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On Lossless Coding With Coded Side Information
Daniel Marco, Member, IEEE, and Michelle Effros, Fellow, IEEE

Abstract—This paper considers the problem, first introduced by
Ahlswede and Körner in 1975, of lossless source coding with coded
side information. Specifically, let � and � be two random vari-
ables such that� is desired losslessly at the decoder while � serves
as side information. The random variables are encoded indepen-
dently, and both descriptions are used by the decoder to recon-
struct � . Ahlswede and Körner describe the achievable rate re-
gion in terms of an auxiliary random variable. This paper gives a
partial solution for an optimal auxiliary random variable, thereby
describing part of the rate region explicitly in terms of the distri-
bution of � and � .

Index Terms—Auxiliary random variables, coded side informa-
tion, common information, lossless coding, rate region.

I. INTRODUCTION

I N 1975, Ahlswede and Körner [1] introduced the following
coding problem (see Fig. 1). Random variables and

are independently encoded and jointly decoded. The decoder
wishes to reconstruct almost losslessly only , and so the de-
scription of serves as side information. Letting and
denote the rates used to encode and , respectively, the ques-
tion becomes: What rate pairs and are achievable. The
answer is given in terms of an auxiliary random variable in [1].
Specifically, can be reconstructed with arbitrarily small prob-
ability of error if and only if

for some random variable such that is a
Markov chain and , where and are the
alphabet sizes of and , respectively. The bound on is
tightened to for points on the lower boundary of the
rate region in [2].

The intuition behind this solution is quite simple. Random
variable can be thought of as the encoded version of ; thus,

. Since the useful part of is then known
to the decoder, the description of requires rate .
The Markov condition is quite straightforward, and the original
bound on the alphabet size of derives from Carathéodory’s
theorem.
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Fig. 1. Random variables� and � are independently encoded and jointly de-
coded. The decoder wishes to reconstruct almost losslessly only � .

Fig. 2. The relationship between entropies and mutual information of random
variables � and � .

The above method for describing a rate region in terms of aux-
iliary random variables is rather common, for example [3]–[7].
These characterizations give great intuition into the basic form
of a solution. Unfortunately, precise calculation of the rate re-
gion requires solution of the optimal auxiliary random vari-
able, which is surprisingly difficult, even for simple sources
[2]. For any , it is possible to use this characterization
to approximate the rate region to within a multiplicative factor

in time polynomial in by [8]. Unfortunately, nu-
merical solutions of this type fail to provide much insight into
basic questions of theoretical interest. For example, is the point

always in the achievable rate
region? Is it ever in the achievable rate region? Does achieving

ever require ? Furthermore, no
intuition is provided as to how one should go about designing
optimal auxiliary random variables. Ideally, we would like an
explicit description comparable to the one given by Slepian and
Wolf [9] for their famous problem.

In this paper, we give a partial solution for an optimal aux-
iliary random variable in Ahlswede and Körner’s coding with
side information problem. Thus, we describe part of the achiev-
able rate region explicitly in terms of the distribution of and
the conditional distribution of given . As a byproduct of
this effort, we are able to provide answers to some of our fun-
damental questions regarding the relationships between random
variables. For example, it is tempting to interpret the Venn dia-
gram of [10, p. 20] (reproduced in Fig. 2) to mean that describing
the information that holds about at rate and
describing the remaining uncertainty about at rate
should always suffice for a complete description of . This
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Fig. 3. The three types of components are illustrated: (a) DC, (b) MDC, (c) ZIC. A number next to a line represents the transition probability. A line with no
number represents a positive transition probability ������.

turns out not to be the case. In fact, we show that there exist
simple examples where is arbitrarily small, is
arbitrarily large, and yet in order to make full use of the infor-
mation that holds about , one needs to fully describe ,
giving . This shows that the informa-
tion contained in about cannot be separated from the other
information that contains, in general.

In the process of deriving the partial solution for the coding
with side information problem we define two functionals of
the joint distribution of and . One of these functionals,

, turns out to equal the common information defined
by Gács and Körner [11]. See Section V for more details.

The remainder of this paper is organized as follows. Sec-
tion II introduces notation and definitions. Section III provides
the main results, namely, a partial explicit description of the
achievable rate region for which the structure of optimal aux-
iliary random variables is found. Section IV provides additional
results that are useful for constructing optimal auxiliary random
variables. Additionally, it outlines open questions that need to be
resolved in order to obtain a complete explicit solution. In Sec-
tion V, a connection is made between the functional
defined in Section III and common information. Section VI of-
fers concluding remarks. Finally, the Appendix A contains cer-
tain lemmas and proofs.

II. NOTATION AND DEFINITIONS

Let , , and denote discrete random variables with fi-
nite alphabets and , respectively. Set
and . Let , , and de-
note subsets of the possible outcomes of , , and , respec-
tively. The index allows us to distinguish between distinct (but
possibly overlapping) subsets. Pairs and , and
triplet are called components. The functions ,

, , , , , , , and
are naturally defined marginal and conditional probabilities on
the alphabets and . Additionally, ,
and and are similarly defined. We define

and use the convention .
Next, we provide three definitions, which are key in the

derivations that follow.

Definition 1: is a disjoint component (DC) if

Definition 2: is a minimal disjoint component
(MDC) if it is a DC that contains no DCs other than itself.

Definition 3: is a zero information component (ZIC)
if

We call the size of the ZIC.

Fig. 3 illustrates DCs, MDCs, and ZICs. Note that in order
to check that a component is a ZIC, one needs to translate from
the transition probabilities to . Note further that
unlike DCs and MDCs, ZICs are not symmetrical. Specifically,

is a ZIC does not imply is a ZIC. (In fact, if
is a ZIC, then is a ZIC if and only if

is an MDC.)
MDCs are useful because they allow us to break a large

problem into smaller subproblems. The importance of ZICs
stems from the fact that for a ZIC, say , knowing
that tells us that and specifies a conditional
distribution on that is unchanged by the knowledge of which

has occurred; that is, for all

(Note that this does not imply that the conditional distribution
of given is uniform, which ordinarily is not the case.)

Two properties of MDCs and ZICs are useful to the en-
suing discussion. First, every imposes a unique
decomposition of into MDCs, e.g.,

, where for any sets and ,
implies

and partitions . Secondly, an MDC
can be uniquely decomposed into largest ZICs. Specifically,

, where for each
, is a ZIC, and there does not exist a

ZIC that strictly contains . This can be shown
by identifying ZICs and enlarging them as much as possible.

We proceed with two more definitions.

Definition 4: Let be a decomposi-
tion of into DCs or into largest ZICs (in both cases

, for ). We say that random variable
satisfies the decomposition property if there exits a partition
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of such that for all , , and
, .

Definition 5: Suppose that is a de-
composition of into DCs and that satisfies the decom-
position property. Then we define , , and to be the re-
strictions of , , and to , , and , respectively, and
call them component random variables. (Note that if , then

, so component random variables
need not be random variables.)

It is convenient to define the operations of mutual informa-
tion, entropy, and conditional entropy for component random
variables. These operations are defined analogously to their
standard definitions. Specifically

Because the components are disjoint, the following properties
hold: , ,

, and , where
the last property is the Data Processing Inequality, which holds
for component random variables as well.

Finally, we define to be the rate desig-
nated by the encoder for the DC. It follows that

.

III. RESULTS

We focus on identifying key points in the achievable rate
region. The point 1 is clearly in the
achievable rate region. Likewise, and

is achievable. It is the auxiliary random variables
and , respectively, that attain these points. The straight
line connecting these two points is an upper bound to the lower
convex hull of the achievable rate region, as immediately fol-
lows from a time sharing argument. A more interesting ques-
tion raised in Section I is whether one can operate at rate

while maintaining . As noted, and is
shown, the answer is sometimes yes. We define to be
the minimal rate for which is achievable
and note that . Theorem 2 pro-
vides a formula for computing . Corollary 3 and The-
orem 4 give necessary and sufficient conditions under which

and , respectively.
The following lemma shows that when

, must satisfy the decomposition property. This is
needed in the proofs of Theorems 2 and 4.

Lemma 1: Let be either the unique
decomposition of into largest ZICs or the decomposi-
tion into MDCs. Any auxiliary random variable for which

must satisfy the decomposition property.

1Note that Fig. 4 draws � on the vertical axis and � on the horizontal
axis. We therefore report rate points as �� �� � for consistency.

Proof: We show the lemma by showing the contrapositive.
Namely, we show that if there exists a symbol and sym-
bols and from distinct partition sets and , respec-
tively, for which and , then

. To do so, we construct an auxiliary random variable
and show that and .
The alphabet of is . For each

and , set to the probability of
the corresponding symbol under the conditional distribution of

given . For each , set for all
and for all . (Notice that there may

be for which , however, and
are guaranteed by the construction since

and .) Since forms a Markov
chain, the Data Processing Inequality implies that

. Thus, it suffices to show that .
Note that

by the construction of .
Next, we consider two cases. The first case is that

is the decomposition of into
largest ZICs. Notice that in this case there exists
such that (otherwise,
for all would imply that we could form a larger
ZIC by combining with , which would give a
contradiction). Therefore
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where the strict inequality in follows from the strict con-
cavity of , the fact that and are both nonzero,
and the previous observation that ; fol-
lows since is a partition of ; derives from the
fact that is the same for all by definition of a
ZIC; and follows since

Thus, when the decomposition is into
largest ZICs.

When the decomposition of is into MDCs, there exists
such that while .

Therefore

where the strict inequality in derives from the strict con-
cavity of , the fact that and are both nonzero,
and the observation that ; follows
since ; and holds
trivially if , and if , then

Theorem 2: Let be the unique de-
composition of into largest ZICs. Then

Proof: We obtain constructively. Let
and set for all and
for all . We need to show that

, , and
can be no smaller when . To show that

we let be an arbitrary element of
and obtain

where derives from the fact that for all
; follows since is a Markov chain and

for all ; and follow since
is a ZIC, and thus for any , is independent of

; and also follows from being a ZIC, since
that implies that for any , for all .

The fact that follows since is a
deterministic function of , giving

To show that minimizes given that ,
recall that Lemma 1 shows that any auxiliary random variable

for which has to satisfy the decompo-
sition property. Let be such an auxiliary random variable and
use to denote its decomposition. Then

where and follow since and
are DCs and thus , and are component

random variables; follows from Lemma A1 of the
Appendix, which shows that is maximized when

, which is precisely how is defined.

Theorem 2 enables us to improve the previous upper bound to
the lower convex hull of the achievable rate region. Specifically,
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the improved upper bound is the connecting line between the
rate points and .

Below are a direct corollary to Theorem 2 and a theorem that
uses Theorem 2.

Corollary 3: if and only if con-
tains no ZICs of size greater than one.

Theorem 4: Let be the decompo-
sition of into MDCs. Then if and
only if each is a ZIC.

Proof: We begin by showing the “if” part. Let
be the decomposition of into

MDCs that are also ZICs. We show that .
We notice that the given decomposition is also into largest
ZICs. Thus, applying Theorem 2 we obtain that

. Next since ,
where and are component random variables, it suffices to
show that for all .

Letting be an arbitrary element of , we have

First follows since is a ZIC and an MDC implies
that is also a ZIC, and thus for any ,
is independent of . Next derives from the fact that

for all , which can be seen as follows.
Let be an arbitrary element of . Then

where the third equality follows since is a ZIC. Finally,
is due to being an MDC, which implies

.
Next, we let and show that

must decompose as given in the theorem statement. Let
be the decomposition of

into MDCs. We wish to show that each is a
ZIC. First, observe that if , then for
an (optimal) auxiliary random variable that achieves

, . Second,
observe that if is an optimal auxiliary random variable for
which , then ,
and thus Lemma 1 implies that satisfies the decomposition
property. Let be an optimal auxiliary random variable such
that , let
be the induced decomposition of into DCs, and let ,

, and be the corresponding component random variables.
The two observations above imply

The last equation together with Lemma A2 (Part B) of the
Appendix, which shows that
for all , implies that for all
. It then follows from the condition for equality in Lemma A2

(Part B) that is a ZIC, which implies via Lemma A2
(Part A) that . Consequently,

. Thus

Finally, letting play the role of in Lemma A2 (Part A),
we have that for all . This together with
the last equation implies that for all .
Thus, it follows from the condition for equality in Lemma A2
(Part A) that is a ZIC for all , which gives the desired
result.

Corollary 3 and Theorem 4 give conditions under which
reaches its highest and lowest possible values, re-

spectively. Corollary 3 demonstrates that when lacks
the special structure required to form ZICs of size larger
than one, we cannot transmit the useful part of without
describing completely. The following is an example where

and yet . This shows that
there are cases where contains very little information about

and yet extracting this minuscule amount of information
requires a complete description of .

Example 1 ( , ): Let
and suppose . Let

. For all , let and
, where for all , and each is very

close, but not equal, to . Then, since and are
both approximately uniform, it follows that
and . Since , induces no ZICs
of size greater than one. Consequently, Corollary 3 implies that

.

Fig. 4 illustrates for an example pair of random vari-
ables for which . It also
shows the lower bound , which follows from
the source coding theorem. It is interesting to ask how much of
this lower bound (beyond the obvious point) can ac-
tually be achieved and what auxiliary random variables achieve
points on this lower bound. We define to be the max-
imal value of for which this lower bound is achieved with
equality. Thus, when is
the only achievable point on that lower bound and

under the conditions of Theorem 4. Theorem 5 char-
acterizes precisely.
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Fig. 4. The achievable rate region as known thus far.

Theorem 5: Let be the decompo-
sition of into MDCs. Then

Proof: The proof proceeds in two steps. First, we design an
auxiliary random variable for which , as given
in the theorem statement, and show that the sum–rate equals

. Secondly, we show that if , then the
sum–rate must be strictly greater than .

Let and set for all , and
for all . Then is a deterministic function

of and , which implies

This completes the first step of the proof.
We show next that for any auxiliary random variable , if

, then . The-
orem 7 of Section IV shows that if is optimal and

, then must have the decomposition property. Let
, , and be component random variables. We write

where the inequality is our case assumption. Then Lemma A2
(Part A) implies that there exists for which

and that is not a ZIC. Lemma
A2 (Part B) implies that .
Using this and the observation that

for all , as follows from the Data Processing Inequality
for component random variables, gives

This completes the proof of the second step and of the theorem
as a whole.

From Theorem 5 we find that if and only if
is an MDC (i.e., in the construct of the proof, see

Example 2 below) and, using Theorem 4,
if and only if all MDCs are ZICs (see Example 3 below). The
second observation follows from Theorem 4 since

implies is achiev-
able. Thus, where the
last two inequalities are either both strict or both equalities. No-
tice that all MDCs are ZICs if and only if and are con-
ditionally independent given the auxiliary random variable
defined in Theorem 5. Essentially the same random variable
was defined in the context of studying common information in
[11], which shows [11, Corollary 1] that (which equals

) equals if and only if the conditional inde-
pendence mentioned above holds. We briefly discuss the rela-
tionship between common information and coding with side in-
formation in Section V.

Examples 2 and 3 below illustrate these concepts. The first is
the case where can only be achieved when

. The second is the case where
is achievable for all interesting values (i.e.,

).

Example 2 ( ): The distribution is a
binary-symmetric channel with crossover probability that is
strictly between zero and one. In this case, there is only one
MDC, thus .

Example 3 ( ): The distribution
is defined by binary-symmetric channels, each with crossover
probability one half. Specifically, let ,

, and for all , let

and for all . In
this case, .

Corollary 6: Any point on the line connecting and
is an optimal and achievable rate

point.

Corollary 6 follows immediately from a time sharing argu-
ment. Example 4 below shows that any point on the line con-
necting and , can also
be achieved via a direct construction.

Example 4 (Achieving Directly Any Point Between
and ): Let

be the decomposition of
into MDCs. Let be arbitrary. We define auxiliary
random variable with alphabet by setting

for all , and for all
. Let be an arbitrary element of . Then
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where follows since for all and ,
and and both follow since for any fixed , is the
same for all . Thus

Since is a continuous function of that equals
when and equals when , for any

value , there exists , for which
as follows from the Intermediate Value The-

orem.

IV. THE REGION

The lower convex hull of the achievable rate region is still
not known for . The following
theorem characterizes what we know so far about optimal aux-
iliary random variables in that region. The optimal used in
Theorem 5 to achieve the point
satisfies the decomposition property. This is the lowest rate
achievable by any auxiliary random variable with this prop-
erty. Theorem 7 below shows that any optimal for any rate

must satisfy this property as well.

Theorem 7: Let be the decomposi-
tion of into MDCs. Any optimal auxiliary random vari-
able operating at rate must satisfy the
decomposition property.

Proof: We show the contrapositive. Namely, we show that
if satisfies and does not satisfy the
decomposition property, then there exists an auxiliary random
variable satisfying the decomposition property for which

and , thus implying
that is not optimal.

We construct an auxiliary random variable as an interme-
diate step in constructing . Essentially, is constructed from

by duplicating each that is connected to several compo-
nents so that each of its copies is connected to a single compo-
nent. More precisely, let and define

Fig. 5. Construction of � from � , where ��� � � ��� ��, ��� � � ���,
��� � � �����, ��� � � ���, ��� � � ���, and ��� � � ���; and
where � and � are generated from � , and � and � are generated from
� .

such that . The al-
phabet of is . For all

, for all , and
for all . Fig. 5 illustrates this construction. Note that
satisfies the decomposition property and that

where follows from the strict concavity of since
violates the decomposition property and therefore there ex-
ists some for which has more than one element.
Let . While , note that

since

Similarly, . Thus

We next build from in a manner that maintains the de-
composition property while decreasing from

to and increasing from
to .

We construct by constructing a component random vari-
able for each MDC , . We choose
each so that , where for
all and , which gives
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as desired. To prove that such a exists, we must show that the
given values are achievable for all . The following
argument shows that for each we can design a component
random variable to achieve equal to any value
between and . The upper bound is achieved
when , which occurs when with prob-
ability one. The lower bound is achieved when

, which occurs when by
Lemma A1. Any value between these bounds can be achieved
by a time sharing argument. As a result, we can design compo-
nent random variables to achieve any value of between

and . Since
by assumption ,

is achievable.
For each we now fix and assume that each

is optimal in the sense that it minimizes subject
to the given constraint on . It remains to show that

. For all let
be the curve representing the lower convex hull of the achiev-
able rate region for the th MDC. Lemma A2 shows that for any
component random variable

with equality if and only if . This im-
plies that the curve , for , lies
strictly above the line of slope that originates at the point

. Thus for any and
any satisfying

(1)

by the convexity of . See Fig. 6 for an illustration. Thus, for
each with

where and follow since is an optimal component
random variable, while might not be an optimal component
random variable, follows from the definition of , and
is obtained from (1).

Finally, implies

Theorem 7 implies that we can find an optimal for any
by allocating the rate among the MDCs

and then independently finding an optimal at the given rate
for each MDC.

Fig. 6. The lower convex hull of the �th MDC, denoted by � , and a represen-
tation of (1).

Lemma 8 below, whose proof is left to the Appendix, provides
necessary conditions on the structure of an optimal auxiliary
random variable. Theorem 9 builds on this result, showing that
an optimal auxiliary random variable for an arbitrary random
pair can be solved by collapsing any ZIC of size greater
than one in into a ZIC of size one in some new random
pair and then finding an optimal auxiliary random vari-
able for ; auxiliary random variable can be easily
transformed into an optimal auxiliary random variable for

that achieves the same rate as for .

Lemma 8: Let be a decomposition
of into ZICs. If is an optimal auxiliary random vari-
able, then it must satisfy for all and all ,

for all .

The necessary conditions of Lemma 8 are not sufficient. It
is not difficult to construct examples of suboptimal auxiliary
random variables that satisfy Lemma 8.

Theorem 9: Given an arbitrary random pair
with alphabet and a decomposition into ZICs

, construct another random pair
with alphabet and

let have the same marginal distribution as and
for all and

all . If the auxiliary random variable with al-
phabet is optimal for at rate

, then the auxiliary random variable with al-
phabet and conditional distribution

for all and all
is optimal for at rate .

Proof: We must show both that is optimal and that
or, equivalently, that

and . We begin by showing that
. For any
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(2)

Here follows since , , and
and have the same marginal distribution. Then follows

since for all . Thus .
Next

(3)

where follows since

and derives from the fact that for all
. Thus, since , it follows that

.
Next, to prove that , note that

where and are obtained in the same way that and
, respectively, are obtained in (2). Since ,

and and have the same marginal distribution,
implies .

It remains to show that is optimal for . The proof
is by contradiction. Suppose that is not optimal. Then there
exists an auxiliary random variable such that

and . We use to construct an
auxiliary random variable for such that

and
. This contradicts the optimality of ,

and thereby gives the desired result.
We construct from as follows. Index the alphabet of
as . Since is an optimal auxiliary

random variable, Lemma 8 implies that for all ,
for all and all .

Set and for
, , and .

We show that by noting that

where follows since as shown below
(3), and follows from the definition of . By similar
arguments

Thus, and , which
gives the desired result.

The remainder of this section focuses on the minimum al-
phabet size of optimal auxiliary random variables. The solution
of the rate region provided in [1] bounds the alphabet size of the
auxiliary random variable by the alphabet size of plus (i.e.,

). In [2] it is shown that suffices for
optimal auxiliary random variables. Corollary 10 combines this
tighter bound with Theorem 9 and shows that need never ex-
ceed the number of largest ZICs imposed by . The bound
is sometimes tight (for example when ). This
further reduces the space of possible optimal auxiliary random
variables.

Corollary 10: Let be the decom-
position of into largest ZICs. For any achievable rate
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Fig. 7. The rates of the encoders are � � ���� � �, � � �, and
� � ��� � � � in the case of � ���� � and � � � , � � �

and � � � in the case of � ���� �.

point , there exists an auxiliary random variable
such that , , and .

Together, Theorems 7 and 9 and Corollary 10 significantly
restrict the space of possible optimal auxiliary random variables
by reducing the problem to that of finding an optimal auxiliary
component random variable for an MDC that has no ZICs of
size greater than one, and whose alphabet size is no larger than
the alphabet size of the component random variable.

V. COMMON INFORMATION AND

The notion of common information of two random vari-
ables has been addressed in [11]–[14], where various defini-
tions have been proposed. In [11], Gács and Körner define
common information by defining functions and for which

with probability one, and the number of values
taken by (or ) with positive probability is largest pos-
sible; the Gács–Körner common information, here denoted by

, is then given by . By
[13, p. 404], equals the largest rate for which

is an achiev-
able rate triple for the network given in Fig. 7. Furthermore,

always holds [11], [13, p. 405]. In
[12], Wyner defines common information, here denoted by

, as the least rate for which there exist and
such that is an achievable
rate triple for the same network and .
Wyner shows that , where the
infimum is taken over auxiliary random variables that sat-
isfy the Markov chain . Wyner also shows that

. It follows that

While both and consider the rates
associated with the scheme in Fig. 7, they answer different ques-
tions. Specifically, the Gács–Körner interpretation minimizes
the sum–rate into each decoder while carrying as much of the
load as possible with the central encoder. (Achieving sum–rates
of and into the decoders is trivial when the central
encoder has rate but more difficult when the central encoder
is involved.) In contrast, Wyner’s interpretation minimizes the
sum–rate out of the three encoders while carrying the minimal
load at the central encoder. (Achieving sum–rate out

of the three encoders is trivial when the side encoders have rate
but more difficult otherwise.) Thus, describes

the maximal amount of shared information that is useful in de-
scribing both and individually, while describes
the minimal amount of shared information needed to describe
and jointly.

It is interesting to note that the auxiliary random variable
used to achieve meets the definition of the
random variable in the definition of .
Thus, and if and
only if is an MDC. Csiszár and Körner call such a distri-
bution “indecomposable” [13, p. 403]. Further,

if and only if all MDCs are ZICs or,
equivalently, if and only if there exist functions and such
that with probability one and and are con-
ditionally independent given (or ) [13, p. 405].

The fact that might be a little sur-
prising since the middle encoder in Fig. 7 has access to both
and , while the side information in Fig. 1 has access to only.
This shows that indeed the common information is “common”
in the sense that it can be fully extracted from either or
separately.

VI. CONCLUSION

This paper considers the problem of lossless source coding
with coded side information. Specifically, and are two
random variables that are independently encoded and jointly
decoded, and only needs to be reconstructed (losslessly).
The solution to this problem, namely, the achievable rate re-
gion, is given in [1] in terms of an auxiliary random variable. In
this paper, we obtain a partial solution for an optimal auxiliary
random variable, thus providing part of the rate region explicitly
in terms of the distribution of and the conditional distribution
of given . An explicit solution of the rate region remains
elusive for rates . Solution in this
region hinges on finding a construction for an optimal auxiliary
random variable for a single MDC that is not a ZIC. We also
show that the alphabet size for this optimal auxiliary random
variable need not exceed the number of largest ZICs in the de-
composition of this MDC.

APPENDIX

Lemma A1: Let be a DC and the cor-
responding component random variables. Then

with equality if and only if is a
ZIC, for example, when .

Proof:
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where follows from the strict concavity of and the fact that
. The inequality is satisfied with equality if and

only if for each , for all for
which . This is equivalent to saying that
is a ZIC.

Lemma A2: Let be the de-
composition of into MDCs, and let be an auxiliary
random variable that has the decomposition property. For
each let , , and be component random
variables for and . Then

A.

with equality if and only if is a ZIC

B.

with equality if and only if is a ZIC

Proof: We begin with the proof of Part A.

where follows from the strict concavity of and the fact
that . Since for all , holds
with equality if and only if for all and

, which means that is a ZIC.
Next, consider Part B. Since ,

we prove Part B by proving that or,
equivalently, with equality if and only
if is a ZIC. This generalizes the Data Processing
Inequality to component random variables. Note that

where follows from the strict concavity of and the fact
that . Inequality holds with equality if
and only if for each and ,
for all satisfying and . We
call this condition ( for all and all

for which there exists with and
) “Condition A.”

All that remains is to show that since is an MDC,
Condition A is satisfied if and only if is a ZIC. The
forward direction follows immediately from the definition of a
ZIC. We next show that since is an MDC, Condition
A implies that is a ZIC. The proof is by contradiction.
Specifically, we suppose that is not a ZIC and show
that this implies that can be broken into smaller DCs,
say and , which gives a contradiction since

is an MDC.
The following argument builds up and in-

crementally. If is not a ZIC, then there exist
and , for which . Let and

be the first members of and , respectively, and ini-
tialize and as and

. Notice that and
are disjoint since Condition A allows only
for and that are not accessible from the same .
Next, we add to all members of the set

for some and to all members of
the set for some .
Notice that for all and and

for all and . This observa-
tion follows from Condition A since for any there exists
an for which and and for
any there exists an for which
and . It further implies that since

for some . This process continues,
iteratively adding to and all that are newly
accessible from and , respectively, and then adding to

and all that are newly accessible from and
, respectively. At each iteration, Condition A guarantees that

. For example, for any newly added
to there exists an and a already in for which

and , which implies that is
constant for all in the newly enlarged set and thus that
and are disjoint. Similarly, and are disjoint. Further,
since and are finite and the sizes of , and
are nondecreasing from one iteration to the next, the procedure
converges. Since the resulting and are DCs,
we have the desired result.

Proof of Lemma 8

We show the contrapositive. Namely, we show that if there
exists some and such that for some

, then is not optimal. To show that is not op-
timal, we construct an auxiliary random variable such that

and .
Set for some ; that is,
is the set of ’s that are connected to (notice that

need not be empty). By assumption, there exists
such that for some . For each

define ; represents the
contribution to the probability of from the members of .

We are now ready to define . The alphabet of is
. For each , there is a corresponding ,

and we define for all . For each
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there is a corresponding , and we define
for all , and for all . Notice that
satisfies the property given in the lemma with respect to .

We begin by proving that is a valid auxiliary random vari-
able, namely, for all . The result is imme-
diate when , since
for all . For we have

where follows since for all and .
Next, we show . For any and its

corresponding

Likewise, for any and its corresponding ,
for all , which implies that .

Thus .
Next, we show that or, equivalently,

since , we show that . It
suffices to show that for any and its corresponding ,

for all . Consider an arbitrary . If
, then

as needed. If , then

Therefore, we wish to show that

If , then this holds trivially, since for all
. If , then for any

where and follow since is a ZIC, which implies
that for all . Hence,

as desired.
It remains to show that or, equivalently,

since , that . Recall that
when , its corresponding is in , and

for all . Likewise, when , its corresponding
is in , and for all . Thus

Finally
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where and follow because
implies since for all
and ; follows from the strict concavity of since

, for all , and
for some and .
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