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Abstract—We consider the problem of joint universal nonparametric settings (e.g., the class of all stationeggdic
variable-rate lossy coding and identification for parametic  discrete-alphabet sources), universal schemes such as Ziv
classes of stationary 5-mixing sources with general (Polish) | empe| [4] amount to constructing a probabilistic model for
alphabets. Compression performance is measured in terms . . .
of Lagrangians, while identification performance is measued the source. In the reverse direction, Kieffer [5] and Me_rhf_:lv
by the variational distance between the true source and the [6], among others, have addressed the problem of statistica
estimated source. Provided that the sources are mixing at modeling (parameter estimation or model identificatiorg vi
a sufficiently fast rate and satisfy certain smoothness and yniversal lossless coding.

Vapnik—Chervonenkis learnability conditions, it is shown that, Once we considefossy coding, though, the relationship

for bounded metric distortions, there exist universal schees between codina and modeling is no lonaer so simole. On
for joint lossy compression and identification whose Lagragian 9 9 9 pie.

redundancies converge to zero as,/V,logn/n as the block t_he one ha'_"d, having full anWk_?dge Of the source statis-
length n tends to infinity, where V,, is the Vapnik—Chervonenkis tics is certainly helpful for designing optimal rate-digton

dimension of a certain class of decision regions defined byem-  codebooks. On the other hand, apart from some special cases
dimensional marginal distributions of the sources; furthe@more, (e.g., for i.i.d. Bernoulli sources and the Hamming distort

for each n, the decoder can identify n-dimensional marginal . -
of the active source up to a ball of radiusO(x/V, log n/n) in measure or for i.i.d. Gaussian sources and the squared-erro

variational distance, eventually with probability one. The results ~ distortion measure), it is not at all clear how to extract a
are supplemented by several examples of parametric sourcesreliable statistical model of the source from its reprogrct

satisfying the regularity conditions. via a rate-distortion code (although, as shown recently by
) . ) _ o Weissman and Ordentlich [7], the joint empirical distribuat

e o e ann.. f he Source realzation and the corresponding codeword of
Chervonenkis dimension. a “good” rate-distortion code converges to the distributio
solving the rate-distortion problem for the source). Ths i
not a problem when the emphasis is on compression, but
there are situations in which one would like to compress

It is well known that lossless source coding and statithe source and identify its statistics at the same time. For
tical modeling are complementary objectives. This fact isstance, inindirect adaptive contro(see, e.g., Chapter 7 of
captured by the Kraft inequality (see Section 5.2 in Covdno [8]) the parameters of the plant (the controlled system)
and Thomas [1]), which provides a correspondence betwesme estimated on the basis of observation, and the comtrolle
uniquely decodable codes and probability distributionsaonis modified accordingly. Consider the discrete-time ststiha
discrete alphabet. If one has full knowledge of the soureetting, in which the plant state sequence is a random poces
statistics, then one can design an optimal lossless codédor whose statistics are governed by a finite set of parameters.
source, andriice versa However, in practice it is unreasonableSuppose that the controller is geographically separateuah fr
to expect that the source statistics are known preciselgnso the plant and connected to it via a noiseless digital channel
has to desigruniversalschemes that perform asymptoticallywhose capacity is bits per use. Then, given the time horizon
optimally within a given class of sources. In universal cagi 7', the objective is to design an encoder and a decoder for
too, as Rissanen has shown in [2], [3], the coding and moglelithe controller to obtain reliable estimates of both the plan
objectives can be accomplished jointly: given a sufficientiparameters and the plant state sequence frord’tfiepossible
regular parametric family of discrete-alphabet sourdes.en- outputs of the decoder.
coder can acquire the source statistics via maximum-likeld To state the problem in general terms, consider an infor-
estimation on a sufficiently long data sequence and use thiation source emitting a sequen®e = {X;};cz of random
knowledge to select an appropriate coding scheme. Evenvariables taking values in an alphab&t Suppose that the

™ erial in thi o i © at the |EESational process distribution o is not specified completely, but it is
i el n i paper was presened i P aL e [EBEBLoa - known to be a member of some pararmetic cls 4 < A).
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codes with a given per-letter rate, all variable-rate bloakimensional marginals of the source process distributions
codes, etc.)? In other words, does there exist a schem@&his result shows very clearly that the price to be paid for
that is asymptotically optimal for each, 6 € A? universality, in terms of both compression and identifiwati
2) If the answer to Question 1) is positive, can the codegows with the richness of the underlying model class, as
be constructed in such a way that the decoder can reaiptured by the VC dimension sequeng¥,}. The richer
only reconstruct the source, but also identify its procetlse model class, the harder it is to learn, which affects the
distribution Py, in an asymptotically optimal fashion? compression performance of our scheme because we use the
) source parameters learned from past data to decide how to
In previous work [9], [10], we have addressed these tWg,code the current block. Furthermore, comparing the fate a
questions in the context of fixed-rate lossy block codingnich the Lagrangian redundancy decays to zero under our
of_ stationary memoryless (i.i.d.) continuous-alphabetrses gcheme with the)(log n/n) result of Chou, Effros and Gray
with parameter spacd a bounded subset Gk* for some %14],whose universal scheme is not aimed at identificatian,

finite k. We have shown that, under appropriate regularijymediately see that, in ensuring to satisfy the twin ofyjest
conditions on the distortion measure and on the source modgk compression and modeling, we inevitably sacrifice some
there exist joint universal schemes for lossy coding andcsou compression performance.

identification whose redundancies (thaF is, the_z gap b_etweenl-he paper is organized as follows. Sectioh Il introduces
the actual performance and the theoretical optimum given Ryiation and basic concepts related to sources, codes and
the Shannon distortion-rate function) and source eSt‘mat'Vapnik—Chervonenkis classes. Section Il lists and disess
fidelity both converge to zero a8(y/logn/n), as the block e regularity conditions that have to be satisfied by thecsu
length » tends to infinity. The code operates by coding,,qe| class, and contains the statement of our result. The
each block with the code matched to the source with the it is proved in Sectiof V. Next, in Sectiéd V we give
parameters estimated from the preceding block. Comparifigee examples of parametric source families (namely. i.i.
this convergence rate to thes n/n convergence rate, which is Gy ssjan sources, Gaussian autoregressive sources aed hid
optimal for redundancies of fixed-rate lossy block code,[11arkoy processes) which fit the framework of this paper under
we see that there is, in general, a price to be paid for doigjtaple regularity conditions. We conclude in Secfioh Wtla
compression and identification simultaneously. Furtheemo , tiine directions for future research. Finally, the Apgin

the constant hidden in the(:) notation increases with the ¢qntains some technical results on Lagrange-optimal biexia
“richness” of the model clas§ly : 6 € A}, as measured by .o quantizers.

the Vapnik—Chervonenkis (VC) dimension [12] of a certain
class of measurable subsets of the source alphabet assbciat
with the sources. [I. PRELIMINARIES

The main limitation of the results of [9], [10] is the i.i.d.A. Sources
assumption, which is rather restrictive as it excludes many|q this paper, asourceis a discrete-time stationary ergodic
practically relevant model classes (e.g., autoregressiMeces, andom procesX = {X;};cz with alphabetY. We assume
or Markov and hidden Markov processes). Furthermore, eyt v is a Polish space (i.e., a complete separable metric
assumption that the parameter spacas bounded may not gnacll) and equipX’ with its Borel o-field. For any pair of
always hold, at least in the sense that we may not know tnﬁiicesi,j € 7 with i < j§, let Xf denote the segment
diameter ofA a priori. In this paper we relax both of these x, x, , ... ,X;) of X. If P is the process distribution
assumptions and study the existence and the performanc%pX' then we letEp{-} denote expectation with respect
universal schemes for joint lossy coding and identificatiog P, and let P* denote the marginal distribution ak?.
of stationary sources satisfying a mixing condition, Whe\\neneverP carries a subscript, e.gP = P,, we write
the sources are assumed to belong to a parametric mo@el.) jnstead. We assume that there exists a fixefinite
class{P : 6 € A}, A being an open subset @" for measurey on X, such that then-dimensional marginal of
some finitek. Because the parameter space is not bound%qlry process distribution of interest is absolutely cordimi
we have to use variable-rate codes with countably infini{g;i, respect to the product measyz&, for all n > 1. We
codebooks, and the performance of the code is assessedybyote the corresponding densiti#&&™ /dy™ by p™. To avoid

a composite Lagrangian functional [13] which captures th&iational clutter, we omit the superscript from u”, P"
trade-off between the expected distortion and the expectg,qdpn whenever it is clear from the argument, asdjn(z"),

rate of the code. Our result is that, under certain regylarifp(,n) or p(zn).

conditions on the distortion measure and on the model CIaSSGiven two probability measure® Q on a measurable space

there exist universal schemes for joint lossy source codirtd) (2, A), the variational distancebetween them is defined by
identification such that, as the block lengthiends to infinity,

the gap between the actual Lagrangian performance and the d(P,Q) = sup Z |P(A;) — Q(A))],
optimal Lagrangian performance achievable by variabie-ra {Ai}CA™
codes at that block length, as well as the source estimatigfiere the supremum is over all finité-measurable partitions

fidelity at the decoder, converge to zero@6./V,, logn/n), of Z (see, e.g., Section 5.2 of Gray [15]). #f and ¢ are
whereV,, is the VC dimension of a certain class of decision

regions induced by the collectiofP; : § € A} of the n- 1The canonical example is the Euclidean spB¢efor somed < oo.



the densities ofP and @, respectively, with respect to awhere/(s) denotes the length of in bits. The mapping of
dominating measure, then we can write the sourceX into the reproduction procesX is defined by

on(k+1 n(k+1 n
4P.Q) = [ ) - a2av(e). Y =e (P Xk ). kel
zZ

A useful property of the variational distance is that, foyan! Nat is, the encoding is done in blocks of lengthbut the

measurable functiofi : Z — [0, 1], |Ep f—Eq f| < d(P, Q). encode_r is also allowed to obs_erve thesymbols im_medi_ately
When P and Q are n-dimensional marginals of; and Py, preceding each block. Ttedfective memorgf C""™ is defined
respectively, i.e.P = P andQ = PJ, we writed,, (0, ¢') for as the setM C {1,...,m}, such that
d(Fy', Py). If Ais ac-subfield ofA, we define the variational = (™) = f(z™), Vo™ T e XM xy =34, Vi € M.
distanced(P, Q; A') betweenP and @ with respect taAd’ by
The size| M| of M is called theeffective memory lengtbf
d(P,Q; A) = sup Y |P(A) - Q(A))], C™™. We shall often us@”™" to also denote the composite
A mappingy o f: )A(f = O™ (X7, XY, ). When the code
where the supermum is over all fini#-measurable partitions has zero memoryn§ = 0), we shall denote it more compactly
of Z. Given aé > 0 and a probability measurg, thevari- by C".
ational ball of radiusd aroundP is the set of all probability ~ The performance of the code on the source with process
measures) with d(P, Q) < . distribution P is measured by its expected distortion
Given a sourceX with process distributio®, let P°__ and nomy A n on

Pp° denote the marginal distributions & on {X;}.<o and Dp(C™™) = Ep {p”(Xl X1 )}’
{X,}i>1, respectively. For each > 1, the kth-order absolute
regularity coefficien{or g-mixing coefficientof P is defined
as [16], [17]:

2

where for z» € X" and 2" € A", p,(2",3")
n~ 1Y p(x;,7;) is the per-letter distortion incurred in
reproducingz™ by z", and by its expected rate

Bp(k) £ sup {Z D IP(AiN B;) = PY (AP (B))] ¢ Rp(C™™) S Ep {fn (f (X7, X%,11))}

' where/,,(s) denotes the length of a binary stringin bits,

where the supremum is over all finite( X°__)-measurable normalized byn. (We follow Neuhoff and Gilbert [18] and
partitions {4;} and all finite o(X:°)-measurable partitions normalize the distortion and the rate by the lengtfof the

{B;}. Observe that reproductionblock, not by the combined length + m of
’ the source block plus the memory input.) When working with
Bp(k) =d (P, P% x P{*0(X% ., X)), (1) variable-rate quantizers, it is convenient [13], [19] tcs@ib

the distortion and the rate into a single performance measur

the variational distance betweéhand the product distribution . . .
the Lagrangian distortion

PO __ x P with respect to the-algebras(X° _, X°). Since
X is stationary, we can “split” its process distribution ayan Lp(C™™ \) £ Dp(C™™) + ARp(C™™),

point! € Z and defineSp (k) equivalently by . o )
p(k) where A > 0 is the Lagrange multiplierwhich controls the

Bp(k) =d (PP x Pyio(X 0, X7%)) . (2)  distortion-rate trade-off. Geometrically,»(C™™) is the y-
intercept of the line with slope-A, passing through the point
(Rp(C™™), Dp(C™™)) in the rate-distortion plane [20]. If
P carries a subscriptP = Py, then we write Dy(-), Ry()
and Lg(-).

Again, if P is subscripted by som@& P = Py, then we write
Bo (k).

B. Codes

The class of codes we consider here is the collection 6f Vapnik—Chervonenkis classes

all finite-memory variable-rate vector quantizers. Léthe a In this paper, we make heavy use of Vapnik—Chervonenkis
reproduction alphabetalso assumed to be Polish. We assumfieory (see Devroye, Gyorfi and Lugosi [21], Vapnik [22],
that ¥ U & is a subset of a Polish metric spagewith a Devroye and Lugosi [23] or Vidyasagar [24] for detailed trea
bounded metrigy (-, -): there exists SOoMPyax < +00, SUCh  ments). This section contains a brief summary of the needed
that po(y, y') < pmax for all y,y" € Y. We takep : X x X —  concepts and results. LéZ, A) be a measurable space. For
[0, pmax)s p(z, T) = po(x,Z), as our (single-letterflistortion any collectionC C A of measurable subsets &f and anyn-
function A variable-rate vector quantizer with block lengthuple :™ € Z», define the se€(z") C {0,1}" consisting of
n and memory lengthn is a pair C™™ = (f, ), where all distinct binary strings of the forniL;.,c a3y, ..., 1., ca}),
f: A" xAX™ — Sis theencoder ¢ : § — X" isthe A€ (. Then
decoder andS C {0,1}* is a countable collection of binary S,.(C) = max [C(z")]
strings satisfying the prefix condition or, equivalenthe Kraft mezn
inequality is called the nth shatter coefficientof C. The Vapnik—
Z 2740 < 1, Chervonenkis dimensiofr VC-dimension) ofC, denoted by
ves V(C), is defined as the largest for which S, (C) = 2™ (if



Sn(C)=2"foralln =1,2,..., then we seV(C) = o0). If interior. We wish to design a sequence of variable-rateorect
V(C) < o0, thenC is called aVapnik—Chervonenkis clager quantizers, such that the decoder can reliably reconstnect
VC class). IfC is a VC class withV(C) > 2, then it follows original source sequencX and reliably identify the active
from the results of Vapnik and Chervonenkis [12] and Sausource in an asymptotically optimal manner for @k A. We
[25] thatS,,(C) < nV(©), begin by listing the regularity conditions.

For a VC classC, the so-calledvapnik—Chervonenkis in-
equalities (see Lemmd_2]1 below) relate its VC dimension cgndition 1.The sources i{ P : 0 € A} arealgebraically
V(C) to maximal deviations of the probabilities of the event -mixing there exists a constant> 0, such that
in C from their relative frequencies with respect to an i.i.d.
sample of sizen. For anyz" € 2™, let Bo(k) = O(k™"), Vo € A

1 & where the constant implicit in th€@(-) notation may depend
P :gz% on é.
=1

denote the induced empirical distribution, whefg is the
Dirac measure (point mass) concentrated;abe then have
the following:

Lemma 2.1 (Vapnik—Chervonenkis inequalitielsgt P be
a probability measure oz, A), and Z7 = (Z1,...,%Z,)
an n-tuple of independent random variables with ~ P,
1 < i < n. Let C be a Vapnik—Chervonenkis class wit
V(C) > 2. Then for everys > 0,

This condition ensures that certain finite-block functiofs
the sourceX can be approximated in distribution by i.i.d.
processes, so that we can invoke the Vapnik—Chervonenkis
machinery of Sectiof TIIC. This “blocking” technique, whic
we exploit in the proof of our Theorem 3.1, dates back to
Bernstein [28], and was used by Yu [29] to derive rates
hof convergence in the uniform laws of large numbers for
stationary mixing processes, and by Meir [30] in the contéxt
} < gpV(C) —no?/32 3) nonparametric adaptive prediction of stationary timeeserf\s

= an example of when an even stronger decay condition holds,
let X = {X,};cz be a finite-order autoregressive moving-
average (ARMA) process driven by a zero-mean i.i.d. process

P {sup P (A) — P(A)] > 6
AeC

and

V(C)logn Y = {V;}, i.e., there exist poisitive integersg andp+ g+ 1
E {jlgc) | Pzp (4) = P(A)|} s¢ n @ real constantsyg, a; ..., ap, by, ..., b, such that
wherec > 0 is a universal constant. The probabilities and P a
expectations are with respect to the product measgtireon Zaan—i = Z bjYn—j, n € Z.
(Zn’An) =0 j=1

Remark 2.1:A more refined technique involving metricMokkadem [31] has shown that, provided the common distri-
entropies and empirical covering numbers, due to Dudley; [2®ution of theY; is absolutely continuous and the roots of the
can yield a much bettad(1/,/n) bound on the expected max-polynomial A(z) = >*_, a;z* lie outside the unit circle in
imal deviation between the true and the empirical probiédmli the complex plane, thé-mixing coefficients ofX decay to
This improvement, however, comes at the expense of a murdro exponentially.
larger constant hidden in th@(-) notation.

Finally, we shall need the following lemma, which is a ~gngition 2.For eachd < A, there exist constant® > 0
simple corollary of the results of Karpinski and Macintyr%nd% > 0, such that
[27] (see also Section 10.3.5 of Vidyasagar [24]):

Lemma 2.2:Let C = {4 : £ € R¥} be a collection of sup dn(6,9) < ol — ¢
measurable subsets Bf, such that no VN
. .
Ae = {z € RY - I(z,€) > 0}, ¢ e RF for all 8" in the open ball of radiugy centered a¥, where

| - || is the Euclidean norm oA.
where for eachx € R?, TI(z,-) is a polynomial of degree
in the components of. ThenC is a VC class withV(C) <

This condition guarantees that, for any sequefife},en
2k log(4es).

of positive reals such that

[1l. STATEMENT OF RESULTS On = 0,v/ndn = 0, asn — oo

In this section we state our result concerning universand any sequencl,, },cn in A satisfying||6,, — 0| < d,, for
schemes for joint lossy compression and identification @fgivend € A, we have
stationary sources under certain regularity conditionswrk
in the usual setting of universal source coding: we are given
a sourceX = {X,};cz whose process distribution is knownlt is weaker (i.e., more general) than the conditions of &ies
to be a member of some parametric cldg® : 6 € A}. The [2], [3] which control the behavior of the relative entropg-(
parameter spac# is an open subset of the Euclidean spadermation divergence) as a function of the source pararmmater
Rk for some finitek, and we assume that has nonempty terms of the Fisher information and related quantitieseé&u

dn(0,6,) — 0, asn — oo.



for eachn let is passed by the null hypothesig, under the likelihood-
1 dPy .. ratio decision rule. Now, suppose thét, ..., Z,, are drawn
Dy (P Py) = B {111 W(Xl )} independentljrom P7. To eachA € A,, we can associate a
6’ g . A
1 po(a™) classifierk 4 : X" — {0,1} defined byra(2") = 1{zneay-
= - / po(z"™)In @) du(z™) Call two setsA, A’ € A, equivalenwith respect to the sample
_ " _ per _ 2y =(Z1,...,Zn), and writeA ~z» A’, if their associated
be the normalizednth-order relative entropy (information classifiers yield identical classification patterns:
divergence) betwee®, and P,,. Suppose that, for each
D, (Py||Py) is twice continuously differentiable as a function (ka(Z1), .- 6a(Zm)) = (Kar(Z1), - K4 (Zm)).-

of ¢'. Let ¢ lie in an open ball of radiug aroundé. Since |t is easy to see that zn is an equivalence relation. From
D(Py||Ppr) attains its minimum aty’ = 0, the gradient {he gefinitions of the shatter coefficierfis, (A, ) and the VC
VoD (Fp| Pyr) evaluated ab” = 6 is zero, and we can write gimensionV/(A,,) (cf. SectioriI=C), we see that the cardinality
the second-order Taylor expansion Bf, aboutf as of the quotient setd,, / ~zp is equal to2™ for all sample

1 sizesm < V(A,), whereas form > V(A,), it is bounded
Dn(Pol|Por) = 5(9 =) (0)(6 = 0") + (10— 6']]%), (5) from above lgym\)’(““ﬂ, which is strictly(les)s tha™. Thus,
where the Hessian matrix the fact that the Yatracos clas§, has finite VC dimension
) implies that the problem of estimating the dengify from a
T () = 9 Dy (Py| Py) : large i.i.d. sample reduces, in a sense, to a finite number (in
00,00’ =] fact, polynomial in the sample size, for m > V(A,)) of

simple hypothesis tests of the typé (6). Our Condition 1 will
then allow us to transfer this intuition to (weakly) depenide
samples.

under additional regularity conditions, is equal to thehErs
information matrix

I,(0) = {_l Ey { 0 In pe (X?)H Now that we have listed the regularity conditions that must
" 00:00; i5=1,...k hold for the sources i{ Py : # € A}, we can state our main
(see Clarke and Barron [32]). Assume now, following Rissandesult

[2], [3], that the sequence of matrix normd|Z,(6)|} is Theorem 3.1:Let {Py : § € A} be a parametric class of

bounded (by a constant depending®n Then we can write Sources satisfying Conditions 1-3. Then for every> 0
and everyn > 0, there exists a sequend€;""" },cn Of

D, (Py||Py) < 1(||In(t9)|| +o(1)) -0 —¢? variable-rate vector quantizers with memory lengih, <
2 n(n 4+ n®+t"M/7 £ 1) and effective memory length?, such

/ /112
< ol =07, that, for allg € A,

ie., the normalized relative entropies, (F;|P) are lo- Lo(C™™ ) — inf inf Le(C™™,\)

cally quadratic in¢’. Then Pinsker’s inequality (see, e.g., m>0Cmm

Lemma 5.2.8 of Gray [15]) implies thay/2D,,(Py|| Ps) > V(A,)logn
d.(0,0')//n, and we recover our Condition 2. Rissanen’s =0(V— | @
condition, while stronger than our Condition 2, is easier to

check, the fact which we exploit in our discussion of exaraplavhere the constants implicit in th@(-) notation depend on

of Section V. 6. Furthermore, for each, the binary description produced
Condition 3.For eachn, let A, be the collection of all sets BY the encoder is such that the decoder can identifyrthe
of the form dimensional marginal of the active source up to a variationa

ball of radiusO(/V(A,)logn/n) with probability one.
Aggr = {a" € X" i pg(a") > por(a™)}, O #.
Then we require that, for each, A, is a VC class, and What () says is that, for each block lengthand each
V(A,) = o(n/logn). 6 € A, the codeCy”""", which isindependent of, performs
This condition is satisfied, for example, what{A,,) = almost as well as the best finite-memory quantizer with block
' ! ™~ lengthn that can be designed with fudl priori knowledge of

V < oo independently ofr, or whenV(A,) = logn. The o ; S ;
use of the classd, dates back to the work of Yatracosthen dimensional marginaP;*. Thus, as far as compression

[33] on minimum-distance density estimation. The ideas Zﬁfes, our scheme can compete with all finite-memory variable

Vat turther develoned by D dL 13 te lossy block codes (vector quantizers), with the aoloti
[3235]rac0ﬁ0w§rebblér djr tﬁ\ée\;)arireacoz cgvsr;)();zsirl'atggos!tL onus of allowing the decoder to identify the active source i
» W u " ! Wi an asymptotically optimal manner.

the densitiesp?). We shall adhere to this terminology. To
) 9y It is not hard to see that the double infimum @ (7) is

give an intuitive interpretation to4,,, let us consider a pair hieved already in th 0. Indeed. i
6,6’ € A of distinct parameter vectors and note that the saghieved already in the zero-memory cases- 0. Indeed, it
{z" : po(a™) > pe(z™)} consists of allz" for which the Is immediate that having nhonzero memory can only improve

simple hypothesis test the Lagrangian performance, i.e.,

Hy: X!~ Py versus Hy:XP~Pp  (6) o dnf Lo(C77A) <inf Lo(C7, ), VO €A,

m>0Cnom



On the other hand, given any cod& ™ = (f, ), we can « A sequenc€ s, } of positive reals is given, such that

construct a zero-memory cod€} = (fo, o), such that
Lo(Co,\) < Lo(C™™, ) for all 6 € A. To see this, define 6n —=0,v/ndy =0,  @sn— o0
for eachz™ € A" the set (we shall specify the sequengé, } later in the proof).
ny A . n _m m m o For eachn € N and eachd € A, there exists a zero-
S@") ={s €{0,1}7: s = f(a”, 2") for somez™ € A™}, memory n-block code Cy = (f#,¢n) that achieves
and let (or comes arbitrarily close to) theth-order Lagrangian
optimum for Py: Lg(Cy,A) = Ly (A).
fola™) = argmin (pu (o, 0(s)) + M(s),  Va" € X" P b: LolC5, 2) = L3)
s€S(a™) Fix the block lengthn. Because the source is stationary, it
and ¢y = ¢. Then, given any(z",z™) € A" x x™, let Suffices to describe the mappingt' into X7'. The encoding
s = f(a",z™). We then have is done as follows:
; _ 0
(@™, C2 (™)) + M(fo(z™)) 1) The encoder estimaté’ from them,,-block X~ .,

as P2, whered = (X2, .,).

= pn(@”, @ (fo(2")) + M(fo(2")) 2) The encoder then computes thaiting time

< pn(a”, 0(s)) + £(s)

— pn(xn7f(xn’zm)) +£(f(xn’zm)) Tn é inf {Z Z 1: dn(e(z),g(XanH)) S \/ﬁ&n},
Taking expectations, we see thBj(CH, \) < Lg(C™™, \) with the standard convention that the infimum of the
for all & € A, which proves that empty set is equal teoo. That is, the encoder looks

through the databaseand finds the firsé(:), such that
the n-dimensional distributiorPj(,) is in the variational
ball of radius/nd,, aroundPell.

) If T,, < 400, the encoder sets = 6(i); otherwise, the

. n < i . n,m )
glng(C JA) < nlgfocg}ﬁn Lo(C™™, N), Vo € A

The infimum of Ly (C™, A) over all zero-memory variable-rate
quantizersC™ with block lengthn is theoperationalnth-order

distortion-rate LagrangianL()\) [20]. Because eaclP is encoder set¥ = 0, whered, € A is some default
ergodic, L7 (\) converges to thelistortion-rate Lagrangian parameter vector, sag(1). _
4) The binary description aK{ is a concatenation of the
Lg(\) = min (Do(R) + AR), following three binary strings: (i) a 1-bit flag to tell
R whetherT,, is finite (b = 0) or infinite (b = 1); (i) a

where Dy(R) is the Shannon distortion-rate function &% binary strings; which is equal tos(T},) if T}, < +oc
(see Lemma 2 in the Appendix to Chou, Effros and Gray  or to an empty string iff}, = +o0; (iii) s2 = f(X7).
[14]). Thus, our scheme is universal not only in thi#-order The strings = bs; is called thefirst-stage description
sense of[{[7), but also in the distortion-rate sense, i.e., while s is called thesecond-stage description

Lo(C7™™, N\) — Lo(N) — 0, asn — oo The decoder receivés s, determine® from 3, and produces

for everyd € A. Thus, in the terminology of [14], our schemel€ reproductiony' = g5(s). Note that whenb = 0

. - . hich, as we shall show, will happen eventually almost
K dbr {Py: 0 € A}. (which, as we ow, ppen y
's weakly minimax universabr {F; : 6 € A} surely),Pg lies in the variational ball of radiug/né,, around

the estimated sourcé’g. If the latter is a good estimate

IV. PROOF OFTHEOREM3.T of P2, ie., du(60,0) — 0 asn — oo as., then the

A. The main idea estimate of the true source computed by the decoder is only

In this section, we describe the main idea behind the prodfghtly worse. Furthermore, as we shall show, the almos-s
and fix some notation. We have already seen that it sufficesS@vergence ofl,, (6o, ¢) to zero asn — oo implies that the
construct a universal scheme that can compete witzeath- L@9rangian performance 6f; on B, is close to the optimum
memoryvariable-rate quantizers. That is, it suffices to showe,(Cy,, A) = Lg, (M)
that there exists a sequenf€’”"""} of codes, such that Formally, the codeC}"™" is comprised by the following

VAT maps:
M Tn _ n)l0gN ] ~
Lo(CL™, A) = Lg(A) = O < n ) V0 € A « the parameter estimatof : X' — A;

(8) o the parameter encodefrg : A — S, where S =

This is what we shall prove. {0s(i) bien U {1}; o
We assume throughout that the “true” sourc®js for some ~ * theparameter decodep : S — A.
0o € A. Our code operates as follows. Suppose that: Let f denote the compositiofio 6 of the parameter estimator

« Both the encoder and the decoder have access tara the parameter encoder, which we refer to asfitise-
countably infinite “database? = {6(i) },cn, Where each stage encoderand let¢ denote the composition o f of the
6(i) € A. Using Elias’ universal representation of theparameter decoder and the first-stage encoder. The degoder
integers [36], we can associate to eaffi) a unique is thefirst-stage decodeiThe collection{Cy : 6 € A} defines
binary strings(i) with £(s(i)) = logi+ O(loglog) bits. thesecond-stage codeBhe encodeff, : X" x XY™ — Sx S



and the decodep. : S x 8 — X" of C1"™" are defined as independent. Thus, the set

n 0 Ayl > n n
P X 11) = F X )fixe,, o (BT M= {0~ D0+ 1) + 1< < j(n+1,) — 1}
and j=1
g A ~ I3 . . .
P (8s) = %;(5)(5)7 seS,ses is the effective memory of’;"""", and the effective memory
H 2
respectively. To assess the performanceCgf™", consider length isn®. . o
the function _Let Q™ denote the marginal distribution &f”, and let
. R Q™ denote the product of copies ofP;’ . We now show that
9(XT, X 41) = P (Xilv CE(XQWH)(XD) we can approximat& (™ by Q™) in variational distance, in-

. ~ creasingly finely withz. Note that bothQ(™) andQ(™ are de-
+)‘[£” (ff?(Ximn,ﬂ)(Xl )) +n (f(XgmnH))] fined on thes-algebraz (™), generated by alK; except those
in Yi,...,Y,, so thatd(Q™, Q™) = d(Q™,Q"; F"),
Therefore, using induction and the definition of themixing
coefficient (cf. Sectio 1I=A), we have

The expectationEy, {g(X7, X°,, 1)} of g with respect
to Py, is precisely the Lagrangian performance @f""",
at Lagrange multiplierh, on the sourcePy,. We consider

separately the contributions of the first-stage and theraeco Q™ Q™Y < (n — 1), (In) = O(1/n**1),

stage codes. Define another functibn X" x xX™» — R* ) .

by where the last equality follows from Condition 1 and from
our choice ofl,,. This in turn implies the following useful fact

X, X0, 1) = pa (X?,Cg 0 (Xf)) (see also Lemma 4.1 of Yu [29]), which we shall heavily use
" (Xfmnﬁ,]) . . . 2
in the proof: for any measurable functien: X" — [0, M|
ALy (fg(xgmw)(X{l)), with M < oo,
so thatEy, {h(Xf, Xﬁmnﬂ)‘XﬁmnH} is the (random) La- ’EQW {o(Z2")} —Egu) {U(Zn)}‘ < M(n —1)B,(In)

grangian performance of the codg(x0 on Py,. Hence, — O(l/n1+"), (10)

*mn+1)

g(XT, X0, 1) = AOXT, X )+ Mo (F(X200) )
so, taking expectations, we get

L90 (C:}’mna)\) = E@o {h(Xina Xgmn+l)}

where the constant hidden in tidg-) notation depends of/
and onf,.

C. Construction of the database

77 y0
+AEq, {Z” (f(X—mnH)) } : ©) The database, or the first-stage codebaols constructed

to thenth-order optimumL? ()), and that the second term iswhich is absolutely continuous with respect to the Lebesgue
o(1). ’ measure and has an everywhere positive and continuous den-
The proof itself is organized as follows. First we motivat§ly ¢ (0)- Let C = {O(i)}ien be a collection of independent

the choice of the memory lengths,, in Section IV-B. Then random vectors taking values ik, each generated according
we indicate how to select the databage(SectionIV-C) and © W independently ofX'. We useW to denote the process
how to implement the parameter estimafo(Section[Iy-D) distribution ofC. . o
The proof is concluded by estimating the Lagrangian perfofthich means that, in principle, both the encoder and the
mance of the resulting code (Sectibn IV-F) and the fidelifjecoder must have unbounded memory in order to store it.
of the source identification at the decoder (Secfion Jv-GJhis difficulty can be circumvented by using synchronized
In the following, (in)equalities involving the relevantn@gom fandom number_generators at the encoder and at the decoder,
variables are assumed to hold for all realizations and rit j§0 that the entries of” can be generated as needed. Thus,
a.s., unless specified otherwise. by construction, the encoder will generdig samples (where

T, is the waiting time) and then communicate (a binary

encoding of)T;, to the decoder. Since the decoder’'s random
B. The memory length number generator is synchronized with that of the encoder’s

_ the decoder will be able to recover the required entryof
Let I, = [n®*t"/"], wherer is the common decay

exponent of the3-mixing coefficientsgy(k) in Condition 1,
and letm,, = n(n + l,,). We divide them,-block X°, .,
into n blocks 71, ..., Z, of lengthn interleaved byn blocks B
Yi,...,Y, of lengthl, (see Figuré]l). The parameter esti- The parameter estimatdt : X" — A is constructed
mator 0, although defined as acting on the entP(éimnH, as follows. Because the sourcE¥ is stationary, it suffices
effectively will make use only oZ2™ = (Zy,...,Z,). The to describe the action of on X° . In the notation
Zj's are each distributed according 1§}, but they are not of Section[IV-A, let Pz~ be the empirical distribution of

D. Parameter estimation
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Z1 Y1 Zg Y2 - - - Zn Yn X1n ™ {CT} —>X1n
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-m,+1

parameter  parameter parameter
estimator encoder decoder

Fig. 1. The structure of the cod@;"™". The shaded blocks are those used for estimating the soaraenpters.

Z"=(Z1,...,7%y,). For everyd € A, define holds for everyd € A, regardless of whether,, is finite or
A " infinite.
Ug(Z") = sup |Py(A) — Pzn(A)|
AcA,

F. Performance of the code

/pg(l‘n)du(xn) — Pzn(A)|, Given the random codebook, the expected Lagrangian
A performance of our code on the soutkg, is

sup
AcA,

where A,, is the Yatracos class defined by theh-order

densities{py : 6 € A} (see Sectiorfill). Finally, define Lo (C,A) ZEGO{ (Xqum +1))}
0(X°,,,1) as anyd* € A satisfying =Eg, {h (X],X°,, 1)}
. n 1 T (%0
U (2") < inf Uy(Z )+~ +AEg, {én (f (X2, +1))}- (13)

g\/e now upper-bound the two terms [n13). We start with the

where the extrd /n term is there to ensure that at least on
second term.

suché* exists. This is the so-callesiinimum-distance (MD) Wi d to bound th tat f th iting ti
density estimatoof Devroye and Lugosi [34], [35] (see also € need 1o boun € expectation of the wailing time

T, (0(X° )). Our strategy borrows some elements
Devroye and Gyorfi [37]), adapted to the dependent-proc Mo +1
settmg of the greseLt g))aper F')I'he key propgrty of tr?e Met[%m the paper of Kontoyiannis and Zhang [38]. Consider the

estimator is that probability
a(0(X0,, ). 00) < AU (21) + 2 (D) 0 2 W (da(0,8(X°,, 1)) < Vs )
n

(see, e.g., Theorem 5.1 of Devroye and Gyorfl 137]). Th?ghlch is a random function ok®, ;. From Condition 2,
holds regardless of whether the samplgs. . ., Z,, are inde- It follows for » sufficiently large that

pendent or not 4o = W (10 = 6(X°,, )| <6a/c5),

E. Encoding and decoding of parameter estimates where § = 5(X°m +1)- Because the density(0) is ev-

Next we construct the parameter encoder-decoder pfs{ywrere po”smve the Iattder probability is Sm?ltly fm&’
(7,1). Given af € A, define thewaiting time or aimost all X2, ., and sog, > 0 eventually aimost

surely. Thus, the waiting time%,, will be finite eventually
T,(0) = inf{i > 1: d,(0,0(i)) < V/nd,}, almost surely (with respect to both the sour&e and the
first-stage codebook’). Now, if ¢, > 0, then, conditioned

X_W+1 = a:o_m 1, the waiting timeT;, is a geometric
random variable with parametey, and it is not hard to show
(see, e.g., Lemma 3 of Kontoyiannis and Zhang [38]) that for
anye >0

with the standard convention that the infimum of the empty s
is equal to+co. That is, given & € A, the parameter encoder
looks through the codebook’ and finds the position of the
first ©(¢) such that the variational distance between itiie-
order distributionsP;* and Pg(i) is at mosty/nd,. If no such
©(i) is found, the encoder sef$, = +oo. We then define the P (10g[(T —Lan] = €
mapsg and by

0 —2°¢
X—m A1 —mn+1) <e :

Settinge = log(2logn), we have, for almost alX”, .,

~ 0s(Ty), ifT,<
7(60) = { 0olTn), T me that

and P (logl(T — Dan] = log(2logn)| X2, 1 =%, 1)
D(0s(i) = ©(1), (1) =6(1) <e?losn <72

respectively. ThusS = {0s(i)} U {1}, and the bound Then, by the Borel-Cantelli lemma,

£(g(0)) <logT, + O(loglogT,) (12) log(Thgn) < loglogn + 2



eventually almost surely, so that by 1 — O(1/n). Combining this with [(1b), taking logarithms,
Ey, {log Ty} < loglogn + 2 — Ky, {log gu} (14) and then taking expectations, we obtain

— Eg,{log g»,
for almost every realization of the random codebdadkand 004108 an}

c(k,00
for sufficiently largen. We now obtain an asymptotic lower > log(1—O(1/n)) + klogd, + 2¢(%)
bound onEy,{log g, }. Define the events = log(l —0O(1/n))
Fu 2 {(d (X, ). 00) < viisu/2). +klog |/2048(V(A,) + Dnlnn + 6]
3k 1
Gn = {dn(©,00) < Vnd,/2}, +5 log — + c(k, fo)
PN

{l1© = 0ol < 6n/2¢o,} -

k 1
> log(1—0(1/n))+ 3710g——l—c(l<:,t9o),
Then by the triangle inequality we have "

N wherec(k, 6y) is a constant that depends only érand 6.
F, andG, = d, (@,H(Xgmnﬂ)) < Vnby, Using this and[(14), we get that

and, forn sufficiently large, we can write Eg,{log T7,} < loglogn 4+ O(logn)

(;) G AP (F for W-almost every realization of the random codeba®k
I = W(Gn)Po,(Fn) for n sufficiently large. Together with_(12), this implies that

(b W(Gn)Q(n)(Fn) Eq, {én (f(XgmnH))}
W(H,) QM (F,), _ 0 <1ogn) 40 <1oglogn> N 3 +o(1)

where (a) follows from the independence &f and C, (b) n n

follows from the fact that the parameter estimatok®,, 1) for W-almost all realizations of the first-stage codebook.
depends only ox™, and (c) follows from Condition 2 and the

fact thatd,, — 0. Since the density is everywhere positive

and continuous afy, w(f) > w(fy)/2 for all 6 € H, for n

sufficiently large, so

=

—~

C

Vo

k
W(H,) = / w(h)do > lw(oo)vk ( on ) 7 (15) We now turn to the first term il (13). Recall that, for each
H, 2 2¢p 0 € A, the codeCy is nth-order optimal forP. Using this

wherewy is the volume of the unit sphere iR:. Next the fact together with the boundedness of the distortion measur
fact that the minimum-distance estimatex®,, ) depends £» W€ can invoke Lemma_Al3 in the Appendix and assume
only on Z" implies that the even,, belongs to ther-algebra Without loss of generality that eadtyy has a finite codebook

0

F™), and from [ID) we get (of size not exceedin@"#==</}), and each codevector can
N ) be described by a binary string of no more tharp,,.x /A
QM (F,) > QM (F,) —O(1/n*1). (16) bits. Hencei(X7, X%, 1) < 3pmax. Let P~ and P* be

the marginal distributions of%, on ¢(X°_ ) and o(X°),
I specuvely Note thak(X™", X°, ) does not depend on
Y, 41- This, together with Condition 1 and the choicelpf

Under Q™ the n-blocks Z1, ..., Z, are i.i.d. according to
Pz, and we can invoke the Vapnik—Chervonenkis machine

to lower-bound) (™ (F,,). In the notation of Se€_IV-D, define

|mpI|es that
the event
A n 3 \/ﬁén E‘% {h’ (X{La Xganrl)}
I, =<4Up,(Z") + = < . n w0
n 2 <Ep-xp+ {h (Xl aXfanrl)} + Boy (1)
Then1, implies F,, by (1), and =Ep-yp+ {h(X], X", 1)} +0@Q/n*).
QM (Fe) < QU(I2) < 8nV(An) e=n(Vndn—6/n)*/2048 Furthermore,

(17) Ep-yp+ {h(X],X°
where the second bound is by the Vapnik—Chervonenkis in- poxpy { ( 1 mn+1)}
equality [3) of Lemma_2]1. Combining the bounds](16) and :/ h(z™, 2™ )d Py, (x™)d Py, (z™")
(@I7) and using Condition 1, we obtain AnxAmn

(a) n .m m

Py (F,) >1— ]V (An) o —n(Vnd,—6/n)? /2048 _ O(1/n' ") = /X Eg, {h(XT,2™)} dPy, (z™™)

(18) ®)
Now, if we choose Eg, § Lo, (C Bxo, +1)’/\) ;

5, = V2048(V(A,) +1)Inn 6 where (a) follows by Fubini's theorem and the boundedness of
n n3/2’ h, while (b) follows from the definition of. The Lagrangian

then the right-hand side df (IL8) can be further lower-bodndeerformance of the cod@” whered = 9( m,+1), can be
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further bounded as eventually almost surely, so the corresponding expectasio

on oy O(y/V(4y)logn/n) as well. Summing the estimatés}21) and
( 6 ) (22), we obtain
(&) ~
S Lg (Cg’)\) + 3pmaxdn (G(Xganrl)?eO) Eeo h X?,Xgm . _ Eg A + 19) V(An)logn )
nt 0 —
(:) /L\g(/\) + 3pmaxdn (é\(Xgmn-i—l)a 90)

Finally, putting everything together, we see that, evehtua

INZ
&)

" () + 4pmasn (9(X9mn ) 90)

—~
[N
=

n

Ly, (C’f’m") = Ago()\) +0 < M)

IN

L) + 4pmas {dn (§(X9mn+1), OX s 1)) logn loglogny 3
i (0(X2,, 1) 00) | “[O(T) + O(T) += +o(1)] (23)

where (a) follows from Lemm& A3 in the Appendix, (b)for W-almost every realization of the first-stage codeb6ak

follows from the nth-order optimality ofC’;’ for P2, (c) This proves((B), and hencél (7).
follows, overbounding slightly, from the Lagrangian mlsm‘ra
bound of Lemm& AR in the Appendix, and (d) follows fronG. Identification of the active source

the triangle inequality. Taking expectations, we obtain We have seen that the expected variational distance

n ~n Eg, 4 dn (60, 0(X°,, bet the n-di ional
Eq, {Lgo (Cg(XO ),)\)} < Lg (N { (6o 0(X +1))} etween the n-dimensiona
S | margmals of the true sourcé&y, and the estimated source
F4pmax - Eo, {dn (é\(XEmn-ﬁ—l)a g(XgmnH)) Pjxo . converges to zero ag/V(A,)logn/n. We wish
to show that this convergence also holds eventually with
+dn (O(X_m 1) 90)}. (19) probability one, i.e.,

The secondd,(-,-) term in [I9) can be interpreted as the (0 9( ) =0 V(A,)logn (24)

estimation error due to estimating; by P, while the first o —matl n

dn(-,-) is the approximation error due to quantization of the

parameter estimaté. We examine the estimation error first [ oo -almost surely. . . .
Using [T1), we can write Given ane > 0, we have by the triangle inequality that

5 (90,9( 9. 4+1)) > € implies
Eq,  d{ Py xo Py ) ¢ < 4B {Up,(Z")} + —. (20) ~ ~
? { ( o (X7m+1) 0 )} ? { ’ ( )} n d (9070( —m +1)) +dn(9(X9mn+1) ( 7mn+1)) > €,
Now, eachZ; is distributed according td’:, and we can

approximate the expectation 8%, (Z") with respect taQ("™) where@( “m,+1) IS the minimum-distance estimate &
by the expectation ot/s,(Z™) with respect to the product rom X2, 41 (cf. SectiorIV-E). Recalling our construction

measure)(™: of the first-stage encoder, we see that this further implies
Eqon {Use(ZM)} < Egom {Use(Z™)} + (n = 1)B6(1n) dn (90,9( _mn+1)) > € —/ndy.
< V(A,)logn ) 1 Finally, using the property[{11) of the minimum-distance
= n nl+n estimator, we obtain that
_ o < 4V(An>10g”> | 4 (00.00X2,,.11)) > e
n
implies
where the second estimate follows from the Vapnik— n
Chervonenkis inequality{4) and from the choicelgf This, Un(27) > 4 (6 — by~ _)
together with [(2D), yields Therefore,
B, {d( P xo, 00 PR ) = O( f) - (@1) Q) {an (00.00X%, +1)) >}
3
. . . < (n) n Ze— _2
As for the firstd,, (-, -) term in [19), we have, by construction < @ {U9O(Z )> 4 (6 Vb, n)}

of the first-stage encoder, that (

a) . 1 3
(n) n e 9
dy (§(X9mn+1), 5(X9mn+1)) < @ {er(Z )> 7 ( Vné,, n)}
V(A,)logn +(n = 1)Ba, (In)
<Vné, =0 < —— & ) (22) D VA exp (_n(e — /iy — 3/n)2)
n 512
+(n = 1)Be, (In), (25)
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where (a) follows, as before, from the definition o8/(c — §). Using Pinsker’s inequality, we have
the g-mixing coefficient and (b) follows by the Vapnik—

dn (6,0
Chervonenkis inequality. Now, if we choose % < V2D, (Py|| Py:) < col|60 — 0|
L= \/512(V(An)ln”+ nd) +V/nb, + 3 for all n. Thus, Condition 2 holds.
n n To check Condition 3, note that, for eaeh the Yatracos

for an arbitrary smalb > 0, then [25) can be further upper-classA,, consists of all sets of the form

bounded by8e="° + >~ nfs(¢,), which, owing to Condition 1
1 and the choicé, = [n(2+7/"], is summable im. Thus, {x” ER":lno? —Ino’” + — Z(zi —m)?
(o
~ =1
> Q" {du (60,00, 1)) > €n ) < 0, .
" 1 AV
" —— Y (@i—-m')’>0 (26)
and we obtain[{24) by the Borel-Cantelli lemma. o=

for all m,m’ € R;0,0’ € (0,00). Let = Ino? ando/ =

12 ;
V. EXAMPLES Ino’". Then we can rewritd (26) as

1 n
A. Stationary memoryless sources {x" eER":a—d + =) Z(xi —m)?
=1
As a basic check, let us see how Theolfen] 3.1 applies to L&
stationary memoryless (i.i.d.) sources. L&t = R, and let _TZ(% —m')? > 0},
{Py : 0 € A} be the collection of all Gaussian i.i.d. processes, i)
where This is the set of al:” € R™ such that
A={(m,0):meR,0<0< o0} CR (2", 0, ,1/02, 1) m,m') > 0,

Then then?dimensignal marginal for a givefi= (m, o) has whereII(z", ) is a third-degree polynomial in the six pa-
the Gaussian density rameters (a, a’,1/02,1/0'>,m,m’). It then follows from
Lemma 2.2 thatd,, is a VC class withV(A4,,) < 121og(12¢).

n 1 & —(x;—m)? /202 o
po(z") = ( e Therefore, Condition 3 holds as well.
=1

2mo2)n/2 ]

with respect to the Lebesgue measure. This class of sourBesAutoregressive sources
trivially satisfies Condition 1 with- = +oc0, and it remainsto  Again, let ¥ = R and consider the case wheX is a

check Conditions 2 and 3. Gaussian autoregressive source of oggére., it is the output

To check Condition 2, let us examine the normalizel- of an autoregressive filter of ordgrdriven by white Gaussian
order relative entropy betweeRy and P, with # = (m,0) noise. Then there exigtreal parameters, ..., a, (the filter
andd’ = (m’,o’). Because the sources are i.i.d., coefficients), such that

Do (Py||Po) = D(F41|1Py)

1 9 2 )2
1L <1n(z,) (%) +M_1>.
2 o g o whereY = {Y;};cz is an i.i.d. Gaussian process with zero
Applying the inequalityin z < = —1 and some straightforward Me€an and unit variance. Let C R” be the set of all

p
X, = —Zaixnﬂ- +Y,, Vn e N
1=1

algebra, we get the bound ai,...,ap, such that the roots of the polynomiaﬂ(z? =
) ) ) P ,aiz, whereay = 1, lie outside the unit circle in the
DuBsPy) < (2 +0'\"(c—0)  (m—m) complex plane. This ensures that is a stationary process.
" - o 202 2072 We now proceed to check that Conditions 1-3 of Sediidn III
o'\ 2 16 — 9/H2 are satisfied.
< (1 + ;) Tog? The distribution of eacly; is absolutely continuous, and we

. can invoke the result of Mokkadem [31] to conclude that, for
Now fix a small§ € (0,0), and suppose thald — 0’| < 6. eachf e A, the processX is geometrically mixingi.e., for
Then|o—o’| < 4, so we can further upper-boudd,(Fs || Psr)  everyd € A, there exists some = ~(f) € (0,1), such that

by 0 Bo(k) = O(¥*). Now, for any fixedr > 0, v¥ < k=" for k
D, (Py]|Pyr) < 5110 — 0% sufficiently large, so Condition 1 holds.
2(0 = 9) To check Condition 2, note that, for ea¢h € A, the
Thus, for a giverf € A, we see that Fisher information matrixZ,,(¢) is independent ofn (see,
2 e.g., Section 6 of Klein and Spreij [39]). Thus, the asymniptot
D, (Py||Py) < 5“’”9 — 0| Fisher information matriX{ (0) = lim,,_, I, () exists and is

nonsingular [39, Theorem 6.1], so, recalling the discuséio
for all 6’ in the open ball of radiug aroundd, with cg £ SectionIll, we conclude that Condition 2 holds also.
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To verify Condition 3, consider the-dimensional marginal ~ Let us take as the parameter space RM*M the set of
Py(x™), which has the Gaussian density all M x M transition matricesa;;], such that alk;; > a¢ for

1 ot some fixedao > 0. For eachd = [a;;] € A and eachn € N,
po(a”) = Grdet R (0))772 g2 R (O the densityd P} /du™ is given by
where R,,(0) = Eo {(X7)" X}'} is the nth-order autocorre- po(z") = Z Hasi,lsip(xilsi),

lation matrix of X. Thus, the Yatracos clas4,, consists of
sets of the form

smeSn i=1
wherea,,s = 7, for everys € S. We assume that the channel
transition densitiep(:|s), s € S, are fixeda priori, and do not
include them in the parametric description of the sources. W

1
A9,9/ = {In S Rn . gln det R;l(o) — EI"TRgl(G):Cn
do require, though, that

n —1 Lot et n
> 5 lndet B5(O) — 2" R ()2 } > plals) >0,  Veex
seS
for all 6,6/ € A. Now, for everyd € A, let 6 = and
(0,Indet R,;1(0)). Since Indet R,;*(0) is uniquely deter-
mined by#, we haveAdg o = A; 4 for all 6,6’ € A. Using L 1OgZSp(X|S) <oo,  VHEA
se

this fact, as well as the easily established fact that theesnt
of the inverse covariance matrik;'(#) are second-degreeWe now proceed to verify that Conditions 1-3 of Secfion Il
polynomials in the filter coefficients,...,a,, we see that, are met.

for eachz™, the conditionz™ € Ay can be expressed as

(2™, 0) > 0, whereII(z",-) is quadratic in the2p + 2
real variabledy, ..., 0,11,0},...,0,,,. Thus, we can apply
Lemma[Z2 to conclude tha¥(A4,) < (4p + 4)log(8e).
Therefore, Condition 3 is satisfied as well.

Let pl(;-l) = P(Stin = j|S: = ) denote then-step transition
probability for stateg, j € S. The positivity of A implies that
the Markov chainS' is geometrically ergodici.e.,

b —ml <Oy, VijeSneN  (27)

C. Hidden Markov processes whereC > 0 and0 < v < 1, see Theorem 8.9 of Billingsley
A hidden Markov process (or a hidden Markov model42]. Note that[(2F) implies that
see, e.g., [40]) is a discrete-time bivariate random proces d(p™ (i), ) < MCA™

{(S;, X;)}, whereS = {S;} is a homogeneous Markov chain

and X = {X;} is a sequence of random variables whicfihis in turn implies that the sequen®= {S;} is exponen-

are conditionally independent give$i, and the conditional tially 5-mixing, see Theorem 3.10 of Vidyasagar [24]. Now,

distribution of X,, is time-invariant and depends o8 only one can show (see Section 3.5.3 of Vidyasagar [24]) thaether

through S,,. The Markov chainS, also called theegime is exists a measurable mappidg: S x [0,1] — X, such that

not available for observation. The observable compodéis X; = F(S;,U;), whereU = {U;} is an i.i.d. sequence of

the source of interest. In information theory (see, e.d.] fhd random variables distributed uniformly ¢i 1], independently

references therein), a hidden Markov process is a distirate- of S. It is not hard to show that, ifS is exponentiallys-

finite-state homogeneous Markov cha# observed through mixing, then so is the bivariate proce$§S;, U;)}. Finally,

a discrete-time memoryless channel, so tNat= { X} is the becauseX; is given by a time-invariant deterministic function

observation sequence at the output of the channel. of (S;, U;), the 8-mixing coefficients ofX are bounded by the
Let M denote the number of states & We assume corresponding-mixing coefficients of( X, U), and soX is

without loss of generality that the state spaSeof S is exponentiallyg-mixing as well. Thus, for each € A, there

the set{1,2,...,M}. Let A = [a;]i =1, a denote the exists ay = v(6) € [0,1), such that3s(k) = O(¥*), and

M x M transition matrix of S, wherea;; = P(S;1; = consequently Condition 1 holds.

jlSt = i). If A is ergodic (i.e., irreducible and aperiodic),

then there exists a unique probability distributienon S To show that Condition 2 holds, we again examine the

such thatr = wA (the stationary distributionof S), see, . . . X :
e.g., Section 8 of Billingsley [42]. Because in this paper Wgsymptotlc behavior of the Fisher information mati()

deal with two-sided rand oSHa sn — oo. Under our assumptions on the state transi-
cal wi 0-SIOEC random processes, we assum S tion matrices inA and on the channel transition densities

befef_n_lnli:allfzed W|th_|tsthstat|or1ary S'St”bltlrt]'onfat ngﬁ"i ggo(-|s) : s € S}, we can invoke the results of Section 6.2 in
sumciently far away in the past, and can therelore be thou ouc, Moulines and Rydén [43] to conclude that the asymp-

of as a two-sided stationary process. Now consider a dé;cretroﬁc Fisher information matrixf(8) — lim,, . I,,(8) exists

time memoryless channel g"'th input alphat#tand output (though it is not necessarily nonsingular). Thus, Conditi
(observation) alphabét = R* for somed < oc. It is specified is satisfied

by aset{p(:|s) : s = 1,2,..., M} of transition densities (with
respect tqu, the Lebesgue measure BA). The channel output
sequenceX is the source of interest. Finally we check Condition 3. The Yatracos clagk,
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consists of all sets of the form Conceptually, our results indicate that links between sta-
n n tistical modeling (parameter estimation) and universairse
Ag g = {xn exn: Y ( s, s, — Ha’sl_m> coding, exploited in the lossless case by Rissanen [2] a8,
i=1

snesSn \i= i=1 present in the domain of lossy coding as well. We should also

n mention that another modeling-based approach to universal

X Hp(xﬂsj) > 0} lossy source coding, due to Kontoyiannis and others (see,
J=1 e.g., Madiman and Kontoyiannis [45] and references thgrein

for all § = [a;;], 0" = [a};] € A. The conditionz™ € Ay 4 can Lreats code selectionl as a _statist_ical estimatioq probleen o
be written ad1(z",6,6') > 0, where for each™, II(z",6,6') & F:Iass of modelldlstnbutlc_)ns in theproductlon space

is a polynomial of degree in the 2M/2 parameters.,;, a},, This gpproach, while closer in spirit to Rissanen’s Minimum
1< i,j,k 1 < M. Thus, Lemmd 212 implies that(4,) < Description Length (MDL) principle [46], does not address

4M?log(4en), so Condition 3 is satisfied as well. the problem of joint source coding and identification, but
it provides a complementary perspective on the connections
between lossy source coding and statistical modeling.
V1. CONCLUSIONS AND FUTURE DIRECTIONS

: . : . APPENDIX
We have shown that, given a parametric family of stationary

mixing sources satisfying some regularity conditionsrerex- !N this Appendix, we detail some properties of Lagrange-
ists a universal scheme for joint lossy compression andcsouPPtimal variable-rate vector quantizers. Our expositpat-
identification, with thenth-order Lagrangian redundancy anderned on the work of Linder [19], with appropriate modifica-
the variational distance betweendimensional marginals of 10Ns- _
the true and the estimated source both converging to zero adS_€lsewhere in the paper, let be the source alphabet
/V,,logn/n, as the block length tends to infinity. The and X' the reproduction alph_abet_, both as_sume_d to be Polish
sequencdV,,} quantifies the learnability of the-dimensional SPaces. As before, let the distortion functjoie induced by
marginals. This generalizes our previous results from[ja]] & Pmax-Pounded metric on a Polish metric spa¢eontaining

for i.i.d. sources. X UX. For everyn = 1,2, ..., define the metrigp,, on )"
We can outline some directions for future research. by Lo
« Both in our earlier work [9], [10] and in the present paper, pu(y”, u”) £ n Z P(Yis wi).

we assume that the dimension of the parameter space i=1
is known a priori. It would be of interest to considerpor any pairP(), P of probability measures o™, let
the case when the parameter space is finite-dimensional, p(1) p(2)) pe the set of all probability measures on
but its dimension is not known. Thus, we would haveyn . ¥» having P() and P(®) as marginals, and define the
a hierarchical model cladg;> ,{Ps : 6 € A®}, where, \yasserstein metric
for eachk, A®) is an open subset &, and we could use
a complexity regularization technique, such as “strudtura P, (P, PP = inf _  EpP {pn(X™,Y™)}
risk minimization” (see, e.g., Lugosi and Zeger [44] or PEPn(PE,PE)
Chapter 6 of Vapnik [22]), to adaptively trade off the = inf / pn (2™, y™)dP (2", y™)
estimation and the approximation errors. PEPn(PM,P®)
» The minimum-distance density estimator of Devroye an@Gee Gray, Neuhoff and Shields [47] for more details and
Lugosi [34], [35], which plays the key role in our schemepplications.) Note that, becaugds a bounded metric,
both here and in [9], [10], is not easy to implement in
practice, especially for multidimensional alphabets. Ons/ pn(z™,y")dP(z", y") < pmax/l{z”;éy”}dp(xnayn)
the other hand, there are two-stage universal schemes,
such as that of Chou, Effros and Gray [14], which dfor all P € P, (P, P(?)). Taking the infimum of both sides
not require memory and select the second-stage coaker all P € P,,(P™), P() and observing that
based on pointwise, rather than average, behavior of the
source. These schemes, however, are geared toward comP?), P?)) = 2 inf /1{m"¢y"}dp(xna y"),
: AN P PeP, (PO, P®)
pression, and do not emphasize identification. It would be
worthwhile to devise practically implementable universa€e, €.9., Section I.5 of Lindvall [48], we get the useful fbu

schemes that strike a reasonable compromise between NN | 1) p@)
these two objectives. Pn(P, P) < 5 pmaxd(PT, PT). (A.1)

o Finally, neither here nor in our earlier work [9], [10] Now, for eachn, let M, denote the set of all discrete

have we considered the issues of optimality. It woulfopapility distributions on¥™ with finite entropy. That is,
be of interest to obtain lower bounds on the performangf e M, if and only if it is concentrated on a finite or a
of any universal scheme for joint lossy compression a%untablne selyiticz, C X" and

J1J1 Q 1

identification, say, in the spirit of minimax lower bounds

in statistical learning theory (cf., e.g., Chapter 14 of H(Q) 2 _ Z Q(y:)log Q(y:) < 0.
Devroye, Gyorfi and Lugosi [21]). i€Zo
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For every@ € M,, consider the sef(Q) of all one-to-one On the other hand,
mapsc : Zo — {0,1}*, such that, for eacle € C(Q), the

collection {c(i) };ez,, satisfies the Kraft inequality, and let Ly (P, Q; \) 1
to2 min 3 He(i)Qy) = Ep {7 (X ¥) + M lo)
@ = min c(e Yi : ) N
ceC(Q) i€Zq = /dP(x ) Z (pn(z", y:) +)\€n(CQ(Z)))

be the minimum expected code length. Since the entropy _ete " "

of Q is finite, there is always a minimizing},, and the xP(Y = yi| X" =a")
Shannon—Fano bound (see Section 5.4 of Cover and Thomas > /dp(xn) min (p, (2", ;) + )\én(czg(i)))
[1]) guarantees thatg < H(Q) + 1 < oo. i€lq

I — [ 4P min (o (o 0(5)) + Mo (5)
Now, for any A > 0, any probability distribution? on X", sE€S
and anyQ € M,,, define = Lp(C™, M),

Lo(P,Q; ) £5,(P,Q) + An"Yg. o) th?jtinfgeMn L,(P,Q;\) > L%(N), and the lemma is
. o . . proved. [
To give an intuitive meaning Fﬂ"(P’Q.;/\,)Z’ let X" andY be  The following lemma gives a useful upper bound on the
jointly distributed random variables withi ™ ~ P andY ~ @, Lagrangian mismatch:

such that their joint distribution® € P, (P,Q) achieves Lemma A.2:Let P, P’ be probability distributions omt™.
Pn(P, Q). Then L, (P,Q; A) is the expected Lagrangian per—rpean

formance, at Lagrange multipliex, of a stochasticvariable- *n +n 1 /
rate quantizer which encodes each paifite X™ as a binary ‘LP()\) B Lf'(/\) = §pf1axd(P’ ).
codeword with length, (i) and decodes it tg; in the support Proof: SupposeL:(\) > L% ()). Let Q' achieve
of Q with probability P(Y = y;| X™ = ™). infgem, Ln(P',@Q;A) (or be arbitrarily close). Then
. . . Lp(A) = L ()
The following lemma shows that deterministic quantizers @ . . ,
are as good as random ones: = Qlef}an Lo (P, Q5 ) — Qg}\f/tn Ln(P',Q; A)
= inf L,(P,Q;)\) — L,(P',Q"; \)
Lemma A.l:Let Lp(C™,\) be the expected Lagrangian QEM.,
performance of am-block variable rate quantizer operating < Lo(P,Q5 ) — Lo (P, Q%50
on X™ ~ P, and let L ()\) be the expected Lagrangian (b)

pn(Pa Q/) + )\n_léQ' - ﬁn(Plv QI) - /\n_léQ'
ﬁn(Pv Q/) - pn(Plv Q/)

performance, with respect t8, of the bestn-block variable-
rate quantizer. Then

~
o

LpO) = inf La(P,Q: ). 5) pln(P, P’
S _pmaxd(Pa P/)a

Proof: Consider any quantizeC™ = (f,¢) with ) 2 ) o
Lp(C™,)\) < co. Let Qe be the distribution ofc™(X™). where in (a) we used LemrhaA.1) in (b) we gsed the_deflnmon

Clearly, Qo € M., and of L,(-,Q’"; \), in (c) we used the fact that, is a metric and

the triangle inequality, and in (d) we used the bound(Am).
Lp(C"A) = E{pn(X",C™"(X")} + AE{€u(f(X™))} Finally, the lemma below shows that, for bounded distortion

> PP, Qcn) + /\n‘léan functions, Lagrange-optimal quantizers have finite cod&bo

= Ln.(P,Qcni\). Lemma A.3:For positive integersV, L, let Q,,(N, L) de-

N . note the set of all zero-memory variable-rate quantizeth wi
Hence,L:(A) = infoem, Ln(P,Q;A). To prove the reverse pjock lengthn, such that for everyC™ € Q, (N, L), the
inequality, suppose thak™ ~ P andY ~ Q achieve associated binary cods of C" satisfies|S| < N and

P (P, Q) for someQ € M,,. Let P be their joint distribution. () < [, for everys € S. Let P be a probability distribution
Let {yi}icz, C X" be the support ofp, let ¢+ Ig = onAX™. Then

{0, 1}* achievelq, and letS = {cf) (i) }icz,, be the associated ~ . .
binary code. Define the quantizét” = (f,¢) by Lp(A) = anSﬁN,L)LP(C S A),
pls) =y 1 s =cqi) with N < 2270max/X and L < 2npumax /.
and Proof: Let C}' with encoderf, : X" — S and decoder
f(z™) = argmin (pn (2™, @(5)) + Mn(s)) . @« : & — X" achieve thenth-order optimumL’; () for P.
s€ES Let sp € S be the shortest binary string i, i.e.,
Then

l(sg) = Isrélg 0(s).

Lp(C",A) =Ep {2%}; (pn (X", 0(5)) + M"(S))}' Without loss of generality, we can takg as the minimum-



distortion encoder, i.e.,

fol@") = argmin (pn (@, . (s)) + Aln(s))

[13]

[14]
Thus, for anys € S and anyz™ € f1(s),

pr(2", 04 (s)) + Mn(s) < pn(2",¢x(s0)) + Mn(s0)-

Hence,l(s) < npmax/A + £(so) for all s € S. Furthermore,
Lp(CyA) 2 AEp {a(fi(X™))} = Mn(s0). R

Now pick an arbitrary reproduction stringg € X", [1g]
let ¢ be the empty binary string (of length zero), and let
Cp be the zero-rate quantizer with the constant encodé?l
fo(z™) = € and the decodepy(c) = zf. ThenLp(Cy, \)
Ep {pn(X™,Z0)} + Mn(e) < pmax- On the other hand, [20]
Lp(C?,\) < Lp(CE, ). Therefore,

/\gn(SO) < LP(Ofv )‘) < Lp(Og, /\) < Pmax;,

[15]
[16]

[17]

[21]

so0 thatl(sg) < npmax/A. Hence, E?ﬂ
0(s) < 2npmax/A, Vse S, [24]

Since the strings ii$ must satisfy Kraft's inequality, we have s
1 2 Z27f(5) 2 |‘S'|272npm&x/>\7
seES

which implies thaS| < 22nemax/A,

[26]

[27]
|

(28]
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