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Predictive Clustering of Vessel Behavior
Based on Hierarchical Trajectory Representation
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Abstract—Vessel trajectory clustering, which aims to find
similar trajectory patterns, has been widely leveraged in overwa-
ter applications. Most traditional methods use predefined rules
and thresholds to identify discrete vessel behaviors. They aim
for high-quality clustering and conduct clustering on entire
sequences, whether the original trajectory or its sub-trajectories,
failing to represent their evolution. To resolve this problem, we
propose a Predictive Clustering of Hierarchical Vessel Behavior
(PC-HiV). PC-HiV first uses hierarchical representations to
transform every trajectory into a behavioral sequence. Then, it
predicts evolution at each timestamp of the sequence based on
the representations. By applying predictive clustering and latent
encoding, PC-HiV improves clustering and predictions simulta-
neously. Experiments on real AIS datasets demonstrate PC-HiV’s
superiority over existing methods, showcasing its effectiveness in
capturing behavioral evolution discrepancies between vessel types
(tramp vs. liner) and within emission control areas. Results show
that our method outperforms NN-Kmeans and Robust DAA by
3.9% and 6.4% of the purity score.

Index Terms—Trajectory clustering, Marine transportation,
Data mining.

I. INTRODUCTION

W ITH the advancement of wireless positioning technol-
ogy, numerous vessels are currently equipped with the

Automatic Identification System (AIS). The AIS system is
capable of collecting real-time information regarding vessel
movements. Consequently, vessel trajectories are gathered as
sequences of location points, speed, course, and navigation
status throughout vessel voyages. Finding similar vessel tra-
jectories is critical to overwater applications, e.g., anomaly
detection [1], collision avoidance [2], and vessel behavior
prediction [3]. Clustering methods play a fundamental role
in such applications.

Trajectory clustering is mainly classified by two strategies
according to hierarchies. The direct strategy is using similarity
measures such as using Dynamic Time regular distance (DTW)
[9], Hausdorff distance [5], [11], and Fréchet distance [13] to
cluster the whole trajectory, in which it may be warped to
match others. On the other hand, due to different sampling
rates and unequal lengths of trajectories, some methods con-
sider a fine-grained hierarchy, where they segment a trajectory
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Fig. 1: Behavior sequence in different levels. (a) shows the
mooring behavior sequence of different vessels over the same
time period. The green trajectory of the passenger vessel
indicates that it has made multiple trips between specific ports.
The yellow trajectory of the cargo vessel indicates that it only
made one call at port C during this period; The red trajectory
of the tanker indicates that it will moor in specific ports (E,
D) with the berth of the tanker. The behavior evolution of
the same type of vessels is similar based on the frequency of
mooring, port preference, etc.. (b),(c) divide vessel trajectory
into different stages according to the timestamp t of the
behavioral transition point. (b) The vessel turns left, slows
down to avoid hitting the reef, and then goes straight. (c) Two
vessels meet, according to the COLREGS [4] rules, they will
generally turn right to give way. As such, vessels have similar
behavior sequences during the sailing process.

into sub-trajectories, and cluster them instead. e.g., Gao et al.
identified the behavior patterns of sub-trajectories and used
spectral clustering algorithms to define these patterns as the
basis for vessel operation [24]. Both of them aim for high-
quality clustering and conduct clustering on whole sequences,
whether the original trajectory or its sub-trajectories.

Apart from the original trajectory or its sub-trajectories, is
it possible to find other representations to keep its pattern
while making the clustering easier? To answer it, behavior
sequence may be a good representation of trajectory. In
this line, we define the behavior sequence as a serialization
of phased changes in typical behaviors during the vessel’s
sailing process. On the one side, it overcomes the shortage of
irregularity. On the other side, a behavior sequence can show
the evolution over time, which provides a pattern description
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more clearly. Fig. 1 illustrates examples of trajectories and
their behavior sequences. Considering all mooring behaviors
happened over time of a trajectory, depending on frequency
and positions, we can clarify whether it is of a passenger
vessel, an oil tanker, or a cargo vessel (Fig. 1(a)). At the same
time, a trajectory can be divided into sub-trajectories to show
finer-grained evolution. For instance, when a vessel (black
dashed, Fig. 1(b)) meets reefs (Fig. 1(b)) or another vessel (red
dashed, Fig. 1(c)), it always turns and decreases speed. Several
existing methods investigated using trajectories to recognize
typical vessel behaviors. Nevertheless, they discuss no possible
influence of evolution.

In this paper, we propose the Predictive Clustering of
Hierarchical Vessel Behavior (PC-HiV) to extract behavior se-
quences from trajectories and find evolution. The PC-HiV first
employs a hierarchical representation to transform a trajectory
into three behavior sequences, including a position sequence,
several sub-trajectory sequences, and a label sequence. Then,
it clusters all sequences simultaneously to capture similar
evolution. Specifically, the proposed clustering model (PC-
HiV) strives to analyze the evolution of vessel behaviors and
perform trajectory representations at different levels. In doing
so, the proposed PC-HiV allows potential representations to
be mapped to more interpretable discrete representations. By
dividing the trajectory into multiple levels, each level can
reflect the evolution process of vessel behavior. As such,
different levels of vessel trajectory features can be utilized
for various tasks to achieve a balance between accuracy and
efficiency. We conduct experiments on multiple levels and
find that our hierarchical trajectory representation method
provides more effective and meaningful clustering results.
To the best of our knowledge, we are the first to construct
trajectory features hierarchically and perform clustering on the
behavioral evolution of vessels dynamically.

The contributions of this paper are summarized as follows.
1) We present hierarchical representations, leading to an

enhanced synthesis of trajectories compared to tradi-
tional representations. At the level of the sub-trajectory
sequence, the proposed PC-HiV retains more spatio-
temporal information of the trajectory. At the level of
the label sequence, the proposed method concentrates
on specific behaviors, enabling the capture of long-term
information.

2) We demonstrate that similar behavior evolution among
vessel trajectories can help clustering. Accordingly, we
employ this insight to cluster vessel trajectories into
different clusters over time, instead of clustering sta-
ble behaviors or entire behaviors. This leads to better
effectiveness and performance.

3) Experiments on real AIS dataset show the effectiveness
of our method. The PC-HiV outperforms NN-Kmeans
and Robust DAA by 3.9% and 6.4% in terms of the pu-
rity score, respectively. Our proposed clustering method,
on the one hand, is applicable to represent the behavioral
evolution differences between tramp shipping and liner
shipping, on the other hand, can capture the behavioral
evolution characteristics of vessels in emission control
areas.

The remainder of this paper is organized as follows. Sec-
tion II discusses related works for vessel trajectory clustering
and predictive clustering. Section III presents the preliminary
and definitions. After that, Section IV details the design of
the proposed PC-HiV. Section V presents the experiments
compared with baselines. Finally, Section VI concludes the
paper.

II. RELATED WORK

A. Vessel Trajectory Clustering

This section discusses two main strategies for vessel trajec-
tory clustering, i.e., direct strategies and fine-grained strate-
gies. To specify, the direct strategies mostly focus on the
overall distribution characteristics of the vessel trajectory.
The fine-grained strategies consider both the behaviors and
evolution of vessel trajectory.

For the direct strategies, vessel trajectory clustering captures
the spatio-temporal features of the overall trajectory. Existing
studies on vessel trajectory clustering are based on trajectory
compression methods or trajectory feature extraction. Various
trajectory feature extraction methods can exhibit significant
impact on vessel trajectory clustering. For example, Jiang Q
et al. compressed the trajectory with the Douglas-Peucker
(DP) algorithm and measured the overall trajectory distance
with the Hausdorff method [5]. X. Xu et al. compressed the
vessel trajectory using the DP algorithm and then applied
the DBSCAN clustering multiple times to reduce the number
of points while keeping the reference route’s characteristics
intact [6]. J. Yang et al. used the DP algorithm to compress
vessel trajectories and delete a large number of redundant data
points [7]. However, compressing and clustering the trajectory
may lead to loss of information and degradation of the vessel’s
continuous behavior change process.

Xiao et al. proposed a lattice-based DBSCAN algorithm to
extract the vessel’s channel [8]. Considering that DBSCAN
is less capable of obtaining the expected results by clustering
trajectories of different densities, the HDBSCAN, namely, a
hierarchical density-based method was proposed to cluster ves-
sel trajectories. For instance, Wang et al. combined Dynamic
Time Regularization (DTW) and HDBSCAN to identify the
main routes and speed profiles [9]. L. Eljabu et al. suggested
a spatial clustering approach for maritime traffic that relies
solely on dynamic time warping (DTW) similarities and does
not use traditional clustering methods [10]. Wang L et al.
proposed a clustering method for vessel trajectories via using
HDBSCAN and Hausdorff distance measurement [11]. Tang et
al. proposed the vessel trajectory clustering method FOLFST,
which is hierarchically clustered to obtain trajectory clusters
of the same channel [12]. Cao et al. used Fréchet distance
to realize adaptive vessel trajectory clustering to improve the
performance of trajectory clustering [13]. Although promising,
the above-mentioned methods only clustered the shapes or
distribution features of vessel trajectories. In addition, those
methods usually suffer from high computational costs and
sensitivity to noise and data with non-uniform sampling rates.

Recently, several learning models such as RNNs and CNNs
have strong feature representation capabilities and achieved
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considerable success in trajectory similarity computation [14].
In this line, H. Duan et al. employed one-hot encoding
to represent the attributes of a vessel’s trajectory, such as
LAT, LON, SOG, COG, WID, LEN, and DRA, helping to
better understand the potential meaning of the spatiotemporal
information of the trajectory. On the downside, this approach
led to an increase in data dimensionality [15]. M Lianget
al. combines vessel motion features and trajectory geometry
features simultaneously. The motion features are defined to
extract vessel features, while they tried to map the trajectory
image into the low-dimensional feature embeddings [16]. Y.
Zhang et al. proposed a PDGCN method for clustering of
target domains, combining clustering and coding for training in
an end-to-end manner [17]. G. Shi et al. represented the sam-
ples as category embedding and superclass embedding, which
are generated by using k-means clustering on existing base
classes, and the embedding representation enhanced by the
fusion of two embedding vectors [18]. Zhang et al. presented
a robust auto-encoder model with an attention mechanism
to learn the low-dimensional representations of noisy vessel
trajectories [19]. Liang M et al. proposed a convolutional auto-
encoder neural network, remapping the trajectories into infor-
mative trajectory image matrices, thereby improving trajectory
clustering performance [20].

For the fine-grained strategies, most existing research is
based on predefined vessel behaviors or focused on a single
behavior. Those methods are not able to detect unforeseen
behaviors and require the assistance of domain specialists for
defining rules and thresholds [21]. For example, Ma et al. uses
a spectral clustering algorithm to extract the motion pattern of
the vessel [22]. Such a method focused on a single behavior,
regarding the movement from Port A to Port B as a type of
behavior. Huang et al. applied a semantic analysis method
to explore potential mobility patterns by combining semantic
transformation and topic model [23]. The vessel behaviors
obtained with this method are discrete and fail to serialize the
evolution. Besides, researchers considered typical behaviors
of vessels. For example, Gao et al. identified the behaviors
of sub-trajectories and used spectral clustering algorithms to
define these behaviors as the basis for vessel operation [24].
Jia et al. proposed an auto-encoder method based on a two-
stream LSTM network that extracts the motion primitives of
vessels from encounter data [25]. Note that the clustering
algorithm based on complete trajectories ignores the similar
behavior evolution of specific sub-trajectory segments, and
results in low efficiency and low detection accuracy; the
clustering algorithm based on trajectory points ignores the
spatial correlation between trajectory points.

B. Predictive Clustering

Predictive clustering is widely used in time-series clustering,
such as the predictive clustering tree methods introduced by
Džeroski et al.. This method used traditional distance metrics
for sequences and identified clusters that minimize the distance
variance of each leaf, and then assigned a label to each cluster
based on the centroid [26]. Predictive clustering tree is built
on the basis of a decision tree whose leaves can represent a

cluster. In recent years, researchers have proposed a variety of
predictive clustering methods. Harbi et al. added supervised
learning predictions to unsupervised k-means and divided the
same type of label objects into a cluster. They combined the
simulated annealing with the improved K-means algorithm to
classify objects with the same label into the same group [27].
Van et al. proposed a constraint-based clustering method that
exploits background knowledge to construct clusterings [28].
Lemaire et al. provided interpretability for clustering results
by combining the predictive power of supervised learning with
unsupervised clustering [29].

Changhee Lee’s work [30] is a deep learning method for
clustering time series data, AC-TPC is performed by learning
discrete representations that best describe the distribution of
future results based on the loss function, encouraging each
cluster to have homogeneous results. It enables the mutual
improvement between cluster assignment tasks and label pre-
diction tasks. Similar to the work done by J. Gou et al.,
focus more attention on important areas and less attention on
irrelevant areas [31]. Motivated by those, we apply the idea
of predictive clustering to vessel behavior clustering, where
the homogeneity of clusters is measured by the similarity of
behavior labels.

III. PRELIMINARIES

Original vessel trajectories are obtained through AIS, gen-
erally require preprocessing prior to subsequent analysis and
exploration [32], [33]. To capture the behavioral patterns of
vessels, preprocessed trajectories are transformed into the
hierarchical structure of vessel trajectories, including position
sequence, sub-trajectory sequence and label sequence.

Definition 1 (Position Sequence). A position sequence T
is a sequence of position points pi: T = {p1 → p2 →
... → pn} ∈ Rn×d, where n is the number of positions, and
pj ∈ Rd1 contains a d1-dimensional feature vector at position
j, including coordinates, speed, course, timestamp, etc. T is
ordered by timestamps.

Definition 2 (Sub-Trajectory Sequence). A sub-trajectory
sequence T ′ is a sequence of sub-trajectory Ti: T ′ = {T1 →
T2 → ...→ Tm} ∈ Rn×di .

Here, each Ti is a subsequence of a time series T , which is
a continuous subset of points from T with a length of k, where
1 ≤ i1 ≤ ik ≤ n. A position sequence T can be represented
by m mutually exclusive sub-trajectories, i.e., ∀1 ≤ i, j ≤
m,Ti ∩ Tj = ∅ and they construct a new sequence T ′ =
{T1 → T2 → ...→ Tm} ∈ Rn×di . The difference between T
and T ′ is slices, where T can be seen as a special case of T ′

when k = n,∀i.
Definition 3 (Label Sequence). A label sequence T ∗ of

status p∗i : T ∗ = {p∗1 → p∗2 → ...→ p∗m} ∈ Rm×d2 . For each
p∗i , through a mapping function M : T→ P∗, where T is the
set of Ti and P∗ is the set of p∗.
M maps sub-trajectories to a certain p∗, which includes

position information and some vessel status information,
e.g.decreasing speed, mooring. Denote it as the label point
p∗i ∈ Rd2 .

For clarifying the notations, we provide Table I that presents
the deceptions of main variables used in this paper.
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TABLE I: Summary of notations

Notation Description

pi position point that contains lon, lat, speed, course,
timestamp, etc

T sequence of position points pi
Ti sub-trajectory of T
T set of Ti

yi behavior label of Ti

Y behavior label sequence composed of yi
P set of p∗i
T ′ sequence consist of Ti

p∗i a status of the whole Ti including position informa-
tion and some vessel status information.

T ∗ sequence of status points p∗i
yi behavior label corresponding to Ti

B behavior label set
y∗i label corresponding to p∗i
Y ∗ sequence composed of y∗i
N total number of trajectories

Clsi all samples in the i-th category
ci all the real sample in the i-th category
Cls all the clusters
C true category
K number of clusters

Position 
sequence

Sub-trajectory
sequence

Label 
sequence

Fig. 2: Hierarchical vessel trajectory structure. One can ob-
serve a mapping relationship from the continuous position
sequence to the sub-trajectory sequence, as well as a mapping
relationship from the sub-trajectory sequence to the label
sequence. Each segment in trajectory represents a behavior.
In addition, the specific behaviors in the sub-trajectory are
concerned and the sub-trajectory is mapped to a label point to
form a label sequence.

Using hierarchical representations, we can represent a posi-
tion sequence as some sub-trajectories, and a label sequence,
from the bottom to the top. Fig. 2 shows an example of them.
By such representations, there is a clear transformation from a
lower to a higher hierarchy, which provides more information
to help clustering.

With the above representations, we can now use predictive
clustering to simultaneously solve clustering and prediction
tasks.

Problem Statement: Given a position sequence T , our
task is to find K best clusters Cls = {Cls1, . . . , ClsK} and
then summarize evolution. Each group’s trajectories can be
represented by a centroid based on some similarity measure,
and the group assigned to each vessel’s behavior should be
updated as time progresses.

We will discuss evolution results in Sec.V and show

hierarchical representations provide a better explanation of
trajectories.

IV. METHODOLOGY

In this work, we propose the Predictive Clustering of
Hierarchical Vessel Behavior (PC-HiV) to represent trajec-
tories in hierarchies and predicatively cluster behaviors. To
specify, the proposed PC-HiV first leverages the hierarchical
representation to gain three behavior sequences, as defined
in Sec. III. Along with the capturing of behavior sequences,
labels are generated to reflect behaviors and used in the
predictive clustering. After that, the PC-HiV encoders behavior
sequences, and utilizes the encoded representations to cluster
and predict behaviors. Fig. 3 shows the overall framework of
our proposed method.

A. Hierarchical trajectory representation

According to Sec. III, given a position trajectory, it au-
tomatically becomes a position sequence T , which is the
first hierarchy. Next, the PC-HiV recursively searches change
points of T , and uses these points to gather a sequence of
sub-trajectories T ′ as the second hierarchy. To that end, we
pre-segment the trajectory according to a fixed length u, and
obtain the pre-change point pre. We define the change points
as those pj that have the largest spatial-temporal distances
between their former points and latter points. Note that their
scores are larger than threshold δ, indicating that two sub-
trajectories Tis are mostly not similar. Accordingly, each Ti

can reflect a behavior. Then, the PC-HiV distributes behavior
labels for each Ti according to a predefined behavior set B.
We consider features of Ti, such as speed changes or turns,
then find the closest behavior yi ∈ B.

For each sub-trajectory segment, we divide its speed into
decreasing, increasing, uniform speed, and stopping. For the
direction, it goes left, right, and straight. Speed and direction
can jointly determine ten types of vessel behaviors. Consid-
ering speed and direction separately, we calculate the speed
difference between the two positions of the sub-trajectory
segment, if 80% of the speed difference of the adjacent points
is in the same direction, both are positive (negative), then it is
regarded as increasing (decreasing). Otherwise, we calculate
the variance of the speed of the sub-trajectory segment, if it
is less than the threshold and has small change in speed (the
uniform speed case). The special case is that the speed is less
than 10 nautical miles/hour as a stop. If it is greater than
the threshold, we calculate the speed difference between the
endpoint and the starting point. Additionally, if it is positive
(negative), then responding to accelerated (deceleration). Con-
sidering the direction, we rely on the difference of the vessel’s
heading to the ground. If it is greater than the threshold, it turns
right. If it is greater than the threshold, we define straight line
moving, otherwise, it is a left turn.

Following that, the label sequence T ∗ is generated from T ′

as the last hierarchy. As mentioned above, a p∗i ∈ T ∗ marks
vessel status information which renders T ∗ and provides a
coarse-grained behavior evolution. In this paper, we utilize
unique metrics from trajectory data, the so-called dwell time,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Hierarchical trajectory structure

Original trajectory

change points

Split trajectory

Port

Map segment to label point

label points

…

…

Encoder

Predictor

Embedding map

centroids

LST
M

zt

Trajectory representation

Sub-trajectory  representation

Assigner

Predictive Clustering

2 2 0 0 0 1

0    0 1    1    1 2    2

0 0 1 1 1 2 20 0 1 1 1 2 2

0    0 1    1    1 2    2

0 0 1 1 1 2 2

2    2 0    0    0 1    1

1

Label representation

Sub-trajectory sequence

label sequencesegment segment

Fig. 3: PC-HiV model framework. It consists of a vessel trajectory hierarchy representation module, label generation module,
encoder, predictor, and assigner.

Algorithm 1 Represent sub-trajectory sequence

Input: position sequence:T ; number of segment S; behavior
set: B; number of nearest segments to calculate: λ; spatial-
temporal distance threshold:δ; pre-change points pre ←
{pu, pu∗2..., pu∗(n/u−1)}
Output: sub-trajectory representation
change point set:C ← ∅
for pi ∈ pre do
Tleft ← {(pi − λ ∗ u), ..., pi}
Tright ← {pi, ..., (pi + λ ∗ u)}
scorepi ← dis(Tleft, Tright)

end for
C = {pi|scorepi

> δ}
T ′ ← segment(T,C)
for Ti ∈ T ′ do

behavior label:yi ← Matching the behavior of Ti in set
B

end for
sub-trajectory representation: T ′(sub-trajectory sequence)
and Y (sequence of yi)

to help further understand travel behavior [34]. We can select
a specific behavior Υ , such as vessel mooring behavior, or
other significant maneuvering behavior. We take the segments
with behavior Υ from the sub-trajectory sequence. Then we
can map each sub-trajectory segment to a point representing
its status. In doing so, choosing different behaviors can find
different evolution characteristics of vessel behavior. For ex-
ample, we use mooring status to construct p∗i as it shows
the purpose of that vessel. The T ∗ of a passenger’s vessel
may only have a few fixed mooring points, since it makes
round trips between ports, while the T ∗ of an oil tanker
may have plenty of mooring points because it stays for a
long time. Specifically, the proposed PC-HiV chooses all Tis
that have mooring pij s and matches them with port positions.
When categorizing berths and determining their coordinates,
we accomplish this by two steps: i) count the number of
vessels that have moored at a particular berth; ii) select the

one with the highest proportion as the category of the berth.
For each Ti, the first pij will be the label (mooring) point p∗i ,
if it satisfies that the distance between it and a port is less than
a given threshold. If Ti matches many ports, then p∗i denotes
the point that has the minimum distance to its port.

After generating T ∗, we use port information in this hi-
erarchy as it relates to label points. The mooring preference
label y∗i describes a port Pi that contains most types of vessel
trajectories. Note that the categorization does not mean that
port i only has such vessels. Following that, we gain all
behavior sequences and their representations, which can be
used for predictive clustering. Algorithm 1 and Algorithm 2
show the process of representing a trajectory in hierarchies.

B. Predictive Clustering

The predictive clustering starts with encoding. Given a
trajectory and its T ′, each pj has corresponding timestamp.
According to [35], we utilize an LSTM network to encode
each pj to its latent variable zj , where j can be seen as the
j-th timestamp of z ∈ Rn×d3 . Here d3 denotes the latent
dimension. For T ∗, as several some pj may not have label
points p∗j , we use the last point that has a label point to
represent all points between two p∗js ∈ T ∗. Besides, not all
vessels park at a port simultaneously, all zs of T ∗s begin with
the same j. That is to say, for each vessel, their absolute
timestamps will be discarded. Instead, we shift all timestamps
to the same beginning and use relative timestamps for the
vessel to keep temporal information.

Next, we use predictive clustering [30] to cluster each zj
and predict behaviors. It has an assigner and a predictor. An
assigner f predicts the probability P (k = 1, 2, . . . ,K | zj) of
the k-th cluster. zj will be assigned to the cluster with the
highest probability. Then, a predictor g predicts behaviors
from zt and its corresponding cluster center E(zt). For T ′,
the predictor calculates the probability P (yi ∈ Y | zj)of zj
and P (yi | E (zj)), respectively. The loss function of zj is
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Algorithm 2 Represent label sequence

Input: sub-trajectory: T ′ and yi; behavior: Υ ; label set: P ;
all trajectory T ;
Output: label representation
T̂←{Ti|Ti ∈ T ′ & yi = Υ}
for Ti ∈ T̂ do

for Pj ∈ P do
pbehaviorj ← {pij |F(pij , Pj) < σ} {F is to judge the
degree of match between point pij and label Pj}
p∗ij ← pbehaviorj [0]
p′ij ← pbehaviorj [mid]

end for
contain label← {Pj |pbehaviorj ̸= ∅}
if |contain label| == 0 then

T̂ delete Ti

else if |contain label| ≥ 2 then
p∗i ← arg min

p′
ij

F(p′ij , Pj)

else
p∗i ← p∗ij , where Pj ∈ contain label

end if
end for
T ∗ ← {p∗i }

i=|T̂ |
i=1

for Pj ∈ P do
ybehaviorj ← argmax

k
|Ck(T )|

end for
for p∗i ∈ T ∗ do
y∗i ← ybehaviorj , where p∗i matches Pj

end for
label representation: T ∗(label sequence) and Y ∗(sequence
of y∗i )

calculated as follows.

L1 = ET ′∈T

 n∑
j=1

∑
k

l
(
y(j), g (zj)

)
· fk (zj)

 (1)

L2 = ET ′∈T

 n∑
j=1

∑
k

l
(
y(j), g (E (zj))

)
· fk (E (zj))

 (2)

where T is the set of all trajectories, y(j) is the behavior label
of zj and E(zj), and l

(
y(j), g(x)

)
= −

∑
i y

(j)
i log gi(x). For

T ∗, everything is the same except the label is Y ∗.
The model achieves a balanced prediction of clusters by

minimizing the KL divergence. The predicted label distribution
for each group should be homogeneous. Beyond that, it is to
be effectively represented by the group’s centroid. Therefore,
each determined group can possess two characteristics. On the
one hand, at each evolution stage, vessels of the same type
exhibit similar behavior. On the other hand, the type assigned
to each vessel’s behavior is updated as time progresses. To
achieve this, the model transforms the predictive clustering
problem into learning a discrete representation, namely learn-
ing labels that can reflect the process of the entire vessel be-
havior evolving up to the current evolution stage. As shown in

Fig. 3, the blue arrows represent the process of estimating the
probability distribution ȳt from the representations of cluster
centroids. The red arrows represent the process of directly
estimating behavioral labels from the latent representation zt,
with the estimated probability distribution being ŷt. The model
minimizes the KL divergence as the evaluation metric for the
similarity between two probability distributions, ȳt and ŷt.

Compared to traditional trajectory clustering methods, PC-
HiV has two features. First, by hierarchical representations, it
can cluster and analyze behaviors in different granularities,
which provides richer information. Then, since predictive
clustering learns representations of each trajectory, the PC-HiV
supports updating clusters (representations) with time. This is
especially beneficial to vessels, because they may have new
trajectories and behaviors at once. Therefore, the proposed PC-
HiV can reflect the evolution of vessel behaviors.

V. EXPERIMENTS

A. Dataset

We use AIS [36] data from the Port of Ningbo-Zhoushan,
China from March 1 to March 31, 2015, and the Port of
Hainan, China from October 1 to October 31, 2018, to evaluate
the effectiveness of the proposed method. We perform data
quality check, trajectory smoothing, and slicing operations in
sequence to clean the trajectory data and prevent trajectories
from repeating along specific routes. AIS data has various
features of vessels that can be used by PC-HiV. In the
experiments, we mainly use MMSI, latitude, longitude, SoG,
CoG, timestamp, and vessel type. We filter all trajectories with
n ≥ 3, 000 and remove sparse trajectories of which the interval
between two points is greater than half hour. The size of final
trajectories is ∼ 1M/day. The total water area is ∼70,000
km2.

B. Settings

We use a single-layer LSTM [35] with a hidden size = 150
as the encoder. Both assigner and predictor are a two-layer
MLP with a hidden size = 50. We use Adam [37] as optimizer,
with initial learning rate = 0.001, β1 = 0.9, β2 = 0.999. All
modules apply dropout [38] with a probability of 0.7. Our
models are implemented by TensorFlow. For sub-trajectory
sequence experiments, there are 10 behaviors in total, i.e.,
the combination of one category of speed status (accelerated,
decelerated, uniform, stopped) and one turning status (left,
right, straight). In particular, we do not associate the stop state
with the turning status. For label sequence experiments, all
points will be classified as one out of three ports with mooring
behavior preference.

We adopt Purity, ARI [40] and NMI [39], to evaluate
the partitioning effectiveness of the proposed PC-HIV. Purity
ranges from (0, 1), describing the degree to which clustered
samples belong to the same category. ARI and NMI are used
to compare the similarity between clustering results and true
class labels. ARI ranges from (-1, 1) and NMI ranges from (0,
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1). They follow the principle of ’the higher, the better’. The
three metrics are defined in the following.
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where nij is the element in the i-th row and j-th column of the
confusion matrix, indicating samples belonging to true class i
and assigned to clustering result j. ai and bj are the number of
samples in true class i and the number of samples in clustering
result j, respectively.

(
nij

2

)
denotes the Binomial coefficient of

the element in the i-th row and j-th column, representing the
logarithm of samples correctly assigned in the same cluster.∑

i (
ai
2 )

∑
j(bj2 )

(N2 )
is an adjustment term.

NMI(Cls,C) =
2MI(Cls,C)

H((Cls) + H(C)
(5)

where H calculates the entropy of the random variable, MI
calculates the amount of information shared between two
random variables.

The baselinse include KM-DTW [41], NN-k-means [30],
DCN-pro [42], SOM-VAE [43], Robust DAA [19], and AC-
TPC [30].

C. Clustering Performance

Table II shows the performance comparison of sub-
trajectory sequences. The proposed PC-HiV reaches the best
performance on all three metrics. Since KM-DTW, DCN-pro,
and SOM-VAE have no labels, their ARI is close to 0, which
means their clusters are the same as randomly assigning each
trajectory to any cluster. The reason behind this is that all those
methods consider none or very limited features of evolution.
KM-DTW and DCN-pro only use trajectory positions and
even use no timestamp to show change with time, though
DCN-pro takes much effort on mapping positions to low-
dimension representations. As such, although DCN-pro has
a better purity score and NMI than KM-DTW, indicating that
it has better clustering results, they only show trajectories that
have similar positions. SOM-VAE leverages the Markov model
to capture spatial-temporal features. Nevertheless, the Markov
model has a strong assumption that every point is only related
to the previous one [43]. It is not suitable for trajectories that
have changes in a certain period. Besides, this shortage is
particularly heavier for finding evolution.

Our PC-HiV and NN-k-means are both labeled methods.
Also, NN-k-means uses latent representation. According to the
clustering target is z or y, NN-k-means have two versions, i.e.,
NN-k-means (z) and NN-k-means (y). Labeling is essential for
trajectory clustering because labels will correlate clusters to
behaviors, even if those behaviors are in a period. Compared
to unlabeled methods, labeled methods improve performance
on every metric. It is not surprising that NN-k-means (y) is
better than NN-k-means (z), because NN-k-means (y) clusters

TABLE II: Evaluation of sub-trajectory sequence clustering
results

Method Purity NMI ARI
KM-DTW 0.514 0.117 0.061

NN Kmeans(z) 0.715 0.429 0.279
NN Kmeans(y) 0.793 0.532 0.426

DCN-pro 0.725 0.198 0.043
SOM-VAE 0.581 0.239 0.012
PC-HiV[s] 0.832 0.640 0.590

TABLE III: Evaluation of label sequence clustering results

Method Purity NMI ARI
KM-DTW 0.5261 0.1881 0.1585

AC-TPC [30] 0.6000 0.4736 0.1932
Robust DAA [19] 0.6775 0.4858 0.3169

PC-HiV[l] 0.7418 0.3720 0.3259

trajectories directly by labels, which makes clusters more
homogeneous than NN-k-means (z). However, even if NN-k-
means (y) uses strong supervision information, the proposed
PC-HiV achieves better performance. There are two main
reasons. First, PC-HiV updates the encoder, assigner, and
predictor simultaneously, making them instruct each other
when training. Apart from this, the cluster center is updated in
a real-time manner, which is more flexible than NN-k-means.
Then, PC-HiV uses an assigner to replace traditional k-means,
overcoming the shortage that k-means is purely defined by its
input and has no other information.

Table III depicts the performance comparison on label
sequences. KM-DTW does not perform well in terms of Purity
and NMI. AC-TPC uses predictive clustering while extracting
only position trajectories. Hence, it can be equivalence as
our method without hierarchical representations. Overall, the
proposed PC-HiV achieves a better purity score and ARI
than AC-TPC, which shows the effectiveness of hierarchical
representations. It is noteworthy that PC-HiV has dropped ∼
0.1 NMI to AC-TPC. This is because, in this experiment, we
focus on the mooring behavior and only use label sequences
with it, but vessels definitely have other common behaviors.
Since AC-TPC uses all position trajectories, in the clustering
process it may consider other behaviors thereby increasing
NMI. A similar phenomenon turns out in grid-based Robust
DAA. Although Robust DAA’s idea is different from sequence-
based methods, it reaches high NMI as long as it uses position
trajectories containing more behaviors. In summary, we show
that PC-HiV learns good trajectory representations and the
hierarchical representations can provide other information to
improve clustering results.

D. Ablation Study

Fig. 4 illustrates the purity score, NMI, and ARI with the
varying K in different methods. PC-HiV obtains the best
performance and is stable for all K and all metrics. This means
that PC-HiV can tolerate different situations of trajectories.
Accordingly, compared to baselines, PC-HiV requires no pre-
defined K.

Further, we investigate how the different representations in-
fluence PC-HiV’s performance. Specifically, we generate sub-
trajectories by different methods, including speed threshold,
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(a) Purity (b) NMI

(c) ARI

Fig. 4: Evaluation of vessel sub-trajectory sequence clustering
results with different K

MMSI: MMSI: MMSI:

Fig. 5: Phased evolution of vessels in the same cluster

TABLE IV: Evaluation of vessel behavior clustering results
for different sub-trajectory segment method

Method Purity NMI ARI
speed threshold+PC-HiV 0.185 0.145 0.073

Heading threshold+PC-HiV 0.201 0.363 0.272
AutoPlait+PC-HiV 0.496 0.452 0.347

ClaSP+PC-HiV 0.794 0.601 0.526
our method+PC-HiV 0.831 0.640 0.589

direction threshold, AutoPlait [44] and ClaSP [45]. Table
V shows the performance of these methods. Since AutoPlait
and ClaSP separate a trajectory based on fine-grained features,
they have better results than threshold-only methods. In other
words, the fine-grained representation is more effective than
coarse-grained representation, thereby enabling PC-HiV to
reach good performance. On the other hand, PC-HiV outper-
forms baselines, showing that hierarchical representation can
synthesize trajectory features better.

E. Case study

1) Case of Evolution in the same cluster: Fig. 5 shows an
example of our found evolution of three different trajectories
(The mmsi of these three vessels are: 249620000, 311052200,
229608000) within a cluster. Although the duration of each
behavior of the three trajectories is different, PC-HiV suc-
cessfully recognized them as one kind of evolution, because
their behaviors are similar and happened in the same order.

2) Case of Tramp Shipping and Liner Shipping: In the
study on Tramp Shipping and Liner Shipping clustering, we
analyze 200 trajectories, each containing 2,858 data points.
These trajectories are divided into two categories: container
vessels (representing liner shipping) and oil tankers (repre-
senting tramp shipping). We compile separate lists of mooring
locations for each vessel type. By comparing the latitude and
longitude of each data point to these locations, we assign a
value of +1 if the point is near the container vessel berth.
Otherwise, we assign -1. Our model exhibits satisfactory clus-
tering performance for two vessel types, with NMI: 0.6164,
ARI: 0.6519, and PURITY: 0.9037. The clustering results are
visualized in Fig. 6, with (a) displaying the actual trajectory
types, and (b) illustrating the clustering outcomes. ”Container”
vessels are represented by Cluster 1 and Type 1, while ”tanker”
vessels are represented by Cluster 0 and Type 0.

Figure 7 presents the results of the clustering for three
different vessels. For the model to be accurate, the predicted
label distributions for each group should be consistent. This
means that each group has two distinct characteristics. i)
vessels of the same type should have similar types and times
at every stage of their journey; ii) the assigned type for each
vessel should be updated over time. As vessels progress on
their voyage, our model assigns them to either Cluster 0 or
Cluster 1, and can quickly determine their vessel type.

The vessel shown in (a) is initially classified as part of
Cluster 0. However, as its journey moves on, our model
recognizes that it actually belongs to Cluster 1 and could
accurately identify its type early on. The vessel displays in (b)
is classified as part of Cluster 1 at the beginning. Note that
some segments of its trajectory are classified as part of Cluster
0. However, as the vessel continues on its voyage, our model
confirms that it belongs to Cluster 1. The vessel represented
in (c) is easily determined and belongs to Cluster 0 based
on its trajectory input alone. This demonstrates that PC-HiV
can dynamically update the vessel’s cluster assignments over
time and promptly identify its type based on its significant
maneuvering behavior.

Based on the locations where different types of vessels are
moored, there are evident differences. The result suggests that
hierarchical vessel trajectory representation has a significant
effect on vessel behavior clustering. Different types of vessels
tend to moor at specific geographic coordinates, and there are
variations in their mooring locations.

3) Case of In/Out ECA: We analyze vessel trajectories at
the ECA boundary of the emission control area. Emission
Control Areas (ECAs), regional marine environmental mea-
sures, have been established by the International Maritime
Organization (IMO). The Hainan dataset was analyzed to
study vessel trajectories passing through ECAs. The analysis
involved sub-trajectory sequence, and the results revealed that
vessels tend to slow down or anchor near the ECA boundaries.

According to Figure 8, vessels that go through the controlled
area and slow down significantly as they approach the Emis-
sion Control Area (ECA). They tend to change direction near
the ECA boundary. Interestingly, the vessels that decelerate do
not continue forward but opt to change direction instead. Based
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(a) True classification (b) Clustering results

Fig. 6: Clustering result of container vessel and oil tanker

(a) containers (b) containers (c) oil tanker

Fig. 7: Single trajectory analysis

on the path they take after changing course, it seems that this
change in direction does not help the vessels to reach their
intended destinations. Instead, they move parallel to the ECA
boundary while slowing down. This behavior suggests that the
vessels are considering changing their fuel before entering or
exiting the ECA.

F. Limitation analysis

Our research is centered on vessel traffic in ports and
waterways nearby. Although our main focus is on port-related
trajectories, our model has the potential to handle data from
a wider geographical range. However, it’s important to note
that there are limitations to expanding the analysis to a larger
area.

1) Design and application of label sequences. The limi-
tation of our study pertains to the design of the mapping
function from sub-trajectory sequence to label sequence.
Incorporating domain-specific knowledge, such as local
navigational regulations and practices, could lead to
more effective label sequences. However, obtaining and
integrating such domain knowledge can be challenging.
In Specific application scenarios, such as ”Regulated
traffic areas” (RTAs), pollution monitoring, or fisheries
management, may require distinct label sequences to
account for varying aspects of vessel behavior. Thus,
the generalizability of our label sequence design across
different maritime applications remains a limitation.

2) Hydrological features. Our model does not take hy-
drological features into account. Hydrological features
encompass factors such as tides, currents, water depth,

and more, which have a significant impact on vessel
behavior and navigation decisions.

VI. CONCLUSION

In this paper, we propose the so-called PC-HiV to cluster
vessel behaviors in hierarchies. Hierarchical representations
can provide more precise feature descriptions of trajectories.
The clustering results based on them show that they can learn
better representations compared to traditional trajectory repre-
sentation methods. Besides, PC-HiV uses predictive clustering
to improve the results, as it can update cluster and behavior
predictions simultaneously.

In the future, our method can be expanded from two aspects.
On the one hand, the method to select port labels in the
hierarchical representations requires further optimization. At
the current stage, our method is rather brute-force. We hope
that attribute information on mooring positions can help the
process of selection. On the other hand, in a practical situation
where two or more vessels will meet, it is not sufficient to only
use current behavior labels. Hence, it is worth investigating
using PC-HiV to represent meeting behaviors and avoid the
collision.
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