
ar
X

iv
:2

40
5.

20
71

3v
1

 [
cs

.C
R

]
 3

1
M

ay
 2

02
4

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

Fast Evaluation of S-boxes with Garbled Circuits
Erik Pohle, Aysajan Abidin, Bart Preneel

Abstract—Garbling schemes are vital primitives for privacy-
preserving protocols and secure two-party computation. This
paper presents a projective garbling scheme that assigns 2n

values to wires in a circuit comprising XOR and unary projection
gates. A generalization of FreeXOR allows the XOR of wires with
2n values to be very efficient. We then analyze the performance of
our scheme by evaluating substitution-permutation ciphers. Using
our proposal, we measure high-speed evaluation of the ciphers
with a moderately increased cost in garbling and bandwidth. The-
oretical analysis suggests that for evaluating the nine examined
ciphers, one can expect a 4- to 70-fold improvement in evaluation
performance with, at most, a 4-fold increase in garbling cost and,
at most, an 8-fold increase in communication cost compared to
the Half-Gates (Zahur, Rosulek and Evans; Eurocrypt’15) and
ThreeHalves (Rosulek and Roy; Crypto’21) garbling schemes. In
an offline/online setting, such as secure function evaluation as a
service, the circuit garbling and communication to the evaluator
can proceed in the offline phase. Thus, our scheme offers a
fast online phase. Furthermore, we present efficient Boolean
circuits for the S-boxes of TWINE and Midori64 ciphers. To
our knowledge, our formulas give the smallest number of AND
gates for the S-boxes of these two ciphers.

I. INTRODUCTION

Privacy-preserving protocols enable collaborative computa-

tion on sensitive data while protecting the privacy of the sensi-

tive data. Successful implementations in a two-party scenario

include privacy-preserving genome analysis [1], email spam

filtering [2], image processing [3] and machine learning [4].

The formalization of such two-party computation is called

Secure Function Evaluation (SFE). Here the two parties,

namely, Alice and Bob, want to compute a public function

f(x, y), where x is the input of Alice and y is the input of

Bob, without revealing their input to each other. Yao’s garbled

circuit protocol [5] has become a practical solution for SFE

due to improved constructions. Moreover, garbling schemes

(derived from the original garbled circuit construction) have

also been identified as a useful cryptographic primitive. Most

of the previous works focus on projective garbling schemes

that assign two values to a wire, 0 and 1, such as the garbling

scheme Half-Gates by Zahur et al. [6] or the ThreeHalves

scheme by Rosulek and Roy [7].
This paper considers garbling schemes in the offline/online

setting. The offline phase performs function-dependent pre-

processing. Concretely, the garbler garbles the circuit com-

puting f and transmits the garbled gates to the evaluator but

withholds the wire labels for the input layer. Once the input

data of the garbler and the evaluator is available, the parties

engage to obtain the appropriate wire labels for their respective

inputs. Then, the evaluator evaluates the garbled circuit. The

COSIC KU Leuven, Belgium.
This work is supported by CyberSecurity Research Flanders with reference

number VR20192203 and by the Flemish Government through FWO SBO
project MOZAIK S003321N.

offline phase can be performed ahead of time and even batched

to allow for optimal use of hardware and bandwidth if multiple

function evaluations are expected. Hence, the online time, i.e.,

the time from having obtained the respective inputs to the

evaluated output of the garbled circuit, is essential in this

setting. This offline/online setting enables an efficient SFE as

a service where the SFE service providers agree on a set of

useful functions. The offline phase is run when the system is

under low load and pre-processing results are stored. This way,

the user of the service benefits from improved online times.

In this work, we examine a projective garbling scheme

that assigns 2n values to a wire. As a consequence, each

wire in the circuit carries the semantics of an n-bit string.

We generalize the encoding of FreeXOR by Kolesnikov and

Schneider [8] to obtain a scheme where bitwise-XOR between

n-bit strings is free. Our scheme allows fast evaluation of

highly non-linear functions with n input bits at a moderate

additional garbling and bandwidth cost in the offline phase. We

demonstrate this trade-off by implementing several symmetric-

key primitives (SPN block ciphers with a cell structure as

explained in Sect. VI) and describe two application scenarios

in Sect. VI-C: distributed decryption in IoT-to-Cloud Secure

Computation and distributing the key distribution center in

the Kerberos authentication protocol. Garbling schemes for

Boolean circuits need to express the non-linear S-box layer in

the SPN primitives required in these two applications using

multiple AND gates (e.g., for AES 32 AND gates) which

translates to 64 and 96 hash function calls to evaluate each

AES S-box in [6] and [7], respectively. With our garbling

scheme, evaluation of the entire S-box is done with one lookup

table evaluation that costs one hash function call, yielding a

speed-up by a large factor.

While the new garbling scheme assumes semi-honest adver-

saries, i.e. neither the garbler nor the evaluator may deviate

from the protocol, several general approaches exist to make

a garbled circuit protocol secure in the presence of active

adversaries, which are allowed to deviate arbitrarily from the

protocol. Prominent examples are based on cut-and-choose [9],

[10], [11], [12], on zero-knowledge proofs [13], [14] and

authenticated garbling [15], [16], [17]. Moreover, semi-honest

garbling schemes can be compiled into actively secure three

party protocols in the honest majority setting [18].
1) Technical Overview: The core ideas of the scheme are

summarized as follows. We encode an n-bit string with bits

x1, x2, . . . xn into a wire label as

W ⊕ x1R1 ⊕ x2R2 ⊕ · · · ⊕ xnRn ,

where W is a random label. We call Ri the wire label offsets

that are randomly chosen by the garbler but fixed for all

encodings in the circuit (see Definition 1 for details) and

if xi = 1, xiRi is Ri, otherwise it is the zero string. For

http://arxiv.org/abs/2405.20713v1

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2

n = 1, this is the encoding of FreeXOR. Note that in previous

garbling schemes with point-and-permute the wire labels have

length ≈ κ1 while our encoding requires a length of κ + n

with κ the security parameter. We define two types of gates,

XOR and projection gates. XOR gates compute the bitwise-

XOR of two n-bit strings, require little garbling and evaluation

work and are non-interactive, making them practically free.

A projection gate computes any n-bit to m-bit function on a

wire value by using Yao’s garbled table lookup, i.e., encrypting

output wire labels using the respective input wire label as key.

We apply standard garbled row reduction [19] and point-and-

permute techniques [20]. For a projection gate, the garbler’s

work is 2n calls to the encryption primitive, and 2n − 1
ciphertexts have to be sent to the evaluator, each ciphertext has

size κ +m bits. However, the evaluator only makes a single

call to the encryption primitive, independent of the “size”

n of the projection gate. This makes the scheme attractive

in the pre-processed garbled circuit model since any non-

linear n-bit functionality can be evaluated with one call to

the cryptographic primitive.
2) Contributions: We present a projective garbling scheme

that assigns n-bit strings to each wire and in which XOR gates

are free. The specific encoding of an n-bit string in a label

allows seamless integration into existing garbling schemes that

assign two values per wire. Following the spirit of modular

proofs, we identify necessary properties of the cryptographic

primitive (denoted by H) that is used to encrypt the truth

table. Subsequently, we obtain a generalization of tweakable

circular correlation robustness (TCCR, first defined by Choi

et al. [21]), which we call n-TCCR, for H.
We apply the garbling scheme to compute nine symmetric-

key primitives that follow a cell-based SPN architecture which

is described in Sect. VI, including AES, CRAFT, Fides,

MANTIS, Midori, Piccolo, SKINNY, TWINE and WAGE.

For these, we show a significant improvement in evaluation

work in the online phase over the state-of-the-art schemes

Half-Gates [6] and ThreeHalves [7] that is traded off with

moderate additional garbling work and/or communication cost

in the offline phase. Table I shows the estimated evaluation

improvement based on calls toH, which is complemented by a

practical implementation in Sect. VI that shows that this eval-

uation improvement translates into practice (see Table VII).

Our code is publicly available2. We obtain evaluation times

for, e.g., AES as low as 0.016 ms.
Furthermore, to facilitate implementation, we give Boolean

circuits for the S-boxes of TWINE [22] and Midori64 [23],

which is also used in MANTIS [24] and CRAFT [25], using

only AND and XOR gates. To the best of our knowledge, our

Boolean circuits give the smallest number of AND gates for

these two ciphers, namely, 6 AND gates for TWINE’s 4-bit

S-box and 4 AND gates for the Midori64 Sb0 S-box. Details

can be found in Appendix A.
3) Organisation: The rest of the paper is organized as

follows. In Sect. II, we review related work on garbling

schemes. Section III gives more details on previous work

1To be precise: In, e.g., [6], [7] the wire label length k = κ+1 since one
bit is used as pointer bit.

2https://github.com/KULeuven-COSIC/gc-fast-sbox-eval

Table I: Evaluation work improvement for selected symmetric

primitives over Half-Gates [6]. Garbling and communication

trade-off is listed in Table VI.

Primitive Evaluation Primitive Evaluation
Improvement Improvement

Half-Gates ThreeHalves Half-Gates ThreeHalves

AES-128 [26] 26× 39× Piccolo-128 4.5× 6.8×
CRAFT [25] 5.7× 8.5× SKINNY-64-64 [24] 7× 10×
Fides-80 [27] 15× 23× SKINNY-64-128 4.6× 7×
Fides-96 50× 75× TWINE-80 [22] 9.8× 14×
MANTIS [24] 4.3× 6.4× TWINE-128 9× 13×
Midori64 [23] 5.3× 8× WAGE [28] 72× 109×
Piccolo-80 [29] 4.7× 7×

which we build upon. We present our scheme in Sect. IV

and prove its security in Sect. V. A comparison of the state

of the art and our scheme for nine (lightweight) symmetric

primitives is given in Sect. VI. Finally, we conclude the paper

in Sect. VII.

II. RELATED WORK

Recent improvements on Yao’s garbled circuit protocol

in the passive security setting focus on lowering bandwidth

requirements, e.g., [30], [31]. In the line of work [20], [19],

[8] leading to the state-of-the-art schemes Half-Gates [6] and

ThreeHalves [7], AND gates only require to send 2κ bits and

≈ 1.5κ bits, respectively, where κ is a security parameter,

while XOR gates are free. Acharya et al. [32] propose an

approach to garbling where the garbled gate is no longer

composed of ciphertexts from individual rows in the truth

table, focusing only on binary gates.

While computation with binary values is mainly expressed

in Boolean circuits with binary gates, gates with more inputs

than two or more outputs than one have been studied as

well. Dessouky et al. [33] define those gates as lookup

tables and show how they can be evaluated in the passive

security case in the Goldreich-Micali-Wigderson protocol [34].

FLUTE [35] improves both setup and online cost of [33].

Damgård et al. [36], [37] design a table lookup for two-

party secure computation and Keller et al. [38] extend it to

the multi-party case based on secret-sharing. The basis for

the aforementioned constructions is the one-time truth-table

protocol OTTT by Ishai et al. [39]. Table II compares the

(estimated) communication cost of these approaches for a 4-

bit and 8-bit lookup table, respectively. Note that the afore-

mentioned protocols require a function-dependent number of

communication rounds in the online phase. While the local

computations are faster than garbled circuit evaluation, the

impact of network latency delaying the online computation

time in this case is significantly increased by factor ≈ 10× to

40× for the SPN primitives (since they have 10 to 40 rounds).

We aim to minimize online computation latency.

AES as a function has been studied explicitly by Durak and

Guajardo [40], SKINNY and Photon were studied by Abidin

et al. [41]. However, both works are in the arithmetic setting.

In the garbled circuit domain, Fairplay [42] and TASTY [44]

already compute larger gates. Huang et al. [43] focus on an

8-bit to 8-bit AES S-box gate. Heath and Kolesnikov [46]

https://github.com/KULeuven-COSIC/gc-fast-sbox-eval

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 3

Table II: Comparison of pre-processed lookup table (LUT)

approaches in MPC protocols for κ = 128. The depth of the

circuit is denoted by d. Total communication is denoted in

kilobytes (kB).

Scheme Round Total Comm. in kB
Complexity (4-bit LUT) (8-bit LUT)

OTTT [39] (from [33, Table IV]) O(d) ≈ 6 ≈ 262

MiniMAC AES [37] O(d) - ≈ 700

SP-LUT [33, Table IV] O(d) 0.039 0.288
OP-LUT [33, Table IV] O(d) 0.159 ≈ 65.5

FLUTE [35, Table 2] O(d) 0.007 0.133

Fairplay [42], Huang et el. [43] O(1) 1.024 32.768

TASTY [44] O(1) 0.96 32.64

Heath et al. [45] O(1) 0.312 1.392

This work O(1) 0.247 4.335

construct a garbling gadget that computes a one-hot outer-

product of two bit-vectors, which can be used to select one

entry from a truth-table based on an index known by the

evaluator. This approach has later been adapted to secret access

to arbitrary truth-tables [45]. But unlike our scheme, these

works consider multiple wires instead of multiple values per

wire. They also do not provide any security proof for the larger

gates and Fairplay is vulnerable to attacks with malformed

circuits [47]. Computing a gate with multiple input wires

necessitates more generic hash function constructions that

operate on inputs longer than one block. Practical performance

improvements are due to the use of AES-NI instructions in

permutation-based constructions such as [48], [49], [50]. It

is unclear how these constructions extend to the multi-input

case in the context of garbled circuits. Our scheme uses a

cryptographic primitive with fixed-length input, enabling the

use of AES-NI instructions. An overview of garbling and

evaluation work, circuit size and the hash function construction

for a generic n-to-m-bit gate is given in Table III.

Lindell and Yanai [51] investigate a projective garbling

scheme with wires holding three-valued logic values but con-

clude that a translation into Boolean circuits is more efficient.

Since the work of Ball et al. [52] is conceptually very

close to ours, we discuss it in detail in Sect. III-A. The

main difference is that their scheme uses arithmetic circuits

in Zm, where addition modulo an integer is free, while our

proposal sticks to a bit representation where XOR is free.

This difference is essential for an efficient representation of

SPN primitives that we target in this work. For m > 2
(otherwise it degenerates to a Boolean circuit for which [6],

[7] offer better performance), XOR is a non-linear operation

and thus would incur communication cost. Bitwise-XOR could

either be emulated as x + y − 2xy where x, y are Zm-

encoded bits. This costs one multiplication gate per XOR,

or n multiplication gates to compute bitwise-XOR of n-bit

strings, respectively. Alternatively, using projection gates in

Zm computing φ(x, y) = x ⊕ y for x, y ∈ Z2n would

require 2n+1 − 1 ciphertexts to be sent (disregarding the cost

to compute x||y as input first). Since in our scheme, XOR

Table III: Comparison of multi-input, multi-output gates in

garbling schemes. We note the cost for a n-to-m-bit gate.
† κ ≈ 128−max(n,m)

Scheme Primitive Garbling Work Circuit Size Evaluation Work
(in bits)

Fairplay [42] SHA-1 2n ·m · 2 2nmκ m · 2

TASTY [44] SHA-256 2n ·m (2n − 1)mκ m

Huang et al. [43] SHA-1 2n · ⌈κm/160⌉ 2nmκ ⌈κm/160⌉

Heath et al. [45] AES-NI ≥ 2n(1 +m/κ) (n− 1)κ ≥ 2n(1 +m/κ))
+nm +2nm+ nm +nm

This work† AES-NI 2n (2n − 1)κ 1
+(2n − 1)m

Table IV: Notation.

κ Security parameter
v Bold letters denote vectors

{0, 1}l The set of bit-vectors of length l

Wβ
α The wire label of wire α that encodes the value β

A⊕ B Bitwise XOR for A,B ∈ {0, 1}l

A||B Bit-vector concatenation for A ∈ {0, 1}l, B ∈ {0, 1}l
′

{A,B}||C Bit-vector concatenation extended to sets, i.e., {A||C,B||C}
x′ ← x Assignment of value x to x′

x←$ {a, b, c, . . . } Uniform sampling from the set {a, b, c, . . . }

is linear, no ciphertexts need to be sent. We estimate that

computing, e.g., SKINNY-64-128 in Zm representation would

be at least 3–4 times slower in all metrics compared to our

scheme.

III. BACKGROUND

We start with the arithmetic circuit scheme by Ball et al. [52]

in Sect. III-A and detail the security model by Bellare, Hoang

and Rogaway (BHR) [53] in Sect. III-B. Table IV lists the

notation used throughout the paper.

A. Garbled Circuits for Bounded Integers

Ball et al. [52] propose a scheme based on garbled circuits

that assigns integers x ∈ Zm to each wire in the circuit. In this

representation, addition (in Zm) is free in the same sense as

FreeXOR. We briefly describe their scheme as our scheme is

similar but represents n-bit strings per wire instead of numbers

in Zm.

The wire encoding of x ∈ Zm is W x
i = W 0

i + x ⊙
∆m , where W 0

i ,∆m ∈ Zλm
m , λm = ⌈ κ

log2 m
⌉. Addition is

component-wise in the ring Zm. Here ⊙ denotes a scalar

multiplication. For each m, ∆m is a secret, random vector

known by the garbler.

The scheme mainly offers two types of gates, addition and

unary projection. For addition of wires a and b with output

wire c, let W 0
a ,W

0
b be the two input wire labels of zero, then

the garbler computes W 0
c = W 0

a+W 0
b as the output zero label.

The evaluator, given W x
a and W

y
b for evaluation, computes

W x+y
c = W x

a +W
y
b = W 0

a +W 0
b

︸ ︷︷ ︸

W 0
c

+(x+ y)⊙∆m .

Addition incurs neither transmitted ciphertexts nor invocations

of the encryption primitive. Let φ : Zn → Zm be an arbitrary

function. The projection gate Projφ computes the operation

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 4

x 7→ φ(x). Let G be the garbled table, then the garbler fills

G[x+ r] for every x ∈ Zn as follows:

H(W 0
a + x⊙∆n) +W 0

c + φ(x)⊙∆m = H(W x
a) +Wφ(x)

c ,

where r is the secret cyclic shift offset. We can reduce the

number of ciphertexts per projection gate to n−1 by applying

garbled row reduction. The zero label is obtained when r =
−x, W 0

c = −H(W−ra) − φ(−r) ⊙∆m, from the encryption

above. This, analogous to the binary case, fixes the ciphertext

of the first garbled row to 0λm .

Again, one element of the label can be used as a pointer

and replace the shift r during garbling if ∆n is chosen

appropriately. With this, the evaluator only has to decrypt the

ciphertext the pointer indicates.

B. Security Model by Bellare, Hoang and Rogaway

Bellare, Hoang and Rogaway [53] define a security model

for garbling schemes that formalizes the principle of circuit

garbling as a cryptographic primitive. Many recent garbling

schemes were proven secure in their model, e.g., [6], [54],

[55], [7]. As we will use the same model, we give a brief

overview.

A garbling scheme is a tuple of Garble, Encode, Eval and

Decode algorithms:

• Garble: Transforms the input circuit f into the tuple

(GC, e, d) where GC is the garbled circuit, e is the input

encoding information (e.g., all semantic labels for input

wires) and d is the decoding information.

• Encode: Encodes a given input x using the semantic

labels e and returns a garbled input X , e.g., the input

label with semantic x.

• Eval: Evaluates the garbled circuit GC using the input

wire labels {Wi}i∈Inputs and returns the output wire labels

{Wi}i∈Outputs.

• Decode: Decodes the output wire labels {Wi}i∈Outputs

using the decoding information d and returns the plaintext

output y ∈ {0, 1}m or ⊥ if the output wire labels are

invalid.

The garbling scheme must produce correct circuit evaluations

for any circuit f and inputs x ∈ {0, 1}n. Let GC, e, d be

the outputs of Garble(f), and Xi the output of Encode(xi, e)
for i ∈ Inputs then Decode(Eval(GC, {Xi}i∈Inputs), d) = f(x)
where f(x) denotes the circuit evaluation in the clear.

Bellare et al. define two notions of secrecy. In the privacy

notion, given (GC,X, d), a party cannot learn any information

besides what is revealed from the final output y and the

side-information function Φ. In our case, Φ = Φtopo* where

only the circuit topology and the XOR gates are revealed but

the function computed by projection gates remains hidden

to the evaluator3. The privacy property can be achieved by

giving a simulator S for the Garble function that only receives

the output y and Φ. In the code-based game in Fig. 1, the

garbling scheme is prv.sim secure if for every polynomial-

time adversary A there is a polynomial-time simulator S such

3In [53] Φtopo is defined as completely gate hiding, we therefore denote
the slightly weaker notion with topo*.

that Adv(prv.sim) is negligible, where

Adv(prv.sim) =
∣
∣Pr[A wins prv.sim]− 1

2

∣
∣ =

∣
∣Pr[b = b′]− 1

2

∣
∣ .

Intuitively, if the output of the simulator is indistinguishable

from the output of Garble and Encode on a circuit and input

chosen by the adversary, the scheme is prv.sim secure. In the

notion of obliviousness obv.sim, the adversary does not learn

the decoding function. So given (GC,X), a party cannot learn

any information besides the side-information Φ. The advantage

is defined analogously to Adv(prv.sim).

function GARBLE(f, x)
b←$ {0, 1}
if b = 1 then

(GC, e, d)← Garble(f)
X ← Encode(x, e)

else

y ← f(x)
(GC,X, d)← S(1k, y,Φ(f))

return (GC,X, d)

(a) Game prv.simΦ,S .

function GARBLE (f, x)
b←$ {0, 1}
if b = 1 then

(GC, e, d)← Garble(f)
X ← Encode(x, e)

else

(GC,X)← S(1k,Φ(f))

return (GC,X)

(b) Game obv.simΦ,S .

Figure 1: For every circuit f and input x of the adversary’s

choice, the respective game function is called and the adver-

sary outputs a choice b′ given (GC,X, d) (resp. (GC,X)).
The adversary wins if b = b′.

IV. THE SCHEME

In Sect. IV-A, we first describe the notation for a circuit

comprising XOR gates and projection gates. Then, we detail

how the garbler encodes n-bit strings and transforms them

into wire labels. Next, in Sect. IV-B, we show how XOR

gates are garbled and evaluated, followed by a description of

how projection gates are garbled and evaluated. Section IV-C

describes higher-level gadgets that can be obtained from the

aforementioned gates. In Sect. IV-D, all concepts are pieced

together to describe the garbling, evaluation and decoding

function. We also describe how input is handled. The complete

garbling scheme Π is given in Fig. 2. We start with some

general notations. Let lsbn(W) be the n least significant bits4

of the bit-vector W ∈ {0, 1}k. With k we denote the wire

label length. We use a hash function H : {0, 1}k×{0, 1}τ →
{0, 1}k that accepts a k-bit input, a τ -bit tweak and outputs k

bits. Further properties of H are presented in Sect. V-A.

A. Circuit Definition

We define a circuit with a p-bit input and q gates. The

function computed by the circuit is denoted by f . Let the

wire index be 1, . . . , p, p+1, . . . , p+ q, where the input wires

have index 1, . . . , p and the output wire of the i-th gate has

index p+ i. We denote the set of input wire indices as Inputs,

and the set of output wire indices as Outputs. We associate

a bit-length ℓ(i) to each wire i. Let n̄ denote the maximum

bit-length of wires used in f , then we use bit strings of length

k = κ+ n̄ as wire labels. Let Gates be a topologically sorted

list of gates G1, . . . ,Gq . We distinguish two types of gates:

4The exact location of the n bits in W is not important for the scheme as
long as it is consistently used by both parties.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 5

Parameters:
n̄ maximum bit-length of wires in f ,
k wire label length with k = κ+ n̄

1: function GENR(n̄)
2: for i ∈ {1, . . . , n̄} do
3: Ri ←$Ri ⊲ cf. Definition 1

4: return R1, . . . ,Rn̄

5: function GARBLE(f)
6: R1, . . . ,Rn̄ ← GENR(n̄)
7: for i ∈ Inputs do

8: W 0ℓ(i)

i ←$ {0, 1}k

9: for Gi ∈ Gates do
10: if Gi = XOR then ⊲ Gi with n-bit input wires a,b
11: W 0n

i ←W 0n

a ⊕W 0n

b

12: else ⊲ Gi with n-bit input wire a

13: W 0m

i ←$ {0, 1}k ⊲ and φ : {0, 1}n → {0, 1}m

14: for x ∈ {0, 1}n do

15: GC[i, lsbn(W
x
a)]←H(W

x
a , i) ⊕W 0m

i ⊕ φ(x) ·Rm

16: d← {lsbℓ(i)(W
0ℓ(i)

i)}i∈Outputs

17: e← {W 0ℓ(i)

i }i∈Inputs,R1, . . . ,Rn̄

18: return GC, e, d

19: function ENCODE(e, {xi}i∈Inputs)
20: for i ∈ Inputs do

21: Xi ←W 0ℓ(i)

i ⊕ xi ·Rℓ(i)

22: return {Xi}i∈Inputs

23: function EVAL(GC, {Wi}i∈Inputs)
24: for Gi ∈ Gates do
25: if Gi = XOR then ⊲ Gi with input wires a, b
26: Wi ←Wa ⊕Wb

27: else ⊲ Gi with n-bit input wire a
28: Wi ←H(Wa, i)⊕GC[i, lsbn(Wa)]

29: return {Wi}i∈Outputs

30: function DECODE({Wi}i∈Outputs)
31: for i ∈ Outputs do
32: yi ← di ⊕ lsbℓ(i)(Wi)

33: return y

Figure 2: The new garbling scheme Π comprises a garble,

evaluation, encoding and decoding function.

XOR and projection gates. XOR gates accept two wires of the

same bit-length n as input and output a wire with bit-length n.

The unary projection gate accepts one n-bit wire and outputs

one m-bit wire.

Definition 1 (Wire Label Offsets). For each bit-length n (1 ≤
n ≤ n̄) that is used in f , a wire label offset is a bit-vector

of length k = κ + n with κ random bits and n fixed bits.

The garbler draws the matrix M uniformly at random from

{0, 1}κ×n and appends fixed bits to each column-vector to

form Rn =

(
M

In

)

, where In ∈ {0, 1}
n×n is the identity

matrix. The column vector Ri in Rn is the i-th wire label

offset. We denote the distribution from which Rn is sampled

Rn, i.e., Rn ←$Rn.

The matrix Rn is used throughout the whole circuit for all

wires of bit-length n. We use the last n bits of the label to

fix distinct values to allow point-and-permute [20]. The inner

product of x ·Rn is defined as x1R1 ⊕ . . .⊕ xnRn.

Definition 2 (Wire Label Encoding). The encoding W x
i of an

n-bit string x ∈ {0, 1}n on a wire with index i is defined as

W x
i = W 0n

i ⊕ x ·Rn.

Note, this yields a unique encoding for all x and R even

if the random part M is linearly dependent in the columns

because the lower n bits of x ·R are always unique due to In.

Intuitively, there are n distinct offsets R, one for each

encoded bit. The offset applied to a wire label that encodes x

is the linear combination of R values.

B. Gates

For an XOR gate with n-bit input wires a and b, and output

wire c, the garbler generates the output wire label W x
c ←

W 0n

a ⊕W 0n

b ⊕ x ·Rn where x ∈ {0, 1}n. No ciphertext is

sent.

To evaluate an XOR gate, let Wa and Wb be the wire labels

that the evaluator obtained as input labels for the XOR gate.

The output label is then computed as Wc ←Wa ⊕Wb.

A projection gate Projφ computes the unary projection

φ : {0, 1}n → {0, 1}m, a n-to-m-bit function. Let a be the

input wire index to the projection gate and c be the index

of the output wire, the garbler first draws the output wire

label for 0 at random: W 0m

c ←$ {0, 1}k and then generates 2n

ciphertexts for each x ∈ {0, 1}n and stores the result in the

garbled table at the position indicated by the pointer bits, i.e.,

GC[c, lsbn(W
x
a)] ← H(W

x
a , c) ⊕W

φ(x)
c . We apply the row-

reduction technique [19] and reduce the number of ciphertexts

that need to be sent by one. Let a be the input wire index to

the projection gate Projφ and c be the index of the output wire.

Then, the garbler chooses the output wire label for 0m as

W 0m

c = H(W
lsbn(W

0n

a)
a , c)⊕ φ(lsbn(W

0n

a)) ·Rm

and computes the remaining ciphertexts as described above.

Since the first ciphertext (where x = lsbn(W
0n

a)) is always

0k, it does not need to be sent. The number of rows sent to

the evaluator is therefore 2n − 1.

For evaluation, let Wa be the wire label that the evaluator

obtained as input to the projection gate. The output label Wc

is computed by

Wc ← GC[c, lsbn(Wa)]⊕H(Wa, c) ,

where the position of the ciphertext to evaluate is indicated by

the pointer bits of the input wire label. The first ciphertext is

set to 0: GC[c, 0n] = 0m.

C. Circuit Constructions

Below, we give useful gadgets comprised of XOR and

projection gates.

Wire Composition. We can compose an n-bit wire a with

an m-bit wire b resulting in a (n + m)-bit wire c.

The composition construction computes the functionality

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 6

f : {0, 1}n×{0, 1}m → {0, 1}n+m defined by f(x, y) =
x||y. The composition is then Wc ← Projs(Wa) ⊕
Projs′(Wb), where s : {0, 1}n → {0, 1}n+m is defined

as s(x) = x||0m and s′ : {0, 1}m → {0, 1}n+m is

given as s′(y) = 0n||y. Wire composition costs 2n + 2m

ciphertexts to garble and two ciphertexts to evaluate.

Note that the construction is not limited to two arguments.

It is efficient to compose many wires together at once

instead of cascading or using a tree-based approach5. E.g.,

to compose four 1-bit wires a, b, c, d , we may use

Projsa(Wa)⊕ Projsb(Wb)⊕ Projsc(Wc)⊕ Projsd(Wd) ,

where sa(x) = 000||x, sb(x) = 00||x||0, sc(x) =
0||x||00, sd = x||000. This costs 4 · 21 = 8 ciphertexts

(or 4 with row reduction) instead of 4 · 21 + 2 · 22 = 16
(resp. 10) ciphertexts.

Wire Decomposition. Likewise, we can decompose, i.e.,

split, a 2n-bit wire into two n-bit wires. Let Wa

be a 2n-bit wire, then the decomposition construc-

tion computes f : {0, 1}2n → {0, 1}n defined as

f(x1|| . . . ||x2n) = x1|| . . . ||xn and f ′ : {0, 1}2n →
{0, 1}n as f ′(x1|| . . . ||x2n) = xn+1|| . . . ||x2n via two

projection gates. Note that this time, a tree-like decom-

position, e.g., from 4-bit to 2-bit to 1-bit, is more efficient

than constructing four projections from 4-bit to 1-bit. The

latter costs 4·24 = 64 ciphertexts (60 with row reduction)

while the former costs 2 · 24 + 4 · 22 = 48 (resp. 42)

ciphertexts.

Constants. In the garbling scheme, we can encode public

constants or constants known only to the garbler at no

cost. Let x ∈ {0, 1}n be the constant for the n-bit

wire a, then the garbler chooses W 0n

a ← x · Rn. This

fixes the label W x
a to 0k. No ciphertext is sent to the

evaluator. Likewise, the evaluator uses Wa = 0k for

further evaluation.

D. Garbling Scheme

We now describe the complete garbling scheme (see Fig. 2).

Garble. The garbler chooses n̄ matrices of offset values (see

Definition 1). For each input bit i, a wire label W 0
i is

chosen uniformly at random. The garbling process applies

the operations for projection and XOR gates as described

in Sect. IV-B gate-by-gate in topological order. In the

end, the garbling routine outputs the ciphertexts, input

wire values, offsets and decoding information.

Encoding and Oblivious Transfer. The garbler encodes

their own input by picking the respective wire label. In

Yao’s protocol, the evaluator obtains the appropriate wire

labels that correspond to its input via oblivious transfer

(OT) [56]. Using OT extensions [39], [57] speeds this up

in practice. To obtain the correct label for an n-bit wire,

one could simply perform a 1-out-of-2n OT. Naor and

Pinkas [58] show how to reduce this to n 1-out-of-2 OTs

by introducing additional pseudorandom function (PRF)

evaluations. However, using the FreeXOR property of

5Following the example, the tree-based approach first composes a||b and
c||d resulting in 2-bit wires. Then ab||cd is composed.

our scheme, we can instead perform only n 1-out-of-2

OTs (as in a garbling scheme with 2 wire labels). For

each input bit bi at position i, the sender sends

W 0n

i if bi = 0 ,
W 0n

i ⊕ Ri if bi = 1 ,

where Ri is the i-th column vector in Rn. To obtain the

wire label for the n-bit wire, we XOR the obtained labels

together at no additional cost. Note that W 0n

i is a fresh

random wire label for each bit i of the input.

Evaluation and Decoding. Once the evaluator obtains the

garbled inputs, it computes the garbled output of each

gate accordingly (see Sect. IV-B). Having computed the

garbled output, the evaluator may either share the wire

labels with the garbler or directly use the decoding

information di = lsbn(W
0n

i) for output wire i ∈ Outputs

in the decoding function to obtain the output bits in

the clear. Let us briefly look at why this decoding

scheme is correct. Let i be an output wire. Since we

fixed lsbn(y · Rn) = y · In = y by construction of

the offset values, for any value y ∈ {0, 1}n, we have

lsbn(W
y
i) = lsbn(W

0n

i) ⊕ y. As di = lsbn(W
0n

i), the

decoding is correct

di ⊕ lsbn(W
x
i) = lsbn(W

0n

i)⊕ lsbn(W
0n

i)⊕ lsbn(y ·Rn) = y .

V. SECURITY

Using the BHR security model (see Sect. III-B) we show

that if a hash function satisfies the properties of n-TCCR

security defined in Sect. V-A below, our scheme is prv.sim

(Sect. V-B) and obv.sim (Sect. V-C) secure. We sketch how to

achieve authenticity in Sect. V-D.

A. (n-)TCCR Security

We revisit the tweakable circular correlation robustness

(TCCR) definition by Guo et al. [49] adapted to our notation.

Definition 3 (TCCR Security [49]). A TCCR (tweakable

circular correlation robust) hash function H is a function

{0, 1}k × {0, 1}τ → {0, 1}k that accepts a message m and a

tweak t. In the TCCR security game, the distinguisher DTCCR

is given one of the two oracles with signature {0, 1}k ×
{0, 1}τ × {0, 1} → {0, 1}k

• (Real) OR(m, t, b) = H(m⊕R, t)⊕ bR

• (Ideal) Rand(m, t, b) is a random function.

with the goal to decide which is the oracle given to it. The

distinguisher doesn’t know the secret value R ∈ {0, 1}k, R←$

RTCCR and is only allowed to make legal queries. An illegal

query is (m, t, 1− b) if (m, t, b) has been queried before.

We define the advantage as

AdvRTCCR
(DTCCR)

=

∣
∣
∣
∣
Pr[DRand

TCCR(1
κ) = 0]− Pr

R←RTCCR

[DOR

TCCR(1
κ) = 0]

∣
∣
∣
∣
,

where DO signifies that the distinguisher has access to oracle

O. We call H TCCR secure if AdvR(DTCCR) is negligible in

the security parameter κ.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 7

Note that the advantage of DTCCR depends on the distribu-

tion RTCCR of the secret value R. Next, we define n-TCCR

security, a generalized TCCR notion incorporating n secret

offsets.

Definition 4 (n-TCCR Security). A n-TCCR hash function

H is a function {0, 1}k × {0, 1}τ → {0, 1}k that accepts a

message m and a tweak t. In the n-TCCR security game, the

distinguisher Dn-TCCR is given one of the two oracles with

signature {0, 1}k × {0, 1}τ × {0, 1}n × {0, 1}n → {0, 1}k

• (Real) OR(m, t, a,b) = H(m⊕ a ·R, t)⊕ b ·R
• (Ideal) Rand(m, t, a,b) is a random function

with the goal to decide which is the oracle given to it. We inter-

pret a,b ∈ {0, 1}n as binary vectors, R = (R1, . . . , Rn), R ∈
{0, 1}k×n ←$ Rn and Ri ∈ {0, 1}

k, 1 ≤ i ≤ n. The

expression a·R = a1R1⊕· · ·⊕anRn is the linear combination

of offsets defined by a. The distinguisher doesn’t know the

secret value R and is only allowed to make legal queries. An

illegal query is a = 0 or (m, t, a,b′) if (m, t, a,b) has been

queried before for b 6= b
′.

We define the advantage as

AdvRn
(Dn-TCCR)

=

∣
∣
∣
∣
Pr[DRand

n-TCCR(1
κ) = 0]− Pr

R←Rn

[DOR

n-TCCR(1
κ) = 0]

∣
∣
∣
∣
.

We call H n-TCCR secure if AdvRn
(Dn-TCCR) is negligible

in κ.

Clearly, every n-TCCR secure hash function is also TCCR

secure. Since in n-TCCR, the distinguisher has more freedom

regarding queries to the oracle, a statement about the inverse

direction is not straightforward.

Limitations and assumptions on TCCR are realized once

instantiated with a concrete construction, e.g., the one given

by [49] is secure in the random permutation model with

specific bounds depending on the number of queries made

by the distinguisher. In garbling schemes, the number of

queries roughly translates to the number of AND gates in

the garbled circuit(s) that use the same offset. Since n-TCCR

is a generalization of TCCR, we expect similar assumptions

and limitations. We estimate an advantage of around n-bit for

the distinguisher of n-TCCR compared to TCCR when using

non-dedicated TCCR constructions. This means that, to attain

a similar security level as TCCR, one may need to choose

larger parameters for n-TCCR.

B. Privacy

The prv.sim definition states that given the garbled circuit

GC, all the labels of the garbled input X and the decoding

information d, no information is revealed about the input

except from what can be deduced from the output y.

Theorem 1. Given a n̄-TCCR secure hash function H and

n̄≪ κ, the garbling scheme Π is prv.sim secure.

Proof. We define a simulator S (see Fig. 3) and show through

a series of hybrids that the output of S is indistinguishable for

an adversary from the output of Garble. We require n̄ ≪ κ,

1: function S(f, y)
2: for i ∈ Inputs do

3: W 0ℓ(i)

i ←$ {0, 1}k

4: Xi ←W 0ℓ(i)

i

5: for Gi ∈ Gates do
6: if Gi = XOR then ⊲ Gi with n-bit input wires a, b
7: W 0n

i ←W 0n

a ⊕W 0n

b

8: else ⊲ Gi with n-bit input wire a and output
⊲ size m of the function Gi realizes

9: W 0m

i ←$ {0, 1}k

10: GC[i, lsbn(W
0n

a)]←Hn,m(W 0n

a , i)⊕W 0m

i

11: for x 6= 0n ∈ {0, 1}n do

12: GC[i, lsbn(W
0n

a)⊕ x]
← Randn,m(W 0n

a , i, x, 0m)⊕W 0m

i

13: for i ∈ Outputs do

14: di ← lsbn(W
0n

i)⊕ yi

15: return GC,X, d

Figure 3: Simulator S.

i.e., the largest bit length n̄ used in a wire in the circuit

is small compared to the security parameter κ, to ensure

that for any adversarially chosen circuit, both the garbling

scheme and the simulator run in polynomial time. In the

following, we use Randn,m(m, t, a,b) where a ∈ {0, 1}n and

b ∈ {0, 1}m which can be constructed from n̄-TCCR Rand

by padding the a/b inputs with zeros to reach the full length of

n̄, e.g., Rand(m, t, a||0n̄−n,b||0n̄−m) since n̄ ≥ n,m in the

whole circuit. The same can be done for Hn,m and H. When

evaluating a garbled circuit, let the assignment of active labels

to the wires be called the active path, i.e., for input wires, the

active labels are retrieved via OT, for gate outputs, the active

wires are retrieved by decrypting the row denoted by the point-

and-permute bits.

The idea of the simulator is to produce a garbled circuit with

a fixed active path. The simulator chooses the wire labels such

that

• the garbled input X that is handed to the adversary

corresponds to 0p;

• the active label on each gate’s output wire that the

adversary obtains if they choose to evaluate the circuit

with X is W 0n (see Line 10 in Fig. 3).

The simulator adapts the decoding information s.t. if the

garbled output is W 0n , the expected output y is decoded.

S ≈ G1. Hybrid G1 (see Fig. 4) describes the simulator from

the perspective of the evaluator. Let x be the input that

the adversary chooses in the game. We view x as a black

box as it is unknown. Suppose we evaluated the circuit

on x in plaintext. We denote vi as the active value on

wire i. Instead of fixing the active path on labels W 0n ,

we fix it on W vi .

The output values GC, d and the outputs of S are

identically distributed as W 0n and W vi are both dis-

tributed uniformly at random. Further, the change of input

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 8

1: function EVALWIRES(f,x)
2: for i ∈ Inputs do
3: vi ← xi

4: for Gi ∈ Gates do
5: a, b← in(Gi)
6: if Gi = XOR then ⊲ Gi with n-bit input wires a, b
7: vi ← va ⊕ vb
8: else ⊲ Gi with n-bit input wire a
9: vi ← φ(va) ⊲ and φ : {0, 1}n → {0, 1}m

10: return v

11: function G1(f, x)
12: v ← EvalWires(f, x)
13: for i ∈ Inputs do

14: W
vi

i ←$ {0, 1}k

15: Xi ←W
vi

i

16: for Gi ∈ Gates do
17: if Gi = XOR then ⊲ Gi with n-bit input wires a, b

18: W
vi

i ←W
va

a ⊕W
vb

b

19: else ⊲ Gi with n-bit input wire a

20: W
vi

i ←$ {0, 1}k ⊲ and φ : {0, 1}n → {0, 1}m

21: GC[i, lsbn(W
va

a)]←Hn,m(W
va

a , i)⊕W
vi

i

22: for x 6= va ∈ {0, 1}
n do

23: GC[i, lsbn(W
va
a)⊕ x]←

Randn,m(W
va

a , i, va ⊕ x , φ(va ⊕ x))⊕W
vi

i

24: for i ∈ Outputs do

25: di ← lsbn(W
vi

i)⊕ yi

26: return GC,X, d

Figure 4: Hybrid G1. The simulator from the perspective of

the evaluator where x is a black box value. Values in a box

vi highlight the difference between S and G1.

arguments,

Randn,m(W 0n

a , i, x, 0m)

≈ Randn,m(W va
a , i, va ⊕ x, φ(va ⊕ x)) ,

does not change the distribution since all inputs

(x, 0m), ∀x ∈ {0, 1}n 6= 0n and (va⊕x, φ(va⊕x)), ∀x ∈
{0, 1}n 6= va, respectively, are unique and therefore

amount to fresh randomness from the oracle, irrespective

of φ.

G1 ≈ G2. In hybrid G2, we replace Randn,m by the real

construction Hn,m(m⊕ a ·Rn, t)⊕b ·Rm. This change

is indistinguishable for the adversary by the definition of

the n̄-TCCR secure function H (see Definition 4)

Randn,m(W va
a , i, va ⊕ x, φ(va ⊕ x))

≈ Hn,m(W va
a ⊕ (va ⊕ x) ·Rn, i)⊕ φ(va ⊕ x) ·Rm .

G2 ≈ G3. In hybrid G3 (see Fig. 5), we no longer compute the

wire values vi explicitly from the black-box input x. We

fix an encoding for vi, namely vi = 0n.

For the input wires, note that xi = vi by definition of

EVALWIRES, so Xi ←W xi

i instead of W vi
i .

Further, the ciphertext indexing GC[i, ·] (Line 14 in

Fig. 5) is identical after the re-write. In G2,

lsbn(W
va
a)⊕ x = lsbn(W

0n

a)⊕ x ,

and in G3,

lsbn(W
x
a) = lsbn(W

0n

a)⊕ lsbn(x ·Rn) = lsbn(W
0n

a)⊕x

by definition of Rn. In the output of all gates Gi, we

now maintain the invariant with x ∈ {0, 1}n

W vi
i becomes W 0n

i ,

W vi
i ⊕ (vi ⊕ x) ·Rℓ(i) becomes W 0n

i ⊕ x ·Rℓ(i) .

And for the decoding information, first note that for i ∈
Outputs vi = yi, thus in G2 (we denote ℓ(i) = n),

di ⊕ lsbn(W
vi
i) = lsbn(W

vi
i)⊕ lsbn(W

vi
i)⊕ yi = yi ,

and in G3:

di ⊕ lsbn(W
yi

i) = lsbn(W
0n

i)⊕ lsbn(W
yi

i)

= lsbn(W
0n

i)⊕ lsbn(W
0n

i)⊕ yi

= yi .

The decoding information in G2 and G3 yield correct re-

sults when used with their respective garbled inputs. dG2
and dG3 are both uniformly distributed as lsbℓ(i)(W

vi
i)

resp. lsbℓ(i)(W
0ℓ(i)

i) are distributed at random. So dG2
and dG3 remain indistinguishable.

We conclude the proof by noting that G3 and Garble yield

identical outputs in the prv.sim game. This can easily be seen

when the exceptional case for x = 0n (Line 21 in Fig. 5)

in the projection gates part is incorporated into the loop and

the computation of d is re-written, G3 is a description of the

Garble function.

C. Obliviousness

The notion of obv.sim expresses that the adversary cannot

learn any information given the garbled circuit GC and all

input wire labels X . Unlike the privacy notion, the adversary

does not have access to the decoding information d.

Theorem 2. Given a n̄-TCCR secure hash function H and

n̄≪ κ, the garbling scheme Π is obv.sim secure.

Proof. Let Sauth be S from Fig. 3 with the lines 13-14

removed. Then we note that the computation of GC and X

doesn’t depend on y, neither in Sauth nor in one of the hybrids

G1,G2,G3. We can thus use the same reasoning as for prv.sim

security, omitting parts that correspond to y or d.

D. Authenticity

Authenticity states that an adversary cannot forge wire

labels that are not obtained through evaluating the garbled

circuit. Clearly, the presented scheme does not satisfy this

property as any wire label is decoded to output bits. If

authenticity is desired, we modify the decoding information d

to list hashes of all output wire labels and associations to their

semantic meaning. As in [53], the decoding function checks

if the presented wire is indeed in the list d.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 9

1: function G3(f, x)
2: R1, . . . ,Rn̄ ← GenR(n̄)
3: for i ∈ Inputs do

4: W
0ℓ(i)

i ←$ {0, 1}k

5: Xi ←W
xi

i

6: for Gi ∈ Gates do
7: a, b← in(Gi)
8: if Gi = XOR then ⊲ Gi with n-bit input wires a, b

9: W
0n

i ←W
0n

a ⊕W
0n

b

10: else ⊲ Gi with n-bit input wire a
⊲ and φ : {0, 1}n → {0, 1}m

11: W
0n

i ←$ {0, 1}k

12: GC[i, lsbn(W
0n

a)]←Hn,m(W
0n

a , i)⊕W
φ(0n)

i

13: for x 6= 0n ∈ {0, 1}n do

14: GC[i, lsbn(W
x
a)]

←Hn,m(W
x
a , i) ⊕ φ(x) ·Rm ⊕W

0m

i

15: for i ∈ Outputs do

16: di ← lsbn(W
0n

i)

17: return GC,X, d

Figure 5: Hybrid G3. We fix the encoding of W vi
i to W 0n

i .

Values in a box 0n highlight the difference between G2 and

G3.

VI. EVALUATION OF SPN PRIMITIVES

In the following, we discuss how SPN primitives with a

specific structure can be implemented with our new garbling

scheme and how this improves over the state-of-the-art. Note

that we don’t intend to compare the performance of the prim-

itives among each other in MPC protocols. Instead, we focus

on how each primitive can be accelerated. Consequently, we

will not consider other traditional or MPC-friendly primitives,

e.g., [59]. We compare the state-of-the-art garbling schemes

Half-Gates [6] as well as ThreeHalves [7]. Both schemes

support free XOR gates and AND gates on wires holding one

bit.

In SPN-based primitives, a state is updated with a round

function consisting of a substitution layer, a permutation layer,

a round constant and/or (round) key addition layer. SPNs are

commonly used to construct block ciphers and pseudo-random

permutations used, e.g., in hash functions or MAC algorithms.

We show an efficient circuit representation with projection

gates for primitives that satisfy the following conditions for

state and round function parts.

• State. The state is (conceptually) split into n-bit cells.

• Substitution Layer. The substitution layer consists of S-

boxes that are applied to each cell.

• Permutation Layer. The permutation layer can be de-

scribed by a permutation on the cells and/or by a mixing

matrix which encodes a fixed matrix multiplication with

the state. In this paper, we focus on primitives with a

Projφ
W 0

a ⊕ b1R1 ⊕ · · · ⊕ b3R3 W 0
b ⊕ b′1R1 ⊕ · · · ⊕ b′3R3

(a) Implementation of the SKINNY 4-bit S-box via a 4-to-4-bit
projection gate in our garbling scheme. Note that φ is the S-box
lookup function.

W 0
a ⊕ b1R

W 0
c ⊕ b3R

W 0
d ⊕ b4R

W 0
b ⊕ b2R

W 0
e ⊕ b′1R

W 0
f ⊕ b′2R

W 0
g ⊕ b′3R

W 0
h ⊕ b′4R

(b) Implementation of the SKINNY 4-bit S-box via Boolean circuit
with input wires a, b, c, d and output wires e, f, g, h. b1, . . . , b4
denote the 4 input bits from least to most significant bit. b′1, . . . , b

′
4

denote the 4 output bits in the same order. Circuit from [24].

Figure 6: Example to illustrate the implementation difference

between our scheme and a Boolean circuit for the 4-bit

SKINNY S-box. Note that Fig. 6a encodes 4 bits per wire

while Fig. 6b uses 4 wires.

binary mixing matrix.

• Round Constant/(Round) Key Addition Layer. The

round constant or (round) key is XORed cell-wise.

With this structure, we set n̄ = n and implement a single cell

as n-bit wire. Each S-box in the substitution layer is replaced

with an n-bit projection gate computing the same functionality.

The permutation layer and the addition layer are expressible

with XOR gates only. We illustrate how the SKINNY 4-bit

S-box is expressed in our scheme and as a Boolean circuit in

Fig. 6 as an example.

We identified nine SPN primitives in the literature that

fulfill the conditions. Since the studied primitives have at

most 8-bit cells, we set n̄ = 8. These primitives include

the widely-used AES standard and several established second-

round and finalists of the NIST Lightweight Cryptography

Competition, each offering unique hardware, performance, and

energy efficiency metrics for specific real-world use cases.

A. Implementation Details

For the projection gates implementation, we assume that the

input block is already setup in n-bit wires where n denotes

the cell size in bits. This doesn’t incur additional cost since

the input phase using OT can already share wire labels with

the desired wire label offset, as detailed in Sect. IV-D. For

the implementation using AND gates, only the S-box costs

AND gates in the data path of the primitive. We selected

implementations for the S-boxes with the lowest number of

AND gates since their cost dominates in Half-Gates and

ThreeHalves. Table V details the number of projection and

AND gates for each primitive.

For the 4-bit S-box used in TWINE-80 and TWINE-128 and

for the 4-bit S-box used in Midori64, MANTIS and CRAFT,

we found new circuits using the smallest number of AND gates

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 10

so far, reducing the number of AND gates for the TWINE S-

box from 7 to 6 and for the Midori64 S-box from 8 to 4.

We used the heuristic optimization tool LIGHTER by Jean et

al. [60] operating on a customized cost metric, for more details

see Appendix A.

For the key, we assume individual key bits to be available

in 1-bit wires as this eases key scheduling in many cases. Note

that the cost to transform the (round) key bits into n-bit wires

is taken into account. In scenarios where one party knows

the complete key, e.g., to offer blind symmetric encryption or

decryption where the encryption or decryption is performed

without learning the message and ciphertext, the key schedule

does not need to be computed within the garbling scheme.

Instead, if the garbler knows the key, they can compute the

key schedule separately and insert the round keys as secret

constants. Similarly, if the evaluator knows the key, they may

receive the wire labels for round keys via OT instead.

If the key is shared among the players using a linear secret-

sharing scheme, for instance as k = kG ⊕ kE where kG is

the garbler’s share and kE is the evaluator’s share, the key

schedule can be computed outside of the garbling scheme by

each player on their share instead for ciphers with a linear key

schedule, e.g., for Piccolo, Midori, SKINNY, MANTIS and

CRAFT. The resulting round key shares can then be treated

as input and are recombined using only linear operations

saving any gates specified in the key schedule column for the

cipher. However, the gate counts presented here compute the

entire key schedule of the primitive which is required in the

distributed encryption/decryption scenario.

B. Performance

1) Instantiating H: Before comparing our garbling scheme

with Half-Gates and ThreeHalves, we need to discuss the

instantiation of the n-TCCR hash function H. Half-Gates

uses a construction called TCCR for naturally derived keys,

while ThreeHalves uses a randomized TCCR function. De-

spite minor differences, both constructions use one call to

an ideal permutation (which is instantiated using fixed-key

AES), which is the main computation cost. In the following

comparison, we also assume that H can be instantiated in a

construction using only one ideal permutation call. For the

practical benchmark, we use the same construction as Half-

Gates. However, we need to stress a major difference: Since

our wire labels are κ + n bits long and we still want to fit

them into one permutation call, the security of our scheme is

reduced by n bits with this instantiation. Concretely, since all

studied primitives have n̄ ≤ 8, Half-Gates and ThreeHalves

have κ = 127 while our scheme has κ = 120 for AES with

128-bit block size. Should a larger security level be desired,

it is also possible to encrypt the pointer bits separately with

another permutation call using a dedicated construction of H
that has an output length of κ+n. We leave such construction

and the required dedicated security analysis to future work.

2) Evaluation Performance: The gate counts from Table V

can be turned into calls to H and sent ciphertexts. In Half-

Gates, each AND gate costs 4 calls to H for garbling, 2

ciphertexts are sent, and 2 calls to H for evaluation. In

Table V: Detailed gate counts for setup, key schedule and

data path of the selected symmetric primitives. The top entry

denotes the number of AND gates while the bottom entry

denotes the number of projection gates.

† Gate counts obtained from Mandal et al. [61].

Primitive Setup Key Schedule Data Path

AES-128 [26]
1280 AND 5120 AND
128 1-bit + 49 8-bit 320 8-bit

CRAFT [25]
1920 AND

192 1-bit 480 4-bit

Fides-80 [27]
320 AND

160 1-bit 32 5-bit

Fides-96
1088 AND

192 1-bit 32 6-bit

MANTIS [24]
896 AND

192 1-bit 224 4-bit

Midori64 [23]
1024 AND

128 1-bit 256 4-bit

Piccolo-80 [29]
1600 AND

80 1-bit 600 4-bit

Piccolo-128
1984 AND

128 1-bit 744 4-bit

SKINNY-64-128
2304 AND

128 1-bit + 280 4-bit 576 4-bit

TWINE-80 [22]
432 AND 1728 AND
80 1-bit + 70 4-bit 288 4-bit

TWINE-128
630 AND 1728 AND
128 1-bit + 104 4-bit 288 4-bit

WAGE [28]
37745 AND†

259 1-bit 777 7-bit

Table VI: Estimated performance difference for selected sym-

metric ciphers. The notation ×x denotes an improvement by

factor x in the category with respect to the base scheme, i.e.,

x > 1 is an improvement, x < 1 is degradation.

Base Scheme Primitive Garble Send Eval

Half-Gates [6]
AES-128 [26]

×0.28 ×0.14 ×26.23
ThreeHalves [7] ×0.42 ×0.10 ×39.34

Half-Gates
CRAFT [25]

×0.95 ×0.52 ×5.71
ThreeHalves ×1.43 ×0.39 ×8.57

Half-Gates
Fides-80 [27]

×1.23 ×0.64 ×15.45
ThreeHalves ×1.84 ×0.48 ×23.18

Half-Gates
Fides-96

×2.10 ×1.07 ×50.26
ThreeHalves ×3.15 ×0.81 ×75.39

Half-Gates
MANTIS [24]

×0.90 ×0.50 ×4.31
ThreeHalves ×1.35 ×0.38 ×6.46

Half-Gates
Midori64 [23]

×0.94 ×0.52 ×5.33
ThreeHalves ×1.41 ×0.39 ×8.00

Half-Gates
Piccolo-80 [29]

×0.66 ×0.35 ×4.71
ThreeHalves ×0.98 ×0.26 ×7.06

Half-Gates
Piccolo-128

×0.65 ×0.35 ×4.55
ThreeHalves ×0.98 ×0.26 ×6.83

Half-Gates
SKINNY-64-128

×0.66 ×0.36 ×4.68
ThreeHalves ×0.99 ×0.27 ×7.02

Half-Gates
TWINE-80 [22]

×1.46 ×0.79 ×9.81
ThreeHalves ×2.19 ×0.59 ×14.71

Half-Gates
TWINE-128

×1.44 ×0.78 ×9.05
ThreeHalves ×2.16 ×0.59 ×13.58

Half-Gates
WAGE [28]

×1.51 ×0.76 ×72.87
ThreeHalves ×2.27 ×0.57 ×109.30

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 11

Table VII: Performance benchmark results for some SPN-

ciphers comparing garbling and evaluation time as well as the

circuit size. All reported numbers are amortized from 500 (for

SKINNY-128-*) and 1000 parallel primitive calls averaged

over 10 repetitions.

Base Scheme Primitive Garble Circuit size Eval
in ms in KB in ms

Half-Gates [6]
AES-128 [26]

0.767 204.93 0.722
ThreeHalves [7] 0.436 156.51 0.305
This work 0.928 1242.55 0.016

Half-Gates
MANTIS7 [24]

0.093 32.84 0.070
ThreeHalves 0.083 30.96 0.077
This work 0.133 76.36 0.040

Half-Gates
SKINNY-64-128

0.283 73.80 0.194
ThreeHalves 0.153 59.13 0.096
This work 0.289 139.30 0.026

Half-Gates
SKINNY-64-192

0.343 81.99 0.246
ThreeHalves 0.166 67.11 0.118
This work 0.321 154.69 0.041

Half-Gates
SKINNY-128-128

0.595 163.98 0.440
ThreeHalves 0.346 126.66 0.279
This work 2.281 2613.28 0.015

Half-Gates
SKINNY-128-256

0.803 196.74 0.594
ThreeHalves 0.442 154.71 0.348
This work 2.563 3135.62 0.028

Half-Gates
SKINNY-128-384

1.107 229.51 0.819
ThreeHalves 0.558 182.77 0.472
This work 2.841 3658.00 0.041

Half-Gates
TWINE-128 [22]

0.202 75.52 0.168
ThreeHalves 0.136 60.40 0.081
This work 0.191 108.21 0.059

Half-Gates
TWINE-80

0.187 68.80 0.153
ThreeHalves 0.128 53.99 0.074
This work 0.199 99.04 0.045

ThreeHalves, each AND gate costs 6 calls to H for garbling,

1.5 ciphertexts are sent, and 3 calls to H for evaluation.

Table VI lists all studied primitives with the corresponding

trade-off in garbling and communication cost, and evaluation

improvement measured in the number of calls to H and in the

number of ciphertexts, respectively. We found three primitives

in five configurations in total where our scheme improves in

both garbling and evaluation cost over both reference garbling

schemes6. In the remaining primitives and cases, projection

gates trade off higher garbling and communication cost for

faster evaluation performance. Note that for most primitives,

the evaluation improvement is much higher than the additional

communication cost. E.g., for Midori64, at a cost of slightly

more garbling work (≈ 6% more) and less than twice the

number of sent ciphertexts, we improve the evaluation work

by a factor of five. We detail the implementation approach

with projection gates for the ciphers in Appendix B.

3) Experimental Results: Next, we experimentally com-

pared the performance of four primitives in nine configurations

in Half-Gates, ThreeHalves and our scheme. ThreeHalves has

been implemented by Hamacher et al. [62] in the MOTION

framework while Half-Gates and our scheme have been im-

plemented in MP-SPDZ [63]. We also use the TMMO hash

6While the evaluation improvement is the goal of this work, the improve-
ment in garbling time is caused by large, sub-optimal circuit representations
of the 5-, 6- and 7-bit S-boxes for which, to the best of our knowledge, no
smaller circuits are published in the literature.

function construction that is already used for Half-Gates in

MP-SPDZ for our scheme. Our code is publicly available7.

All used implementations already perform multi-threading8

to accelerate the computation of gate garbling/evaluation as

well as grouping together AES calls for improved pipe-lining

behaviour. Batched/vectorized AES [64] may provide addi-

tional speed-up. The AES calls for our scheme are independent

within each gate while the regular structure of the SPN

primitives, e.g., all S-boxes are parallel, also allows simple

batching for Half-Gates and ThreeHalves. We do not expect a

drastic difference in how our scheme compares to Half-Gates

and ThreeHalves when using vectorized AES. Table VII lists

the garbling and evaluation time, and the circuit size. Garbling

and evaluation time are wall-clock running times as reported

by the frameworks, and circuit size is the number of bytes

sent/received (whichever is higher) as reported by the frame-

works. Garbler and evaluator were run on the same machine

(6-core/12-threads AMD Ryzen 5 PRO 4650U 2.1 GHz with 8

GB RAM), connected over localhost, and limited to 4 threads

each. We achieve a considerable speed-up in evaluation time

of, e.g., factor 20 to 45 for AES. The expected trade-off of

faster evaluation and larger circuit size is immediate for all

implemented ciphers. Even though they were benchmarked

in the same test environment and hardware, we observed

differences in garbling and evaluation time between Half-Gates

and ThreeHalves executions of the same circuit which cannot

be explained by the differing number of hash function calls.

We believe the observations are due to the implementation in

the two MPC frameworks which have differing overhead.

C. Applications

In this section, we briefly describe two potential applications

where fast evaluation of SPN primitives is crucial.

1) IoT-to-Cloud Secure Computation: In an Internet of

Things (IoT) to Cloud scenario, the focus is on encrypting data

at the source, specifically on the IoT devices, employing an

SPN primitive and efficient distributed decryption in the cloud

prior to privacy-preserving computation on the data (cf. [30,

Application 4]). Such setup facilitates end-to-end secure data

collection and processing. The distributed decryption should

have low computation latency (and thus fast evaluation of

the garbled circuit) in order to minimize the online phase of

the combined protocol (distributed decryption and processing).

With our proposed garbling scheme, IoT-friendly lightweight

primitives can be used for efficient encryption on resource-

constraint devices and still obtain fast evaluation times for

distributed decryption if garbled circuits are pre-processed.

2) Distributed Kerberos: The Kerberos authentication pro-

tocol is widely used, e.g., as one authentication method for

Microsoft Windows. The key distribution center (KDC) plays

a critical role in the architecture since it stores the secret

keys of clients and service servers, and the secret key of the

ticket-granting server (TGS). During the different stages of

authentication, the KDC decrypts messages using the TGS

secret key, and also encrypts messages with the client, TGS,

7https://github.com/KULeuven-COSIC/gc-fast-sbox-eval
8Garbler and evaluator are restricted to 4 threads each.

https://github.com/KULeuven-COSIC/gc-fast-sbox-eval

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 12

and service server secret keys. Compromise of the KDC has

devastating consequences as critical key material is leaked,

which breaks all authentication goals. The security of keys

can be increased by distributing the KDC among two servers

G,E that each only stores a secret-share of each stored key,

e.g., k = kG ⊕ kE . Consequently, the necessary encryption

and decryption operations are computed using our garbling

scheme where the two servers input their respective key

share as private input. Clearly, clients only authenticate to the

distributed KDC infrequently, allowing the garbling server G

to garble circuits for all required operations

• encryption of the client session key using a client key (as

input),

• encryption of the ticket granting ticket using the TGS

secret key (G can fix kG in the circuit),

• encryption of the client-service session key using a ser-

vice server’s key (as input) and

• decryption of the client session-key using the TGS secret

key (G can again fix kG in the circuit)

ahead of time and send the garbled circuit to E. The necessary

setup for OT extensions can be performed similarly. The

resulting online phase either requires no input from G or

just the respective key share of the client/service server in

question, and E obtains the output without interaction with

G. Therefore, a client only needs to send requests to E

and benefits from reduced circuit evaluation time to complete

the entity authentication. The obtained speed-up of primitive

evaluation for, e.g., AES, directly translates to its use in modes

of operations specified in Kerberos. The KDC has already

been distributed in the three-party honest-majority setting [65]

with the goal of high throughput. The authors used AES in

counter mode to improve performance. Since garbled circuits

are constant-round protocols, we can use Kerberos’ original

specification, AES-CTS (CBC ciphertext stealing).

VII. CONCLUSION

We presented a garbling scheme that encodes n-bit strings

per wire. It generalizes the idea of FreeXOR and integrates

seamlessly into state-of-the-art schemes with FreeXOR on

the 1-bit wire level. Projection gates can be used to convert

strings from n- to m-bit or to compute arbitrary n- to m-bit

functions, while XOR is free. We prove the scheme secure

under the assumption of a n-TCCR secure hash function H,

a generalization of TCCR security. Instantiating H with a

dedicated construction is an interesting open direction since

it requires input and output of κ + n bits. One possible ap-

proach is concatenating two 128-bit constructions to produce

sufficient output bits but care must be taken to keep the inputs

distinct such as using different tweaks and/or chaining. It is

also possible to instantiate current TCCR constructions with

a permutation of larger size, e.g., fixed-key Rijndael-256, and

still benefit from AES-NI hardware support.

For an important application in two-party secure function

evaluation, the evaluation of symmetric primitives, we show

that substitution-permutation network primitives with a cell-

like structure can be efficiently implemented in our scheme.

Compared to AND gate-based circuits, we show a high-speed

evaluation that is traded off with moderate additional gar-

bling or communication cost. In scenarios where the garbling

scheme runs in an offline/online setting, we shift the garbling

work and garbled circuit transfer to the evaluator into the pre-

processing phase and thus obtain a high-speed online phase.

We obtained a considerable performance improvement, a 4- to

72-times faster online phase, for nine primitives in literature

when taking hash function calls as a metric. Implementation

of some ciphers shows that this evaluation performance im-

provement translates into practical applications.

Besides oblivious computation of SPN primitives, state-

ments where a prover proves knowledge of a key k to a

pair x, y s.t. AESk(x) = y are highly relevant. Garbling

schemes have been used to construct efficient interactive zero-

knowledge protocols that prove statements over “unstructured”

languages expressible in Boolean circuits [66], [67]. Using our

garbling scheme, proving statements involving SPN primitives

would be much faster since proving equates to evaluating the

garbled circuit. This is traded-off with a larger proof size.

APPENDIX A

FORMULAS FOR S-BOXES OF TWINE AND MIDORI64

We use the heuristic optimization tool LIGHTER by Jean et

al. [60] operating on a customized cost metric. We restrict the

tool to use only NOT, AND and XOR gates with the associated

costs of 0.01, 1 and 0.01, respectively. These costs describe

our setting where NOT and XOR gates are practically free, i.e.,

very low cost, and AND gates are expensive, i.e., high cost9.

The tool then searches an implementation with low total cost

following a heuristic. This approach reduces the number of

AND gates for the TWINE S-box from 7 AND gates (algebraic

normal form) to 6 AND gates (see Fig. 7a). For the Midori64

S-box, the number of AND gates is reduced from 8 AND gates

(formula given in the specification [23]) to 4 AND gates (see

Fig. 7b).

APPENDIX B

IMPLEMENTATION OF SPN PRIMITIVES

In the following, we give a more detailed explanation of the

implementation from Tables V and VI for each primitive.

A. AES

The key schedule of AES-128 applies 4 S-boxes per round

to the state. All remaining key schedule operations can be

expressed using XOR gates. The AES S-box can be computed

with 32 AND gates, as described by Boyar and Peralta [68].

In the data path, 16 S-boxes are applied per round. The

ShiftRows, MixColumns and AddRoundKey steps can be

expressed with XOR gates. AES-128 defines 10 rounds.

For an implementation using projection gates, we first

compose the key into 8-bit wires. Then, the key schedule

can be computed by replacing the S-box with a single 8-

bit projection gate computing the same functionality. For the

9Essentially, this implies that we prefer implementations using 99 NOT or
XOR gates in addition to x AND gates to an implementation using x + 1
AND gates.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 13

a← x2 ⊕ x3

b← x3 ⊕ (¬x0 ∧ x1)

c← ¬x0 ⊕ a⊕ (x1 ∧ a ∧ b)

d← a⊕ (b ∧ c)

e← b⊕ c

f ← c⊕ d

x
′
3 ← x1 ⊕ e

x
′
2 ← e⊕ (d ∧ x

′
3)

x
′
0 ← c⊕ (f ∧ x

′
2)

x
′
1 ← f ⊕ x

′
3

(a) The 4-bit S-box of
TWINE [22] computed us-
ing 6 AND gates.

a← ¬(x0 ⊕ x2)

b← x0 ⊕ (a ∧ x3)

c← x1 ⊕ b

d← ¬x3 ⊕ (a ∧ b)

x
′
0 ← b⊕ (c ∧ d)

e← d⊕ x
′
0

x
′
1 ← a⊕ d

x
′
2 ← c⊕ e

x
′
3 ← e⊕ (x′

0 ∧ x
′
2)

(b) The 4-bit S-box Sb0 of
Midori64 computed using 4
AND gates.

Figure 7: Implementation formulas for the TWINE and Mi-

dori64 S-boxes. The input bits are x0 through x3, the output

bits are x′0 through x′3.

data path, we replace S-boxes with 8-bit projection gates. The

mixing step in AES cannot be described with a binary matrix

alone but we re-write the MixColumns step as







2311
1231
1123
3112













s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15






=







0111
1011
1101
1110













s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15






⊕







1100
0110
0011
1001













f(s0) f(s4) f(s8) f(s12)
f(s1) f(s5) f(s9) f(s13)
f(s2) f(s6) f(s10) f(s14)
f(s3) f(s7) f(s11) f(s15)







where s0, . . . s15 are the 8-bit cells of the state and f(s) =
2s computes the finite field doubling in GF(28) defined for

AES. Therefore, we compute a round of AES with 2 ·16 8-bit

projection gates. This yields a correct result, since s⊕ f(s) =
3s in GF(28).

B. CRAFT

The key and tweak bits are first composed into 4-bit wires.

The remaining key schedule is linear w.r.t. 4-bit wires.

The data path is linear except for the 16 S-boxes that are

applied in each of the 30 rounds. CRAFT uses the Midori

Sb0 S-box which can be computed with 4 AND gates (see

Fig. 7b), or one 4-bit projection gate.

C. Fides

The internal state of Fides is a 4× 8 grid of 5-bit and 6-bit

cells for Fides-80 and Fides-96, respectively. We can compute

the 5-bit S-box with 10 AND gates (see Fig. 8), or one 5-

bit projection gate. The 6-bit S-box may be computed with

34 AND gates expressing each output bit in algebraic normal

form. This approach doesn’t aim to optimise the number of

AND gates used. However, we count common terms from

different output bits only once since they can be shared as

intermediate results. In our garbling scheme, the S-box is

expressed in one 6-bit projection gate.

a ← x0 ∧ x2

b ← x1 ∧ x4

c ← x2 ∧ x3

d ← x0 ∧ x4

e ← x2 ∧ x4

f ← x1 ∧ x2

x′0 ← ¬(x0 ⊕ x3 ⊕ b⊕ a)
x′1 ← x4 ⊕ c⊕ d⊕ e⊕ (x0 ∧ x1)
x′2 ← x3 ⊕ x4 ⊕ a⊕ d⊕ f ⊕ (x3 ∧ x4)
x′3 ← x1 ⊕ x4 ⊕ a⊕ c⊕ f ⊕ (x1 ∧ x3)
x′4 ← x1 ⊕ x2 ⊕ x3 ⊕ b⊕ e⊕ f ⊕ (x0 ∧ x3)

Figure 8: The 5-bit S-box of Fides [27] can be computed

with 10 AND gates. Input bits are x0, . . . , x4, output bits are

x′0, . . . , x
′
4.

D. MANTIS

The key k = k0||k1 is expanded as defined in [24]:

k0||(k0 >>> 1)⊕ (k0 >> 63)||k1 .

Afterwards we compose the required 4-bit wires for the

expanded key costing 192 1-bit projection gates. MANTIS

uses the Midori Sb0 S-box, which can be computed with 4

AND gates (see Fig. 7b), or one 4-bit projection gate.

E. Midori64

The key bits are first composed into 4-bit wires. The key

schedule can then be computed using XOR gates between the

4-bit wires.

In the data path, all steps except for the S-box can be

computed with XOR gates alone. The 4-bit S-box Sb0 can

be computed with 4 AND gates (see Fig. 7b), or one 4-bit

projection gate.

F. Piccolo

The key schedule for Piccolo-80 and Piccolo-128 can be

computed using only XOR gates after the key bits are com-

posed to 4-bit wires.

Piccolo’s data path applies the 16-bit function F two times

per round to half of the state. This function F is composed of

a parallel application of 4 4-bit S-boxes, followed by a mixing

matrix multiplication, followed by another parallel application

of 4 4-bit S-boxes.

F (s0, s1, s2, s3) = S

((
2311
1231
1123
3112

)

S

((
s0
s1
s2
s3

)))

,

where the function S applies the 4-bit S-box S element-wise

S

((
s0
s1
s2
s3

))

=

(
S(s0)
S(s1)
S(s2)
S(s3)

)

.

The mixing matrix encodes multiplications with elements

in the finite field GF(24) with the irreducible polynomial

x4 + x + 1. Clearly, Piccolo doesn’t have the property of

a binary mixing matrix. However, we can still provide an

implementation with projection gates at additional cost.

We re-write the function F as

F ′(s0, s1, s2, s3) = S

((
0111
1011
1101
1110

)(
f(s0)
f(s1)
f(s2)
f(s3)

)

⊕

(
1100
0110
0011
1001

)(
g(s0)
g(s1)
g(s2)
g(s3)

))

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 14

where f(s) = S(s) and g(s) = 2S(s). Subsequently,

we compute f , g and the remaining S-box layer S via 4-

bit projection gates. Therefore, F ′ can be computed with

4+4+4 = 12 4-bit projection gates. This re-writing is correct

because f(s)⊕ g(s) = 3S(s) w.r.t GF(24).

G. SKINNY

The SKINNY cipher family comprises three tweakey (i.e.,

public tweak concatenated with secret key) sizes, 64, 128 and

192 bit, of which we include the size 128-bit here. The key

schedule for SKINNY-64-128 also includes the application of

a linear feedback shift register (LFSR) to 8 per round. This

LFSR is implemented with a 4-bit projection gate.

The SKINNY data path contains 16 4-bit S-boxes per round.

Each S-box is implemented with 4 AND gates using the

formula from [24], or one 4-bit projection gate.

H. TWINE

The key bits are first composed into 4-bit wires. The key

schedule is linear except for 2 and 3 S-box computations per

round for TWINE-80 and TWINE-128, respectively. In total,

the key schedule comprises 35 rounds with S-box computation

for both TWINE-80 and TWINE-128.

The data path is the same for TWINE-80 and TWINE-128

and contains 8 S-boxes per round in 36 rounds. The S-box

can be computed with 6 AND gates (see Fig. 7a), or one 4-bit

projection gate.

I. WAGE

The internal state of the WAGE permutation is represented

as 37 7-bit cells. We load the initial state by computing the

7-bit wire composition for all bits.

We write si to denote the i-th 7-bit cell and s′i to denote

the updated i-th 7-bit cell. The internal state is updated 111

times in the following procedure:

fb← WGP(s36)⊕ s31 ⊕ s30 ⊕ s26 ⊕ s24 ⊕ s19 ⊕ s13 ⊕ s12
⊕s8 ⊕ s6 ⊕ Dbl(s0)

s5 ← s5 ⊕ SB(s8)
s11 ← s11 ⊕ SB(s15)
s19 ← s19 ⊕WGP(s18)⊕ rc0
s24 ← s24 ⊕ SB(s27)
s30 ← s30 ⊕ SB(s34)
s′j ← sj+1, 0 ≤ j ≤ 35

s′36 ← fb .

The 7-bit functions WGP, Dbl and SB denote a Welch-Gong

permutation, finite field doubling and a lightweight 7-bit S-

box. All three are implemented using a 7-bit projection gate.

Further, rc0 is a round-dependent constant.

REFERENCES

[1] K. A. Jagadeesh, D. J. Wu, J. A. Birgmeier, D. Boneh, and G. Bejer-
ano, “Deriving genomic diagnoses without revealing patient genomes,”
Science, vol. 357, no. 6352, pp. 692–695, 2017.

[2] T. Gupta, H. Fingler, L. Alvisi, and M. Walfish, “Pretzel: Email
encryption and provider-supplied functions are compatible,” in Proceed-

ings of the Conference of the ACM Special Interest Group on Data

Communication, 2017, pp. 169–182.
[3] D. Chen, W. Chen, J. Chen, P. Zheng, and J. Huang, “Edge detection and

image segmentation on encrypted image with homomorphic encryption
and garbled circuit,” in 2018 IEEE International Conference on Multi-

media and Expo (ICME). IEEE, 2018, pp. 1–6.

[4] H.-J. Kim, H.-I. Kim, and J.-W. Chang, “A privacy-preserving kNN
classification algorithm using yao’s garbled circuit on cloud computing,”
in 2017 IEEE 10th International Conference on Cloud Computing

(CLOUD). IEEE, 2017, pp. 766–769.
[5] A. C.-C. Yao, “How to generate and exchange secrets,” in Proceedings

of the 27th Annual Symposium on Foundations of Computer Science,
ser. SFCS ’86. IEEE Computer Society, 1986, p. 162–167.

[6] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole,” in
Advances in Cryptology - EUROCRYPT 2015, ser. LNCS. Springer,
2015, pp. 220–250.

[7] M. Rosulek and L. Roy, “Three halves make a whole? Beating the half-
gates lower bound for garbled circuits,” in Advances in Cryptology –

CRYPTO 2021, ser. LNCS. Springer, 2021, pp. 94–124.
[8] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free xor

gates and applications,” in Automata, Languages and Programming.
Springer, 2008, pp. 486–498.

[9] J. B. Nielsen and C. Orlandi, “LEGO for two-party secure computation,”
in Theory of Cryptography. Springer, 2009, pp. 368–386.

[10] Y. Lindell and B. Pinkas, “Secure two-party computation via cut-and-
choose oblivious transfer,” Journal of Cryptology, vol. 25, no. 4, pp.
680–722, 2012.

[11] Y. Huang, J. Katz, and D. Evans, “Efficient secure two-party compu-
tation using symmetric cut-and-choose,” in Advances in Cryptology –

CRYPTO 2013, ser. LNCS. Springer, 2013, pp. 18–35.
[12] Y. Huang, J. Katz, V. Kolesnikov, R. Kumaresan, and A. J. Malozemoff,

“Amortizing garbled circuits,” in Advances in Cryptology - CRYPTO

2014, ser. LNCS, vol. 8617. Springer, 2014, pp. 458–475.
[13] S. Jarecki and V. Shmatikov, “Efficient two-party secure computation

on committed inputs,” in Advances in Cryptology - EUROCRYPT 2007,
ser. LNCS, 2007, pp. 97–114.

[14] A. shelat and C. hao Shen, “Two-output secure computation with
malicious adversaries,” in Advances in Cryptology – EUROCRYPT 2011,
ser. LNCS. Springer, 2011, pp. 386–405.

[15] X. Wang, S. Ranellucci, and J. Katz, “Authenticated garbling and
efficient maliciously secure two-party computation,” in Proceedings of

the 2017 ACM SIGSAC Conference on Computer and Communications

Security, ser. CCS ’17. ACM, 2017, pp. 21–37.
[16] J. Katz, S. Ranellucci, M. Rosulek, and X. Wang, “Optimizing authenti-

cated garbling for faster secure two-party computation,” in Advances in

Cryptology–CRYPTO 2018, ser. LNCS. Springer, 2018, pp. 365–391.
[17] S. Dittmer, Y. Ishai, S. Lu, and R. Ostrovsky, “Authenticated garbling

from simple correlations,” in Advances in Cryptology - CRYPTO 2022,
ser. LNCS, vol. 13510. Springer, 2022, pp. 57–87.

[18] P. Mohassel, M. Rosulek, and Y. Zhang, “Fast and secure three-party
computation: The garbled circuit approach,” in Proceedings of the 22nd

ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’15. ACM, 2015, p. 591–602.

[19] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and
mechanism design,” in Proceedings of the 1st ACM Conference on

Electronic Commerce, ser. EC ’99. ACM, 1999, p. 129–139.
[20] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of

secure protocols,” in Proceedings of the Twenty-Second Annual ACM

Symposium on Theory of Computing, ser. STOC ’90. ACM, 1990, p.
503–513.

[21] S. G. Choi, J. Katz, R. Kumaresan, and H.-S. Zhou, “On the security
of the ”Free-XOR” technique,” in Theory of Cryptography, ser. LNCS,
vol. 7194. Springer, 2012, pp. 39–53.

[22] T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi, “TWINE:
A lightweight block cipher for multiple platforms,” in International

Conference on Selected Areas in Cryptography. Springer, 2012, pp.
339–354.

[23] S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T. Akishita,
and F. Regazzoni, “Midori: A block cipher for low energy,” in Advances

in Cryptology - ASIACRYPT 2015, ser. LNCS. Springer, 2015, pp. 411–
436.

[24] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki,
P. Sasdrich, and S. M. Sim, “The SKINNY family of block ciphers and
its low-latency variant MANTIS,” in Advances in Cryptology – CRYPTO

2016, ser. LNCS. Springer, 2016, pp. 123–153.
[25] C. Beierle, G. Leander, A. Moradi, and S. Rasoolzadeh, “CRAFT:

lightweight tweakable block cipher with efficient protection against DFA
attacks,” IACR Trans. Symmetric Cryptol., vol. 2019, no. 1, pp. 5–45,
2019.

[26] National Institute of Standards and Technology, “Specification for the
ADVANCED ENCRYPTION STANDARD (AES),” Federal Information
Processing Standards Publications 197, 2001.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 15

[27] B. Bilgin, A. Bogdanov, M. Knežević, F. Mendel, and Q. Wang,
“Fides: Lightweight authenticated cipher with side-channel resistance for
constrained hardware,” in International Conference on Cryptographic

Hardware and Embedded Systems. Springer, 2013, pp. 142–158.
[28] R. AlTawy, G. Gong, K. Mandal, and R. Rohit, “Wage: An authenticated

encryption with a twist,” IACR Transactions on Symmetric Cryptology,
pp. 132–159, 2020.

[29] K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and
T. Shirai, “Piccolo: An ultra-lightweight blockcipher,” in International

workshop on cryptographic hardware and embedded systems. Springer,
2011, pp. 342–357.

[30] B. Pinkas, T. Schneider, N. Smart, and S. C. Williams, “Secure two-party
computation is practical,” in Advances in Cryptology – ASIACRYPT

2009, ser. LNCS. Springer, 2009, pp. 250–267.
[31] V. Kolesnikov, P. Mohassel, and M. Rosulek, “FleXOR: Flexible gar-

bling for XOR gates that beats Free-XOR,” in Advances in Cryptology

– CRYPTO 2014, ser. LNCS. Springer, 2014, pp. 440–457.
[32] A. Acharya, T. Ashur, E. Cohen, C. Hazay, and A. Yanai, “A new

approach to garbled circuits,” in Applied Cryptography and Network

Security - 21st International Conference, ACNS 2023, ser. LNCS, vol.
13906. Springer, 2023, pp. 611–641.

[33] G. Dessouky, F. Koushanfar, A.-R. Sadeghi, T. Schneider, S. Zeitouni,
and M. Zohner, “Pushing the communication barrier in secure com-
putation using lookup tables.” in 24. Network and Distributed System

Security Symposium (NDSS’17). Internet Society, 2017.
[34] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental

game,” in Proceedings of the Nineteenth Annual ACM Symposium on

Theory of Computing, ser. STOC ’87. ACM, 1987, p. 218–229.
[35] A. Brüggemann, R. Hundt, T. Schneider, A. Suresh, and H. Yalame,

“FLUTE: fast and secure lookup table evaluations,” in 44th IEEE

Symposium on Security and Privacy, SP 2023. IEEE, 2023, pp. 515–
533.

[36] I. Damgård, J. B. Nielsen, M. Nielsen, and S. Ranellucci, “The
TinyTable protocol for 2-party secure computation, or: Gate-scrambling
revisited,” in Advances in Cryptology – CRYPTO 2017, ser. LNCS.
Springer, 2017, pp. 167–187.

[37] I. Damgård and R. Zakarias, “Fast oblivious AES a dedicated application
of the minimac protocol,” in Progress in Cryptology – AFRICACRYPT

2016, ser. LNCS. Springer, 2016, pp. 245–264.
[38] M. Keller, E. Orsini, D. Rotaru, P. Scholl, E. Soria-Vazquez, and

S. Vivek, “Faster secure multi-party computation of AES and DES
using lookup tables,” in Applied Cryptography and Network Security.
Springer, 2017.

[39] Y. Ishai, E. Kushilevitz, S. Meldgaard, C. Orlandi, and A. Paskin-
Cherniavsky, “On the power of correlated randomness in secure com-
putation,” in Theory of Cryptography Conference. Springer, 2013, pp.
600–620.

[40] F. B. Durak and J. Guajardo, “Improving the efficiency of AES proto-
cols in multi-party computation,” in Financial Cryptography and Data

Security. Springer, 2021, pp. 229–248.
[41] A. Abidin, E. Pohle, and B. Preneel, “Arithmetic circuit implementations

of s-boxes for SKINNY and PHOTON in MPC,” in Computer Security

- ESORICS 2023 - 28th European Symposium on Research in Computer

Security Proceedings, Part I, ser. LNCS, vol. 14344. Springer, 2023,
pp. 86–105.

[42] D. Malkhi, N. Nisan, B. Pinkas, Y. Sella et al., “Fairplay – secure two-
party computation system,” in Proceedings of the 13th USENIX Security

Symposium, vol. 4, 2004.
[43] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster secure two-party

computation using garbled circuits.” in USENIX Security Symposium,
vol. 201, 2011, pp. 331–335.

[44] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg,
“TASTY: Tool for automating secure two-party computations,” in Pro-

ceedings of the 17th ACM Conference on Computer and Communica-

tions Security, ser. CCS ’10. ACM, 2010, p. 451–462.
[45] D. Heath, V. Kolesnikov, and L. K. L. Ng, “Garbled

circuit lookup tables with logarithmic number of ciphertexts,”
Cryptology ePrint Archive, Paper 2024/369, 2024. [Online]. Available:
https://eprint.iacr.org/2024/369

[46] D. Heath and V. Kolesnikov, “One hot garbling,” in Proceedings of

the 2021 ACM SIGSAC Conference on Computer and Communications

Security, ser. CCS ’21. ACM, 2021, p. 574–593.
[47] R. Nieminen and T. Schneider, “Breaking and fixing garbled circuits

when a gate has duplicate input wires,” Journal of Cryptology, vol. 36,
no. 34, 2023.

[48] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient
garbling from a fixed-key blockcipher,” in Proceedings of the 2013 IEEE

Symposium on Security and Privacy, ser. SP ’13. IEEE Computer
Society, 2013, p. 478–492.

[49] C. Guo, J. Katz, X. Wang, and Y. Yu, “Efficient and secure multiparty
computation from fixed-key block ciphers,” in 2020 IEEE Symposium

on Security and Privacy (SP). IEEE, 2020, pp. 825–841.
[50] Y. L. Chen and S. Tessaro, “Better security-efficiency trade-offs in

permutation-based two-party computation,” in Advances in Cryptology

– ASIACRYPT 2021, ser. LNCS. Springer, 2021, pp. 275–304.
[51] Y. Lindell and A. Yanai, “Fast garbling of circuits over 3-valued logic,”

in Public-Key Cryptography - PKC 2018 - 21st IACR International

Conference on Practice and Theory of Public-Key Cryptography, Pro-

ceedings, Part I, ser. LNCS, vol. 10769. Springer, 2018, pp. 620–643.
[52] M. Ball, T. Malkin, and M. Rosulek, “Garbling gadgets for boolean

and arithmetic circuits,” in Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, ser. CCS ’16.
ACM, 2016, pp. 565–577.

[53] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of garbled
circuits,” in Proceedings of the 2012 ACM Conference on Computer

and Communications Security, ser. CCS ’12. ACM, 2012, p. 784–796.
[54] C. Kempka, R. Kikuchi, and K. Suzuki, “How to circumvent the two-

ciphertext lower bound for linear garbling schemes,” in Advances in

Cryptology – ASIACRYPT 2016, ser. LNCS. Springer, 2016, pp. 967–
997.

[55] C. Guo, J. Katz, X. Wang, C. Weng, and Y. Yu, “Better concrete security
for half-gates garbling (in the multi-instance setting),” in Advances in

Cryptology – CRYPTO 2020, ser. LNCS. Springer, 2020, pp. 793–822.
[56] M. O. Rabin, “How to exchange secrets with oblivious transfer,”

Cryptology ePrint Archive, Report 2005/187, 2005. [Online]. Available:
https://eprint.iacr.org/2005/187

[57] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient
oblivious transfer and extensions for faster secure computation,” in
Proceedings of the 2013 ACM SIGSAC Conference on Computer &

Communications Security, ser. CCS ’13. ACM, 2013, pp. 535–548.
[58] M. Naor and B. Pinkas, “Oblivious transfer and polynomial evaluation,”

in Proceedings of the Thirty-First Annual ACM Symposium on Theory

of Computing. ACM, 1999, pp. 245–254.
[59] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner,

“Ciphers for MPC and FHE,” in Advances in Cryptology – EUROCRYPT

2015, ser. LNCS. Springer, 2015, pp. 430–454.
[60] J. Jean, T. Peyrin, S. M. Sim, and J. Tourteaux, “Optimizing implemen-

tations of lightweight building blocks,” IACR Trans. Symmetric Cryptol.,
vol. 2017, no. 4, pp. 130–168, 2017.

[61] K. Mandal and G. Gong, “Can lwc and pec be friends?: Evaluating
lightweight ciphers in privacy-enhancing cryptography,” in Fourth

Lightweight Cryptography Workshop. NIST, 2020. [Online]. Available:
https://csrc.nist.gov/Events/2020/lightweight-cryptography-workshop-2020

[62] K. Hamacher, T. Kussel, T. Schneider, and O. Tkachenko, “Pea: Practical
private epistasis analysis using mpc,” in Computer Security–ESORICS

2022: 27th European Symposium on Research in Computer Security,

Proceedings, Part III, ser. LNCS. Springer, 2022, pp. 320–339.
[63] M. Keller, “MP-SPDZ: A versatile framework for multi-party computa-

tion,” in Proceedings of the 2020 ACM SIGSAC Conference on Computer

and Communications Security, 2020.
[64] J. Münch, T. Schneider, and H. Yalame, “VASA: vector AES instructions

for security applications,” in ACSAC ’21: Annual Computer Security

Applications Conference. ACM, 2021, pp. 131–145.
[65] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara, “High-

throughput semi-honest secure three-party computation with an honest
majority,” in Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, ser. CCS ’16. ACM, 2016,
pp. 805–817.

[66] M. Jawurek, F. Kerschbaum, and C. Orlandi, “Zero-knowledge using
garbled circuits: How to prove non-algebraic statements efficiently,” in
Proceedings of the 2013 ACM SIGSAC Conference on Computer &

Communications Security, ser. CCS ’13. ACM, 2013, p. 955–966.
[67] T. K. Frederiksen, J. B. Nielsen, and C. Orlandi, “Privacy-free garbled

circuits with applications to efficient zero-knowledge,” in Advances in

Cryptology - EUROCRYPT 2015, ser. LNCS. Springer, 2015, pp. 191–
219.

[68] J. Boyar and R. Peralta, “A new combinational logic minimization
technique with applications to cryptology,” in International Symposium

on Experimental Algorithms. Springer, 2010, pp. 178–189.

https://eprint.iacr.org/2024/369
https://eprint.iacr.org/2005/187
https://csrc.nist.gov/Events/2020/lightweight-cryptography-workshop-2020

	Introduction
	Related Work
	Background
	Garbled Circuits for Bounded Integers
	Security Model by Bellare, Hoang and Rogaway

	The Scheme
	Circuit Definition
	Gates
	Circuit Constructions
	Garbling Scheme

	Security
	(n-)TCCR Security
	Privacy
	Obliviousness
	Authenticity

	Evaluation of SPN Primitives
	Implementation Details
	Performance
	Applications

	Conclusion
	Appendix A: Formulas for S-Boxes of TWINE and Midori64
	Appendix B: Implementation of SPN Primitives
	AES
	CRAFT
	Fides
	MANTIS
	Midori64
	Piccolo
	SKINNY
	TWINE
	WAGE

	References

