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Abstract—RGBT tracking has attracted increasing attention
since RGB and thermal infrared data have strong complementary
advantages, which could make trackers all-day and all-weather
work. Existing works usually focus on extracting modality-shared
or modality-specific information, but the potentials of these two
cues are not well explored and exploited in RGBT tracking. In
this paper, we propose a novel multi-adapter network to jointly
perform modality-shared, modality-specific and instance-aware
target representation learning for RGBT tracking. To this end,
we design three kinds of adapters within an end-to-end deep
learning framework. In specific, we use the modified VGG-M
as the generality adapter to extract the modality-shared target
representations. To extract the modality-specific features while
reducing the computational complexity, we design a modality
adapter, which adds a small block to the generality adapter
in each layer and each modality in a parallel manner. Such a
design could learn multilevel modality-specific representations
with a modest number of parameters as the vast majority of
parameters are shared with the generality adapter. We also
design instance adapter to capture the appearance properties
and temporal variations of a certain target. Moreover, to enhance
the shared and specific features, we employ the loss of multiple
kernel maximum mean discrepancy to measure the distribution
divergence of different modal features and integrate it into each
layer for more robust representation learning. Extensive experi-
ments on two RGBT tracking benchmark datasets demonstrate
the outstanding performance of the proposed tracker against the
state-of-the-art methods.

Index Terms—RGBT tracking, Multiple adapters, Parallel
design, Hierarchical divergence loss, Representation learning.

I. INTRODUCTION

GBT tracking is an emerging topic in the computer
vision community [1], [2], [3], [4]. Its goal is to em-
ploy the complementary advantages of visible and thermal
information to achieve robust visual tracking. In recent years,
many efforts have been devoted to promoting the progress of
RGBT tracking, but there is still much research room due to
the underutilization of RGB and thermal information.
Previous CNN-based works on RGBT tracking can be
generally categorized into two aspects according to how they
model multi-modal information. One is to use a two-stream
network to extract modality-specific features and then combine
all of them using some strategies to achieve object tracking [5],
[6], [2], [4], [7]. Although the lenses of RGB and thermal
modalities are with different imaging bands, their images have
much correlated information such as object boundaries, spatial
layout and some fine-grained textures. Some methods [5], [6]
do not take into consideration the collaboration of different
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modalities in feature learning, which might limit tracking per-
formance. Other methods [2], [4], [7] introduce cross-modal
interaction layers to capture collaboration information of dif-
ferent modalities, but might ignore shared information across
modalities. Therefore, many redundant parameters would be
introduced. The other one is to use a single-stream network to
extract modality-shared information, i.e., use the same network
parameters to extract features of all modalities [8]. This kind
of methods could model the collaborative cues of different
modalities effectively, but ignore the heterogeneous properties
of RGB and thermal data. The useful single-modal information
is sometimes suppressed and the tracking performance is thus
degraded.

To handle these problems, we propose a novel Multi-
Adapter Network (MANet) to jointly perform modality-shared,
modality-specific and instance-aware feature learning in an
end-to-end trained deep framework for RGBT Tracking.
Specifically, we adopt the first three convolutional layers of
the modified VGG-M [9] as the generality adapter to extract
modality-shared representations. It should be noted that other
networks like Inception Network [10] and Residual neural Net-
work (ResNet) [11] could be also applied in our framework.
We select VGG-M for its good balance between accuracy and
complexity in tracking. To improve efficiency, we introduce
an adaptive RolAlign layer [12] in the generality adapter to
allow features of all samples to be extracted from feature maps.
One generality adapter is used to extract the features of both
modalities for the modeling of the collaboration of the two
modalities.

To model the heterogeneous properties of RGB and thermal
sources, we design the modality adapter to extract modality-
specific information. Considering the real-time nature of visual
tracking, we reduce the parameters of the modality adapter
by sharing a large portion of parameters with the generality
adapter. In specific, we add a small block which consists of a
small convolution kernel (e.g., 3x3 or 1x1), a normalization
layer and a pooling layer on the generality adapter in each
layer and each modality in a parallel manner. Although only
small convolution kernels are used, our modality adapter is
sufficient to encode modality-specific information as different
modalities could share a large portion of their parameters
and the number of the modality-specific parameters should
be much smaller than the generality adapter.

To capture appearance changes and temporal variations of a
certain target, we design an instance-aware adapter, which is
updated online every several frames interval for the balance of
accuracy and efficiency. Our instance adapter is similar to the
fully connected layers in MDNet [13], but differ them from the
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Fig. 1. Tllustration of the effectiveness of the hierarchical divergence loss in our modality adapter (MA) and generality adapter (GA). We show the averaged
feature maps of all layers with and without the hierarchical divergence loss, where some regions are highlighted by the black circle and black rectangle.

following aspects. First, we use two fully connected layers for
each modality to extract its features. Second, we compute the
modality weights to achieve quality-aware fusion of different
modalities. Finally, we concatenate the re-weighted features
and then use two additional fully connected layers for target
classification and regression.

To improve the representation of generality and modality
adapters, we want to reduce the feature differences of different
modalities in generality adapter since these features should
contain the shared information and increase the difference
in modality adapter as they should contain modality-specific
information. Note that there are multi-layers for generality and
modality adapters, and we thus design a hierarchical diver-
gence loss (HD loss), in which each layer is embedded with
a divergence loss. To improve the robustness to outliers, we
employ the multiple kernel maximum mean discrepancy [14]
to measure the distribution divergence of different modalities
features. Therefore, we minimize the divergence in generality
adapter and maximize it in modality adapter in the optimiza-
tion process via back propagation.

We show the effectiveness of the HD loss in Fig. 1.
The results show that HD loss is beneficial to improve the
discriminative ability of GA and MA (the black rectangle), and
some noises are suppressed (the black circle). The modality-
shared and modality-specific features are thus more effectively
learnt using HD loss. Note that the contrast of some feature
maps decreases when using HD loss, and the reason is that HD
loss is to minimize the modality-shared feature distribution in
GA and maximize the modality-specific feature distribution
in MA, while the binary classification loss and instance
embedding loss aim to drive discriminative feature learning
of target from background in both modalities. Therefore, the
learning of modality-shared and modality-specific features is
collaboratively enhanced. In Fig. 1, we can see that the noise
features in the black circle are suppressed in MA when using
HD loss as in GA, and the target features in the black rectangle
are highlighted in MA when using HD loss.

This paper makes the following major contributions in

RGBT tracking and related applications.

« It presents a novel multi-adapter framework to extract the
modality-shared, modality-specific and instance-aware
feature representations for robust RGBT tracking. The
proposed framework is general and could be easily ex-
tended to other multimodal tasks. The source code has
been released’.

o It designs a parallel and hierarchical structure of the
generality adapter and modality adapter and integrates
the hierarchical divergence loss to establish a one-stage
joint learning of modality-shared and modality-specific
features. Such a design is able to use a small number of
parameters to learn powerful multilevel modality-specific
representations.

e It designs a dynamic fusion module in the instance
adapter to achieve quality-aware fusion of different source
data. Unlike fusion strategies in existing works [8], [2],
our fusion layer is instance-aware and thus better to
capture target appearance dynamics.

o Extensive experiments on three RGBT tracking bench-
mark datasets suggest that the proposed tracker achieves
excellent performance against the state-of-the-art meth-
ods.

This work, called MANet++, is an extension of our previ-
ous conference version MANet [3]. Compared with MANet,
MANet++ makes the following major contributions. First, we
propose a hierarchical divergence loss (HD loss) to enhance
the quality of features output from modality and generality
adapters. With the HD loss, we can establish a one-stage joint
learning of modality-shared and modality-specific features,
which avoids the risk of over-fitting in previously designed
two-stage learning algorithm. Second, to achieve quality-
aware fusion of different modalities, we design a dynamic
fusion module in the instance adapter while MANet does
not include any fusion scheme. We also make the following
improvements over MANet. First, we use the RolAlign layer

Ihttp://chenglongli.cn/code-dataset/
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to spatially align the feature map with the input image, and
features of all samples are thus be extracted directly from
feature map. Second, we replace the original local response
normalization with the independent component to enhance the
independence of neurons and eliminate redundant information
in the modality adapter.

II. RELATED WORK

In recent years, more and more RGBT trackers have been
proposed, and we review them from the following two aspects.

A. Traditional Methods for RGBT Tracking

Cvejic et al. [15] investigates the effect of pixel-level fusion
of visible and infrared videos on object tracking performance.
After that, the representative works are based on sparse
representation [16], [1], [17], [18], manifold ranking [19], [20]
and dynamic graph [21], [22]. Early works focus on the sparse
representation due to their robustness to noise and outliers.
For example, Wu et al. [16] integrate image patches from
different modalities and then use a sparse representation for
each sample in the target template space. Lan et al. [18] pro-
pose a modality-consistency sparse representation framework
and propose discriminability-consistency constrained feature
template learning to learn robust feature templates for sparse
representation in RGB-infrared modalities.

Following works partition the target bounding box into a
set of local patches, and construct a graph to compute weights
of patches. Robust features are achieved by weighting patch
features and the structured SVM is adopted for tracking. For
example, Li et al. [19] propose a cross-modal manifold ranking
algorithm with soft consistency and noise labels to compute
the patch weights. Also, Li et al. [20] propose a two-stage
modality-graphs regularized manifold ranking algorithm to
mitigate the impact of inaccurate patch weights initialization.
These works, however, rely on the structure-fixed graphs, and
the relations among patches are not well explored. To handle
this problem, Li er al. [21] propose a spatially regularized
graph learning to automatically explore the intrinsic relation-
ship of global patches and local patches. Besides, Li et al. [22]
propose a sparse representation regularized graph learning to
explore patch relations in an adaptive manner.

B. Deep Learning for RGBT Tracking

Deep learning techniques have received great success in
the computer vision community, and recent works on RGBT
tracking also focus on deep learning. Li et al. [6] propose
a two-stream convolutional neural network which uses deep
neural network to learn modality-specific features, and employ
correlation filter to track using the selected discriminative
features. Yang et al. [23] propose two local attention and
global attention to train strong discriminative deep classifiers
for robust RGB-T object tracking. Zhu et al. [8] propose
a novel deep network architecture to aggregate hierarchical
deep features within each modality to handle the challenge of
significant appearance changes in tracking. Zhang et al. [24]
propose a convolutional filter containing two types, object

filter and relative filters, to construct a two-layer convolutional
neural network to learn sparse feature representation of RGB
and thermal data for object tracking. Zhang et al. [25] based
on the fully convolutional Siamese networks propose a RGB-
infrared fusion tracking method, which employs two Siamese
network to extract search frame features and template frame
features from each modality, and then fuse these features to
generate a score map for target location. However, these meth-
ods employ two CNNs to extract modality-specific features,
while the shared information is ignored in feature learning
and some redundant parameters are also introduced.

Some works use a single network to extract both features
of RGB and thermal modalities. Zhu et al. [2] propose a
deep fusion method to recursively aggregate multilevel and
multi-modal features, and then use the pruning algorithm
to remove redundant features. Zhang et al. [26] propose an
attention-based deep network to adaptively fuse multilevel
and multi-modal features. However, these methods do not
model modality-specific information in feature learning and
the tracking performance might be limited as RGB and thermal
data are usually heterogeneous. In this paper, we take both
modality-shared and modality-specific modeling into account
in feature learning as well as the instance-aware fused features
for robust RGBT tracking.

III. MULTI-ADAPTER CONVOLUTIONAL NETWORK

In this section, we will present the proposed multi-adapter
network called MANet++, including network architecture, loss
functions and training details.

A. Network Architecture

The pipeline of MANet++ is shown in Fig. 2, in which
the detailed parameter settings are presented. Our MANet++
consists of three kinds of network blocks, i.e., generality
adapter, modality adapter and instance adapter. The network
input is two whole images from RGB and thermal modalities.
We extract two types of features of each modality through the
shared generality adapter and the modality adapter. Then we
combine these two types of features of each modality using
the element-wise addition. Through introducing the RolAlign
layer, features of all candidate samples are directly extracted
from the combined feature maps. Next, for each candidate, we
send its features of all modalities into the instance adapter for
information fusion. Finally, we use the binary classification
layer to predict the score of each candidate, and then select
the candidate with the highest score as tracking result in the
current frame.

Generality adapter (GA). Visible spectrum and thermal
infrared data are captured from cameras of different imaging
bands, and thus reflect different properties of target objects. In
spite of it, they share some common information like object
boundaries, spatial layout and some fine-grained textures, and
thus how to model them plays a critical role in learning
collaborative representations of different modalities. However,
existing works [6], [8], [4], [23] usually model different
modalities separately, and thus ignore modality-shared infor-
mation. Furthermore, separate processing of each modality
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Fig. 2.
multiplication and concatenation respectively. ReLU, LRN and BN refer to the rectified linear unit, the local response normalization unit and batch
normalization respectively. In IA, FCgr, FCp, FCr1 and FCr; are fully connected layers, where F'C'r and F'C'r; share parameters and F'C'r and F'Cpq
share parameters. W Pr and W Pr are single fully-connected layers with 2 unit outputs, and F'Cpstance is composed of K such fully-connected layers.

would introduce a lot of redundant parameters, as different
modalities should have a large portion of shared parameters.
To handle these problems, we design a generality adapter
(GA) to extract shared object representations across different
modalities. There are many potential networks [9], [11] to be
used for our GA, and we select the VGG-M network [9] for
its good balance between effectiveness and efficiency.

In specific, our GA consists of the first three layers of the
VGG-M network, where the convolution kernel sizes are 7 x
7 %96, 5 x5 x 256, 3 x 3 x 512 respectively. The first and
second layers of GA are composed of a convolutional layer,
an activation function of rectified linear unit (ReLU) and a
local response normalization (LRN). The details are shown in
Fig. 2. We use the dilated convolution [27] in the third layer
with a dilation ratio of 3 to increase the resolution of feature
maps. Followed by the third layer, an adaptive RolAlign layer
is employed to align feature maps spatially and produces 7 x 7
feature maps for each sample, and then uses the max pooling
layer to pool feature maps into 3 x 3 [12].

Modality adapter (MA). As discussed above, RGB and ther-
mal modalities are heterogeneous with different properties, and
thus only using GA is insufficient for RGBT feature presenta-
tions. To model the characteristics of each modality and make
best use of the complementary advantages of RGB and thermal
modalities, we need to design a sub-network to learn modality-
specific feature representations. Recent works [6], [8], [4]
use two-stream Convolutional Neural Networks (CNNs) to
extract RGB and thermal features respectively. They ignore
modality-shared feature learning and usually contain abun-
dant parameters, which might degrade tracking accuracy and
efficiency respectively. To improve RGBT feature representa-
tions and reduce computational complexity, we propose the
modality adapter (MA) that is built on GA to effectively
extract modality-specific feature representations with a little
computational burden.

In specific, we design a parallel network structure that in-
cludes a small convolutional kernel (e.g., 3x3 or 1x1) at each
convolutional layer of GA. Although only small convolutional
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Overall network architecture of MANet++. It consists of three modules: MA, GA and IA. Herein, +, X and c¢ denote the element-wise addition,

kernels are used, our MA is able to encode modality-specific
information effectively. Since different modalities should share
a large portion of their parameters, the number of modality-
specific parameters should be much smaller than GA. In
particular, we develop an adaptive scheme to determine the
size of the convolution kernel of MA according to the kernel
size of GA. The kernel sizes of our MA are set to 3x3 (7x7
in GA), 1x1 (5x5) and 1x1 (3x3) respectively. The number
of channels in each layer of MA and GA is consistent so
that shared and the specific features can be directly added.
Such design makes MA has only 20% parameters of GA,
which greatly reduces redundant parameters compared to two-
stream networks. To capture more effective modality-specific
information and improve generalization capability, we assign
an Independent Component (IC) layer [28] in each layer
of MA after the convolutional layer and ReLU activation
function, and followed by the IC layer is the max pooling
layer.

Next, we explain why we can design such a parallel archi-
tecture as follows. The feature transfer between two layers in
a modality can be formulated as :

Fr=Fp =W (1)

where F! refers to the [-layer feature maps in the modality
m, and m indicates the index of one modality. To extract
the modality-shared and modality-specific features, we aim
to decompose the complete parameter WV into two parts, one
for the modality-shared parameter YW and the other for the
modality-specific parameters W4, To this end, we introduce
a function diagg(-) that reshapes the matrix to a new size S*S
by embedding the original matrix into the center position of
the new matrix and other positions are filled with 0 [29]. The
formula is:
WA w =358 +i,h =55+

diags(an”A)wh _ st.0<i<a,0<j<b.

0, otherwise.

2
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where wh indicates the coordinates of the elements in the new
matrix, and ¢j indicates the coordinates of the elements in the
original matrix. Therefore, we can decompose W in (1) into
as follows:

W=W + diagg(W)'*) 3)

Finally, (1) is equivalently expressed as follows:

fl :fylnfl *WGA +J—_'7ln71 *WTJr\fA (4)

m

Instance adapter (IA). Instance objects involve different
class labels, movement patterns and appearance changes, and
tracking algorithms might thus suffer from instance-specific
challenges. Furthermore, appearance of instance objects vary
much over time. Therefore, we design an instance adapter
to adapt appearance changes and instance-specific challenges.
Existing methods [3], [2] directly inherit the idea of multi-
domain learning in MDNet [13]. Different from MDNet, our
instance adapter (IA) first uses two fully connected layers for
each modality, and then predicts modality weights to achieve
quality-aware fusion of different modalities. There are two
major reasons why we choose the fusion position in the first
fully connected layer. First, the parameters of IA are updated
online to capture appearance dynamics of target, and thus
we integrate two modalities in IA to achieve instance-aware
fusion. Second, integrating two modalities in other layers
would introduce more parameters, which affect computational
speed and also easily lead to overfitting. We also verify this
choice in experiments.

In specificc, TA is composed of eight fully
connected (F'C) layers, named as [FCpg, FCgry,
FCT7 FCT17 WPR7 WPTa FCfusion and Fcinstcmce with

the output sizes of 512, 512, 512, 512, 2, 2, 512 and 2
respectively. Herein, to reduce parameters, FCgr, FCr;
and FCp,FCp; share common parameters, as shown in
Fig. 2. Except for FCr and FCrp, other fully connected
layers include a Dropout operation. Besides WPgr, WPy
and FCjpstance layers also employ Softmazr to calculate
the positive and negative scores of samples, and other fully
connected layers include an activation function ReLU. FCgr
and FCr are used to extract features of RGB and thermal
sources separately, and WPgr and WPr are employed
to predict the positive score P,, and negative score N,
(m = 1,2,..., M) respectively. The modality weights are
computed by the following equation:

1=, i
nm:Q(;\;(Pm—Nm)I) n=0,1,2...,255 (5

where P! and N, represent the positive and negative scores
of the i-th sample in the m-th modality. €2 is the Sigmoid
function, which is used to normalize the modality weights 7,,
to a range of 0 to 1. We use the modality weights to re-weight
features output from RolAlign layer, and then re-encode these
feature maps by FCgr(FCr) layer. Finally, the re-encoded
features of RGB and thermal modalities are concatenated, and
the FCpysion layer is used to fuse modal features. The final
FCipstance 1s to build a new FC layer for each instance target,
which is used to achieve the adaptation of the instance target,
similar to MDNet [13]. In the training phase, FCj,stance Will

build an equal number of branches based on the number of
sequences trained for multi-domain learning. During online
tracking, FCjpstance Will be removed and replaced with a
binary classification layer with softmax cross-entropy loss, and
rebuilt once in each sequence. Therefore, we use the newly
created FCjpstance layer to initially model the target in the
current sequence, and update IA to adapt to changes of the
target over time to achieve robust tracking.

B. Loss Function

Our network includes three kinds of loss functions including
hierarchical divergence loss, binary classification loss and
instance embedding loss. The hierarchical divergence loss is
based on the multiple kernel maximum mean discrepancy
(MK-MMD), and we thus first review it for the sake of clarity.

Review: MK-MMD. As pointed out in [30], [14], given a
set of independent observations from two distributions p and
q, the two-sample test accepts or rejects the null hypothesis
Hy : p = g, which measures the distance between the samples
based on the values of the test. In the topological space X
with a reproducing kernel %k, we define a reproducing kernel
Hilbert space as 7. The mean embedding of distribution p in
the reproducing kernel Hilbert space 7 is a unique element

pr(p) [31]:
Ea:NPf(x) = <f7Mk(P)>7-ka

Based on the Riesz representation theorem, when the kernel
function & is Borel-measurable and E,,k'/?(z,z) < oo, the
mean embedding py(p) exists.

In fact, we calculate the 7j-distance between the mean
embedding p and ¢ as the maximum mean discrepancy (MMD)
between the Borel probability measures p and q. An expres-
sion for the squared MMD is as follows:

vf €Tk (6)

o(p, q) = llux(p) — ()17, (7)

Since MMD is strongly correlated with its kernel function
k, there may be contradictory results for different kernel
functions. To handle this problem, Gretton et al. [30] propose a
multiple kernel maximum mean discrepancy (MK-MMD) in a
two-sample test, which selects the kernel function to maximize
the testing power, and minimize the Type II error (false
acceptance p = ¢) with a given upper boundary of type I error
(false rejection p = ¢). In domain adaptation [32], [33], they
employ MK-MMD to improve test performance by generating
kernel functions that belong to the kernel family. Therefore,
the multiple kernel function % is a linear combination of a set
of positive definite functions {k,}¢_,, i.e.

d d

Ki={k= Buke, Y Bu=DiVue{l,....d}} (8
u=1 u=1

where D > 0, 8, > 0; and each k € K is uniquely in 7y,

based on the assumption that the kernel is bounded, |k, | < K,

Yu e {1,...,d}.

Hierarchical divergence loss. Due to the different imaging
principles between different modal images, it is difficult to di-
rectly measure their similarity using Euclidean distance which
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is very sensitive to outliers. However, when the distributions of
the two modalities are determined to be similar, outliers with
significantly different appearance can be tolerated at the same
time. Thus, we can solve this problem by treating different
modalities as two samples obeying different distributions.

We pursue to make modality-shared features in two modal-
ities with similar distributions and modality-specific features
with different distributions. There are many information the-
ory techniques that can be used to calculate the similarity
between distributions, such as KL divergence, entropy, and
mutual information. However, these existing methods tend to
use bias-correction strategies, sophisticated space-partitioning,
and density estimation, which are difficult to apply to high-
dimensional data. Hence, we choose MK-MMD to evaluate
the similarity in this work. Therefore, from (7) and (8), we
can use MK-MMD method to measure the distance between
two distributions and formulate it as follows:

D(p, q) = llu(p) - Z Butbu(p. g ©)

)7 =
where 1, (p, q) is the MMD for the kernel function k.

In specific, we output the features of each layer of GA
and MA, and then calculate the modality-shared features
and modality-specific features in each level separately by the
following formula:

b/2
’(/) (GArgb,GA 2/:Hk ul 1<i<d
, (10
Hk(ui) = k(GAEZ]blv GArgb) (GAzz_lv GA?)
— K(GA% GAY) — H(OAT T GA%,),
where b is the batch size, the GA! g and GA! indicate

RGB and thermal feature maps output from GA respectively.
I (GA,gp, GAy) is denoted as the unbiased estimating of MK-
MMD between the modality-shared features of the j-th layer.
Also, similar to (10), we can obtain unbiased estimates be-
tween the output features of MA, written as ¢/ (MA,g,, MA;).

During the training phase, we want to minimize
I (GArgp, GAr) and maximize 17 (MA, gz, MA;). This is
because in our framework, the distribution similarity between
modality-shared features is expected to be as large as possible,
while the distribution similarity between modality-specific
features is expected to be as small as possible. Thus, the loss
function we designed is shown below:

3 3
Lha = > 7 (GArgy, GA)) =Y 7 (MA,y,, MA,)

j=1

Y

j=1

As a result of this loss-driven, we can learn modality-specific
features and modality-shared features through one-step train-
ing. In addition, supervised training enables our model to fully
mine the characteristics of each modality and improve the
generalization.

Binary classification loss. In the framework of tracking by
detection [13], [12], the most important loss function is binary
classification loss. The key to detection-based strategies is to
distinguish between foreground and background categories.

Following MDNet, to learn the representations that distinguish
target from background, we employ the loss function of binary
cross entropy (BCE) to drive the discriminative learning of
target and background.

In our network, we calculate the scores of the single
modality and the fused one separately. From the outputs of
WPgr, WPy and FCj,stance, 2D binary classification scores
are recorded as Sp , S7 and Spygion, Which are formulated as

follows:
1 n 2
bpwion = =3 3= 3 la- 08(0 (i)
Lo =305 los(a(sh) (12)
n

i=1 c=1

n 2
Lr =33 ¢ los(o(55)

1=1 c=1

where y; € {0, 1} is a one-hot vector of the ground-truth label,
¢ represents positive samples (¢ = 1) or negative samples
(¢ = 0), and o is the Softmazx operation. [-]4 represents the
output of the d-th FCj,stance layer.

Therefore, the final binary classification loss for our network
is formulated as:

Lcls = qusion + AlLR + A2LT (13)
where A\; and A\ are the balance factors, in this paper we set
them as A1 = Ay = 0.5 for offline training and \; = Ay = 1
for online learning.

Instance embedding loss. The binary classification loss
function tries to distinguish target from background in each
domain, which makes it weak to distinguish between targets
in different domains, especially when an object is a target in
one domain and a background in another domain.

Following RT-MDNet [12], our algorithm adds a constraint,
which embeds target from different videos to be apart from
each other. We can implement this constraint with the loss
function as follows:

Linst = _722 yl d- IOg

i=1 d=1

[Sfuswn] )) (14)

where D is the number of domains (i.e video sequence) in
a training dataset. Note that this loss function only works on
positive samples denoted by + in (14). Under the influence of
this loss function, the target score is enhanced in the current
domain and suppressed in other domains. Moreover, based
on this loss-driven model, similar targets can be distinguished
more effectively during testing.

Overall loss. The loss function of our network is designed as
follows:

Lojs = Les +viLinst + v2Lng (15)

where v; and vy are the hyper-parameters that control the
importance of loss terms, and herein we set v; = 0.1.
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C. One-stage Learning Algorithm

It should be noted that existing datasets not only contain
ground-truths of each modality, they also provide high-aligned
common ground-truths for both modalities. Therefore, in our
work, we employ these shared ground-truths for training. In
the offline training phase, the whole network is trained in a
one-stage end-to-end manner. We use the stochastic gradient
descent (SGD) algorithm [34] to train our model. The specific
details of training are set as follows. We construct a mini-
batch with the samples collected from a training sequence
for each iteration. This mini-batch includes 256 positive and
768 negative examples in 8 frames randomly selected from a
single sequence, e.g., sampling 32 positive and 96 negative
samples in each frame. Herein, the criterion for selecting
positive samples is that the Intersection over Union (IoU) of
the sampling boxes and the ground-truth boxs is greater than
0.7, and the IOU of the negative samples is less than 0.5. We
initialize our GA sub-network with the parameters of VGG-
M [9] and randomly initialize the parameters of other sub-
networks, and then use the RGBT dataset to fine-tune them
for tracking. Note that when testing on GTOT [1], we fine-
tune network using RGBT234 [6], and vice versa. We train
the network until the model converges, where the learning
rate of all layers is 0.0001, the weight decay is fixed to
0.0005. To more flexibly control the mining of modality-shared
features and modality-specific features, we set different values
at different stages of training: 5 = 1 in the first 200 iterations,
vo = 0.1 between 200 and 500 rounds, and 5 = 0.01 after 500
rounds.

In this experiment, the specific settings for the L;q (11)
term are as follows. We use d different Gaussian kernels
(ie. ku(p,q) = e*”p*q“w””) to build the kernel function in
(10) by a linear combination. For improving the efficiency
and performance, we set d=11, which is enough to drive
modality-shared and modality-specific learning, and set o,
to 247 %(u = 1,...,11). Considering that different kernels
should have different weights, and thus the setting of the
parameter (3, in (9) is the same as in [30].

In the online training phase, including initial training and
online update. To model the target instance, we recreate a
new Fj,stance branch for each test sequence, and fine-tune
the IA of the first frame of each tracking video by using the
first frame information. Specifically, we collect 500 positive
samples and 5000 negative samples, which meet the IoUs
standard developed during the offline training phase. Initial
training uses the samples collected from the first frame to train
our network by 50 iterations with a learning rate of 0.001
for F'C;pstance and others are 0.0001 in IA. Moreover, we
apply the bounding box regression technique [13] to improve
the prediction smoothness at the target scale, and train the
regressor only in the first frame. In the subsequent frames,
we draw positive samples with IoU greater than 0.7 and
negative samples with IoU less than 0.3 at the estimated target
location. We save these sample feature representations from
outputs of the adaptive RolAlign layer to avoid redundant
computations in the online tracking phase. These samples are
used as the training dataset for online update to maintain

the robustness and adaptability of the model. Online update
consists of two complementary update mechanisms, namely
long-term update and short-term update. Short-term updates
will be performed after the target score of the current frame is
below the threshold, here we set the threshold to zero, while
long-term updates are executed every 10 frames [13]. It is
worth noting that we only use the loss function (13) in online
training to achieve the online adaptation of our model.

IV. ONLINE TRACKING

During the tracking process, we fix all parameters of GA
and MA. We replace the last fully connected layer in instance
adapter with a new one to fit the target instance of each RGBT
video sequence. Our model receives the first pair of RGBT
frames with ground truth bounding box, and then performs
initial training as described above. In the subsequent frames,
long-term and short-term updates are performed according to
the rules described above. For obtaining a pair of RGBT input
frames at time ¢, we take Gaussian sampling centered on the
previous tracking result X;_; at time ¢-1, and collect 256
candidate regions as z;{. We use these candidate regions as
input to our IA. Next, we first obtain their classification scores
based on single-modality sample features, and then calculate
the weight of each modality according to (5). Then, we use
the weight assigned to each candidate region to re-encode
the FCr(FCr) and use the concatenation operation to fuse
modality features. Finally, we employ the FCpyg0n layer to
encode the fused features and use the F'Cjystqnce t0 Obtain the
classification score of each sample. Herein, the positive and
negative scores of each sample are denoted as f*(z%) and
f(x}), respectively. We select the candidate region sample
with the highest score as the tracking result X; at time ¢, and
the formula expression is as follows:

X = argmax f'(z})
i=0,...,255

(16)

It is worth noting that when f*(z!) > 0.5, we will use the
bounding box regression model to adjust the position and scale
of the target. When the f*(xi) < 0, the short-term update
will start. Long-term updates are performed with 10 frames
interval.

V. PERFORMANCE EVALUATION

In this section, we will compare our MANet++ with cur-
rent popular tracking algorithms, including RGB trackers and
RGBT trackers. We also verify the effectiveness of the major
components in the proposed algorithm.

A. Evaluation Data and Metrics

In this paper, we evaluate our MANet++ on three large-scale
benchmark datasets.

GTOT dataset. GTOT dataset [1] contains 50 spatially and
temporally aligned pairs of RGB and thermal infrared video
sequences under different scenes and conditions. The dataset
is labeled with a bounding box for each frame, and 7 ad-
ditional challenge attributes are labeled to evaluate different
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RGBT tracking algorithms for attribute-based analysis. We
employ the widely used tracking evaluation metrics, including
precision rate (PR) and success rate (SR) for quantitative
performance evaluation. In specific, PR is the percentage of
frames whose output location is within the threshold distance
of the ground truth value, and we compute the representative
PR score by setting the threshold to be 5 and 20 pixels for
GTOT and RGBT234 datasets respectively (since the target
objects in GTOT are generally small). SR is the percentage of
the frames whose overlap ratio between the output bounding
box and the ground truth bounding box is larger than the
threshold, and we calculate the representative SR score by
the area under the curve.

RGBT234 dataset. RGBT234 dataset [22] consists of 234
spatially and temporally aligned RGBT video sequences. The
longest video sequence contains about 4,000 frames, and
the entire dataset has a total of 200,000 frames. Moreover,
this dataset has rich challenging factors such as motion
blur, camera moving, illumination, deformation and occlusion.
These challenges are labeled separately for a more compre-
hensive evaluation of different RGBT tracking algorithms. As
RGBT234 dataset contains ground-truths of each modality,
following existing works [22], we employ the maximum PR
(MPR) and maximum SR (MSR) metrics for fair evaluation.
Specifically, for each frame, we compute the Euclidean dis-
tance mentioned in PR on both RGB and thermal modalities,
and adopt the smaller distance to compute the precision. we
also set the threshold to be 20 pixels in RGBT234 and 5
pixels in GTOT to obtain the representative MPR. Similar to
MPR, we define maximum success rate (MSR) to measure
tracking results. By varying the threshold, the MSR plot can
be obtained, and we employ the area under curve of MSR plot
to define the representative MSR.

VOT-RGBT2019 dataset. VOT-RGBT2019 dataset [35] con-
tains 60 RGBT video sequences selected from RGBT234
dataset [22], with a total of 20,083 frames. Different from
the above metrics, we follow the VOT protocol to evaluate
different tracking algorithms. Note that in VOT protocol, when
evaluated algorithms lose the target, the corresponding ground-
truth will be used to re-initialize algorithms. Three evaluation
metrics, Expected Average Overlap (EAO), robustness (R) and
accuracy (A), are used.

B. Evaluation on GTOT Dataset

On the GTOT dataset, we first compare with 11 RGB
trackers, including ECO [36], DAT [37], RT-MDNet [38],
C-COT [39], ACT [40] and SiamDW [41], SRDCF [42],
BACF [43], ACFN [44], DSST [45], MDNet [13]. The results
are shown in Fig. 3. Our tracker outperforms MDNet [13],
DSST [45] and DAT [37] with 8.9%/9.0%, 11.6%/15.7% and
13.0%/10.5% in PR/SR, respectively. From the results, we
can see that our approach significantly outperforms all RGB
trackers on GTOT dataset [1]. It fully demonstrates that our
method is able to make best use of thermal modalities to boost
tracking performance.

We also compare our approach with 13 state-of-the-
art RGBT trackers, some of which are from the GTOT

benchmark. Since there are not many existing deep-based
tracking methods in the RGBT tracking field, we extend
some RGB algorithms to RGBT ones. Specifically, the
extended methods are to add the thermal modality data
as an additional channel of the RGB modality and in-
put it into RGB trackers. Here, DAT [37]+RGBT, MD-
Net [13]+RGBT, RT-MDNet [12]+RGBT, Struck [46]+RGBT,
SiamDW [41]+RGBT are extended algorithms. Other RGBT
trackers include MANet [3], MaCNet [7], FANet [8], DAP-
Net [2], SGT [47], LTDA [23], L1-PF [16] and CMR [19]
From Fig. 4 we can see that our tracker exceeds most of RGBT
algorithms.

Our tracker outperforms MANet [3], FANet [8] and DAP-
Net [2] with 0.7%, 1.0% and 1.9% in PR, respectively.
However, our method has slightly low SR compared with
MANet [3] and FANet [8]. Although MANet++ is slightly
worse than MANet in SR on GTOT dataset (0.723 vs. 0.724),
it is better in PR (0.901 vs. 0.894). Moreover, our MANet++
is 8 times faster than MANet in speed on GTOT dataset.
These results demonstrate the effectiveness of the added
hierarchical divergence loss and RolAlign layer. Note that
FANet [8] adopts features of all layers for target classification
and regression, in which shadow features are very important
for accurate target localization. While we only use the highest
layer features but achieve superior performance on PR metric
over FANet on GTOT dataset, which fully demonstrates the
effectiveness of our tracker.

C. Evaluation on RGBT234 Dataset

To further evaluate the effectiveness of our method, we
perform a series of experiments on a large-scale dataset
RGBT234 [22], including overall performance, challenge-
based performance and visual results.

Overall performance. We compare our method with 10
state-of-the-art RGBT trackers as shown in Fig. 6, in-
cluding SGT [47], FANet [8].MacNet [7], DAPNet [2],
MANet [3], MDNet [13]+RGBT, CSR-DCF [48]+RGBT,
SiamDW [41]+RGBT, RT-MDNet [38]+RGBT, CMR [19],
CFNet [49]+RGBT and SOWP [50]+RGBT. We also compare
with the current advanced 11 RGB trackers as shown in
Fig. 5. They are ECO [36], DAT [37], RT-MDNet [38], C-
COT [39], ACT [40], CSR-DCF [48], SOWP [50], DSST [45],
CFnet [49] and SiamDW [41]. From the results we can
see that our MANet++ outperforms all other trackers on
RGBT234 dataset [6] in all metrics. It fully demonstrates the
effectiveness of our algorithm and the importance of thermal
modality information. In particular, our MANet++ has the
highest performance, i.e., 80.0% and 55.4% in PR and SR
respectively. It not only achieves 6.9% performance gains
in PR over the second best RGB tracker DAT, and 4.0%
performance gains in SR over the second best RGB tracker C-
COT, but also outperforms the baseline RGBT tracker MANet
over 2.3%/1.5% in PR/SR.

Challenge-based performance. RGBT234 dataset includes
12 challenge attribute labels, including no occlusion (NO),
partial occlusion (PO), heavy occlusion (HO), low illumination
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Fig. 3. Comparison between our algorithm with RGB trackers on GTOT
dataset, where the representative PR and SR scores are presented in the legend.
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Fig. 4. Comparison between our algorithm and RGBT trackers on GTOT
dataset, where the representative PR and SR scores are presented in the legend.

(LI), low resolution (LR), thermal crossover (TC), deformation
(DEF), fast motion (FM), scale variation (SV), motion blur
(MB), camera moving (CM) and background clutter (BC). The
evaluation results are shown in Table I.

From the results we can see that our proposed method
achieves best in most challenges, including the challenges
of PO, HO, LI, LR, TC, DEF, FM, SV, CM and BC. In
the evaluation of the LR challenge, our algorithm has a 6%
performance improvement over the second place in the PR. It
shows that our model can make full use of the information
of the two modalities. Furthermore, for the challenges of PO,
LI, TC, DEF, CM and BC, tracking performance is improved
by about 3%. It also demonstrates that our algorithm has
strong discriminative ability of target features. Compared with
MANet, our MANet++ has a remarkable improvement in the
PO, LI and TC challenges.

Visual comparison. In Fig. 8, we compare MANet++ with
six advanced RGBT algorithms, including FANet [8], MaC-
Net [7], DAPNet [2], MANet [3], RT-MDNet [38]+RGBT and
SGT [47], on four sequences. In the sequence womancross,
compared with other methods, MANet++ can accurately locate
the target and perform better on occlusion and background
cluster challenges. From the sequence soccer2, our algorithm
can better handle occlusion and thermal crossover challenges.
In the sequence kited, it can be seen that our algorithm
sufficiently suppresses the interference of high illumination.
It is worth noting that in the sequence elecbikel0, the initial
target in RGB modality contains strong illumination infor-
mation, which makes most algorithms dominated by this in-
formation. Therefore, when the illumination becomes normal,
most algorithms are model drift and lose the target. However,
our method can well suppress this modality-specific noise
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Fig. 5. Comparison of our algorithm and RGB trackers on RGBT234 dataset,
where the representative PR and SR scores are presented in the legend.
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Fig. 6. Comparison of our algorithm and the RGBT trackers on RGBT234
dataset, where the representative PR and SR scores are presented in the legend.

information as shown in Fig. 1, which ensures more accurate
target location. It suggests that our algorithm can sufficiently
mine the information of two modalities. Overall, through the
above comparison, our algorithm is better able to deploy the
information of two modalities to deal with complex challenges
in real scenarios.

D. Evaluation on VOT2019-RGBT Dataset

To more comprehensively evaluate the effectiveness of our
algorithm over other state-of-the-art methods, we present the
performance comparison in Table II, including MANet [3],
FANet [8], MaCNet [7], mfDiMP [4], MDNet [13]+RGBT
and RT-MDNet [12]+RGBT. Since most of compared algo-
rithms are based on MDNet, we implement a variant of
MANet++ for evaluation, called MANet++-RolAlign, that
removes RolAlign layer in MANet++. From the results we can
see that our MANet++-RolAlign has comparable performance
against mfDiMP [4] and outperforms other state-of-the-art
methods including MANet [3], FANet [8] and MaCNet [7].
It demonstrates the effectiveness of the added HD loss and IC
layer on VOT-RGBT2019 Dataset.

MANet++ significantly outperforms RT-MDNet+RGBT and
FANet on VOT-RGBT2019 dataset, which demonstrates the
effectiveness of our MANet++. However, the performance
of MANet++ is inferior to MANet. The major reason is
that RolAlign operation might lead to weak representation
ability of deep features in representing low-resolution objects,
as demonstrated by the comparison of MANet++-RolAlign,
MANet++ and MANet. Note that MANet++ advances MANet
in the following three aspects. First, it is 8 times faster in speed
and achieves real-time performance. Second, it is better in PR
(0.901 vs. 0.894) on GTOT dataset, although slightly worse
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TABLE I
ATTRIBUTE-BASED PR/SR SCORES (%) ON RGBT234 DATASET COMPARED WITH EIGHT RGBT TRACKERS. THE BEST AND SECOND RESULTS ARE IN
red AND blue COLORS, RESPECTIVELY.

\ SOWP+RGBT  CFNet+RGBT CMR SGT MDNet+RGBT  RT-MDNet+RGBT  DAPNet MANet MANet++
NO 86.8/53.7 76.4/56.3 89.5/61.6  87.7/55.5 86.2/61.1 85.5/61.3 90.0/64.4  88.7/64.6 | 89.8/65.4
PO 74.7/48.4 59.7/41.7 71.7/53.5  77.9/51.3 76.1/51.8 74.5/52.6 82.1/567.4  81.6/56.6 | 85.2/59.3
HO 57.0/37.9 41.7/29.0 56.3/37.7  59.2/39.4 61.9 /42.1 64.1/43.9 66.0/45.7  68.9/46.5 | 70.4/47.1
LI 72.3/46.8 52.3/36.9 74.2/49.8  70.5/46.2 67.0/45.5 58.9/39.8 77.5/53.0  76.9/51.3 | 81.1/55.1
LR 72.5/46.2 55.1/36.5 68.7/42.0  75.1/47.6 75.9/51.5 70.8/48.7 75.0/51.0  75.7/51.5 | 82.3/54.5
TC 70.1/44.2 45.7/32.7 67.5/44.1  76.0/47.0 75.6/51.7 76.0/55.8 76.8/54.3  75.4/54.3 80.3/57.6

DEF 65.0/46.0 52.3/36.7 66.7/47.2  68.5/47.4 66.8/47.3 69.0/49.4 71.7/51.8  72.0/52.4 | 75.3/53.5
FM 63.7/38.7 37.6/25.0 61.3/38.2  67.7/40.2 58.6/36.3 64.6/42.7 67.0/44.3  69.4/44.9 | 70.0/45.3
SV 66.4/40.4 59.8/43.3 71.0/49.3  69.2/43.4 73.5/50.5 75.1/53.4 78.0/54.2  77.7/54.2 78.9/55.4
MB 63.9/42.1 35.7/27.1 60.0/42.7  64.7/43.6 65.4/46.3 65.8/47.9 65.3/46.7  72.6/51.6 | 72.0/51.1
CM 65.2/43.0 41.7/31.8 62.9/44.7  66.7/45.2 64.0/45.4 65.1/46.9 66.8/47.4  71.9/50.8 | 74.7/52.3
BC 64.7/41.9 46.3/30.8 63.1/39.7  65.8/41.8 64.4/43.2 66.4/43.5 71.7/48.4  73.9/48.6 | 76.7/49.1
ALL 69.6/45.1 55.1/39.0 71.1/48.6  72.0/47.2 72.2/49.5 72.3/50.6 76.6/53.7  77.7/53.9 | 80.0/55.4
TABLE II
COMPARISON RESULTS ON VOT-RGBT2019 DATASET.
Method MaCNet  FANet  mfDIMP | MDNet+RGBT MANet ;| RT-MDNet+RGBT  MANet++-RolAlign  MANet++
Params(Mb) 56.720 146.628  670.719 17.312 27.802 17.311 28.163 28.163
FPS 0.8 19 103 | 3.6 3.1 35.5 3.1 25.4
A(T) 0.5451 0.4724 0.6019 1 0.5707 0.5823 | 0.4817 0.5821 0.5092
R(1) 0.5914 0.5078 0.8036 ! 0.5806 0.7010 ! 0.3760 0.7259 0.5379
EAO 0.3052 0.2465 03879 0.2827 03463 T 0.2136 0.3635 0.2716
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Fig. 7. Comparison results of MANet++ and its variants on RGBT234 dataset,
where the representative PR and SR scores are presented in the legend.

than MANet in SR (0.723 vs 0.724). Finally, it improves the
performance by 2.3%/1.5% in PR/SR on RGBT234 dataset.

E. Ablation Study

To prove the effectiveness of the major components adopted
in the proposed method, we implement four variants and per-
form comparative experiments on RGBT234. The four variants
are: 1) Baseline-I, that adopts two-stage learning algorithm like
in MANet based on the RT-MDNet, and the normalization
layer of MA adopts local response normalization (LRN);
2) Baseline-II, that replaces LRN in Baseline-I with the
Independent Component [28] layer and others are unchanged;
3) Baseline-II+HD, that integrates the hierarchical divergence
loss in Baseline-II and uses one-stage learning algorithm;
4) Baseline-II+HD+FUS, that incorporates the quality-aware
fusion scheme in Baseline-II+HD. The comparison results on
RGBT234 are shown in Fig. 7.

From the results, we can make the following conclusions:
a) Using the IC layer instead of LRN is helpful to improve
tracking performance. b) The hierarchical divergence loss
enables modality adapter and generality adapter to fully mine
effective modality-shared and modality-specific features. c)
The fusion strategy in IA is beneficial to achieve quality-
aware fusion of different modalities and thus improve tracking
performance clearly.

TABLE III
COMPARISON OF PERFORMANCE OF OUR METHOD AGAINST SEVERAL
VARIANTS ON RGBT234 DATASET.

Methods PR SR
MANet++ 80.0 554
MANet++cqriy | 77.5 544
MANet++;4te 76.0 53.7

F. Impact of Fusion Position

To show the influence of different fusion positions, we
design several variants of the proposed method, and the
results on RGBT234 dataset are shown in Table III. Herein,
MANet++;4¢. denotes that we perform fusion at the second
FC layer and MANet++.4,1, at the last convolution layer.
From the results we can see that MANet++ achieves the best
performance, which demonstrates the choice at the first FC
layer in our MANet++.

In addition, the EAO of MANet significantly outperforms
MDNet [13]+RGBT and MaCNet [7].



IEEE TRANSACTIONS ON IMAGE PROCESSING

Fig. 8. Qualitative comparison of MANet++ against other state-of-the-art trackers on four video sequences.

G. Efficiency Analysis

We implement our algorithm on the PyTorch 0.4.1 platform
with 2.1 GHz Inter(R) Xeon(R) CPU E5-2620 and NVIDIA
GeForce RTX 2080Ti GPU with 11GB memory. We report
our tracker the runtime and the size of parameters against
some state-of-the-art RGBT trackers in Table II. From Ta-
ble II we can see that MANet++ has faster tracking speed
compared with MaCNet [7], FANet [8], and has comparable or
higher performance on VOT-RGBT2019 dataset. In specific,
MANet++ is about 1.34 times faster than FANet and 31.75
than MaCNet, and has a much small number of parameters
than FANet and MaCNet.

In addition, MANet [3] has lower speed than FANet [8]. The
major reason is that MANe does not introduce the RolAlign
layer. Moreover, we can see that the efficiency of MANet is
very close to MDNet+RGBT and very faster than MaCNet,
where MDNet+RGBT is to add the thermal modality data as
an additional channel of the RGB modality and inputs this
four-channel data into a single network MDNet. It suggests
that MANet has comparable efficiency with the baseline
MDNet+RGBT and higher efficiency than two-stream network
MaCNet. The similar observations are drawn from the size
of network parameters in Table II. Therefore, our MANet is
able to use a small number of parameters to efficiently learn
powerful multilevel modality-specific representations.

TABLE IV
COMPARISON OF PERFORMANCE AND S PEED OF OUR METHOD AGAINST
SEVERAL VARIANTS ON GTOT AND RGBT234 DATASET.

GTOT ) RGBT234
Methods PR SR FPS | PR SR FPS
MANet++ 90.1 723 273 | 800 554 254
MANet++-IC 87.2  70.0 27 1785 553 246
MANet++-RolAlign | 903 73.1 33 ! 806 552 3.1
MANet 894 724 3.5 ! 717 539 3.1

To verify the influence of several components on tracking
speed and performance, we design several variants shown in
Table IV on GTOT and RGBT234 dataset. Herein, MANet++-
IC is the version that removes IC layers from all modality
adapters in MANet++, and MANet++-RolAlign is the version

that removes Rol Align layer in MANet++. From the results
we can see that Rol Align layer plays a crucial role in tracking
speed and accuracy. In previous MANet, each candidate (256
candidates in total) needs to pass through the network to ex-
tract features, which is time consuming. Through introducing
the ROIAlign layer, features of all candidates can be directly
extracted from feature maps of input image and the tracking
speed is thus improved greatly. The IC layers have a slight
impact on tracking speed and accuracy.

VI. CONCLUSION

In this paper, we propose a novel multi-adapter neural
network to learn powerful RGBT representation and fusion
for object tracking. The network consists of three types of
adapters, including generality adapter, modality adapter and
instance adapter. In particular, the generality adapter and the
modality adapter have a parallel architecture and share most of
parameters for effective and efficient design. We also introduce
the hierarchical divergence loss to improve features extracted
from generality and modality adapters. Moreover, we design a
quality-aware fusion scheme and embed it into the instance
adapter. Extensive experiments on two benchmark datasets
demonstrate the effectiveness and efficiency of the proposed
tracking method. In future work, we will explore more modal
sources such as depth and near infrared data in our framework
for more robust tracking, and study deeper networks (e.g.,
ResNet) for more powerful representations of generality and
modality adapters.
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