of four different scenes in (a)–(d), in which car, pedestrian, and
cyclist are shown in green, blue, and yellow, respectively. Note that all ground truth bounding boxes are shown in red.

For example, ImLiDAR outperforms EPNet [12] by 1.17%,
3.95%, and 3.08% on the easy, moderate, and hard metrics
respectively, which demonstrates the superiority of the CDMP
module. It is noteworthy that ImLiDAR also ranks the first on
the pedestrian and cyclist categories, although most of existing
approaches do not provide evaluations on these two categories.
The small or partial instances in these categories require more
context information with large receptive fields, which can be
fully gained by the CDMP module. We also provide qualitative
detection results on the KITTI validation dataset in Fig. 5,
from which we can see that ImLiDAR can detect more hard
examples, even occluded and distant instances in crowded
scenes.

To verify the effectiveness of all methods in the indoor
scenes, we compare ImLiDAR with its competitors on the
SUN-RGBD dataset in Table II. It is noteworthy that our ImLi-
DAR still outperforms its competitors. Especially, PointFusion
[14] and F-PointNet [10] generate 2D bounding boxes from
camera images using 2D detectors and output the 3D boxes in
a cascading manner. While ImLiDAR does not add explicit
supervision information (e.g., annotations of 2D detection
boxes), and outperforms them by 19.5% and 9.6% mAP, re-
spectively. EPNet [12] is a two-branch detector, which directly
fuses point clouds and camera images, and the following work
[18] designs a multi-branch fusion manner. Our ImLiDAR

outperforms EPNet [12] and MBDF-Net [18] by 3.8% and
4.1% in terms of 3D mAP. Such a large improvement verifies
the superiority of our CDMP module over the other fusion
schemes.

B. Ablation Study

We conduct extensive experiments on the KITTI validation
dataset to evaluate the effectiveness of our CDMP module and
the set-based detector.

Effectiveness of the CDMP module. We conduct some
ablation experiments on the CDMP module. For fair com-
parisons, all the models adopt the same NMS procedure for
filtering out low-quality proposals. Table III shows the results
of different fusion modules. It is found that: (1) Simple
concatenation (SC) and addition (AD) yield the decrease of
3D mAP 0.58% and 3.26% over the baseline, which indicates
that such simple fusion manners cannot obtain more accurate
3D detection results than only using LiDAR data, and even
worse. (2) The combination of LI and LI*, along with the
combination of CDMP and CDMP*, performs better than
single-scale fusion modules, which verifies the effectiveness
of cross-sensor fusion in multiple scales and stages. (3) The
combination of CDMP and CDMP* modules yields the most
significant improvement of 5.81% in terms of 3D mAP,
demonstrating that our CDMP modules actually provide a
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TABLE III
ANALYSIS OF DIFFERENT FUSION MANNERS ON THE KITTI VAL SET

(CAR). NOTE THAT SC AND AD REPRESENT THE SIMPLE CONCATENATION
AND ADDITION OF POINT FEATURES AND POINT-WISE IMAGE FEATURES,

RESPECTIVELY. CDMP AND CDMP* REPRESENT THE CDMP (1× 1)
MODULES IN THE SET ABSTRACTION LAYERS AND THE CDMP (1× 4)

MODULE IN THE LAST FEATURE PROPAGATION LAYER. LI AND LI*
DENOTE LI-FUSION MODULES [12] IN SIMILAR ARCHITECTURES. IT
SHOULD BE NOTED THAT NO IMAGE STREAM IS EMPLOYED FOR THE

BASELINE (THE FIRST ROW), AND ALL MODELS ADOPT THE NMS
PROCEDURE TO KEEP MORE ACCURATE BOUNDING BOXES.

Fusion 3D Detection
SC AD LI LI* CDMP CDMP* Easy Moderate Hard 3D mAP Gain

# # # # # # 86.24 77.36 75.88 79.82 -
! # # # # # 85.68 76.78 75.26 79.24 ↓ 0.58

# ! # # # # 84.10 73.59 71.97 76.55 ↓ 3.26

# # ! # # # 87.17 78.31 76.10 80.52 ↑ 0.70

# # # ! # # 86.45 77.94 76.39 80.26 ↑ 0.44

# # ! ! # # 89.26 78.88 76.82 81.65 ↑ 1.83

# # # # ! # 90.42 81.84 79.38 83.88 ↑ 4.06

# # # # # ! 90.32 80.93 78.72 83.32 ↑ 3.50

# # # # ! ! 91.89 83.38 81.62 85.63 ↑ 5.81

Fig. 6. Visualization of the semantic image feature. Foreground objects are
highlighted with yellow rectangle boxes. The red rectangle box marks the
interfering image features.

more effective way to fuse the multi-scale image and point
features, thus leading to more quality 3D object detection
results than the LI-Fusion modules [12].

Visualization of semantic image features. How to effec-
tively deliver useful semantic information to enrich the point
features is critical for cross-sensor 3D detection. We compare
the image features learned from the LI-Fusion module [12] and
our CDMP module as shown in Fig. 6. Although the LI-Fusion
modules attempt to suppress the bad information by assigning
coarse learnable weight matrices, they achieve a limited effect
and still retain much interfering image information. Besides,
the limited receptive fields will cause the loss of important
semantic information. Comparatively, our CDMP modules
can effectively gather long-range key context information and
suppress harmful semantic information, thus leading to more
accurate detection results.

Effectiveness of the set-based detector. In Table IV, the
set-based detector is evaluated with CE and IoU loss functions.
The balancing weights in IoU and CE loss functions are also
set to 5. In the car category, the set-based detector yields
a significant improvement of 1.50% mAP over the baseline,
which indicates the superiority of our set-based detector in
improving the 3D detection performance. Besides, we also

TABLE IV
ANALYSIS OF THE SET-BASED DETECTOR ON THE KITTI VAL SET.

Model 3D Detection (Car)
IoU CE Set-based NMS Easy Moderate Hard 3D mAP Gain

# # # ! 91.89 83.38 81.62 85.63 -
! # # ! 91.38 83.47 81.89 85.58 ↓ 0.05

! # # # 87.57 78.59 76.33 80.83 ↓ 4.80

# ! # ! 92.21 83.23 81.79 85.74 ↑ 0.11

# # # ! 88.12 79.70 78.01 81.94 ↓ 3.68

# # ! # 92.61 85.52 83.25 87.13 ↑ 1.50

# # ! ! 92.66 85.51 83.24 87.14 ↑ 1.51

PointRCNN [33] 89.19 78.85 77.91 81.98 -
PointRCNN + Set-based 91.09 80.31 78.67 83.35 ↑ 1.37

EPNet [12] 92.17 82.68 80.10 84.98 -
EPNet + Set-based 92.49 84.06 81.19 85.91 ↑ 0.93

Fig. 7. Illustration of the ratio of keeping positive boxes with different
classification confidence thresholds.

Fig. 8. Visualization results by EPNet [12] and the combination of EPNet
[12] and our set-based detector. It is noteworthy that our set-based detector
can filter out false positives, avoid missing distant objects, and even improve
the predicted results.

TABLE V
ANALYSIS OF THE SET-BASED DETECTOR ON THE SUN-RGBD TEST SET.

Model chair desk table

Baseline 73.3 27.1 50.0
IoU 74.8 28.2 51.4
CE 75.7 28.5 51.8

Set-based 79.4 35.4 54.2
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compare the set-based detector, CE loss function, and IoU
loss function with and without NMS. Without NMS, the set-
based detector drops in performance by only 0.01% while CE
and IoU drop by 3.79% and 4.75% respectively. It shows that
our set-based detector still works well even without NMS.
Moreover, we combine PointRCNN [33] and EPNet [12] with
the set-based detector. It indicates that the set-based detector
is beneficial for generating more high-quality proposals even
without the NMS post-processing. As shown in Fig. 8, our
set-based detector can filter out false positives, avoid missing
distant objects, and even improve the predicted results.

Following the protocol of EPNet [12], we adopt the ratio
of R to figure out how the consistency between these two
confidences is improved, which is formulated as:

R =
N (b|b ∈ B and cb > v)

N (B)
(13)

where B denotes the set of positive candidate boxes, which are
filtered by a predefined IoU threshold τ . And following [12],
we set τ to 0.7, cb represents the classification confidence of
the positive candidate box b, and v is another threshold to filter
positive candidate boxes with smaller classification confidence.
N (.) calculates the number of boxes. In all different settings
of classification confidence threshold v, all models generate
64 boxes without the NMS procedure employed. These boxes
are used to get the positive candidate boxes by calculating
the overlaps with the ground truth boxes. As shown in Fig.
7, the model with the set-based detector demonstrates better
consistency than that trained with IoU loss and CE loss
functions. Further, we evaluate different models on the SUN-
RGBD test set. Especially, we select three categories “chair”,
“desk” and “table” in crowded scenes. As shown in Table V,
the proposed set-based detector still outperforms other models
in these categories. Such large gains demonstrate that our set-
based detector performs better post-processing, keeping more
highly-overlapped true positives, especially in the crowded
scene.

C. Limitations

Fig. 9 shows the inference time among several compared
methods. Our two-stage framework takes around 70ms to
process a single point cloud sample from the KITTI dataset on
an RTX 3090 GPU. Our model needs more time than one-stage
frameworks, but it surpasses all one-stage detectors by a great
margin. Meanwhile, our model is significantly faster than all
two-stage detectors. This is because our model bypasses the
consuming calculation of the NMS post-processing procedure.
Besides, our model still obtains much higher mAP compared
with two-stage detectors.

VI. CONCLUSION

In this paper, we present ImLiDAR, a novel 3D object
detection paradigm, which progressively fuses camera images
and LiDAR point clouds in multiple scales for quality 3D
object detection. Two core designs exist in ImLiDAR. First, we
present a cross-sensor dynamic message propagation module
to combine the best of image and point features. Second, we

PV-RCNN

PointRCNN

EPNet

ImLiDAR

SA-SSD

3DSSD

CIA-SSD

SASA

Fig. 9. Comparisons on inference time (ms) on the KITTI dataset. Our method
reaches top performance among both one-stage and two-stage detectors.

design a set-based detector to select high-quality bounding
boxes with both high classification and localization. It can
be easily implemented in any detection network. Moreover,
ImLiDAR does not require additional image annotations, the
complex BEV data, and the commonly used NMS post-
processing step. Extensive experiments on KITTI and SUN-
RGBD datasets verify the superiority of ImLiDAR.
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