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Abstract—A critical challenge in machine learning is the vulnerability of learning models in defending attacks from malicious
adversaries. In this research, we propose game theoretical learning between a variational adversary and a Convolutional Neural
Network (CNN), participating in a variable-sum two-player sequential Stackelberg game. Our adversary manipulates the input data
distribution to make the CNN misclassify the manipulated data. Our ideal adversarial manipulation is a minimum change to the data
which yet is large enough to mislead the CNNs. We propose an optimization procedure to find optimal adversarial manipulations by
solving for the Nash equilibrium of the Stackelberg game. Specifically, the adversary’s payoff function depends on the data
manipulation which is determined by a Variational Autoencoder, while the CNN classifier’s payoff functions are evaluated by
misclassification errors. The optimization of our adversarial manipulations is defined by Alternating Least Squares and Simulated
Annealing. Experimental results demonstrate that our game-theoretic manipulations are able to mislead CNNs that are well trained on
the original data as well as on data generated by other models. We then let the CNNs to incorporate our manipulated data which leads
to secure classifiers that are empirically the most robust in defending various types of adversarial attacks.
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1 INTRODUCTION

A significant robustness gap exists between machine perception
and human perception in machine learning. A critical challenge in
machine learning is the vulnerability of learning models to security
attacks from malicious adversaries. Even innocuous perturbations
to the training data can be used to manipulate the behaviour of the
learning model in unintended and malicious ways.

Adversarial examples are hard to detect because learning
models trained on limited data are required to produce expected
output for every possible input. They are created by adversarial
algorithms analyzing the training process of learning models under
attack. The optimal attack policy is formulated as solving for (of-
ten nonlinear and non-convex) optimization problems. Adversarial
examples are able to successfully mislead learning models as long
as adversary’s attack is planned, because the learning model can-
not react to new samples after its completed training. Szegedy et
al. [1] observed that neural network layers do not disentangle basis
distributions from semantic information. Goodfellow et al. [2]
proposed that deep neural networks learn discontinuous input-
output mappings so that imperceptible perturbations to network’s
input increase deep networks prediction error. Such impercep-
tible perturbations are called adversarial examples. Adversarial
examples are analysed as a property of high-dimensional dot
products. To get adversarial perturbation, cost function training
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a deep network is linearized around current parameter settings.
This method is called Fast Gradient Sign Method (FGSM). FGSM
generates adversarial perturbations that are unperceivable to hu-
man eyes but will highly influence the prediction results of a deep
neural network. For example, an adversarial perturbation added
to the image of a “panda” misleads the GoogLeNet model into a
“gibbon” [2].

To make the learned models more robust, adversarial algo-
rithms should incorporate adversary into the training process of
the learning models [3]. Game theory provides a framework to
study interactions between learning model (or learner for short)
and intelligent adversary (or adversary for short) in terms of
evolving strategies between learner and adversary. In game theo-
retical adversarial learning, adversarial examples are generated by
designing learning models under various attack scenarios assumed
in adversary’s strategy space.

In this paper, we propose adversarial manipulations created by
a variational adversary operation in a generative strategy space. A
Stackelberg game is a type of game theoretic models where the
game is played in sequence (i.e., one is a leader while the other
player follows). In this research, we assume the adversary is the
leader and the CNN follows by retraining the classifier. While
participating in a Stackelberg game with our variational adver-
sary, the classifier is assumed to behave like a blackbox model.
The adversarial cost function is then optimized in a stochastic
optimization manner by solving a variable-sum game. The ad-
versarial manipulations are iteratively searched and optimized in
the game until the adversarial payoff function starts decreasing
for targeted class labels. A Nash equilibrium in our game is a
stochastic optimum where both the adversary and the classifier
reach their optimal payoff function values. At Nash equilibrium,
the adversarial examples are able to attack the targeted classifier
models with both considerations of high misclassification error
and low attack cost.
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Our major contribution of this paper are the following:
• We formulate new attack strategies and adversarial algo-

rithms in a game theoretical model with variational adver-
saries. Our attack strategies are able to mislead Convolutional
Neural Networks (CNNs) in both two-label and multi-label
image recognition settings.

• We propose optimization algorithms that use the Simulated
Annealing (SA) and Alternating Least Squares (ALS) algo-
rithms to search for Nash equilibrium in Stackelberg games.
From the Nash equilibrium, we design a secure CNN classi-
fier that is robust to adversarial attacks.

• We compare the proposed secure CNN classifier against
other deep learning baseline methods, such as Generative
Adversarial Networks (GANs) and other game theoretical
adversarial learning models. Our experiments demonstrate
that our model is the most effective to defend various types
of adversarial attacks.

The paper starts with related work in Section 2. Theoretical
formulation of game framework is in Section 3. The pseudocode
for game model and its experimental validation are presented in
Section 4 and Section 5, respectively. The paper ends in Section 6
with a summary of conclusion and future work.

2 RELATED WORK

In this section we compare the proposed model with the state-
of-art deep generative models and game theoretical adversarial
learning models. Depending on adversary’s knowledge of tar-
geted model, attack scenarios in adversarial learning algorithms
are categorized into blackbox attacks and whitebox attacks [3].
Typically, blackbox attacks query targeted model’s output labels
while whitebox attacks compute derivative of targeted model’s loss
function. We use derivative free optimization to introduce game
theoretical objective functions into learning process of querying
targeted model in a blackbox attack.

2.1 Stochastic Games in Predictive modelling
The interaction between an adversary and the classifier has been
modelled as a Stackelberg Game. Here adversary’s role is not
that of a static data generator but an intelligent agent making
deliberate data manipulations to evade classifiers. Re-learning
classifier weights is a weak solution since evasion attacks are
generated at cheaper and faster rate than re-learning.

Li et al. [4] proposed a feature cross-substitution attack to
demonstrate objective-driven adversaries exploiting such limita-
tions of feature reduction in adversarial settings. Adversary is
able to query classifier according to a fixed query budget and a
fixed cost budget. An adversarial evasion model with a sparse
regularizer is then presented. Constructing the classifier on feature
equivalence classes rather than feature space is proposed as a
solution to improve classifier resilience.

Bianchi et al. [5] presented repeated games for random predic-
tion problems. The problem of sequential prediction is modelled
in the framework of Nash equilibrium found in normal form
games. Specific minmax theorems are discussed to analyze two-
player zero-sum games. A mistake bounds framework is provided
to analyze game theoretical learning algorithms. Stochastic two-
player zero-sum games incorporating multiple adversaries were
analyzed by Ummels [6].

Zhou et al. [7] surveyed two-player and multiple player Stack-
elberg games in adversarial learning algorithms and cyber security

applications. The interaction between adversary and classifier
is modelled as one or more of simultaneous games, sequential
games where adversary can be either a leader or a follower in
the game. Alpcan et al. [8] presented large-scale strategic games
and reduced games computation consumption and information
limitation on Nash equilibrium solutions. Oliehoek et al. [9]
proposed an deep generative adversary with resource-bounded best
responses and Nash equilibrium on synthetic data. The generative
adversary has a generator network and a discriminator network
in a supervised learning problem and operated on discrete data.
Papernot et al. [10] provided a threat model summarizing various
attack scenarios in adversarial learning algorithms. The threats
to machine learning models are adversarial manipulations, which
are generated during both training process and inference process.
Papernot et al. [10] also proposed no free lunch theorem and
probably approximately correct model for adversarial learning.
Moreover, Yang et al. [11] analyze the Nash equilibrium of a
differential dynamical system modelling the Advanced persistent
threat (APT) cyberattack scenario.

In this research, we propose new non-convex best responses
in every play of the prediction game solving for the adversarial
manipulations. Our bilevel stochastic optimization problem in the
prediction game is formulated as a repeated sequential variable-
sum two-player Stackelberg game. The optimization problem is
solved by an Alternating Least Squares (ALS) search procedure
that continuously attacks retrained classifier with adversarial ma-
nipulations optimized until Nash equilibrium. The ALS procedure
evaluates candidate adversarial manipulations generated by a Sim-
ulated Annealing (SA) procedure for an increase in adversarial
payoff function over the targeted class labels. Therefore, the
adversarial data generated in the Stackelberg game simulates
continuous interactions rather than one-time interactions with the
learning processes of the classifier.

2.2 Adversarial Examples for Misleading Classifiers

In trying to interpret the solutions in deep neural networks,
Szegedy et al. [1] introduced adversarial examples as disconti-
nuities in input-output mappings learnt by deep neural networks.
Goodfellow et al. [2] proposed a training regime called Fast
Gradient Sign Method (FGSM) for generating adversarial exam-
ples, which can be computed efficiently using backpropagation.
Papernot et al. [12] introduced a blackbox attack strategy where
adversarial examples are generated without knowledge of target
deep neural networks internal parameters and inputs. Baluja et
al. [13] proposed a targeted attack where feed-forward neural
networks called Adversarial Transformation Networks (ATNs) are
trained to generate adversarial examples. ATNs generate adver-
sarial examples that minimally modify classifier’s outputs given
original input. By contrast, Moosav et al. [14] constructed an
untargeted attack technique, i.e., DeepFool, which is optimized
by distance metrics between adversarial examples and normal ex-
amples. Biggio et al. [3] surveyed adversarial examples in pattern
classifiers about deep neural networks applications in computer
vision and cyber security. Adversarial attacks at classification’s
training time and testing time are called poisoning attacks and
evasion attacks, respectively.

In our research, we generate adversarial examples to form a
poisoning attack on the classification training data. The adversarial
examples are generated by the adversarial manipulations learnt
during our game theoretical attacks on the training process of
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the learner. In our attack scenarios, no prior knowledge about
the learning model is assumed. Our adversary knows neither
the learning model’s training process nor the learning model’s
best response strategies across the Stackelberg game’s plays. Our
adversary does a targeted attack to manipulate multiple positive
labels into a single negative label. The attack strength of our
adversarial manipulations is defined in terms of search random-
ization parameters in ALS and SA. The scalar optima in SA are
used to generate the vector optima in ALS. The local optima in
ALS converge onto the non-convex stochastic optima solving the
Stackelberg game to output optimal adversarial manipulations.
The optimal adversarial manipulations are able to encode the
adversarial data in terms of the multivariate statistical parameters
of a Gaussian mixture model produced in multi-label datasets.

2.3 Generative Adversarial Networks for Adversarial
Learning
Generative Adversarial Networks (GANs) [15] estimate data like-
lihood with a two-player adversarial framework, which contains a
generator network G and a discriminator network D. IWGAN [16]
improves GAN with regularization but ignores the correlations
between generated examples. InfoGAN [17] uses an information-
regularized generator to disentangle interpretable representations
from generated data. The distribution of adversarial perturbations
have been modelled with AdvGAN [18] in whitebox attacks as
well as blackbox attacks. Adversarial examples have been defined
for deep generative models [19]. Importantly, we note that the
fundamental difference between our research and the objective
of generative networks is deceiving the classifier rather than
mimicking the original data [20, 16]. We solve a supervised
learning problem while deep generative models generally solve
an unsupervised learning problem.

A taxonomy of adversarial attack scenarios in deep learning is
provided by Gilmer et al. [21] and Biggio et al. [3]. Besides,
another thread of research on adversarial autoencoders [22, 3]
imposes a prior distribution on the output of an encoder net-
work learning training data, where autoencoder discriminatively
predicts whether a sample comes from its latent space or from
prior distribution determined by the user. By contrast, our game
theoretical optimization problem is independent from a particular
training data distribution and classification model. The objective
of our game formulation is not to improve classification accuracy
by augmenting the original data training autoencoders.

Our attack scenario with Stackelberg games proposes new
adversarial payoff functions. We represent feature space for ad-
versarial manipulations in terms of adversarial cost functions,
stochastic operators and game strategies in a simulated annealing
algorithm.

2.4 Game theoretical adversarial learning
Dalvi et al. [23] analyzed classifier performance by viewing
classification as a game with the classifier adapting to an ad-
versary, aiming to make the classifier produce false negatives.
Lowd et al. [24] introduced adversarial algorithms to learn a linear
classifier’s decision boundary. An ACRE learning framework is
used to determine whether an adversary can efficiently learn
enough about defeating a classifier by minimizing a linear adver-
sarial cost function. Biggio et al. [25] defined poisoning attacks
against Support Vector Machines (SVMs) by injecting adversarial
examples into training data. A gradient ascent procedure computes

adversarial examples as local maxima of SVM’s non-convex error
surface. Bruckner et al. [26] proposed prediction games to model
interaction between a learner building predictive models and a
data generator controlling data generation process. Kantarcioglu
et al. [27] designed a subgame-perfect Nash equilibrium, which
optimizes attribute selection with cost functions in an adversarial
classification Stackelberg Game. Liu et al. [28] modelled compet-
ing behaviour between a rational adversary and a blackbox data
miner as a sequential Stackelberg game where the payoff for each
player is designed as a regularized loss function. Such a game
is repeated until the adversarys payoff does not increase or the
maximum number of iterations is reached.

Moreover, Wang et al. [29] assume that adversary changes any
feature of the classifier at will and pays a cost proportional to size
of the feature subset that has been changed. Such an attack on
classifier is called sparse feature attack. The minmax optimization
problem is formulated as a non-zero sum game. Chivukula et
al. [30] enhanced [28] proposals for deep learning models while
Yin et al. [31] extended them for sparse attack scenarios. Zhou
et al. [32] explored a nested game framework, where adversarial
strategy is chosen according to a probability of making prediction
about classifier’s decision boundary in a single leader multiple
followers game.

Different from the above, in this research we define adver-
sarial cost functions on a strategy space encoding original data
distribution. Our adversarial payoff functions are optimized by a
simulated annealing algorithm randomizing step changes in ad-
versary’s strategy spaces. Randomization in our adversarial attack
strategies is defined by the latent space reconstructing original data
distribution with a Variational Autoencoder (VAE). The proposed
(variational nonlinear non-convex) adversarial cost function leads
to a better regularization of the adversarial payoff function in our
Stackelberg game.

2.5 Nash equilibria and Stackelberg Strategies

A Stackelberg game is a leader-initiated game, where adversar-
ial strategies are modeled and solved for the solution rationale
and decision-making problem defining the Nash equilibria. The
solution space for Nash equilibria are expressed in terms of the
necessary and sufficient conditions for game players’ convergence
criteria [33].

The optimization of such game theoretical payoff functions
presents a complex problem in optimization theory. Such prob-
lems are often modelled as decision problems in noncooperative
differential games [34]. In experiments on Stackelberg Strategies,
we demonstrate the statistical significance of our optimal adver-
sarial manipulations on the targeted multi-label classifiers decision
boundaries. The decision boundaries are learnt from labelled
image databases, datasets produced by existing deep generative
models and datasets produced by existing game theoretical models
for adversarial learning.

We empirically evaluate our adversarial learning algorithms
in stochastic optimization settings. We generate adversarial ma-
nipulations at Nash equilibria that is found in the Stackelberg
game. Our adversary’s strategy space is determined by variational
parameters learnt from the input data distribution. The optimal
adversarial manipulations found by our adversarial algorithm
define a deep generative model for creating the adversarial data
in classifier’s input data space.
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3 GAME FORMULATION

In this section, we formulate a sequential variable-sum two-
player Stackelberg game to mislead classifiers. Given training
data distribution, our adversarial attack scenario seeks to find data
manipulations that generate changed data distributions misleading
the classifier in the game theoretical model. Effective attack
scenario is measured in terms of a classifier’s misclassification
error and an adversary’s manipulation cost. Manipulation cost
measures adversary’s expenses to generate data manipulations
in each game iteration. After multiple game iterations, these
adversarial manipulations are optimized to find a Nash equilibrium
between the converged adversary and classifier.

We formulate the adversarial payoff function on a convex
strategy space determined by a Variational Autoencoder (VAE)
model. The VAE model encodes training data and validation
data into unsupervised mean and variance codecs. These codecs
represent multivariate Gaussian distributions that are derived from
data distributions in a latent space. We assume this latent space is
the strategy space of our game. Please note that the VAE is part
of our modelling and is not part of the classification model that
will be under attack. At Nash equilibrium, we produce an output
which is a vector of adversarial manipulations corresponding to
VAE’s encodings of training data. We assume a Convolutional
Neural Network (CNN) to be the classifier of multi-label image
databases, and a Simulated Annealing (SA) algorithm is utilized in
doing stochastic search and optimization. To simulate a blackbox
attack, we assume that the adversary has no prior knowledge of
the classifier’s training process. CNN is adversarially retrained
according to an alternating least squares (ALS) algorithm until
the game convergence to the Nash equilibrium. In every game
iteration, SA computes convex adversarial data manipulations
as local optima to ALS, which in-turn finds local optima to
non-convex game theoretical model for characterizing our attack
scenario.

In our Stackelberg game, we model the adversary acting
as a leader player (L) attacking targeted classifier model. The
classifier responds to adversarial manipulation by acting as a
follower player (F), defending its classification performance by
adversarial retraining. The attack-defence game plays between
L and F proceeds according to a sequence of increasing payoff
function values. Such a game is called a sequential Stackelberg
game. It can converge to Nash equilibrium with optimal payoff
function values for both players. The optimal payoff brings an
optimal data manipulation for the adversary.

All the potential manipulations/moves of L are assumed to
be over a strategy space AM , AΣ, where M and Σ are mean
and variance parameter spaces determined by a VAE model. The
moves of F are assumed to be over classifier’s parameter space W ,
which is learnt on training data distribution. During each game
iteration, the move of L and F is determined by their real-valued
payoff functions JL ∈ R and JF ∈ R, respectively. To ease
understanding, the variables notation used in our problems and
algorithms are summarized in Table 1.

In every game play, the value of JL and JF depends on
candidate adversarial manipulations αµ ∈ AM , ασ ∈ AΣ and
candidate classifier weights w ∈ W . Adversary’s best move finds
a best strategy αµ∗ , ασ∗ with best payoff JL as expressed in Eq. (1).

αµ∗ , α
σ
∗ = argmax(αµ∈AM ,ασ∈AΣ)JL((αµ, ασ), w) (1)

In response to adversarial manipulation, the best move of retrained
classifier then converges onto a robust w∗ ∈ W with best payoff
JF as expressed in Eq. (2).

w∗ = argmaxw∈WJF ((αµ, ασ), w) (2)

Substituting Eq. (2) in Eq. (1) we have Eq. (3) in terms of the
adversarial payoff function JL((αµ, ασ), w) and classification
payoff function JF ((αµ, ασ), w).

(αµ∗ , α
σ
∗ , w

∗) =argmax(αµ∈AM ,ασ∈AΣ)JL
(

(αµ, ασ),

argmaxw∈WJF ((αµ, ασ), w)
) (3)

Eq. (3) defines the Nash equilibrium in terms of final adversarial
manipulations αµ∗ , ασ∗ and final classifier weights w∗ that will be
found after all the plays of the Stackelberg game.

In our blackbox attack scenario, we assume CNN misclassi-
fying a set of positive labels Pos into another set of negative
labels Neg. For pos ∈ Pos and neg ∈ Neg, we map every
label pair (pos, neg) to a sequential two-player Stackelberg game,
i.e., solving Eq. (3) for multi-label adversarial manipulations
Aµ∗ [pos, neg] = αµ∗ ,Aσ∗ [pos, neg] = ασ∗ .

To solve Eq. (3), we assume that the movements between
adversary and classifier interact in a sequence of game plays
defined by a variable-sum Stackelberg game in Eq. (4)

JL + JF = Φ + λ× costL(αµ, ασ) + costF (w) (4)

where Φ ∈ R is a proportionality constant to increase adversary’s
payoff at the expense of classifier’s payoff JF . Our game is
a variable-sum Stackelberg game because the R.H.S of Eq. (4)
is a variable number depending on values of costL and costF
computed in every game iteration.

costL(αµ, ασ) is the adversarial cost function, which typ-
ically has a closed form expression for game theoretical op-
timization and depends on application-specific adversarial data
distributions. λ ∈ R is a constant parameter to balance the weight
between costL and costF .

costF (w) is the classifier’s cost for doing adversarial re-
training across multiple game plays. Typical costF (w) has no
closed form expression for game theoretical optimization. In our
research, costF (w) relies on CNN’s retraining performance and
optimization strategies, such as, retraining runtime, number of
adversaries, player’s attack and defence budgets, training data size
and classifier weights initialization.

The interplay between adversary’s strategy spaces and clas-
sifier’s decision boundaries empirically determines the effect of
costL on costF . In blackbox attack scenario, we assume that
the adversary’s cost function costL is independent from the
classifier weights w. Similarly, the classifier’s cost function costF
is independent from the adversarial manipulations αµ, ασ .

Substituting JF from Eq. (4) into Eq. (3) defines bilevel non-
convex objective function for variational Stackelberg game:

(αµ∗ , α
σ
∗ , w

∗) = argmax(αµ∈AM ,ασ∈AΣ)JL
(
(αµ, ασ),

argmaxw∈W (Φ + λ× costL(αµ, ασ)

+ costF (w)− JL((αµ, ασ), w))
)
(5)

Eq. (5) characterizes our blackbox attack scenario. The objective
function is computed in terms of the adversarial payoff function
JL, which determines the candidate adversarial manipulations
αµ, ασ . JL converges to Nash equilibrium in a two-player multi-
label sequential Stackelberg variable-sum game. Nash equilibrium
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TABLE 1: Table of Notation
Variable
Name Variable Description Variable

Name Variable Description Variable
Name Variable Description

L Adversary as Leader in
Stackelberg Game Aµ∗

Multi-label adversarial
manipulations on data mean

parameters
costF F’s classification cost function

F Classifier as Follower in
Stackelberg Game Aσ∗

Multi-label adversarial
manipulations on data variance

parameters
αµ

Adversarial manipulation over
means in L’s strategy space

M
training data mean parameter

space µpos, σpos
pos training data’s mean and

variance parameters αµ∗
L’s best move for manipulating

data mean parameters

Σ
training data variance parameter

space µneg , σneg
neg training data’s mean and

variance parameters ασ∗
L’s best move for manipulating

data variance parameters

AM , AΣ Leader L’s strategy space δµ

Maximum possible difference
between mean parameters of

negative and positive training data
ασ

Adversarial manipulation over
variances in L’s strategy space

W F’s training parameter space δσ

Maximum possible difference
between variance parameters of

negative and positive training data
αnext

Candidate adversarial
manipulation generated in SA

iteration

payoffnext

L’s payoff function value when
data is manipulated for αnext payoffcurr

L’s payoff function value in
current iteration αinitial

Initial adversarial manipulated in
SA

JL L’s adversarial payoff function errorcurr
F’s misclassification error value in

current iteration αoptimal
Optimal adversarial manipulated

returned by SA

costL L’s adversarial cost function
payoffbest

L’s best move payoff function
value αbest

Best adversarial manipulation
element found by SA across mean

and variance parameters

JF F’s classification payoff function errorbest
F’s best move misclassification

error value errornext

F’s misclassification error value
when data is manipulated for

αnext

outputs game theoretical adversarial manipulations (αµ∗ , ασ∗ ) and
the corresponding secure classifier weights w∗.

To solve Eq. (5), we design adversarial payoff function JL in
Eq. (6) with costL(αµ, ασ) = (‖αµ‖F + ‖ασ‖F ).

JL((αµ, ασ), w) = errorF (w)− λ ∗ costL(αµ, ασ) (6)

The strategy space AM , AΣ for (αµ, ασ) is a randomized convex
data space determined by a VAE, i.e., a multivariate Gaussian
mixture model. JL in Eq. (6) is optimized by a SA algorithm
that does stochastic search and local optimization for αµ∗ , ασ∗ in
every game play. errorF (w) denotes CNN’s misclassification
performance for positive labels pos ∈ Pos to be manipulated
into negative labels neg ∈ Neg.

During game model training evaluations, we define
errorF (w) of Eq. (6) in terms of true positive rate (of pos
when CNN misclassifies pos label data as neg label data):
errorF (w) = errorpos(w) = (1− tprpos(w)) and call it attack
performance. Here tprpos(w) =

tppos(w)
ppos(w) .

Eq. (6) is sub-problem of Eq. (5) which is the objective
function for game theoretical optimizations. Eq. (6) is solved re-
peatedly by the adversary until convergence of the game iterations.
In every game iteration, the changes to attack parameters (αµ, ασ)
adversarially influence the updates to classification parameters w.
Such a game’s convergence condition is called the Nash equilib-
rium. It is a balance of maximum increases to payoff functions
values JL and JF solving Eq. (5) until convergence.

After game converges to optimum data manipulations
we evaluate game model performance on testing data
by defining the errorF (w) in terms of (percentage)
classification f1-score for Pos as errorF (w) =
errorPos(w) = (1 − fscorePos(w)) for all Pos × Neg
and call it defence performance. Here fscorePos(w) =

2 × tpPos(w)
tpPos∪Neg(w)+fnPos∪Neg(w)+fpPos∪Neg(w) . To simplify

the experimental setup we have assumed Pos = pos and
Neg = neg for evaluating defence performances in Section 5.
However the CNN classifier is trained on all possible class labels
(pos, neg) ∈ (Pos×Neg).

Across the Stackelberg game iterations, we design the SA to
optimize the costL such that the leader L gains in changes to
its payoff JL is in proportion to the payoff changes lost by the
follower F in changes to its payoff JF . In Eq. (4), we also allow
the follower F to assume an independent blackbox cost costF of
retraining to engage the leader L in a Stackelberg game. In Eq. (6),
the pure profit for the adversary (acting as leader L) is determined
by costL. While trying to minimize costL the adversary’s target is
to maximize the misclassification error errorF of a CNN (acting
as follower F ). errorF inturn depends on the CNN’s architecture
and loss function which we assume are unknown to the adversary
according to a blackbox attack scenario. By including errorF
in Eq. (6), we only seek to model the adversarial manipulations
to training data distributions. We define Eq. (6) with reference
to misclassification error errorF but not misclassification cost
costF because we assume that the adversary targets the CNN by
manipulating its input data without knowing any more detail of its
retraining procedure for participating in the game. By analyzing
the convergence of the adversarial cost function costL but not the
classification cost function costF , we analyze the stochastic op-
tima of a sequential Stackelberg game rather than a simultaneous
Stackelberg game. We solve the sequential Stackelberg game of
Eq. (4) by optimizing the adversary L’s cost costL for leading the
sequential game.

In Eq. (6), errorF can also be interpreted as a regularization
term on costL to be optimized in Eq. (4). Here λ controls the
relative importance of adversarial cost function costL compared
to misclassification error errorF (w) for creating adversarial ma-
nipulations αµ∗ , ασ∗ in each game iteration. The tradeoff between
decreasing cost costL and increasing error errorF (w), with
respect to optimization parameters solving for our blackbox attack
scenario, plays out across all of the search iterations described in
our game theoretical algorithms of Section . L’s strategy space
in Algorithm 1 and Algorithm 2 is defined on the original data
distributions and encoded data distributions leading to global
optima solving for the Nash equilibrium of the Stackelberg game.
L’s strategy space in Algorithm 3 is determined by the SA pa-
rameters solving for the local optima in step and direction of each
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adversarial manipulation. When we consider all the adversarial
manipulations learnt by SA parameters in a variational model, we
solve for a stochastic optimization problem that is nonlinear and
non-convex in the terms of the objective function in Eq. (4).

Along with SA parameter settings described above, VAE’s
encoder function Enc and decoder function Dec determine our
game theoretical attack scenarios. Given training data Xtrain, we
generate adversarial data Xgen via:

Xgen = Dec(µpos + αµ, σpos + ασ) ∪Xtrain[neg], (7)

where µpos, σpos = Enc(Xtrain[pos]). The Eq. 7 first encodes
positive data distribution Xtrain[pos] into multivariate Gaussian
distribution’s parameters (µpos, σpos). Then it adds adversarial
manipulations (αµ, ασ) to (µpos, σpos). After that, the encoded
adversarial data is decoded by Dec into original data space. The
distribution of negative data Xtrain[neg] is unchanged since we
target pos class performance of CNN classifier.

3.1 Overall Structure of Our Model

Figure 1 is a flow chart of our adversarial learning process that
accounts for the presence of a variational adversary in supervised
learning. The final outcome of our adversarial learning is a
CNN classification model CNNsecure (henceforth shortened as
CNNs) that is robust to the adversarial attacks.

We generate the adversarial data in a two-player Stackelberg
game between the adversary and the classifier. The adversary
creates a variational model by searching for adversarial manip-
ulations on encoded training data. Every statistical parameter of
the encoded training data is searched according to a Simulated
Annealing (SA) procedure. The aggregation of adversarial manip-
ulations to all statistical parameters in the encoded training data
is optimized according to an Alternating Least Squares (ALS)
procedure. The ALS optimization is invoked at each time when
the adversary generates adversarial data Xgen in the Stackelberg
game.Xgen acts as a validation data for the classifier under attack.
For every Xgen, the classifier re-optimizes its training weights to
update itself.

The result of such a game-theoretic interaction between the
learner’s and classifier’s best moves is quantified by the adver-
sary’s payoff payoffbest. The adversary engages the classifier
in the Stackelberg game as long as the payoffbest increases. A
decrease of payoffbest indicates that Nash equilibrium exit con-
dition has been reached in the Stackelberg game. At the end of the
game, adversary has optimal adversarial manipulations from the
most recent Xgen. Such manipulations are applied on the training
data to obtain attacked training data. Then the classifier’s learning
process adds the attacked data into the original training data so that
the CNNs can be optimally retrained by our adversarial attacks.
While the CNN classifier is trained in the original data space, the
adversary generates data manipulations in the encoded data space.
A variational representation of the encoded data space allows
the adversary to propose a generative model for the adversarial
manipulations.

3.2 The differences between our method and GANs

Although both GAN and our method are based on the framework
of game theory and both of them are seeking for the Nash equilib-
rium, they have some great differences. Firstly, GAN’s objective
is to learn a generative model that mimic the original distribution

of data, while our method learns the optimal adversarial manipula-
tions (αµ∗ , ασ∗ ) that are not the original true distribution of the data
but are manipulations to the original distribution. Secondly, the
GAN at its optima is to best distinguish synthetic images from true
ones that belong to the same class label (i.e., a generative learning
problem), rather than to classify labels of synthetic images at
the highest accuracy (i.e., a label classification problem). From
this perspective, the GAN may not be expected to perform well
when an image is deliberately and subtly changed to mislead the
classifier to misclassify it to a targeted wrong label. Thirdly, in our
attack scenario, different proposals on adversarial payoff functions
and adversarial cost functions in Eq. (6) lead to different Nash
equilibria for Eq. (5) and corresponding adversarial manipulations
in Eq. (3). In contrast, a GAN always tries to converge the
synthetic data to the original training data distributions.

3.3 Variational Game and Adversarial Examples Illus-
tration
To demonstrate examples of successful attacks, Figure 2 shows
adversarially manipulated samples generated by our model. For
the two images in each subfigure of Figure 2, the left one is
the original image while the right is the manipulated image.
The original images shown for specific target classes are from
the MNIST database and the VGGFace2 database. We evaluate
adversary’s payoff in Eq. (6) over data distributions of many such
manipulated and misclassified images.

Specifically, Figure 2(a) to Figure 2(e) show adversarially
manipulated MNIST images that have been misclassified to the
class label 8. In Figure 2(a) and Figure 2(d), handwritten digits
2 and 6 have been manipulated by deleting pixels to smoothen
sharp edges. In Figure 2(b) and Figure 2(c), handwritten digits
3 and 5 have been manipulated by adding and deleting pixels to
change orientation. In Figure 2(e), handwritten digit 9 has been
manipulated by adding pixels targeting particular aspects of the
image geometry that are similar between images of 9 and 8.

Figure 2(f) to Figure 2(j) show adversarially manipulated
VGGFace2 images that have been misclassified as belonging to the
class label “Jackie Chan”. In Figure 2(f) and Figure 2(h) images
of “Andy Lau” and “Zhang Jingchu” have been manipulated by
blurring parts of the facial features while leaving the remaining
background unchanged. In Figure 2(g) and Figure 2(i) images
of “Ajay Devgan” and “Aishwarya Rai Bachchan” have been
manipulated by changing the shapes of sunglasses and hand
covering the targeted classes facial features. In Figure 2(j), image
of “Jada Pinkett Smith” has been manipulated by decreasing the
distinction between the colours of the image foreground and the
image background.

4 VARIATIONAL STACKELBERG GAME METHOD

The pseudocode for two-player game which outputs multi-label
adversarial manipulations (Aµ∗ ,A

σ
∗ ) is given in Algorithm 1. Each

pair (pos, neg) of positive labels pos ∈ Pos and negative labels
neg ∈ Neg executes a separate two-player game that misleads
classifier into misclassifying pos data as neg data. The input to Al-
gorithm 1 is labelled training data Xtrain consisting of grayscale
images. A labelled testing dataXtest is separately used to evaluate
(Aµ∗ ,A

σ
∗ ) at the end of each game. Algorithm 1 also defines some

input parameters to characterize the game theoretical adversary
and find an optimal attack from the strategy space. Candidate
adversarial manipulations (αµ, ασ) search and optimization over
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Fig. 1: A flowchart illustrating our overall game theoretical adversarial modelling. The data is encoded before entering the game and undertake
simulated attacks. From the encoded data, a Stackelberg game discovers (from its Nash equilibrium) the optimal adversarial manipulations.
The manipulations are then decoded and added to the original data to formulate a new training set for our CNNs model.

(a) 2 misclassified by CNN as 8 (b) 3 misclassified by CNN as 8

(c) 5 misclassified by CNN as 8 (d) 6 misclassified by CNN as 8

(e) 9 misclassified by CNN as 8 (f) Andy Lau misclassified by
CNN as Jackie Chan

(g) Ajay Devgan misclassified
by CNN as Jackie Chan

(h) Zhang Jingchu misclassified
by CNN as Jackie Chan

(i) Aishwarya Rai Bachchan
misclassified by CNN as Jackie
Chan

(j) Jada Pinkett Smith misclassi-
fied by CNN as Jackie Chan

Fig. 2: Examples of transformed images found at Nash equilibrium
in a Stackelberg game. For the two images in each subfigure, the left
one is the original image and the right is the manipulated image.

the adversarial payoff function JL = payoffbest is described
in the Alternating Least Squares algorithm of Algorithm 2 and
Simulated Annealing algorithm of Algorithm 3.

Line 1 of Algorithm 1 trains a classifier model CNN onXtrain

to initialize three models CNNoriginal, CNNmanipulated and
CNNsecure (henceforth shortened as CNNo, CNNm and
CNNs, respectively) with same weights that provide a high
classification performance on Xtest. During the game, adver-
sary repeatedly attacks CNN classifier with data manipulations
(αµ∗ , ασ∗ ). As a response, CNN classifier is allowed retraining
its weights w∗ by using both Xgen and Xtrain on line 15. At
the end of the game, adversary converges to data manipulations
(Aµ∗ [pos, neg],Aσ∗ [pos, neg]), which gives the highest value for
adversarial payoff function JL = payoffbest.

Then,CNNo is evaluated on testing dataXtest to output orig-
inal performance errororiginal (henceforth shortened as erroro)
on line 20. On line 21, CNNmanipulated is evaluted on manip-
ulated testing data Xtest−manip as well as testing data Xtest

to output attack performance errorpos(w) = errormanipulated
(henceforth shortened as errorm). On line 22, CNNm is re-
trained on manipulated training data Xtrain−manip to output
secure classifier CNNs. On line 23, CNNs is evaluated on
manipulated testing data Xtest−manip and testing data Xtest to
output defence performance errorPos(w) = errors (henceforth
shortened as errors). Notably, erroro, errorm, errors are
calculated for each (pos, neg) ∈ (Pos×Neg).

Before the game begins, CNNo’s weights are learnt on train-
ing data Xtrain and CNNm’s weights are duplicate of CNNo’s
weights. After the game ends, CNNm weights and CNNo
weights remain unchanged. In the presence of an adversary,
CNNs weights are more robust than CNNo weights. Classifier
model is called CNN. CNN is initially trained on line 1, then it is
adversarially trained on line 15 for every adversarial attack. CNN
is discarded after game ends for each label pair (pos, neg).

The adversary’s strategy space in Algorithm 2 is determined
by an Encoder function Enc and a Decoder function Dec of a
VAE model. The VAE encodes input data in terms of a mean
vector µ and a variance vector σ to represent a multivariate
Gaussian distributions in the latent space. In Algorithm 2, the size
of latent space is given as attack scenario parameter s. On line
4 of Algorithm 1, Enc is applied on positive data Xtrain[pos]
and negative data Xtrain[neg] to output positive mean vector
µpos and negative mean vector µneg; positive variance vector
σpos and negative variance vector σneg , respectively. These vec-
tors are used on line 5 to derive vectors δmu and δsigma that
measure amount of change in latent space to entirely convert
encoded positive data Enc(Xtrain[pos]) into encoded negative
data Enc(Xtrain[neg]).

The adversarial learning targets to search for small random
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Algorithm 1: Variational Stackelberg Game Algorithm
Input: Training data Xtrain, Labelled testing data Xtest (for final evaluations only), Training labels (Pos×Neg), Iteration error threshold’s

maxerror game = 15
Output: Adversarial manipulations in variational game Aµ∗ ,Aσ∗ , Original performance erroro, Attack performance errorm, Defence performance

errors
1 Train CNN on Xtrain to output model CNNo. Initialize CNNm, CNNs with CNNo’s weights.
2 Train Variational Autoencoder VAE on Xtrain to get Encoder function Enc, Decoder function Dec.
3 for (pos, neg) ∈ (Pos×Neg) do
4 µneg , σneg = Enc(Xtrain[neg]), µpos, σpos = Enc(Xtrain[pos])
5 δµ = mean(µneg)−mean(µpos), δσ = mean(σneg)−mean(σpos)
6 Initialize zeros tensors αµ∗ and ασ∗ with same shape as mean(µpos) and mean(σpos) respectively
7 exitgame = False, payoffcurr = errorcurr = −∞, CNN = CNNo
8 while exitgame = False do
9 Generate adversarial data Xgen by substituting (αµ∗ , α

σ
∗ ) in Eq. (7). Evaluate CNN on Xgen to find error errorcurr . Substitute errorcurr in

Eq. (6) to calculate payoffcurr for (αµ∗ , α
σ
∗ ).

10 Update αµ∗ and ασ∗ from alternating least squares ALS in Algorithm 2
11 Generate adversarial data Xgen by substituting (αµ∗ , α

σ
∗ ) in Eq. (7). Evaluate CNN on Xgen to find error errorbest. Substitute errorbest in

Eq. (6) to calculate payoffbest for (αµ∗ , α
σ
∗ ).

12 if payoffbest − payoffcurr > 0 then
13 if errorbest > maxerror game then
14 exitgame = True, break //Nash equilibrium achieved

15 Re-optimize CNN weights on manipulated data and training data Xgen ∪Xtrain
16 Xtrain−manip = Xtrain−manip ∪Xgen
17 Aµ∗ [pos, neg],Aσ∗ [pos, neg] = αµ∗ , α

σ
∗

18 for (pos, neg) ∈ (Pos×Neg) do
19 Simulate attacks by Aµ∗ [pos, neg],Aσ∗ [pos, neg] on Xtest[pos, neg] to output manipulated testing data Xtest−manip[pos, neg]
20 Evaluate CNNo on Xtest[pos, neg] to find original model error erroro[pos, neg] for targeted label pos in attack scenario
21 Evaluate CNNm on Xtest−manip[pos, neg] ∪Xtest[pos, neg] to find manipulated model error errorm[pos, neg]
22 Train CNNm on Xtrain−manip[pos, neg] to output secure model CNNs
23 Evaluate CNNs on Xtest−manip[pos, neg] ∪Xtest[pos, neg] to find secure model error errors[pos, neg] for targeted label pos

24 return (Aµ∗ ,Aσ∗ , erroro, errorm, errors)

changes (αµ∗ , ασ∗ ) to attack the encoded positive data (µpos, σpos)
on line 9 and line 11 such that CNN predicts a negative label
neg for the manipulated positive data (µpos + αµ∗ , σpos + ασ∗ )
after it is decoded into training data space. Since search for
(αµ∗ , ασ∗ ) is in VAE’s latent space, the adversary’s strategy space
for attacker’s payoff calculation in the two-player game is the
VAE’s latent space. However, the classifier’s strategy space for
defender’s payoff calculation is the original data space, which is
the same as reconstructed data space.

Line 9 evaluates current CNN on Xgen to find classification
error errorcurr. Then it computes adversarial payoff function
value payoffcurr by combining errorcurr with adversarial cost
function, where the adversarial cost function is defined as the For-
benius norm of corresponding adversarial manipulation (αµ∗ , ασ∗ ).
λ is a weight constant that controls the contribution of adversarial
cost function when calculating the adversarial payoff function. In
a given game execution and training data distribution, λ is set
by adversary to increase payoff function by increasing classifier’s
error and decreasing adversary’s cost across game plays.

On line 10, the Alternating Least Squares method (see Algo-
rithm 2) updates candidate adversarial manipulations (αµ∗ , ασ∗ ).
Line 11 updates classifier error errorbest and adversarial payoff
payoffbest corresponding to adversarial data Xgen. The looping
condition on line 12 continues game plays as long as payoffbest
is greater than payoffcurr. All game plays end on line 17
when adversary converges to the optimal adversarial manipulation
(αµ∗ , ασ∗ ) for label pair (pos, neg).

4.1 Alternating Least Squares Algorithm

Algorithm 2 illustrates the Alternating Least Squares (ALS)
search procedure, which optimizes the adversarial manipulations
by changing the elements of vectors αµbest, α

σ
best. By using the

Simulated Annealing (SA) method (see Algorithm 3) on line 5

Algorithm 2: Alternating Least Squares (ALS)
Input: αµ∗ , ασ∗ , δµ, δσ , payoffcurr, errorcurr, µpos, σpos, s
Output: (αµ∗ , ασ∗ )

1 Initialization: Encoding space code size s = 50, maxerror als = 10,
exitsearch = False

2 while ¬ exitsearch do
3 payoffbest, errorbest = payoffcurr, errorcurr
4 αµbest, α

σ
best = αµ∗ , α

σ
∗

5 By fixing ασbest, update αµbest, payoffbest, errorbest from
simulated annealing SA in Algorithm 3 for given δµ and µpos

6 By fixing αµbest, update ασbest,payoffbest, errorbest from
simulated annealing SA in Algorithm 3 where δσ replaces δµ and
σpos replaces µpos

7 if payoffbest − payoffcurr > 0 then
8 if errorbest > maxerror als then
9 exitsearch = True, break

10 else
11 exitsearch = False

12 else
13 exitsearch = True
14 payoffcurr, errorcurr = payoffbest, errorbest
15 αµ∗ , α

σ
∗ = αµbest, α

σ
best

16 return (αµ∗ , ασ∗ )

and line 6, ALS can alternatively change each element of mean
vector αµbest and variance vector ασbest, while fixing all the other
elements. ALS optimizations are repeated until adversarial payoff
function value payoffbest stops increasing in comparison to cur-
rent payoff function value payoffcurr. Starting with unchanged
(αµbest, α

σ
best) on line 4 of Algorithm 2, we empirically assume an

attack scenario where the variance vector ασbest is changed only
after mean vector αµbest has been changed in elemental sequence.
The maximum number of elements to change is determined by
VAE’s code size s. After executing multiple search iterations,
ALS finds optimally changed (αµ∗ , ασ∗ ) on line 16 of Algorithm 2.
Thresholding errorbest with input parameter maxerror als on



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, X X 9

Algorithm 3: Simulated Annealing (SA)
Input: αbest, δµ, payoffcurr, errorcurr, µpos, s
Output: αoptimal, payoffoptimal, erroroptimal

1 Initialization: Cost weighting constant λ = 1, Maximum number of
steps N = 10, Lower bound step interval l = 1, Upper bound step
interval h = 5, Step decrement d = 0.5 on h, Upper bound iteration
count maxiter = 100, maxerror sa = 5,
αoptimal = αinitial = αbest

2 payoffoptimal = erroroptimal = −∞
3 for i ∈ [0, s] do
4 αnext = αinitial

5 ε =
δµ[i]

N
6 exitoptimize = False, iter = 0,jumped = False
7 while ¬ exitoptimize ∧ iter < maxiter do
8 manipnext += ε× random(l, h− d× iter)
9 αnext[i] += manipnext

10 Generate adversarial dataXgen by substituting αnext in Eq. 7
11 Evaluate CNN on Xgen to find error errornext.
12 Substitute errornext in Eq. 6 to calculate payoffnext
13 if payoffnext − payoffcurr > 0 then
14 payoffcurr = payoffnext, errorcurr = errornext
15 if errornext > maxerror sa then
16 exitoptimize = True, break
17 else
18 exitoptimize = False
19 else
20 if errornext > errorcurr ∧ jumped == False

then
21 jumped = True,exitoptimize = False
22 manipnext += ε× random(l, h)

23 else
24 exitoptimize = True

25 iter += 1

26 αbest = αinitial, αbest[i] = αnext[i]
27 Generate adversarial data Xgen by substituting αbest in Eq. 7
28 Evaluate CNN on Xgen to find error errorbest
29 Substitute errorbest in Eq. 6 to calculate payoffbest for αbest
30 if payoffbest > payoffoptimal then
31 αoptimal = αbest
32 payoffoptimal = payoffbest, erroroptimal = errorbest

33 return αoptimal, payoffoptimal, erroroptimal

line 8 ensures that the ALS search procedure exits as soon as least
squares fit of payoffbest is found by alternating SA optimizers,
operating on the geometric surface of the adversarial payoff
function JL.

4.2 Simulated Annealing Algorithm

Algorithm 3 is the derivative-free stochastic optimization proce-
dure for finding adversarial manipulations in terms of simulated
annealing (SA) steps to i-th elements of vectors (αµbest, α

σ
best).

The step size in SA is set by ε on line 5. The bounds for ε depend
on i-th element of δµ defined by Algorithm 1 in the latent space
of the VAE. The magnitude of ε is determined by the parameter
N dividing δµ[i] into multiple increments. The direction of SA
is set by the sign of δµ[i] determining additive distance between
negative data and positive data. The initial candidate for SA is
αnext[i] where αnext has been initialized to candidate adversarial
manipulation αbest. αbest is determined by line 4 of Algorithm 2.

For each αnext[i], candidate adversarial manipulations αnext
are updated on line 9 where manipnext is a random multiple
of ε steps on line 8. The upper bound for selecting the random
multiple of steps decreases with SA’s iterations to reduce step size
across SA iterations. After minimizing adversarial cost function
by a greedy optimization strategy, we find a manipnext that is
close to 0 but is able to mislead CNN in payoffnext calculation
on line 12. Moreover, payoffnext is expected to have low cost

of optimization in adversary’s strategy space (determined by VAE
model) for large classification error in classifier’s strategy space
(which is the same as the original data space).

SA’s convergence criteria are VAE’s encoding space code size
s, maximum number of SA steps N , adversarial cost function’s
weighting constant λ. The SA’s optimization condition of increas-
ing payoff payoffnext is on line 13. The SA’s jump condition of
increasing error and exit condition of decreasing payoff as well as
error are on line 20 and line 23, respectively. To find a successful
adversarial manipulation, SA’s optimization condition is expected
to be frequently true while SA’s jump condition is rarely true.
On line 15, SA’s optimization of errornext is thresholded by
parameter maxerror sa. Line 26 updates only the i-th element
of αbest with i-th element of αnext found by SA. On line 28 and
29, errorbest and payoffbest are calculated to obtain classifier’s
error and adversary’s payoff for i-th adversarial manipulation.
The sorting condition on line 30 finds αoptimal with highest
adversarial payoff produced across all the s SA optimizers in
stochastic optimization procedure of Algorithm 3.

5 EXPERIMENTS

In this section, we validate the game theoretical adversary’s attack
scenarios in terms of CNN classifer models’ performance valida-
tion. The attack scenarios are expressed in terms of stochastic
optimization parameters in Algorithm 3. The number of times
the adversary invokes Algorithm 3 is determined by the VAE’s
encoder codesize s. For each label pair (pos, neg), the rate of
convergence of Algorithm 3 onto optimal payoff is determined by
adversarial cost function’s weighting constant λ. The step size of
annealing operation in Algorithm 3 has upper bound N .

5.1 Classifier and Autoencoder Description
To create training data, testing data and validation data for game
theoretical adversary, we conduct experiments on the handwritten
images of MNIST database [35] and VGGFace2 database of
human faces [36]. During the game, the adversary targets the
targeted class label pos’s true positive rate, which is also called
the attack performance. After the game, adversarial data is used to
measure CNN’s f1-score for varying pos label, which is defined
as the defence performance. All CNNs and VAEs are implemented
in Pytorch1 platform. In each VAE, encoder has fully connected
layers representing input data in terms of a multivariate Gaussian
distribution with mean vector and variance vector of size s. The
VAE’s decoder architecture is a mirror of its encoder.

MNIST CNN and VAE: Following the loss function defined
by Krizhevsky et al. [37], the CNN trained for MNIST has two
convolution layers and two fully connected layers leading upto a
crossentropy loss function with dropout regularization. The CNN
has a learning rate of 0.01 and momentum of 0.5. It is trained
for 25 epochs. Following the loss function defined by Kingma et
al. [38], the MNIST VAE’s encoder has two convolution layers.
All the input images are in the size of 28× 28 pixels. The VAE is
trained for 50 epochs.

VGGFace2 CNN and VAE: Following the loss function defined
by He et al. [39], the CNN trained for VGGFace2 is a pretrained
model obtained from torchvision package2. The CNN has a
learning rate of 0.01 and momentum of 0.9. It is trained for 100

1https://pytorch.org/docs/stable/index.html
2https://pytorch.org/docs/stable/ modules/torchvision/models/resnet.html

https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/_modules/torchvision/models/resnet.html
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Fig. 3: MNIST Testing performance (error) with variations in attack
parameters consisting of encoder code size s, adversarial cost weight
λ and annealing steps limit N .
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Fig. 4: VGGFace2 Testing performance (error) with variations in
attack parameters consisting of encoder code size s, adversarial cost
weight λ and annealing steps limit N .

epochs. Following the loss function defined by Hou et al. [40], the
VGGFace2 VAE’s encoder has four convolution layers with batch
normalization. All the input images are in the size of 32 × 32
pixels. The VAE is trained for 1000 epochs.

5.2 Attack Performance Validation

Figure 3 and Figure 4 show the variation in (percentage) attack
performance for CNNo, CNNm, CNNs on the y-axis when
pos = 5 and neg = 8 in MNIST database and pos = AndyLau

and neg = JackieChan in VGGFace2 database respectively.
The x-axis in Figure 3(a) and Figure 4(a) varies s the code size
of mean vector µpos and variance vector σpos encoding positive
data. s is varied between 10 and 100 for MNIST database. s is
varied between 5 and 700 for VGGFace2 database. The x-axis in
Figure 3(b) and Figure 4(b) varies λ the weighting constant on
adversarial payoff function. λ is varied between 0.1 and 10 for
MNIST database. λ is varied between 0.1 and 15 for VGGFace2
database. The x-axis in Figure 3(c) and Figure 4(c) varies N the
maximum number of steps taken by the adversary applying ALS
of Algorithm 2 to optimize the step change to each element of the
encoded data parameters µpos and σpos. N is varied between 5
and 40 for MNIST database. N is varied between 6 and 75 for
VGGFace2 database.

5.3 Defence Performance Validation
While s determines the invocation times of SA in Algorithm 3,
λ determines the change rate of payoffbest crossing iterations in
Algorithm 3. N sets the infinitesimal step size ε in Algorithm 3.

For each attack parameter value (and adversarial dataset) fixed
on the x-axis, each data point triplets marked on y-axis. Figure 3
and Figure 4 show that the manipulated CNN (CNNm) has higher
error than the original CNN (CNNo), and secure CNN (CNNs)
has lower error than manipulated CNN (CNNm). Thus adversar-
ial data has successfully misled CNNo into misclassifying pos
data as neg data, which is measured by true positive rate of pos
in CNN’s predictions. The exact change in error between CNNm
and CNNo is determined by the game’s iterations thresholds, i.e.,
maxerror game, maxerror als and maxerror sa, which
act as the exit condition on the game’s convergence criteria. These
optimization criteria estimate optimal adversarial manipulations
such that adversarial cost function tends to relatively low value
and classification error function yields a relatively high value.

Table 2 shows the results of statistical hypothesis testing
across different attack performances, such as, CNNo, CNNm
and CNNs, under all the attack parameters values and datasets as
mentioned in Figure 3 and Figure 4. Each row in Table 2 lists the
attack parameter for statistical testing. Each column in Table 2
gives results of a two-sample t-test for each pair of CNNo,
CNNm, CNNs classifiers. The null hypothesis in each t-test
states that the classifier performances are the same before and after
adversarial manipulation. Assuming a normal distribution for the
attack performances calculated over attack scenarios, the alterna-
tive hypothesis in each t-test states that across attack parameter
settings (and adversarial datasets), the manipulated classifier has
higher error than original classifier and the secure classifier has
lower error than manipulated classifier.

Table 3 and Table 4 give the CNN defence performances
calculated from f1-score with varying (pos, neg) label pairs.
Across the table rows, the attack parameters are fixed to target-
dependent tuples, such as s = 50, λ = 50 and N = 30. Varying
target class pos from 2 to 9 allows us to create different adversarial
data manipulations on both the original data and the generated
data. The defence performance of original CNN (CNNo) and
secure CNN (CNNs) are our baseline for performance validation
in Table 3 and Table 4. The defence performances of manipulated
CNNs (CNNm) in Table 3 and Table 4 are calculated on the
original data distribution as well as the generated data distribution.
CNNo’s defence performance is created on training data of either
original data distribution or generated data distribution. By adver-
sarially manipulating the corresponding testing data, CNNm’s
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TABLE 2: Alternating Least Squares Attack Scenario: t-tests by varying parameters in Variational Stackelberg games. The small p-values
from the statistical tests demonstrate the superiority of our model.

Attack Parameter
p-values from t-statistics for target class “5” p-values from t-statistics for target class “Andy Lau”

CNNo vs CNNm CNNo vs CNNs CNNm vs CNNs CNNo vs CNNm CNNo vs CNNs CNNm vs CNNs
Code size (s) 9.9 × 10−8 3.6 × 10−8 9.5 × 10−5 1.9 × 10−4 4.5 × 10−9 4.1 × 10−8

Cost weight (λ) 2.7 × 10−8 1.8 × 10−7 3.2 × 10−6 6.5 × 10−9 6.1 × 10−2 1.4 × 10−7

Annealing steps
limit (N )

1.5 × 10−9 1.1 × 10−8 2.0 × 10−6 3.4 × 10−8 5.6 × 10−3 1.4 × 10−6

TABLE 3: MNIST Comparisions on the defence to adversarial Nash equilibrium attacks.
Classification error: Adversarial attack in Variational Stackelberg Game Class Labels

(pos, neg)
CNNoriginal

CNNmanipulated CNNsecure
(Ourmethod)

CNN
DCGAN [20] IWGAN [16] DeepFool [14] FGSM [2] CNNGA [30] CNNSA [30]

1.12 10.01 40.16 39.41 32.06 34.66 25.93 25.81 6.44 (2,8)
1.54 54.74 47.12 39.84 46.15 37.71 27.88 28.76 5.11 (3,8)
3.86 24.16 26.18 26.75 26.59 26.57 28.58 26.82 6.33 (4,8)
1.87 8.78 50.68 53.31 56.71 35.91 27.94 28.49 5.31 (5,8)
1.21 12.41 39.41 36.16 47.19 35.58 25.77 26.16 5.39 (6,8)
4.89 23.91 28.78 27.48 27.03 27.28 27.65 27.81 4.82 (7,8)
2.53 16.97 41.21 37.22 54.88 36.85 26.86 27.34 3.58 (9,8)

t-statistics 1.9 × 10−2 3.7 × 10−7 6.8 × 10−7 7.6 × 10−6 2.0×10−9 3.5×10−14 4.6×10−14 Base

TABLE 4: VGGFace2 Comparisions on the defence to adversarial Nash equilibrium attacks.
Classification error: Adversarial attack in Variational Stackelberg Game Class Labels (pos,neg)

CNNoriginal
CNNmanipulated CNNsecure

(Ourmethod)
CNN

DCGAN [20] IWGAN [16] DeepFool [14] FGSM [2] CNNGA [30] CNNSA [30]
5.25 44.44 62.21 45.34 45.99 46.13 32.37 92.0 26.53 (Andy Lau, Jackie Chan)

20.19 37.71 73.33 56.31 26.45 33.81 22.07 61.34 13.09 (Zhang Jingchu, Jackie Chan)
20.11 35.19 27.64 31.13 32.64 34.91 33.88 26.27 16.66 (Ajay Devgan, Jackie Chan)

8.08 31.41 71.84 35.89 20.38 22.03 23.28 17.51 12.31 (Aishwarya Rai Bachchan,
Jackie Chan)

21.92 32.62 81.94 31.75 26.27 32.17 33.01 84.51 11.74 (Amy Smart, Jackie Chan)

16.77 28.13 21.61 26.08 56.14 54.36 95.08 18.24 20.52 (Jada Pinkett Smith, Jackie
Chan)

2.24 35.09 87.5 34.49 85.91 79.83 100 94.49 11.07 (Bruce Willis, Jackie Chan)
24.44 31.31 67.93 27.17 28.35 36.67 96.69 26.08 9.57 (Oprah Winfrey, Jackie Chan)

t-statistics 4.8 × 10−6 1.1 × 10−4 1.7 × 10−4 7.3 × 10−3 1.0 × 10−3 8.1 × 10−3 8.7 × 10−3 Base

defence performance is created. CNNs’s defence performance is
created by training on adversarially manipulated training data and
testing on adversarially manipulated testing data.

The original training data and original testing data is cross-
validation data created from the MNIST database of handwritten
digits [35] and VGGFace2 database of human faces [36]. The
generated data is created from the outputs of Deep Convolutional
Generative Adversarial Network (DCGAN) [20] and Improved
Wasserstein Generative Adversarial Network (IWGAN) [16],
which are generative adversarial networks (GANs) trained to pro-
duce images. The generated data is also created from existing ad-
versarial examples in deep learning networks, i.e., DeepFool [14]
and Fast Gradient Sign Method (FGSM) [2]; game theoretical
adversaries genetic algorithm CNNGA [30] and annealing al-
gorithm CNNSA [30]. The p-values from two-sample t-tests in
the last row of Table 3 compare CNNm’s performances with
CNNs (which acts as the classification baseline for statistical
comparisons).

The null hypothesis for t-test is that our adversarial manipu-
lations are unable to attack existing adversarial classifiers where
classifier’s defence performance is calculated in terms of f1-score
of targeted class labels. The alternative hypothesis for t-test is
that our adversarial manipulations are able to attack classifiers
trained on existing sources for original data, generated data and
adversarial data. Moreover, our secure classifier is robust to
the proposed data manipulations in comparision to the existing
adversarial classifiers.

Therefore, across multiple two-label two-player sequential
variable-sum Stackelberg games played over both original data
and generated data, CNNm has greater error than CNNo error

in Table 3 and Table 4. At the same time CNNs has lesser error
than CNNm. From low p-values (<0.05) in Table 3 and Table 4
we are able to reject the null hypothesis in t-tests comparing
CNNm with CNNs. The errors thresholds maxerror game,
maxerror als, maxerror sa, which manipulates training data
in the game’s iterations, allow us to control the amount of
adversarial data that is injected into the testing data to achieve
desired defence performance after game’s convergence. On a given
dataset, a desired value for maxerror game, maxerror als,
maxerror sa can be obtained by experimenting with parameter
settings for λ, s, N , respectively. Varying the negative label neg
is expected to create new values for the defence performances in
Table 3, but not change the conclusions from t-tests over same set
of positive labels pos.

From p-values of the t-tests, we also conclude that we are
able to create attack data for the adversarial examples generated
by GANs and adversarial networks. In comparision to the attack
scenarios in Chivukula and Liu [30], our improved search and
convergence criteria in the changed optimization problem are able
to find better adversarial manipulations at the Nash equilibrium.
These manipulations are able to attack the game theoretical ad-
versarial learning proposed by Chivukula and Liu [30]. Finally
we are then able to produce a more robust CNNs classifier in
comparision to existing literature.

6 CONCLUSION AND FUTURE WORK

In this research, we aim to improve robustness of deep learning
models via game theoretical modelling. We propose Stackelberg
games to generate adversarial data that misleads CNNs classifica-
tion result. We design adversarial payoff functions that optimize
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the search for data manipulations on a latent data space repre-
sented by a Gaussian mixture model. We introduce payoff func-
tions that are optimized by our search algorithms using simulated
annealing and alternating least squares. After obtaining the opti-
mal adversarial attack data from Nash equilibrium, we augument
the training data with the adversarial data to produce CNNs secure
to the proposed data manipulations. The CNN’s misclassification
performance is evaluated against existing attack models using
statistical significance tests. Our experiments illustrate that our
game-theoretical approach produces classifiers that are the most
secure in defending various types of adversarial attacks.

In future work, we shall explore dependence between ran-
domization in our adversarial manipulations and optimization in
our game formulation. At present, the game theoretical stochastic
optima (solving for adversarial data) are determined by the con-
vergence of adversarial cost function rather than classification cost
function. In future, we shall explore multilabel classification cost
functions in a multiplayer strategy space of pure strategies as well
as mixed strategies. Besides, we are also planning to apply our
work to text and document data in natural language processing
problems where the learning system may also be vulnerable to
adversarial attacks.
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