
SURGE: Continuous Detection of Bursty Regions
Over

a Stream of Spatial Objects
Kaiyu Feng1,2, Tao Guo2, Gao Cong2, Sourav S. Bhowmick2, Shuai Ma3

1 LILY, Interdisciplinary Graduate School. Nanyang Technological University, Singapore
2 School of Computer Science and Engineering, Nanyang Technological University, Singapore

3 SKLSDE, Beihang University, China
{kfeng002@e., tguo001@e., gaocong@, assourav@}ntu.edu.sg, mashuai@buaa.edu.cn

Abstract—With the proliferation of mobile devices and
location-based services, continuous generation of massive volume
of streaming spatial objects (i.e., geo-tagged data) opens up
new opportunities to address real-world problems by analyzing
them. In this paper, we present a novel continuous bursty region
detection (SURGE) problem that aims to continuously detect a
bursty region of a given size in a specified geographical area
from a stream of spatial objects. Specifically, a bursty region
shows maximum spike in the number of spatial objects in a
given time window. The SURGE problem is useful in addressing
several real-world challenges such as surge pricing problem in
online transportation and disease outbreak detection. To solve
the problem, we propose an exact solution and two approximate
solutions, and the approximation ratio is 1−α

4
in terms of the

burst score, where α is a parameter to control the burst score.
We further extend these solutions to support detection of top-k
bursty regions. Extensive experiments with real-world data are
conducted to demonstrate the efficiency and effectiveness of our
solutions.

I. INTRODUCTION

People often share geo-tagged messages through many
social services like Twitter and Facebook. Each geo-tagged
data is associated with a timestamp, a geo-location, and a set
of attributes (e.g., tweet content). In this paper, we refer to
them as spatial objects. With the proliferation of GPS-enabled
mobile devices and location-based services, the amount of
such spatial objects (e.g., geo-tagged tweets and trip requests
using Uber) is growing at an explosive rate. Their real-
time nature coupled with multi-faceted information and rapid
arrival rate in a streaming manner open up new opportunities
to address real-world problems. For example, consider the
following problems.

Example 1: The world regularly faces the challenge of tack-
ling a variety of virus epidemics such as SARS, MERS, Dengue,
and Ebola. Most recently, the outbreak of mosquito-borne
Zika virus started in Brazil in 2015. Hence, the Center for
Disease Control and Prevention needs to continuously monitor
different areas for possible Zika outbreak and issue alerts to
people who are traveling to or living in regions affected by
Zika. Since early detection of such outbreak is paramount,
how can we identify potential Zika-affected region(s) in real
time?

Fig. 1: Motivating example.

One strategy to address this issue is to continuously monitor
geo-tagged tweets (i.e., spatial objects) coming out of a
specific area (e.g., Florida) and detect regions where there
are sudden bursts in tweets related to Zika (e.g., containing
Zika-related keywords) in real time. Observe that these “bursty
regions” are dynamic in nature. However, it is computationally
challenging to continuously monitor massive streams of spatial
objects and detect bursty regions in real time. �

Example 2: Online transportation network companies such
as Uber, Lyft, and Didi Dache have disrupted the traditional
transportation model and have gained tremendous popularity
among consumers1. Consumers can submit a trip request
through their mobile apps. If a nearby driver accepts the
request, he will pickup the consumer.

Although this disruptive model has benefited many drivers
and consumers, the latter may have to wait for a long time for
a car when the number of car requests significantly surpasses
the supply of nearby drivers. Clearly, it is beneficial to both
passengers and drivers if we can notify idle drivers in real
time whenever there is a sudden burst in consumer demand
in areas of interest to them. An additional benefit to the
drivers is that the trip fare may be increased due to the “surge
pricing” policy 2 where the companies may increase a trip
price significantly when demand is high. For instance, consider
Figure 1, which shows the trip requests in two time windows
[t1, t2] and [t2, t3]. Suppose a driver is only interested in the

1In 2017, Uber is available in over 81 countries and 570 cities worldwide.
2 For example, the price increased 10X on new year’s

eve in 2016 in the United States (www.geekwire.com/2016/
customers-complain-uber-prices-surge-near-10x-new-years-eve/)

ar
X

iv
:1

70
9.

09
28

7v
2

 [
cs

.D
B

]
 2

8
Se

p
20

17

www.geekwire.com/2016/customers-complain-uber-prices-surge-near-10x-new-years-eve/
www.geekwire.com/2016/customers-complain-uber-prices-surge-near-10x-new-years-eve/

area shown by dashed rectangle to pick up passengers. Observe
that there is a burst of trip requests in regions r1 and r2
(both increased by 3). If the app can notify the driver in real
time about these two regions, then he can move in there to
pickup potential passengers. Note that such soaring demand
is not always predictable as it may not only occur during
holidays or periodic events (e.g., new year’s eve) but also due
to unpredictable events such as subway disruption, concerts,
road accident, inclement weather, and terrorist attack. �

There are two common themes in the two examples. First,
we need to continuously monitor a large volume of spatial
objects (e.g., trip requests and geo-tagged tweets) to detect
in real time one or more regions that show relatively large
spike in the number of spatial objects (i.e., bursty region) in a
given time window. Second, a user needs to specify as input
the size a × b of rectangular-shaped bursty region that one
wishes to detect. For instance, in Example 2 different drivers
may prefer bursty regions of different sizes according to their
convenience.

In this paper, we refer to the problem embodied in the
aforementioned motivating examples as continuous bursty
region detection (SURGE) problem. Specifically, given a region
size a × b and an area A, the aim of the SURGE problem is
to continuously detect a region of the specified size in A that
demonstrates the maximum burstiness from a stream of spatial
objects. To model the burstiness of a region, we propose a
general function based on the sliding window model. We also
extend our SURGE problem to detect top-k bursty regions as
in certain applications one may be interested in a list of such
regions.

The SURGE problem and its top-k variant are challenging
as we need to handle rapidly arriving spatial objects in high
volumes to efficiently detect and maintain bursty regions. For
example, 10 million geo-tagged tweets are generated each day
in Twitter3. As we shall see later, it is prohibitively expensive
to recompute bursty regions frequently.

In this paper, we first propose an exact solution called cell-
CSPOT to keep track of the bursty region over sliding windows.
Specifically, we first reduce the SURGE problem to continuous
bursty point detection (CSPOT) problem. Then we propose a
cell-based algorithm to continuously detect the bursty point. It
takes O(|cmax|2+log n) time to process a new arriving spatial
object on average, where |cmax| is the maximum number of
objects that we search inside a cell, and n is the number of
indexed rectangle objects.

Although cell-CSPOT can address the SURGE problem effi-
ciently in several scenarios, it becomes inefficient as |cmax|
increases (e.g., the sliding windows get larger, the region size
gets larger, or the arrival rate of the spatial objects increases).
To address this we further propose two approximate solutions,
namely GAP-SURGE and MGAP-SURGE, with an O(log n) time
complexity to process a spatial object. The approximation ratio
is bounded by 1−α

4 , where α ∈ [0, 1) is a parameter used
in the burst score function. Last, we show that our proposed

3https://www.mapbox.com/blog/twitter-map-every-tweet/

solutions can be elegantly extended to continuously detect top-
k bursty regions. Our experiments reveal that our proposed
solutions can handle streams with up to 10 millions spatial
objects arrived per day.

In summary, this paper makes the following contributions:
(1) We propose a novel continuous bursty region detection

(SURGE) problem for continuously detecting bursty regions in
a specified area from a stream of spatial objects. (Section III)

(2) We present an exact solution (cell-CSPOT) and two
approximate solutions (GAP-SURGE and MGAP-SURGE) to
address the SURGE problem (Sections IV and V). We further
extend these solutions to keep track of top-k bursty regions
efficiently (Section VI).

(3) We conduct experiments with real-world datasets to
show the efficiency of our proposed solutions. All solutions
are efficient in real time. Moreover, GAP-SURGE and MGAP-
SURGE scale well w.r.t. high arrival rate while the returned
regions have competitive burst scores. The extended versions
can also detect top-k bursty regions efficiently in real time.
(Section VII).

The proofs of lemmas and theorems are given in Ap-
pendix A.

II. RELATED WORK

Burst detection. Our SURGE problem is related to the problem
of detecting bursty patterns and topics. A host of work has
been done to detect temporal bursts [15], [32], [11], [3], [26].
A collection of proposals focus on detecting bursty features
(represented by probability distribution of words)[15], [11],
[26]. The other work focuses on detecting a timespan over the
stream such that its aggregate is larger than a threshold [32],
[3]. All these burst detection problems are different from our
SURGE problem as they disregard the spatial information when
detecting the temporal bursts.

Most germane to our work are efforts on exploring spatial-
temporal bursts [21], [17], [30] albeit from different aspects.
Mathioudakis et al. [21] study the problem of identifying
notable spatial burst out of a collection of user generated
information. They divide the space into cells, and recognize
two states for each cell, namely “bursty” and “non-bursty”.
additive cost function. Our SURGE problem differs from it
in two key aspects. First, the spatial burst is identified as a
cell in the grid whereas the bursty region in SURGE can be
located at any position. Second, the solution developed in [21]
is designed for data stored in a data warehouse, and it cannot
be deployed or adapted to solve the SURGE problem. Lappas
et al. [17] study the problem of identifying a combination of a
temporal interval and a geographical region with unusual high
frequency for a term from a set of geo-tagged text streams.
Its problem setting is different from ours: Lappas et al. [17]
takes as input a set of text streams with fixed geographical
locations, while in our SURGE problem, spatial objects arrive
as a stream and an object can be located in any location of
the given space. In addition, the proposed solution can only
handle a small number of text streams (tens to hundreds) due to
its high computational complexity. Given a geo-tagged tweet

https://www.mapbox.com/blog/twitter-map-every-tweet/

stream, Zhang et al. [30] aim to continuously detect real-time
local event. Specifically, a local event is defined as a cluster
of tweets that are semantically coherent and geographically
close. For each keyword in a tweet, its burstiness is a linear
combination of its temporal burstiness and its spatial burstiness
with a balance parammeter η. The spatiotemporal burstiness
of a cluster of tweets is the aggregation of the burstiness of
all the keywords in the cluster. Our problem differs from it in
the following aspects. First, the bursty event is identified as a
cluster of geo-tagged tweets, while our SURGE problem aims
to detecting a spatial region. Second, the proposed framework
is built over geo-textual stream. The textual content serves as
an important feature in their system. Our SURGE is applicable
to any kind of spatial stream.

Dense region search. Our problem is also related to dense
region search over moving objects [14], [23]. Given a set
of moving objects, whose positions are modeled as linear
functions in Euclidean space, the dense region search problem
aims to find all dense regions at query time t. Jensen et al.
[14] constraint dense regions to be non-overlapping square-
shaped regions of given size, whose density is larger than a
user-specified threshold. Ni et al. [23] propose a new definition
of dense regions, which may have arbitrary shape and size. In
the dense region search problem, the positions of the moving
objects are modeled as linear functions. Thus the position
of each moving object can be computed at any time. In
contrast, in the SURGE problem, the number of the newly-
arriving spatial objects and their positions are unknown a
priori. Moreover, the density function is different from our
burst score function, requiring different techniques to compute
the burst score of a given region.

Region search. Our problem is also related to the region
search problem. A class of studies aims to find a region of
a given size such that the aggregation score of the region is
maximized[22], [7], [25], [10]. Given a set of spatial objects,
the max-enclosing rectangle (MER) problem [22] aims to
find the position of a rectangle of a given size a × b such
that the rectangle encloses the maximum number of spatial
objects. This problem is systematically investigated as the
maximizing range sum (MaxRS) problem [7], [25]. Feng et
al.[10] further study a generalized problem of the MaxRS
problem, in which the aggregate score function is defined by
submodular monotone functions, which include sum. Liu et
al. [19] study the problem of finding subject oriented top-k
hot regions, which can be considerd as a top-k version of the
MaxRS problem. Cao et al.[4] study the problem of finding a
subgraph of a given size with the maximum aggregation score
from a road network. All these aforementioned region search
problems focus on static data. Moreover, the idea of invoking
the approach designed for the region search problem whenever
a object enters or leaves the sliding windows is prohibitively
expensive (We will elaborate on this in Section IV-C).

Our work is closely related to the recent efforts on contin-
uous MaxRS problem [2], [13]. Amagata et al. [2] propose
the problem of monitoring the MaxRS region over spatial

data streams. Specifically, given a stream of weighted spatial
objects, the continuous MaxRS problem aims to monitor the
location of a rectangle of a size a× b such that the sum of the
weights of the objects covered by the rectangle is maximized.
In the proposed algorithm, a grid is imposed over the space,
whose granularity is independent from the size of the query
rectangle. For each spatial object in the stream, they generate a
rectangle of a size a× b whose center is located at the spatial
object. The generated rectangle is mapped to the cells with
which it overlaps. For each cell, they maintain a graph where
each node in the graph is a rectangle mapped to this cell, and
two nodes are connected by a directed edge if they overlap
with each other. The graph is used to handle the updates of the
stream. For each rectangle in the cell, they maintain an upper
bound to determine when to invoke the sweep-line algorithm
[22] to find the most overlapped region inside the rectangle.
With the maintained upper bounds, they use a branch-and-
bound algorithm to reduce the search space. The difference of
the SURGE problem from the continuous MaxRS problem is
that the burst score of the SURGE problem is defined over two
consecutive sliding windows, and spatial objects in different
windows contribute differently to the burst score. Though
their solution cannot be directly applied to solve the SURGE
problem, we can adapt their solution with some modifications
for the SURGE problem. The details of the modification are
reported in Appendix J. One issue of this solution is that they
need to maintain a graph for each cell with a space cost of
O(n2), where n is the number of rectangle objects that are
mapped to the cell. When the number of objects mapped to a
cell is large, the space cost could be extremely high. We will
show in Section VII-B that our proposed solutions outperform
the aG2 algorithm for the SURGE problem. Hussain et al. [13]
investigates the MaxRS problem on the trajectories of moving
objects. Given the trajectories of a set of moving points, they
aim to maintain the result of the MaxRS problem at any time
instant. Its problem setting is different from ours: it takes as
input the trajectories of a set of fixed number moving objects,
while in our problem, the number of spatial objects in the
sliding windows may vary with time and the positions of the
new arrived objects are unknown a priori.

Data stream management. Our work is also related to data
stream management. There has been a long stream of work
on various aspects of data streams since the last decade.
Some examples are stream clustering [1], [24], stream join
processing [9], and stream summarization [8]. Since most of
these studies focus on general data streams, we only review
the work that involves spatial information. Given a stream of
spatial-textual objects, [28] aims to estimate the cardinality of
a spatial keyword query on objects seen so far. A host of work
has also been done to study content-based publish/subscribe
systems [27], [6], [12], [18], [5], [29] over spatial object
streams. In these systems, streaming published items are
delivered to the users with matching interests. However, none
of these studies consider the problem of detecting bursty
regions.

Spatial outlier detection. Lastly, our work is also related to
spatial outlier detection [20], [31], [16]. Lu et al. [20], [16] in-
vestigate the spatial outlier detection problem over point data.
Specifically, given a set of weighted spatial points, the spatial
outlier detection problem aims to identify top m points such
that their weight is greatly different from the average weight
of its k nearest neighbors. Zhao et al.[31] further investigate
region outliers detection over meteorological data. All these
aforementioned problems focus on static data. Moreover, the
outliers are selected from the data points in the spatial outlier
detection problem. In contrast, the location of the bursty region
in our SURGE problem can be located at any position in the
space. In addition, the spatial outlier detection problems use
a totally different function to evaluate how much a data point
is different from its neighbors. Due to these differences, their
proposed solutions cannot be adapted to address the SURGE
problem.

III. PROBLEM STATEMENT

We formally define the ContinuouS BUrsty ReGion
DEtection (SURGE) problem. We begin by defining some
terminology.

A. Terminology

A spatial object is represented with a triple o = 〈w, ρ, tc〉,
where w is the weight of o, ρ is a location point with latitude
and longitude, and tc is the creation time of object o. In this
paper, we consider a stream of spatial objects. For example,
geo-tagged tweets in Twitter can be viewed as a stream of
spatial objects arriving in the order of creation time. The
weight of a tweet could be the relevance of its textual content
to a set of query keywords. The car requests in Uber can also
be viewed as a stream of spatial objects arriving in the order
of calling time. In this case, the weight could be the passenger
number or travel fare.

We next introduce two consecutive time-based sliding win-
dows, namely current and past windows. Given a window size
|W |, the current window, denoted by Wc is a time period
of length |W | that stretches back to a time point t − |W |
from present time t. The past window, denoted by Wp is a
time period of length |W | that stretches back to a time point
t− 2|W | from the time point t− |W |.

Given a region r and a sliding window W , let O(r,W) be
the set of spatial objects which is created in W and located in
region r, i.e., O(r,W) = {o|o.ρ ∈ r∧o.tc ∈W}. Let f(r,W)
be the summation of weights of objects in O(r,W) normalized
by W ’s length, i.e., f(r,W) =

∑
o∈O(r,W) o.w

|W | , which is the
score of a region r w.r.t. the sliding time window W .

Note that in this paper, for the sake of simplicity, we assume
the current window and the past window have the same length
|W |. However, our proposed solution is equally applicable
when the two sliding windows have different lengths.

B. Burst Score

Intuitively, the burst score of a region r reflects the variation
in the spatial objects in r in recent period. This motivates us to
design the burst score based on the current and past windows.

We first discuss the intuition in designing the burst score
using Example 2. In this scenario, Uber drivers are interested
in regions in which they have a higher chance to pick up
a passenger. Obviously, a driver is more likely to find a
passenger in a region that contains a large number of requests
in the current window, which represents the significance of the
region. On the other hand, if a region suddenly experiences a
surge of requests, which represents the burstiness of the region,
then it is highly likely that existing drivers in that region
may not be able to fulfill this sudden increase in demand.
Consequently, a driver will have a higher chance to find a
passenger there.

Thus, we consider the following two factors in our burst
score: (a) The score of the region w.r.t. the current window,
i.e. f(r,Wc), which measures the significance, and (b) the
increase in the score of the region between the current window
and the past window, i.e., max(f(r,Wc)−f(r,Wp), 0), which
measures the burstiness. Note that we use the max function
to guarantee that the increase in the score between the current
and past windows is always non-negative since we are only
interested in increase in the score.

We now formally define the burst score as follows.
Definition 1: Burst Score. Given a region r, we define its

burst score S(r) as:

S(r) = αmax(f(r,Wc)− f(r,Wp), 0) + (1− α)f(r,Wc),
(1)

where α ∈ [0, 1) is a parameter that balances the significance
and the burstiness.

C. Continuous Bursty Region Detection
(SURGE) Problem

We are now ready to formally define the SURGE problem.
Definition 2: Continuous Bursty Region Detection

(SURGE) Problem. Consider a stream of spatial objects O.
Let q = 〈A, a × b, |W |〉 be a SURGE query where A is a
preferred area, a × b is the size of the query rectangle, and
|W | is the length of the current and past windows. Given such
a query q, the aim of the SURGE problem is to continuously
detect the position of the region r of size a × b in A with
the maximum burst score. The region r is referred to as the
bursty region.

IV. AN EXACT SOLUTION

The SURGE problem is challenging to address due to the
following reasons. First, given a snapshot of the stream, we
are required to locate the bursty region in the preferred area
A. Intuitively, this bursty region can be located at any point
and it is prohibitively expensive to check the region located
at every point, which is infinite. Second, whenever a spatial
object enters or leaves the sliding windows, the burst score of
any region which encloses this object will change. This implies
that the location of the bursty region may change as well and
we need to recompute the new bursty region. With the high
arrival rate of the stream, it demands an efficient strategy to
update the bursty region.

o1

o2

o3

g1

g2

g3
p

Fig. 2: Reduce to cSPOT problem

In this section, we present a solution to address the
SURGE problem. We first introduce the continuous bursty point
detection (CSPOT) problem in Section IV-A. We show that by
reducing the SURGE problem to the CSPOT problem, for any
snapshot of the stream, we convert the challenge of selecting
a point from infinite points in the preferred area A to selecting
a bursty point from O(n2) disjoint regions. To address
the second challenge, we present a cell-based algorithm to
continuously update the bursty point in Section IV-C.

A. The cSPOT Problem

We next define the CSPOT problem and present how to
reduce the SURGE problem to the CSPOT problem. Firstly,
we introduce some terminology that will be used to define the
CSPOT problem.

Definition 3: Rectangle Object. A rectangle object, de-
noted with a triple g = 〈w, ρ, tc〉, is a rectangle of size a× b,
where g.w is its weight, g.ρ is the location of its left-bottom
corner, and g.tc is the creation time of g.

Given the stream of spatial objects O, each spatial object o
in O can be mapped to a rectangle object g by using o as the
left-bottom corner, i.e., g.w = o.w, g.ρ = o.ρ, and g.tc = o.tc.
Let G denote the stream of rectangle objects that are mapped
from O. Let G(p,W) be the set of rectangle objects which
covers point p and is created in window W , i.e., G(p,W) =
{g|g.tc ∈W ∧ p ∈ g ∧ g ∈ G}.

Next, we define the burst score of a point by following
the definition of burst score of a region in Section III . With a
slight abuse of notation, we continue to use f(p,W) and S(p)
to denote the score of a point p w.r.t. the window W , and the
burst score of p, respectively.

Definition 4: Burst Score of a Point. Consider a stream of
rectangle objects G. The burst score S(p) of point p is defined
as

S(p) = αmax(f(p,Wc)− f(p,Wp), 0) + (1− α)f(r,Wc)

where Wc and Wp are the current and past windows, and
for a sliding window W , score f(p,W) is the summation
of weights of rectangle objects in G(p,W), i.e., f(p,W) =∑

g∈G(p,W) g.w

|W | , which is the score of a point p w.r.t. the sliding
time window W .

We are now ready to formally define the CSPOT problem.
Definition 5: cSPOT Problem. Consider a stream of rect-

angle objects G, a parameter α, as well as the current window
Wc and past window Wp. The Continuous Bursty Point
Detection (CSPOT) problem aims to keep track of a point p in
the space, such that its burst score S(p) is maximized. A point
p with the maximum score is referred to as bursty point.

In order to reduce the SURGE problem to the CSPOT
problem, for each spatial object o in the SURGE problem, if o is
in the preferred area A, i.e., o.ρ ∈ A, we generate a rectangle
object g of size a×b with o as the left-bottom corner such that
o.tc = g.tc and g.ρ = o.ρ. We illustrate this reduction with
the example in Figure 2. Assume that o1, . . . , o3 are all in A.
For each spatial object oi, i ∈ [1, 3], a corresponding rectangle
object gi is generated. We next show the relationship between
the bursty region and the bursty point of the corresponding
SURGE and CSPOT problem.

Theorem 1: Let pm be a bursty point for the reduced CSPOT
problem given a snapshot. The rectangular region rm of size
a×b whose top-right corner is located at pm is a bursty region
for the original SURGE problem for the snapshot.

Note that the reduction is inspired by the idea of trans-
forming the max-enclosing rectangle problem to the rectangle
intersection problem [22]. The rectangle intersection problem
aims to find the most overlapped area given a set of rectangles.
Since our problem has a different burst score function, the
techniques designed for the rectangle intersection problem
cannot be utilized to search for the bursty point at a snapshot.

We address the SURGE problem by solving the correspond-
ing CSPOT problem. Observe that in the CSPOT problem, the
edges of the rectangle objects divide the space into many
disjoint regions. Consider the example in Figure 2. The shaded
area is one of the disjoint region which is the overlap of g1,
g2, and g3. All points in a disjoint area are covered by the
same set of rectangles. Thus they have the same burst score.
Next we present a theorem which justifies the reason behind
the reduction.

Theorem 2: Given a snapshot of the stream of rectangle
objects in the CSPOT problem, there are at most O(n2) disjoint
regions, where n is the number of rectangle objects in windows
Wc and Wp.[22].

Since all points in a disjoint region have the same burst
score, Theorem 2 tells us that we only need to consider O(n2)
disjoint regions, which addresses the first challenge of the
SURGE problem, i.e., locating the bursty region from infinite
possible locations.

Example 3: Consider a snapshot of the stream shown in
Figure 2. Assume that o1, o2 and o3 are three spatial objects in
the current window Wc in the SURGE problem, and oi.w = 1
for i ∈ [1, 3]. According to the reduction process, g1, g2 and g3
are three rectangle objects in the current window in the CSPOT
problem, and gi.w = 1 for i ∈ [1, 3]. Assume that |Wc| = 1.
The shaded area is the intersection of g1, g2 and g3. Thus,
any point p in the shade area has the maximum burst score,
i.e., S(p) = 3. The point p in the figure is a bursty point at
the given snapshot. The solid line rectangle, whose top-right
corner lies in p, is the bursty region as it encloses three spatial
objects and its burst score is 3. �

We next present an exact solution to address the CSPOT
problem efficiently. Specifically, given the stream of rectangle
objects, we use a grid to divide the space into cells, and
maintain the upper bounds of burst score for the points in each

Algorithm 1: SL-CSPOT Algorithm
Input: A set of rectangle objects G
Output: A bursty point p

1 p = null;
2 while sweep-line meets an horizontal edge of a rectangle g do
3 Ii, . . . , Ij ← the intervals covered by g;
4 for interval I ∈ {Ii, . . . , Ij} do
5 Update I.fc, I.fp and I.S;
6 if I.S > S(p) then
7 p← a point beneath I , and between the

sweep-line and next horizontal edge;
8 return p;

cell. Several optimization techniques are proposed to avoid
redundant recomputation. If the upper bound of any cell is
larger than the score of the current bursty point, we invoke
a sweep-line based algorithm to search the cell to update the
location of the bursty point.

In the rest of this section, we first introduce the sweep-
line based algorithm, which finds the bursty point given a
set of rectangle objects (Section IV-B). Then we present
the cell-based lazy update strategy, which determines whether
we should invoke the sweep-line algorithm to recompute the
bursty point (Section IV-C).

B. Detecting Bursty Point on a Snapshot

To address the first challenge, i.e., detecting the bursty point
given a snapshot of the stream, we propose a sweep-line based
algorithm called SL-CSPOT in this subsection.

The high level idea of the SL-CSPOT algorithm is as follows.
We use a horizontal line, referred to as the sweep-line, to
scan the space top-down. The sweep-line is divided into 2n+
1 intervals at most by the vertical edges of the n rectangle
objects. For instance, in Figure 3, the vertical edges of the three
rectangles divide the sweep-line into 7 intervals, {I0, . . . , I6}.
For each interval I , we use I.fc and I.fp to denote the score
w.r.t. the current and past windows, respectively for the points
on the interval I . We use I.S to denote the burst score of
such points. For any interval Ii, the set of rectangles which
can cover interval Ii changes when the sweep line meets the
top or bottom edge of a rectangle which can cover Ii, and
its burst score Ii.S is updated accordingly. A point with the
maximum burst score during the sweeping process is returned
as the bursty points.

We next illustrate the algorithm with an example. Figure 3
shows a snapshot of the stream. Rectangle g1 is in the past
window Wp (marked in blue), while g2 and g3 are in the
current window Wc (marked in red). As shown in Figure 3,
when the sweep-line meets the top edge of g3, any point, such
as p1, which is beneath the overlapped intervals I3, I4 and I5
and above the next horizontal line, will be covered by g3.
Since g3 is in the current window, the score of p1 w.r.t. Wc

will be increased by g3.w
|Wc| = 2, resulting in an increase of its

burst score. We set Ii.fc = 2 and Ii.fp = 0 for i ∈ [3, 5],
and thus Ii.S = 0.5 ·max(Ii.fc − Ii.fp, 0) + 0.5 · Ii.fc = 2
for i ∈ [3, 5]. We select p1 as the current bursty point. Then

g1

g2

g3

I0 I1 I2 I3 I4 I5 I6 g1.w = 3

g2.w = 1

g3.w = 2

|Wc|=|Wp|=1

p1
p2

p3

p4

g1.tc∈Wp

g2.tc∈Wc

g3.tc∈Wc

Fig. 3: Illustration of bursty point detection.

the sweep-line meets the top edge of g1 and g2, consecutively.
The two edges are processed similarly, and we have I4.S = 3.
Thus p3 is selected as the new bursty point. When the sweep-
line meets the bottom edge of the rectangle g3, any point, such
as p4, which is beneath the overlapped intervals and above the
next horizontal line, will no longer be covered by g3. Thus,
the scores w.r.t. Wc of the overlapped intervals I3, . . . , I5 are
decreased. We have Ii.fc = 1 for i ∈ [3, 4], and I5.fc = 0.
Their burst scores are updated as: I3.S = 1 − α, I4.S = 1
and I5.S = 0. We repeat this process until the whole space
is scanned. Point p3 has the maximum burst score during the
sweeping process. Thus p3 is returned as the bursty point.

Algorithm 1 outlines this procedure. It takes as input a set
of rectangle objects G, and outputs a bursty point p with the
maximum burst score in the space. Result point p is initialized
as null. The algorithm uses a sweep-line to scan the space
(lines 2–7). When it meets an horizontal edge of a rectangle
r, it first locates the intervals that are covered by r (line 3).
Then it updates I.S for each interval I one by one (line 5).
The point p is updated if any interval has a larger burst score
(lines 6–7).

Time Complexity. Let n be the number of rectangles in the
space. The sweep-line scans 2 · n edges (each rectangle has
two horizontal edges). In the worse case, when the sweep-line
meets an horizontal edge, 2 · n + 1 intervals are all affected.
As a result, the time complexity of Algorithm 1 is O(n2).

C. Handling the Stream

We have presented Algorithm SL-CSPOT to detect a bursty
point given a snapshot of the stream. But how to continuously
detect the bursty point? Recall that the burst score of a point
is determined by the set of rectangle objects that cover it.
The bursty point is likely to change when a rectangle object
enters or leaves the sliding windows. Specifically, any of the
following events may change the bursty point: (1) a new
rectangle object enters the current window, (2) an existing
rectangle object leaves the current window and enters the past
window, and (3) an existing rectangle object leaves the past
window. We refer to these three events as a new event, a
grown event, and an expired event, respectively. We use a tuple
e = 〈g, l〉 to denote an event, where g is the rectangle object,
and l is one status from {New,Grown,Expired} to indicate
the type of the event.

Intuitively, a naı̈ve idea is whenever an event happens, we
invoke Algorithm 1 to detect a bursty point on the snapshot
of the stream. However, this idea does not address the CSPOT

Algorithm 2: Cell-CSPOT Algorithm
Input: An event e = 〈g, l〉
Output: A bursty point

1 Cg ← cells that are overlapped with g;
2 for c ∈ Cg do
3 Update U(c) using Eqn 2, 3, and status of c.p using

Lemma 4;
4 c← argmaxU(c);
5 while c.p is invalid do
6 c.p← SL-CSPOT(c);
7 Ud(c) = S(c.p);
8 c← argmaxU(c);
9 return c.p

problem efficiently. First, it is not necessary to search the
whole space. When an event happens, it only affects the
burst score of the points inside the rectangle object of the
event. Second, frequent recomputation of the bursty point is
computationally expensive. To address the two issues, we next
present a cell-based algorithm called Cell-CSPOT.

1) Cell-based Lazy Update: An event only affects the burst
scores of the points inside the rectangle of the event. This
locality property motivates us to divide the space into cells,
and develop approaches to handle the cells that are affected
by an event. We first define the grid that we use as follows.

Definition 6: Grid and Cell. We consider a grid as a set
of vertical and horizontal lines defined by x = i · b, y = i · a
for all integers i ∈ [−∞,+∞]. For each cell c, we maintain a
list of rectangle objects which overlap with the cell over the
two sliding time windows Wc and Wp, denoted by c.G.

We have the following lemma based on obvious observa-
tions.

Lemma 1: A rectangle object of size a× b overlaps with at
most four cells of the grid in Definition 6.

For each cell in the grid, we maintain a burst score upper
bound for the points inside the cell (to be discussed in
Section IV-C2). When an event happens, the corresponding
rectangle can only affect at most four cells. Instead of search-
ing the affected cells immediately after an event happens, we
propose a lazy update strategy by utilizing the maintained
upper bound: Whenever an event happens, we first update
the upper bounds of the affected cells. Then, we invoke
Algorithm 1 to search the cells iteratively in the descending
order of their upper bounds. In each iteration, we always
search the cell with the maximum upper bound. We terminate
the process when there is no upper bound larger than the
current maximum burst score. Hence, when an event happens,
if the upper bounds of the affected cells are less than the
current maximum burst score, these cells will not be searched.
Thus the lazy update strategy significantly reduces the number
of times that Algorithm 1 is invoked to search affected cells.

In addition, to reuse the result of Algorithm 1 from previous
iterations, we record the point returned by Algorithm 1 for
each cell which is called candidate point. The status of each
candidate point is either valid or invalid. If the candidate point
of a cell is guaranteed to have the maximum burst score in

the cell, its status is valid. On the other hand, the status is set
to invalid if it is unknown whether the candidate point has the
maximum burst score. We do not need to invoke Algorithm 1
to search a cell if its candidate point is valid. By exploiting
the candidate points, we can further avoid searching in some
cells (discussed in SectionIV-C3).

Algorithm 2 presents an overview of our algorithm called
Cell-CSPOT (cell-based CSPOT). It takes as input an event e =
〈g, l〉, and reports a bursty point in the space. The algorithm
first locates the set Cg of cells that overlap with g (line 1).
Then for each cell c in Cg , it updates its upper bound based
on Equations 2, and 3 (to be introduced in Section IV-C2),
and determine the status of the candidate point c.p based on
Lemma 4 (to be introduced in Section IV-C3) (line 3). Then
it accesses the cells in descending order of their upper bounds
U(c) iteratively (lines 4–8). In each iteration, if the candidate
point c.p is invalid, we invoke Algorithm 1 to search the cell
and update c.p (line 6) and the upper bound (line 7). Otherwise
c.p is valid, and this indicates that c.p has the maximum burst
score in cell c and c has the maximum burst score as there is no
cell whose upper bound is larger than the current maximum
burst score. Therefore we terminate the process and report
point c.p as the result.

Time Complexity. According to Lemma 1, at most four cells
are affected by an event rectangle g. Thus, it takes O(1) time
to update the upper bounds and candidate points. A cell will
not be searched unless it is overlapped with a rectangle object.
Thus, O(1) cells are searched in processing a rectangle object.
In our implementation, we use a heap to maintain the cells
based on their upper bounds. Let |cmax| be the maximum
number of rectangle objects in a cell. Let n be the number of
rectangle objects created in Wc and Wp. It takes O(log n) time
to get the cell c and O(|cmax|2) time to search the cell. Putting
these together, the complexity of Algorithm 2 is O(|cmax|2 +
log n).
Space Complexity. Each rectangle object is stored in at most
four cells. Thus, the space cost of Algorithm 2 is O(n).

2) Upper Bound Estimation: Next, we present the details
about estimating the upper bound for a cell.

Static Upper Bound. We first consider a simple strategy to
estimate an upper bound for a cell. According to the definition
of the burst score, rectangle objects in the current window
have a positive impact on the burst score, while the rectangle
objects in the past window have a non-positive impact. Hence,
we can estimate an upper bound burst score for a cell by only
utilizing the objects in the current window. We refer to this
upper bound as static upper bound.

Definition 7: Static Upper Bound. For a cell c, its static
upper bound is computed as follows:

Us(c) =
∑

g∈c.G∧g.tc∈Wc

g.w

|Wc|
(2)

where c.G is a set of rectangle objects overlapped with c.
Next, we show the correctness of the static upper bound.

cell c

g1
g2

g3

p1

Fig. 4: Cell upper bound.

Lemma 2: For any point p in a cell c, we have S(p) ≤
Us(c).

Example 4: Consider the example shown in Figure 4. The
solid-line rectangle is a cell in the grid. After event e1 happens,
there are three new rectangle objects overlapped with the cell
c. The static upper bound of cell c is Us(c) = 3. �

Dynamic Upper Bound. Next, instead of just using objects in
the current window, we introduce another way to estimate the
upper bound by using both the event and information from the
previous computation. Specifically, when an event happens, we
dynamically update the upper bound computed from previous
upper bound. We refer to such upper bound as dynamic upper
bound.

Let pm be the point with the maximum burst score in cell
c at a snapshot i when event ei arrives. Apparently S(pm)
is an upper bound burst score for cell c at snapshot i. Thus,
whenever we search a cell c with Algorithm 1 on a snapshot i,
the dynamic upper bound U id(c) can be set as U id(c) = S(pm).

Let U id(c) be the upper bound of cell c on snapshot i when
event ei arrives, and U i+1

d (c) be the upper bound when ei+1

arrives. Let g be the corresponding rectangle object of ei+1,
i.e., ei+1 = 〈g, l〉. Then we have

U i+1
d (c) =

U id(c) + g.w

|Wc| ei+1.l is New,

U id(c) ei+1.l is Grown,
U id(c) + α g.w

|Wp| ei+1.l is Expired
(3)

We next show the correctness of the dynamic upper bound
with the following lemma.

Lemma 3: Consider a cell c. For any point p in c, we have
S(p) ≤ Ud(c) after e happens.

Example 5: Consider the example shown in Figure 4. We
first consider an event e1 = 〈g3, New〉, i.e., a new rectangle
object enters the current window. Assume before e1 happens,
we have searched the cell and the point p1 has the maximum
burst score in c. The dynamic upper bound is set as U0

d (c) = 1.
After e1 happens, we update the dynamic upper bound as
U1
d (c) = U0

d (c) + g3.w
|Wc| = 2. Then we consider an event

e2 = 〈g1, Grown〉, i.e., and existing rectangle object g1 exits
the current window and enters the past window. According

to Eqn 3, the dynamic upper bound remains the same, i.e.,
U2
d (c) = 2, since p2 remains to have the maximum burst score

in cell c. �

We have presented the static upper bound and the dynamic
upper bound. We now combine them for a tighter upper bound.

Definition 8: Upper bound for cell. For a cell c, we define
its upper bound U(c) as U(c) = min(Us(c), Ud(c)).

3) Candidate Point Maintenance: An expensive operation
of Algorithm 2 is to invoke Algorithm 1 to find a point with
the maximum burst score for a cell. To reuse the computation,
for each cell c, we maintain a candidate point, denoted by c.p,
to record the point returned by Algorithm 1. The candidate
point has two possible status as introduced in Section IV-C1.
We next present Lemma 4, which is employed to determine
the status of a candidate point.

Lemma 4: Let c.p be a point with the maximum burst score
in cell c currently. Consider an event e = 〈g, l〉. After e
happens, if either (1) e is either new or expired, g can cover
c.p, and f(c.p,Wc) − f(c.p,Wp) > 0, or (2) e is grown
object and g cannot cover c.p, then the point c.p still has
the maximum burst score.

We determine the status of a candidate point based on
Lemma 4. Consider a cell c and an event e which can affect
c. If c.p is valid and the conditions in Lemma 4 hold, then c.p
remains to be valid. Otherwise, c.p is invalid after e happens.

Example 6: Reconsider the example shown in Figure 4. We
consider the event e1 = 〈g3, New〉, where a new rectangle
g3 arrives. Before e1 happens, assume that we have invoked
Algorithm 1 to search the cell and p1 is the point with the
maximum burst score. When e1 happens, since e1 is new and
g3 cannot cover p1, p1 is invalid after e1 happens. In fact,
points in the shaded area have the maximum burst score after
e1 happens. �

V. APPROXIMATE SOLUTIONS

Although our exact solution can continuously detect the
bursty region efficiently in real time, we observe that its run-
time performance degrades when the number of spatial objects
created in time windows Wc and Wp increases significantly
(e.g., the sliding windows get larger, the region size gets larger,
or the arrival rate of the spatial objects increases). Since a
slight imprecision is acceptable in most cases in real life, to
tackle this challenge, we propose two algorithms to solve the
SURGE problem approximately. We prove that the burst score
of the region returned by our proposed approximate algorithms
is always bounded by a ratio 1−α

4 compared to the exact result.

A. A Grid-based Solution

The key idea behind our grid-based approximate solution
is as follows: We use a grid to divide the space into cells of
size a× b. Each cell is a candidate region. By maintaining the
burst score for each cell, we continuously report the cell with
the maximum burst score to users as an approximation to the
bursty region. A nice feature of this idea is that it is intuitive
while it has performance guarantees.

Algorithm 3: GAP-SURGE Algorithm
Input: An event e = 〈o, l〉
Output: A cell c

1 ci,j ← the cell o lies in;
2 if e is new then ci,j .fc+ = o.w

|Wc| ;
3 else if e is grown then ci,j .fc− = o.w

|Wc| , ci,j .fp+ = o.w
|Wp| ;

4 else ci,j .fp− = o.w
|Wc| ;

5 ci,j .S = max(ci,j .fc − ci,j .fp, 0) + ci.j .fc;
6 c← argmax c.S;
7 return c

Algorithm 3 outlines our proposed algorithm called GAP-
SURGE (Grid-based APproximate SURGE). Here we abuse the
notation e = 〈o, l〉 to denote an event of spatial object o enters
or leaves the sliding windows. It first locates the cell that the
spatial object o lies in (line 1). The burst score of the cell c is
updated accordingly (lines 2–5). The cell with the maximum
burst score is returned as an approximate result (line 6).

Before we show that the region returned by Algorithm 3
has a burst score with an approximation guarantee, we present
some interesting properties of the burst score function.

Lemma 5: For any two region r1 and r2, r1 ⊆ r2, we have
S(r2) ≥ (1− α)S(r1).

Lemma 6: Let r1, r2 be two non-overlapping regions. We
have S(r1) + S(r2) ≥ S(r1 ∪ r2).

Now we are ready to prove the approximate ratio of
Algorithm 3.

Theorem 3: Given a snapshot of the stream, let r be the
region returned by Algorithm 3, and ropt be the bursty region
returned by our exact solution. We have S(r) ≥ 1−α

4 S(ropt).
Lemma 7: The approximation ratio is tight.

Time Complexity. In Algorithm 3, it takes constant time to
locate the cell and update the burst score. In our implemen-
tation, we use a heap to maintain all cells according to their
burst scores. Let n be the number of spatial objects created in
Wc and Wp. Since there are O(n) non-empty cells, it takes
O(log n) time to report the cell with the maximum burst score.

B. A Multi-Grid-Based Solution

The burst score of the region returned by Algorithm 3 is
highly dependent on the position of the grid. In this subsection,
we adopt multiple grids to further improve the result quality.

In the grid-based solution, we use a grid defined by lines

Grid 1: x = i · b, y = i · a

for all integers i ∈ [−∞,+∞]. By shifting the grid, we
generate three additional grids for all integers i ∈ [−∞,+∞]:

Grid 2: x = 0.5b+ i · b, y = i · a,
Grid 3: x = b+ i · b, y = 0.5a+ i · a,
Grid 4: x = 0.5b+ i · b, y = 0.5a+ i · a,

The multi-grid-based solution (called the MGAP-SURGE
algorithm) invokes Algorithm 3 four times by using the four
different grids. Among the four returned regions, the one with
the maximum burst score is returned to users. The pseudocode

of the MGAP-SURGE algorithm is reported in Algorithm 5 in
Appendix I.

Theorem 4: The approximate ratio of the MGAP-SURGE
algorithm is 1−α

4 .
Time Complexity. MGAP-SURGE invokes Algorithm 3 four
times, and its complexity is O(log n), where n is the number
of spatial objects created in Wc and Wp.

VI. TOP-K BURSTY REGION DETECTION

Recall that in Example 1, it is paramount to monitor regions
with outbreak of diseases. Intuitively, monitoring only the most
bursty region is not sufficient. In fact, it is reasonable to be
interested in a small list of such bursty regions. Specifically,
given the size of a region, we need to continuously monitor
the top-k regions of the given size with highest burst scores.
In this section, we present how we can elegantly extend our
proposed solutions to continuously detect top-k regions with
highest burst scores. We begin by formally defining the top-k
bursty regions.

A. Definition

Although at first glance it may seem that it is easy to define
top-k bursty regions, in reality it is tricky. First of all, are the
top-k regions allowed to overlap? It may seem that detecting
k non-overlapping regions is a good choice. However, the
non-overlapping requirement may lead us to overlooking some
highly bursty regions. Hence, it is beneficial to allow the top-k
bursty regions to be overlapping instead of disjoint in nature.

Next, how do we define the burst scores for two overlapped
regions? For example, if a spatial object lies at the intersection
of two overlapping regions, which region’s burst score should
it contribute to? A naı̈ve idea is to consider it in both regions.
However, this may result in k regions that are highly similar
to one another. To resolve this issue, we ensure that a spatial
object contributes only to the burst score of at most one region.

The aforementioned considerations lead us to a greedy
strategy for defining the top-k bursty regions. Specifically,
given the first i bursty regions, the (i+1)-th bursty region is the
region with maximum burst score in the space but excluding
all spatial objects that are already covered by the first i bursty
regions.

Definition 9: Top-k Bursty Regions. Given k rectangular
regions r1, . . . , rk such that each has a size of a× b, we say
r1, . . . , rk are the top-k bursty regions if and only if for any
region r of size a×b, we have S(ri\r[1,i−1]) ≥ S(r\r[1,i−1])
for i ∈ [1, k], where r[1,i−1] is union of regions r1, . . . , ri−1.

In order to address the top-k bursty regions problem, we
reduce the top-k bursty regions problem to k CSPOT problems
following the reduction in Section IV-A. The (i+1)-th CSPOT
problem aims to detect the (i + 1)-th bursty point from the
space that excludes the set of rectangles that cover the top-i
bursty points.

Observe that Definition 9 essentially paves the way to a
greedy approach for selecting top-k bursty regions. Whenever
an event happens, we can first detect a region with the
maximum burst score by invoking Algorithm 1. Then we

remove the spatial objects covered by the region. After that,
we detect a region with the maximum burst score over the
remaining objects. We repeat this process until k regions are
selected.

However, the naı̈ve strategy is inefficient as there are too
many redundant computations, i.e., it is possible that we search
a cell in all the k reduced CSPOT problems. To address the
k CSPOT problems efficiently, we want to share the common
computations among the k CSPOT problems.

B. Extension of the Exact Solution

In the extension of our exact solution, for each cell c, we
maintain k upper bounds and k candidate points in order
to solve the k CSPOT problems by following the idea of
Algorithm 2. For each CSPOT problem, we adopt the lazy
update strategy to access the cells in descending order of their
upper bounds. If the candidate point of the top cell is not valid,
we search the cell by invoking Algorithm 1.

We develop two ideas of sharing computation among the
k CSPOT problems. Firstly, if a rectangle object can cover
the i-th bursty point, it will not be considered in the CSPOT
problems with order higher than i. For the extension, we
maintain a level, denoted by g.lvl, for each rectangle object
g. To select the i-th bursty point in response to a new event,
we consider the set of rectangles G[i : k] whose levels are no
smaller than i, i.e., G[i : k] = {g|g.lvl ≥ i}. When the i-th
bursty point is selected, the levels of all the rectangles that
cover the i-th bursty point are set as i, and these rectangles
will not be considered by the CSPOT problems with a higher
order than i. Meanwhile, if a rectangle covers the old i-th
bursty point, but not the new i-th point, its level is reset to k
so that it will be considered in all the k CSPOT problems.

Secondly, if no rectangle in a cell covers any of the k
detected bursty points, all the rectangles in the cell will be
considered in all k CSPOT problems. Thus, the upper bounds
and the candidate points w.r.t. the k CSPOT problems for
the cell are the same. That is, once the upper bound and
the candidate point for the cell are computed for one CSPOT
problem, we do not need to recompute them again for other
CSPOT problems.

Algorithm 4 presents the detail of our extension. It takes as
input an event e = 〈g, l〉, and output the top-k bursty points,
denoted by p[1 : k]. It uses V to denote the set of objects
that need to be handled subsequently, and is initialized as {g}
(line 1). It then solves the k CSPOT problem iteratively (lines
2–17). In each CSPOT problem, it first locates the set of cells
affected by the objects in V (line 4). For each cell c ∈ C, the
upper bound U(c)[j] and candidate point c.p[j] w.r.t. the j-th
CSPOT problem are updated for j ∈ [i, k] (lines 5–6). Then it
accesses the cells in descending order of their upper bounds
w.r.t. the i-th CSPOT problem (lines 8–14). The upper bound
and candidate point are updated as in Algorithm 2 (lines 9–10).
If no rectangle in cell c covers any of the k detected bursty
points, its k upper bounds and candidate points are set to the
same (lines 11-12). When a new bursty point is found, we reset

Algorithm 4: CCS-KSURGE Algorithm
Input: An event e = 〈g, l〉
Output: A bursty point

1 g.lvl = k, V = {g};
2 for i ∈ [1, k] do
3 pold = p[i];
4 C ← cells that are overlapped with V ;
5 for c ∈ C do
6 Update U(c)[j] and c.p[j] for j ∈ [i, k];
7 c← argmaxU(c)[i];
8 while c.p[i] is invalid do
9 c.p[i]← SL-CSPOT(c) over G[i :];

10 Ud(c)[i] = S(c.p[i]) over G[i :];
11 if no rectangle in c covers any of p[1 : k] then
12 c.p[1 : k] = c.p[i], Ud(c)[1 : k] = Ud(c)[i];
13 c← argmaxU(c)[i];
14 p[i]← c.p;
15 Mark o.lvl = k for any o ∈ G(pold)[i] \G(p[i])[i : k];
16 Mark o.lvl = i for any o ∈ G(p[i])[i : k];
17 V ← G(p[i])[i : k] ∪G(pold)[i];
18 return p[1 : k]

the levels for the affected objects as discussed earlier (lines 15–
16): The rectangles that cover the old bursty point pold but not
the new bursty point p[i] are newly visible to all the k CSPOT
problems, while the rectangles that cover the new bursty point
p[i] are newly invisible to the CSPOT problems with a higher
order than i. The two types of rectangle objects comprise V ,
which will be processed in the next CSPOT problem (line 17).
After k iterations, it returns the top-k bursty points p[1 : k] as
the result.

Time Complexity. A cell is searched if its upper bound is
either changed by an event or by a detected bursty point. Thus,
the algorithm searches O(1 + k) = O(k) cells on average
when processing a rectangle. The complexity of Algorithm 4
is O(|cmax|2 · k), where |cmax| is the maximum number of
objects that we search in a cell.

C. Extension of the Approximate Solutions

We also extend our approximate solutions in Section V to
find k regions with relatively high burst score.

Extending the GAP-SURGE Algorithm. Consider the grid-
based solution. We use a heap to maintain all cells with their
burst scores. Thus, we can simply return top-k cells with high-
est burst scores. In our implementation, we use a heap to main-
tain the cells. Thus, its complexity is O(log n).(Algorithm 6
in Appendix 5).

Extending the MGAP-SURGE Algorithm. We extend the
multi-grid-based solution similarly. Note that one cell in a grid
may overlap with at most four cells in another grid. Thus, for
each grid, we maintain the top-4k cells. Then we merge the
16 ·k cells and return the top-k non-overlapping cells. Its time
complexity is O(log n+ k).(Algorithm 7 in Appendix 5).

VII. EXPERIMENTAL STUDY

We investigate the performance of our proposed techniques.
All algorithms are implemented in C++ complied with GCC

TABLE I: Datasets.
Datasets UK US Taxi

of Spatial Objects 1,000,000 1,000,000 1,000,000
Arrival Rate(per hour) 5,747 16,802 18,145

Range of Latitude 139.0 150.9 100.1 150.4 41.6 42.2
Range of Longitude 171.1 181.9 40.2 118.8 12.0 12.9

4.8.2. The experiments are conducted on a machine with a
2.70GHz CPU and 64GB of memory running Ubuntu.

A. Experimental Setup

Datasets. We conduct experiments on three public real-life
datasets as reported in Table I. UK consists of 1,000,000 geo-
tagged tweets posted in UK. US consists of 1,000,000 geo-
tagged tweets posted in US and has a higher arrival rate. Taxi4

consists of mobility traces of taxi cabs obtained from the GPS
in Roma, Italy. It contains 1,000,000 records over 5 days. For
each dataset, the weight of each spatial object is randomly
chosen from from [1, 100] with a uniform distribution.

Algorithms. We evaluate the performances of the three
proposed algorithms, namely the exact method Cell-CSPOT
(denoted by CCS), the grid-based approximation algorithm
GAP-SURGE (denoted by GAPS), and the multi-grid-based
technique MGAP-SURGE (denoted by MGAPS). We denote
the top-k extensions of these algorithms as kCCS, kGAPS,
and kMGAPS, respectively. To evaluate the usefulness of our
proposed method of upper bound estimation, we compare
CCS with an approach that only utilizes the static upper
bound, denoted by B-CCS , and a baseline approach that
does not use any upper bound estimation technique, denoted
by Base. To the best of our knowledge, there is no existing
technique that address the SURGE problem. Hence we are
confined to compare our proposed algorithms with aG2 [2],
which is designed for continuously monitoring the MaxRS
problem. In our experiments, we use a modified version of
aG2. With a slight abuse of notation, we still use aG2 to
denote the modified aG2. The details of the Base and aG2
are reported in Appendix J.

Parameters. By default, we set the size of the past window
Wp and the current window Wc as 1 hour for US and UK,
and 5 minutes for Taxi. We set the size of the query rectangle
as 1/1000 of the range of each dataset by default, denoted by
q. We set the preferred area A as the whole space. For the
aG2 algorithm, we set the size of a cell to 10q.

Stream Workload. We start the simulation when the system
becomes stable, i.e., there exists an expired object from the
past sliding window. We continuously run each algorithm for
1,000,000 new arriving spatial objects over the two sliding
windows. The average processing time per object is reported.

B. Evaluation of the Exact Solution

We first evaluate the runtime performance of CCS, B-CCS
and Base on each dataset. Then we study the usefulness of
the upper bound in CCS.

4crawdad.org/roma/taxi/20140717

1

10

10
2

10
3

10
4

1 5 10 20 30

T
im

e
pe

r
O

bj
ec

t
(1

0-6
 s

ec
on

ds
)

Length of windows(minutes)

CCS
B-CCS

Base
aG2

(a) Taxi

1

10

10
2

10
3

10
4

0.5 1 2 5 12

T
im

e
pe

r
O

bj
ec

t
(1

0-6
 s

ec
on

ds
)

Length of windows (hours)

CCS
B-CCS

Base
aG2

(b) UK

10
2

10
4

10
6

0.5 1 2 5 12

T
im

e
pe

r
O

bj
ec

t
(1

0-6
 s

ec
on

ds
)

Length of windows(hours)

CCS
B-CCS

Base
aG2

(c) US

1

10

10
2

10
3

0.5q q 2q 3q

T
im

e
pe

r
O

bj
ec

t
(1

0-6
 s

ec
on

ds
)

Size of query rectangle

CCS
B-CCS

Base
aG2

(d) Taxi

1

10

10
2

10
3

10
4

0.5q q 2q 3q

T
im

e
pe

r
O

bj
ec

t
(1

0-6
 s

ec
on

ds
)

Size of query rectangle

CCS
B-CCS

Base
aG2

(e) UK

10
2

10
4

10
6

0.5q q 2q 3q

T
im

e
pe

r
O

bj
ec

t
(1

0-6
 s

ec
on

ds
)

Size of query rectangle

CCS
B-CCS

Base
aG2

(f) US
Fig. 5: Runtime of CCS, B-CCS, Base and aG2.

Runtime Performance. The aim of the first set of experiments
is to evaluate the efficiency of our exact solution w.r.t. the
sliding window size and the query rectangle size. For US and
UK, we vary the sliding window with the following sizes: 30
minutes, 1 hour, 2 hours, 5 hours, and 12 hours. For Taxi, we
use the following five sizes for sliding windows: 1 minute, 5
minutes, 10 minutes, 20 minutes, and 30 minutes. We use the
following four sizes for the query rectangle: 0.5q, q, 2q, and
3q.

Figures 5(a)–(c) report the average runtime of the three
methods for processing one spatial object as we vary the size
of sliding windows. Note that the y-axis is in logarithmic scale.
We find that CCS runs efficiently and outperforms aG2. For
example, for Taxi, it takes about 3× 10−4 seconds to process
an object when the current and past windows are both set to 30
minutes, while aG2 takes 7× 10−3 seconds. In addition, we
find that aG2 run out of the 64 GB memory on US when the
current window and past window are both set as 12 hours, as
there are too many spatial objects in the two sliding windows.

Moreover, we observe that the processing time per object
of all algorithms increases as the size of window increases.
This is due to the need to consider a larger number of spatial
objects when we search for the bursty region with the increase
in size of the sliding window. Consequently, the runtime per
object increases.

Figures 5(d)–(f) report the average runtime for processing
one spatial object as we vary the size of the query rectangle.
Similarly, the average runtime increases as size of the rectangle
increases.

Usefulness of Upper Bound. Next, we evaluate the usefulness
of the method for upper bound estimation in CCS. In this
set of experiments, we process 1,000,000 new objects and

crawdad.org/roma/taxi/20140717

TABLE II: Ratio of rectangle messages that trigger a search
vs. window size for CCS and B-CCS.

Taxi
Window (mins) 1 5 10 20 30

CCS 4.85% 3.20% 2.56% 2.13% 1.95%
B-CCS 92.63% 78.30% 70.00% 62.07% 57.90%

UK
Window (hours) 0.5 1 2 5 12

CCS 0.34% 0.27% 0.23% 0.37% 0.48%
B-CCS 37.79% 28.23% 22.76% 21.64% 14.57%

US
Window (hours) 0.5 1 2 5 12

CCS 0.60% 0.68% 0.70% 0.52% 0.60%
B-CCS 64.21% 52.29% 35.13% 9.0% 20.90%

0.1

0.6

1.1

1 5 10 20 30

T
im

e
pe

r
O

bj
ec

t (
10

-6
 s

ec
on

ds
)

Length of windows (minutes)

GAPS
MGAPS

(a) Taxi

0.1

0.6

1.1

0.5 1 2 5 12

T
im

e
pe

r
O

bj
ec

t
(1

0-6
 s

ec
on

ds
)

Length of windows (hours)

GAPS
MGAPS

(b) UK

0.1

0.6

1.1

0.5 1 2 5 12

T
im

e
pe

r
O

bj
ec

t
(1

0-6
 s

ec
on

ds
)

Length of windows (hours)

GAPS
MGAPS

(c) US

0.1

0.6

1.1

1.6

0.5q q 2q 3q

T
im

e
pe

r
O

bj
ec

t
(1

0-6
 s

ec
on

ds
)

Size of query rectangle

GAPS
MGAPS

(d) Taxi

0.1

0.6

1.1

1.6

0.5q q 2q 3q

T
im

e
pe

r
O

bj
ec

t
(1

0-6
 s

ec
on

ds
)

Size of query rectangle

GAPS
MGAPS

(e) UK

0.1

0.6

1.1

0.5q q 2q 3q

T
im

e
pe

r
O

bj
ec

t
(1

0-6
 s

ec
on

ds
)

Size of query rectangle

GAPS
MGAPS

(f) US
Fig. 6: Runtime performance of GAPS and MGAPS.

report how many rectangles trigger a search. The results are
reported in Table II. Clearly, only a small portion of rectangle
messages (2%-5% for Taxi, and less than 1% for US and
UK) trigger a search in CCS compared with B-CCS. This is
because CCS can estimate a much tighter upper bound for
cells. Thus, many cells are eliminated from further checking.
This also explains why CCS is much more efficient than B-
CCS. As shown in Figure 5, we observe that CCS is more
efficient than the other two methods. The runtime of CCS
is more than one order of magnitude faster than B-CCS and
Base, respectively. Moreover, we observe that B-CCS is only
marginally better than BASE, which indicate that only using
the static upper bound cannot effectively avoid unnecessary
recomputation. This is because the static upper bound is too
loose, especially when the weights of the objects are randomly
chosen from 1 to 100.

C. Evaluation of the Approximate Solutions

The detailed results on approximation ratios are reported in
Appendix K. A short summary of the results is that the burst
score of the region detected by GAPS (resp. MGAPS) is about
73% – 92% (resp. 85% – 94%) of that of the optimal region.
We next report the runtime of the approximate solutions.

10
2

10
3

10
4

0.1 0.3 0.5 0.7 0.9

T
im

e
pe

r
O

bj
ec

t (
10

-6
 s

ec
on

ds
)

Balance Parameter α

CCS
aG2

(a) Exact Solutions

0.2

0.5

0.8

0.1 0.3 0.5 0.7 0.9

T
im

e
pe

r
O

bj
ec

t
(1

0-6
 s

ec
on

ds
)

Balance Parameter α

GAPS
MGAPS

(b) Approximate Solutions

Fig. 7: Runtime performance w.r.t. α on US.

TABLE III: Approximate ratio vs. α.

US
α 0.1 0.3 0.5 0.7 0.9

GAPS 82.57% 81.76% 80.67% 77.23% 78.58%
MGAPS 90.50% 89.44%b 88.07% 87.80% 86.67%

Runtime Performance. We evaluate the efficiency of our
approximate solutions w.r.t. the sliding window size and the
query rectangle size under the same setting as for the exact
solution. Figures 6 (a)–(c) report the average runtime for
processing one spatial object using GAPS and MGAPS as we
vary the sliding window. Figures 6 (d)–(f) report the average
runtime for processing one spatial object as we vary the size
of the query rectangle. We find that the runtime of MGAPS
is about 2-5 times of GAPS, which is expected as MGAPS
invokes GAPS four times. Moreover, GAPS and MGAPS are
about three orders of magnitude faster than CCS by comparing
Figure 5 and Figure 6.

D. Effect of α

In the definition of burst score, we use a parameter α to
balance the significance and the burstiness. In this set of
experiments, we evaluate the impact of the parameter α on the
efficiency and approximation ratio of our proposed algorithms
on the US dataset. We use 1 hour for the sliding windows and
q for the size of the query rectangle.

Impact on Runtime Performance. We evaluate the efficiency
of our exact and approximate solutions w.r.t. the balance pa-
rameter α. Figure 7 reports the average runtime for processing
one spatial object as we vary α from 0.1 to 0.9. We observe
that the efficiency is hardly affected by the parameter α for
both our exact solution and approximate solutions.

Impact on Approximation Ratio. In this set of experiments,
we evaluate the approximate ratio of the burst scores of regions
detected by GAPS and MGAPS by varying α. The results are
reported in Table III. We find that the approximate ratios of the
two algorithms decrease as α increases. This is because their
theoretical approximate ratio 1−α

4 decreases as α increases.

E. Scalability

We now investigate the scalability of our proposed tech-
niques by varying the arrival rate of the spatial objects.
Specifically, we use 1 hour for both the current window and
past window, and q for the size of the query rectangle on all
three datasets. We stretch the stream to change its arrival rate
from 2 million per day to 10 million per day. For example, in
UK, 1 million spatial objects arrived in 174 hours. Hence, we
shrink the arrival time of each object to make all objects arrive

10
2

10
3

10
4

10
5

2 4 6 8 10

R
un

ti
m

e
fo

r
pr

oc
es

si
ng

 (
se

co
nd

s)

Arrival Rate (million per day)

UK
US

Taxi

(a) CCS

0.1

0.2

0.3

2 4 6 8 10

R
un

ti
m

e
fo

r
pr

oc
es

si
ng

 (
se

co
nd

s)

Arrival Rate (million per day)

Taxi
US
UK

(b) GAPS
Fig. 8: Scalability study.

10
-1

10

10
3

10
5

5 10 20 30 60

T
im

e
pe

r
O

bj
ec

t
(1

0-6
 s

ec
on

ds
)

Length of Sliding Window (Minute)

kGAPS
kMGAPS

kCCS

(a) Taxi

10
-1

10

10
3

10
5

0.5 1 2 12 24

T
im

e
pe

r
O

bj
ec

t
(1

0-6
 s

ec
on

ds
)

Length of Sliding Window (Hours)

kGAPS
kMGAPS

kCCS

(b) UK

10
-1

10

10
3

10
5

0.5 1 2 12 24

T
im

e
pe

r
O

bj
ec

t
(1

0-6
 s

ec
on

ds
)

Length of Sliding Window (Hours)

kGAPS
kMGAPS

kCCS
Naive

(c) US

10

40

70

100

3 5 7 9

T
im

e
pe

r
O

bj
ec

t
(1

0-3
se

co
nd

s)

k

UK
Taxi

US

(d) kCCS

0.4

0.5

0.6

3 5 7 9

T
im

e
pe

r
O

bj
ec

t
(1

0-6
se

co
nd

s)

k

US
Taxi
UK

(e) kGAPS

10

20

30

40

3 5 7 9

T
im

e
pe

r
O

bj
ec

t
(1

0-6
se

co
nd

s)

k

US
UK

Taxi

(f) kMGAPS
Fig. 9: Top-k bursty regions detection.

in 24 hours. Then the arrival rate of the stream is 1 millions
per day. We only report the average time for processing the
objects arrived in one hour (denoted by th) of CCS and GAPS
in Figure 8. Formally, th = runtime

|O|time
, where runtime is the

runtime of the algorithm, and |O|time is the total timespan of
the stream.

We observe that it takes several hours for CCS to process
the objects arrived in an hour for the Taxi dataset, which means
that it does not scale well and cannot handle streams with high
arriving rate. On the other hand, our approximate solutions,
GAPS and MGAPS, scale well with the increase in arrival
rate. They can process the objects arrived in an hour within
seconds.

F. Finding Top-k Bursty Regions

We next evaluate the performance of the extensions of
our three algorithms for continuously detecting top-k bursty
regions. We study the effect of k and the size of sliding
windows.

Runtime Performance. This set of experiments aims to
evaluate the efficiency of these algorithms w.r.t. the sliding
window size. We adopt the same setting as in Section VII-B.
Figures 9(a)–(c) report the average runtime per object of
kCCS, kGAPS, and kMGAPS for different sliding windows.

We observe that as the sliding window gets larger, kCCS
does not scale well and cannot process the top-k queries
efficiently. Meanwhile, kGAPS and kMGAPS can find top-k
bursty regions efficiently.

We also compare the naı̈ve solution for finding top-k
bursty regions with these algorithms. Recall from Section VI,
in the naı̈ve solution, we detect the top-k bursty regions
for each newly-arrived object. Clearly, the naı̈ve solution is
prohibitively expensive. Hence, we only run it with a small
sliding window on US, and its runtime per object is about
100X more than kCCS.

Effect of k. Next, we study how the value of k affect
the runtime performance of the three extensions. We use
the following 4 values for k: 3, 5, 7 and 9. The runtime
performance is depicted in Figures 9(d)–(f). We observe the
runtime per object of kCCS increases as k increases. This is
because we divide the top-k bursty region detection problem
into k instances of bursty region detection problems. Each
bursty region detection problem takes O(n2c) time to find a
bursty region, where nc is the number of spatial objects in the
cells that we actually searched. In addition, we also observe
that kGAPS and kMGAPS are less affected by k.

G. Case Study

In order to give a better view of our problem, we conduct
a case study on the region monitored by our cell-CSPOT
algorithm. Due to the space constraints, the detailed results
are reported in Appendix L.

VIII. CONCLUSIONS

The work reported in this paper is motivated by new
opportunities brought by the massive volumes of streaming
geo-tagged data (i.e., spatial objects) generated by location-
enabled mobile devices. Specifically, we have studied a new
problem called the SURGE problem to continuously detect
the bursty region in a given area in real time. The SURGE
problem is important as it can underpin various applications
such as disease outbreak detection. We have proposed an exact
solution and two approximate solutions for SURGE. We have
also extended these solutions to find top-k bursty regions.
Finally, our experiment study with real-world datasets has
demonstrated the efficiency of our framework. As part of
future work, we intend to explore the SURGE problem in the
context of road network.

REFERENCES

[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework
for clustering evolving data streams. In Proceedings of the VLDB
Endowment, pages 81–92. VLDB Endowment, 2003.

[2] D. Amagata and T. Hara. Monitoring maxrs in spatial data streams. In
EDBT, pages 317–328, 2016.

[3] A. Bulut and A. K. Singh. A unified framework for monitoring data
streams in real time. In International Conference on Data Engineering,
pages 44–55. IEEE, 2005.

[4] X. Cao, G. Cong, C. S. Jensen, and M. L. Yiu. Retrieving regions
of interest for user exploration. Proceedings of the VLDB Endowment,
7(9):733–744, 2014.

[5] L. Chen, G. Cong, and X. Cao. An efficient query indexing mechanism
for filtering geo-textual data. In Proceedings of the SIGMOD, pages
749–760. ACM, 2013.

[6] L. Chen, G. Cong, X. Cao, and K.-L. Tan. Temporal spatial-keyword top-
k publish/subscribe. In International Conference on Data Engineering,
pages 255–266. IEEE, 2015.

[7] D.-W. Choi, C.-W. Chung, and Y. Tao. A scalable algorithm for
maximizing range sum in spatial databases. Proceedings of the VLDB
Endowment, 5(11):1088–1099, 2012.

[8] G. Cormode and S. Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms,
55(1):58–75, 2005.

[9] A. Das, J. Gehrke, and M. Riedewald. Approximate join processing
over data streams. In Proceedings of the SIGMOD. ACM, 2003.

[10] K. Feng, G. Cong, S. S. Bhowmick, W.-C. Peng, and C. Miao.
Towards best region search for data exploration. In Proceedings of the
International Conference on Management of Data, pages 1055–1070.
ACM, 2016.

[11] G. P. C. Fung, J. X. Yu, P. S. Yu, and H. Lu. Parameter free bursty events
detection in text streams. In Proceedings of the VLDB Endowment, pages
181–192. VLDB Endowment, 2005.

[12] H. Hu, Y. Liu, G. Li, J. Feng, and K.-L. Tan. A location-aware pub-
lish/subscribe framework for parameterized spatio-textual subscriptions.
In International Conference on Data Engineering, pages 711–722. IEEE,
2015.

[13] M. M.-u. Hussain, G. Trajcevski, K. A. Islam, and M. E. Ali. Towards
efficient maintenance of continuous maxrs query for trajectories. In
EDBT, 2017.

[14] C. S. Jensen, D. Lin, B. C. Ooi, and R. Zhang. Effective density queries
on continuouslymoving objects. In International Conference on Data
Engineering, pages 71–71. IEEE, 2006.

[15] J. Kleinberg. Bursty and hierarchical structure in streams. Data Mining
and Knowledge Discovery, 7(4):373–397, 2003.

[16] Y. Kou, C.-T. Lu, and D. Chen. Spatial weighted outlier detection. In
Proceedings of the 2006 SIAM international conference on data mining,
pages 614–618. SIAM, 2006.

[17] T. Lappas, M. R. Vieira, D. Gunopulos, and V. J. Tsotras. On
the spatiotemporal burstiness of terms. Proceedings of the VLDB
Endowment, 5(9):836–847, 2012.

[18] G. Li, Y. Wang, T. Wang, and J. Feng. Location-aware publish/subscribe.
In Proceedings of the SIGKDD. ACM, 2013.

[19] J. Liu, G. Yu, and H. Sun. Subject-oriented top-k hot region queries in
spatial dataset. In Proceedings of the Conference on Information and
Knowledge Management, pages 2409–2412, 2011.

[20] C.-T. Lu, D. Chen, and Y. Kou. Algorithms for spatial outlier detection.
In International Conference on Data Mining, pages 597–600. IEEE,
2003.

[21] M. Mathioudakis, N. Bansal, and N. Koudas. Identifying, attributing
and describing spatial bursts. Proceedings of the VLDB Endowment,
3(1-2):1091–1102, 2010.

[22] S. C. Nandy and B. B. Bhattacharya. A unified algorithm for find-
ing maximum and minimum object enclosing rectangles and cuboids.
Computers & Mathematics with Applications, 29(8):45–61, 1995.

[23] J. Ni and C. V. Ravishankar. Pointwise-dense region queries in spatio-
temporal databases. In International Conference on Data Engineering,
pages 1066–1075. IEEE, 2007.

[24] L. O’callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani.
Streaming-data algorithms for high-quality clustering. In International
Conference on Data Engineering, 2002.

[25] Y. Tao, X. Hu, D.-W. Choi, and C.-W. Chung. Approximate maxrs in
spatial databases. Proceedings of the VLDB Endowment, 6(13):1546–
1557, 2013.

[26] X. Wang, C. Zhai, X. Hu, and R. Sproat. Mining correlated bursty topic
patterns from coordinated text streams. In Proceedings of the 13th ACM
SIGKDD, pages 784–793. ACM, 2007.

[27] X. Wang, Y. Zhang, W. Zhang, X. Lin, and Z. Huang. Skype: top-k
spatial-keyword publish/subscribe over sliding window. Proceedings of
the VLDB Endowment, 9(7):588–599, 2016.

[28] X. Wang, Y. Zhang, W. Zhang, X. Lin, and W. Wang. Selectivity
estimation on streaming spatio-textual data using local correlations.
Proceedings of the VLDB Endowment, 8(2):101–112, 2014.

[29] X. Wang, Y. Zhang, W. Zhang, X. Lin, and W. Wang. Ap-tree: Efficiently
support continuous spatial-keyword queries over stream. In 2015 IEEE
31st International Conference on Data Engineering, pages 1107–1118.
IEEE, 2015.

[30] C. Zhang, G. Zhou, Q. Yuan, H. Zhuang, Y. Zheng, L. M. Kaplan,
S. Wang, and J. Han. Geoburst: Real-time local event detection in geo-
tagged tweet streams. In Proceedings of the International conference
on Research and Development in Information Retrieval, pages 513–522,
2016.

[31] J. Zhao, C.-T. Lu, and Y. Kou. Detecting region outliers in meteorolog-
ical data. In Proceedings of the 11th ACM international symposium on
Advances in geographic information systems, pages 49–55. ACM, 2003.

[32] Y. Zhu and D. Shasha. Efficient elastic burst detection in data streams.
In Proceedings of the ninth ACM SIGKDD. ACM, 2003.

APPENDIX

A. Proof for Theorem 1

Proof: Let p be any point in the CSPOT problem, and r
be the rectangular region of size a× b whose top-right corner
is located at p. A spatial object o is in r iff the corresponding
rectangle object g can cover p. Since the corresponding o and
g have the same creation time and weight, we can derive that
f(r,Wc) = f(p,Wc), f(r,Wp) = f(p,Wp), and thus r and
p have the same burst score. As a result, if the point pm has
the maximum burst score in the CSPOT problem, then rm also
has the maximum burst score in the SURGE problem.

B. Proof for Lemma 2

Proof: We have

S(p) = αmax(f(p,Wc)− f(p,Wp), 0) + (1− α)f(p,Wc)

≤ αf(p,Wc) + (1− α)f(p,Wc) = f(p,Wc) = Us(c)

C. Proof for Lemma 3

Proof: Let ∆S(p), ∆f(p,W) be the increase of S(p)
and f(p,W) after e happens, respectively. We discuss the
following three cases.
Case 1: e is new. For any point p that is covered by g, its
current score is increased by ∆f(p,Wc) = g.w

|Wc| . We have
∆S(p) ≤ ∆f(p,Wc) = g.w

|Wc| .
Case 2: e is grown. For any point p that is covered by g, its
current score is decreased, i.e., ∆f(p,Wc) = − g.w

|Wc| , and its
past score is increased, i.e., ∆f(p,Wp) = g.w

|Wp| . Thus, we can
easily get ∆S(p) ≤ 0.
Case 3: e is expired. For any point p covered by g,
its current score is not affected, and its past score is de-
creased, i.e., ∆f(p,Wp) = − g.w

|Wp| . Thus, we have ∆S(p) ≤
α(−∆f(p,Wp)) = α g.w

|Wp| .
Since ∆S(p) ≤ ∆Ud(c), we still have S(p) ≤ Ud(c).

Fig. 10: Proof for Theorem 3 Fig. 11: A tight example.

D. Proof for Lemma 4

Proof: We use ∆ to denote the increase of the score. We
consider the following three cases.
Case 1: e.l is new. We have ∆S(c.p) = g.w

|Wc| if and only
if g can cover c.p and f(c.p,Wc) − f(c.p,Wp) > 0. In this
case, c.p still has the maximum burst score as ∆S(p) ≤ g.w

|Wc|
for any p in g (Lemma 3). Otherwise, it is possible that there
exists a point p′ in g with a larger increase such that p′ has a
larger burst score than c.p after g arrives.
Case 2: e.l is grown. For any point p in g, the increase
∆S(p) < 0. If g does not cover c.p, c.p’s burst score does not
change and it still has the maximum burst score. Otherwise,
c.p’s burst score is decreased and could be exceeded by a point
outside g.
Case 3:e.l is expired. As shown in the proof for Lemma 3,
∆S(p) ≤ α g.w

|Wc| for any p in g. We have ∆S(c.p) = α g.w
|Wc| if

and only if g can cover c.p and f(c.p,Wc)− f(c.p,Wp) > 0.
In this case, c.p still has the maximum burst score. Otherwise,
similar to Case 1, it is possible that there exists a point p′ in
g with a larger increase of burst score.

Putting these together, the lemma is proved.

E. Proof for Lemma 5

Proof: According to the definition of the burst score, we
have

S(r2) = αmax(f(r2,Wc)− f(r2,Wp), 0) + (1− α)f(r2,Wc)

≥(1− α)f(r2,Wc) ≥ (1− α)f(r1,Wc) ≥ (1− α)S(r1)

F. Proof for Lemma 6

Proof: Since r1 and r2 are non-overlapping, according to
the definition of burst score, we have

f(r1,Wc) + f(r2,Wc) = f(r1 ∪ r2,Wc)

f(r1,Wp) + f(r2,Wp) = f(r1 ∪ r2,Wp)

Then we can easily get

max(f(r1 ∪ r2,Wc)− f(r1 ∪ r2,Wp), 0)

≤max(f(r1,Wc)− f(r1,Wp), 0)+

max(f(r2,Wc)− f(r2,Wp), 0)

Thus, we have S(r1 ∪ r2) ≤ S(r1) + S(r2).

G. Proof for Theorem 3

Proof: Since the sizes of ropt and any cell are both a×b,
then ropt either overlaps with a cell or intersects with four
cells. We consider the following two cases.
Case 1: ropt overlaps one cell. Since we return the candidate
with maximum burst score, we will return the bursty region
to users. The approximate ratio is 1.
Case 2: ropt intersects with 4 cells. Consider the example
shown in Figure 10. Let the solid line rectangle be ropt. The
four dashed line rectangles are four cells which intersect with
ropt. According to Lemma 5, we have (1−α)S(ropt) ≤ S(c1∪
· · · ∪ c4). According to Lemma 6, we can derive that S(c1 ∪
· · · ∪ c4) ≤

∑
i∈[1,4] S(ci). Since we report the cell with the

maximum burst score, i.e., S(r) ≥ S(ci) for any i ∈ [1, 4].
Thus, we have 1−α

4 S(ropt) ≤ S(r).

H. Proof for Lemma 7

Proof: We show the approximation ratio is tight by giving
an example. Consider an instance in Figure 11, where c1, c2, c3
and c4 are cells in the grid, and the solid-line rectangle ropt
is the bursty region with the maximum burst score. The white
nodes are the spatial objects in window Wc and the black
nodes are in Wp. We assume that o.w

|Wc| = o.w
|Wp| = 1 for each

object o. The burst score for the region ropt is S(ropt) =
αmax(4− 0, 0) + (1− α)4 = 4. The burst score of cell ci is
S(ci) = αmax(1−1, 0) + (1−α) = 1−α, for any i ∈ [1, 4].
Thus, the approximation ratio is tight.

I. Proof for Theorem 4

Proof: Since the MGAP-SURGE returns the best result of
found by Algorithm 3, its approximation ratio is 1−α

4 .
The pseudocode for the MGAP-SURGE Algorithm is pre-

sented in Algorithm 5.

Algorithm 5: MGAP-SURGE Algorithm
Input: Spatial Object o
Output: A region of size a× b

1 r1 ← GAP-SURGE(Grid1, o,H1);
2 r2 ← GAP-SURGE(Grid2, o,H2);
3 r3 ← GAP-SURGE(Grid3, o,H3);
4 r4 ← GAP-SURGE(Grid4, o,H4);
5 return The region among r1 . . . , r4 with highest burst score.

Algorithm 6: GAP-KSURGE Algorithm
Input: Spatial Object o, Heap H , integer k, Grid
Output: A region of size a× b

1 ci,j ← the cell o lies in;
2 if ci,j not in H then
3 add ci,j to H;
4 if o.tc ∈Wc then
5 rcan.Sc+ = o.ρ

|Wc| ;
6 else if o.tc ∈Wp then
7 rcan.Sc− = o.ρ

|Wc| , rcan.Sp+ = o.ρ
|Wp| ;

8 else
9 rcan.Sp− = o.ρ

|Wp| ;
10 rcan.S = max(rcan.Sc − rcan.Sp, 0) + rcan.Sc;
11 update H;
12 return Top-k cells in H

TABLE IV: Approximate ratio vs. the size of window.

Taxi
Window (mins) 1 5 10 20 30

GAPS 76.34% 73.90% 75.12% 75.70% 76.35%
MGAPS 85.98% 85.14% 87.35% 88.34% 87.85%

UK
Window (hours) 0.5 1 2 12 24

GAPS 90.22% 91.56% 91.98% 89.82% 92.44%
MGAPS 93.13% 94.34% 93.76% 90.50% 92.82%

US
Window (hours) 0.5 1 2 12 24

GAPS 84.23% 80.67% 89.70% 91.77% 80.10%
MGAPS 88.61% 88.07%b 91.44% 91.77% 84.34%

Algorithm 7: MGAP-KSURGE Algorithm
Input: Spatial Object o
Output: A region of size a× b

1 l1 ← GAP-SURGE(Grid1, o,H1, 4k);
2 l2 ← GAP-SURGE(Grid2, o,H2, 4k);
3 l3 ← GAP-SURGE(Grid3, o,H3, 4k);
4 l4 ← GAP-SURGE(Grid4, o,H4, 4k);
5 r[1, k]← top-k non-overlapping cells from l1 ∪ l2 ∪ l3 ∪ l4;
6 return r[1, k]

J. Details of the evaluated algorithms

We evaluate the performances of the three proposed al-
gorithms, namely the exact method Cell-CSPOT (denoted by
CCS), the grid-based approximation algorithm GAP-SURGE
(denoted by GAPS), and the multi-grid-based technique
MGAP-SURGE (denoted by MGAPS). We denote the top-
k extensions of these algorithms as kCCS, kGAPS, and
kMGAPS, respectively. To evaluate the usefulness of our pro-
posed method of upper bound estimation, we compare CCS
with an approach that only utilizes the static upper bound.
We denote this baseline method by B-CCS. We also compare
CCS with a baseline approach that does not use any upper
bound estimation technique, denoted by Base. Specifically, in
Base we divide the space into cells, and we search all the cells
that overlap with the rectangle object when an event happens.
To the best of our knowledge, there is no existing technique
that address the SURGE problem. Hence we are confined to
compare our proposed algorithms with aG2 [2], which is
designed for continuously monitoring the MaxRS problem.
Obviously, we cannot directly apply it to solve the SURGE
problem. In our experiments, we use a modified version of
aG2. Specifically, the modified algorithm inherits the grid
index structure and the branch-and-bound strategy from the
original algorithm. The main difference between the modified
and the original algorithms is how we search a rectangle object
given a snapshot of the stream. In the original algorithm, they
invoke the sweep-line algorithm [22] to search a rectangle
object to find a region with maximum sum score, while in the
modified algorithm, we use our proposed SL-CSPOT algorithm
instead.

K. Approximate Ratio

Approximate Ratio. In this set of experiments, we vary
the sliding window to assess the approximate ratio of the
burst scores of region detected by GAPS and MGAPS.

The detailed results are reported in Table IV. Though the
theoretical approximate ratio is 1−α

4 , in practice it is much
better, especially for MGAPS. We observe that for UK, the
burst score of the region detected by GAPS is about 70%–
90% of the burst score of the optimal region. The region
detected by MGAPS is about 85%–95% of the burst score of
the optimal region. Since GAPS and MGAPS are much more
efficient than CCS (about three orders of magnitude faster),
they are good alternatives to CCS when a slight imprecision
is acceptable.

L. Case Study

To evaluate the result quality of our cell-CSPOT algorithm,
we conduct a case study on the region monitored by the
algorithm. We run the cell-CSPOT algorithm on the tweets
posted in United States from 2012 April to 2012 October. Note
that since the algorithm continuously reports the location of
bursty regions, we only present two examples of the detected
bursty region and explain the connection between the region
and real life events.

Example 7: In the first example, we present detecting bursty
regions about “concert”. Specifically, we only consider tweets
containing keyword “concert” and continuously report the
detected bursty region. On July 8, 2012, our algorithm detected
a region as shown in Figure 12. The frequent keywords in this
region during this time are “Walt” and “Concert”. By checking
the events that happened in July 2012, we find that there was a
concert performed by Ketherine Eason with Inner City Youth
Orchestra of Los Angeles in Walt Disney Concert Hall in the
detected region. �

Fig. 12: Bursty Region about “concert”.

Fig. 13: Bursty Region about “parade”.

Example 8: In the second example, we present detecting
bursty regions about “parade”. On May 19, 2012, our algo-
rithm detected a region as shown in Figure 13. The frequent
keywords in this region are “annual”, “dance”, and “parade”.

By checking the events that happened in May 2012, we noticed
that the dance parade is an annual parade and festival in New
York. Specifically, in 2012 the parade took over Broadway
Street on May 19th. �

	I Introduction
	II Related Work
	III Problem Statement
	III-A Terminology
	III-B Burst Score
	III-C Continuous Bursty Region Detection (SURGE) Problem

	IV An Exact Solution
	IV-A The cSPOT Problem
	IV-B Detecting Bursty Point on a Snapshot
	IV-C Handling the Stream
	IV-C1 Cell-based Lazy Update
	IV-C2 Upper Bound Estimation
	IV-C3 Candidate Point Maintenance

	V Approximate Solutions
	V-A A Grid-based Solution
	V-B A Multi-Grid-Based Solution

	VI Top-k Bursty Region Detection
	VI-A Definition
	VI-B Extension of the Exact Solution
	VI-C Extension of the Approximate Solutions

	VII Experimental Study
	VII-A Experimental Setup
	VII-B Evaluation of the Exact Solution
	VII-C Evaluation of the Approximate Solutions
	VII-D Effect of
	VII-E Scalability
	VII-F Finding Top-k Bursty Regions
	VII-G Case Study

	VIII Conclusions
	References
	Appendix
	A Proof for Theorem ??
	B Proof for Lemma ??
	C Proof for Lemma ??
	D Proof for Lemma ??
	E Proof for Lemma ??
	F Proof for Lemma ??
	G Proof for Theorem ??
	H Proof for Lemma ??
	I Proof for Theorem ??
	J Details of the evaluated algorithms
	K Approximate Ratio
	L Case Study

