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Abstract
In clinical applications where structural asymmetries between homologous shapes have been
correlated with pathology, the questions of definition and quantification of “asymmetry” arise
naturally. When not only the degree but the position of deformity is thought relevant, asymmetry
localization must also be addressed. Asymmetries between paired shapes have already been
formulated in terms of (nonrigid) diffeomorphisms between the shapes. For the infinity of such
maps possible for a given pair, we define optimality as the minimization of deviation from
isometry under the constraint of piecewise deformation homogeneity. We propose a novel
variational formulation for segmenting asymmetric regions from surface pairs based on the
minimization of a functional of both the deformation map and the segmentation boundary, which
defines the regions within which the homogeneity constraint is to be enforced. The functional
minimization is achieved via a quasi-simultaneous evolution of the map and the segmenting curve,
conducted on and between two-dimensional surface parametric domains. We present examples
using both synthetic data and pairs of left and right hippocampal structures and demonstrate the
relevance of the extracted features through a clinical epilepsy classification analysis.

I. Introduction
The temporal lobe's role in memory and learning makes it a natural point of focus in the
study of neurodegenerative disease progression. In particular, the medical imaging literature
abounds with attempts to identify and correlate abnormalities of the hippocampus with
Alzheimer's disease, schizophrenia, and epilepsy. A precise analysis of such abnormalities
could unlock the ability not only to track the progression of existent disease, but to identify
at-risk individuals for preventative treatment. While early studies typically characterized
hippocampal shape in terms of such simple global measures as volume, length, and surface
area, it was shown as early as [19] that analysis of regional asymmetries could improve
disease classification capability. Several methods for fine-grained regional hippocampal
shape analysis have since been suggested. Gerig et al. [9] included a medial shape
representation with age and drug treatment data in an exploratory statistical analysis of the
hippocampus's link to schizophrenia. Shen et al. [13] conducted a statistical analysis based
on the spherical harmonic (SPHARM) representation method. Styner et al. [14] tested the
power of a SPHARM-based medial representation to separate monozygotic from dizygotic
twins through lateral ventricular structure, and schizophrenics from normals through
hippocampal and hippocampus-amygdalan structures. Davies et al. [7] devised a minimum
description length framework for statistical shape modeling and extracted modes of variation
between normal and schizophrenic populations. Bouix et al. [2] employed medial surfaces in
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a local width analysis. Using a viscous fluid flow model, Csernansky et al. [6] computed
diffeomorphic maps of patient hippocampi onto a reference, producing a dense inward/
outward deformation field over each hippocampal surface. The surface itself was
additionally manually segmented to allow for the regional comparison of the deformation
fields as part of an attempt to separate healthy individuals from those exhibiting dementia of
the Alzheimer's type. All reported results have indicated the benefit of incorporating
regional information into the analysis. This is not surprising, as simple scalar measures of
entire structures necessarily discard a wealth of information concerning the full
characterization of those structures. However, statistical results thus far obtained are
preliminary, and shape analysis results can actually appear contradictory across different
studies (for instance, Styner notes in [15] the contrast between the primary abnormality
localization in the hippocampal tail found in that work and the localization in the head
reported in [5]). Furthermore, while statistically significant differences of hippocampal
shape have been identified between diseased and normal sample populations, reliable
classification of a sizeable number of patients with respect to those categories has not yet
occurred. The problem thus remains very much open.

The need to identify and possibly isolate subregions of interest on the hippocampal surface
suggests segmentation (henceforth synonymous with “parcellation”) and the need to
compare hippocampal surfaces between and within (i.e., detection of asymmetry between
halves of the same structure) patients represents an inherent requirement for registration. A
unified segmentation and registration scheme is thus a natural approach to the problem at
hand. The first such scheme known to us was given by Yezzi et al. [1], who unified mutual
information (MI)-based flat 2-D rigid image registration with a level set implementation of a
piecewise constant (Chan–Vese) segmentation scheme through a variational principle.
Wyatt et al. [21] accomplished rather the same thing, solving instead a maximum a
posteriori (MAP) problem in a Markov random field (MRF) framework. Xiaohua et al. [22]
extended this to the nonrigid registration case, and Unal et al. [16] addressed the same
problem using coupled partial differential equations (PDEs). In [18], Wang et al. presented a
simultaneous nonrigid registration and segmentation technique for multimodal data sets. Jin
et al. [10] simultaneously evolved a surface segmentation and a radiance-discontinuity-
detecting segmentation of the evolving surface itself. Young et al. [23] combined joint
segmentation and (scaled rigid) registration with morphing active contours for segmentation
of groups of CT images. Pohl et al. [11] produced an expectation maximization (EM)-based
algorithm for simultaneous affine registration and subcortical segmentation of MRIs using a
labelled cortical atlas.

With the relevant background established, we now present a novel scheme for shape
comparison that rests on the fundamental assumptions that: 1) the deformity of homologous
anatomical structures can be quantified as the deviation from isometry of the deformation
map between their surfaces and 2) the evolution of the global correspondence must allow for
a partial disconnection between the normal and abnormal regions, as these are by definition
not expected to exhibit the same deformation patterns. As such, surface segmentation rests at
the heart of our approach, which can be viewed both as a registration tool and an asymmetry
localizer. For the topologically spherical surfaces considered here, our intrinsic approach
leads naturally to an elegant 2-D parametric representation of both the segmentation and
registration. Our use of Riemannian surface structure in the matching criterion is similar in
spirit to work done by Wang et al. (e.g., [20]) in which the authors presented a technique to
nonrigidly register surfaces using a 2-D (parametric) diffeomorphic map constructed from
Riemannian surface structure information. The integrated manifold segmentation is enough
to distinguish our approach from this work, but additionally, our definition of system energy
in terms of piecewise isometry (i.e., using first fundamental forms in the matching criterion)
inherently balances the consideration that the map should accurately match Riemannian
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surface characteristics with the idea that the map should incur as little deformation as
possible in doing so. As such, we eliminate the need for additional regularization of the map
gradient. In fact, the real novelty of the algorithm is more fundamental: this is the first
proposal for simultaneous nonrigid surface registration and segmentation wherein the
segmentation is driven by the evolving registration map itself.

The rest of the paper is organized as follows: Section II contains the mathematical
formulation and algorithm conceptualization. In Section III, we delve into specifics of the
implementation. Section IV contains experimental results on both synthetic and real data
sets. Finally, in Section V, we draw conclusions.

II. Simultaneous Segmentation and Registration Algorithm
A. Differential Geometric Framework

To begin the explanation of our framework, we first turn our attention to the already-studied
problem of 2-D image pair segmentation and nonrigid registration. A solution to this
problem (regardless as to how one obtains it) clearly takes the form of: 1) a differentiable
one-to-one and onto mapping function which shares its domain with one of the images and
its range with the other and 2) a segmenting curve which lies within one image domain and
is carried into the other through the mapping function. With images, there is a natural and
obvious basis for computing this solution: the image intensity values. Intensity agreement
represents the matching criterion by which algorithms such as mutual information
maximization estimate pairwise image registration. Statistics derived from intensity values
form the driving force of region-based segmentation methods (in Chan–Vese [3], for
instance, the statistic is the mean of each curve-defined region). Further, differential
qualities (e.g., gradient, Laplacian) of the intensity profiles can prove useful in identifying
edges, corners, and other useful features. When conducting pairwise segmentation and
registration of shapes rather than images, however, the appropriate measures are perhaps
less obvious. It remains to us to define them.

Before defining a matching criterion, we first show how it is possible to cast the shape
registration and segmentation problem into a computational framework similar to the image
framework described above (save for the matching criterion itself) through appropriate
parametrization. To accomplish this, one need note only the following simple topological
facts: 1) hippocampi can be thought of as 2-D Riemannian manifolds embedded in ℝ3; 2)
these manifolds are topologically equivalent to the sphere (closed and genus zero); 3) the
exclusion of a pair of poles from the sphere produces a cylindrical topology; and 4) any
surface topologically equivalent to the cylinder can be parametrized by a class of functions
whose common domain is a single rectangular patch with periodic boundary conditions at a
pair of opposite sides. Note that this last fact directly implies that any function defined on
the surface in question can be fully represented as a function over a closed rectangular
domain with the stated boundary conditions. In particular, a smooth map between two
hippocampi can be represented as a smooth map (deformation field) between two parametric
rectangular domains satisfying the boundary conditions. Through this simple and natural
representation of the surfaces, our solution format has become quite similar to that of the 2-
D image segmentation and registration problem in that all of the computations are performed
on and between rectangular domains. In contrast, when computation takes place in the
embedding (3-D) space before being restricted to an approximation to the surface within that
space, one cannot draw nearly so direct a parallel.

Clearly, the matching criterion which we define in place of image intensity must
communicate information about the shapes being registered and segmented. But a well-
known theorem due to Bonnet (whose formal statement we omit for the sake of brevity: see
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for instance [8]) tells us that the first and second fundamental forms (FFF and SFF) contain
all surface shape information. For the 2-D manifold case, these quantities are defined as
follows:

(1)

(2)

where is the 3-D surface map, and are the map parameters (equivalently, the coordinate
system of the parametric domain), is the surface normal (defined as (Xu × Xv/|Xu × Xv|)),
and subscripts denote differentiation. There are different ways to conceptually distinguish
the two quantities. For one, the geometric information contained in the FFF is of first order,
while that of the SFF is second order in nature. Alternately, the FFF encodes the intrinsic
geometry of the parameterized surface while the SFF encodes the extrinsic geometry, or, the
FFF encodes local length information, the SFF surface curvature (its trace, the mean
curvature, is used as a matching criterion in [20]). Because of its lower differential order
(and thus greater relative stability) and intrinsic nature, we choose to base our approach on
comparison between the FFF tensors of the two surface parametric domains. Given
topological equivalence, FFF equivalence everywhere through a bijective deformation map
defines that map as a global isometry: this indicates that the extent of failure to match this
characteristic serves well as a measure of shape dissimilarity.

B. System Energy Functional
We now formalize the problem and fully specify its solution as follows. Let S1 and S2 be
two surfaces in ℝ3. The Euclidean metric in ℝ3 induces Riemannian metrics g1 and g2 on S1
and S2 respectively. The goal is to segment regions in S1 and their corresponding regions in
S2 while mapping those correspondents so as to optimally match their metric structures.
Specifically, the algorithm must compute a homeomorphism f between S1 and S2 and a set
of closed curves γ1 on S1 and γ2 in S2. The restriction of f to the complement S1 \ γ1 is a
diffeomorphism between S1 \ γ1 and S2 \ γ2. If U1, ⋯, Ui and V1, ⋯, Vn denote the
collections of open components (topological discs) of S1 \ γ1 and S2 \ γ2, respectively, then
f maps Ui diffeomorphically onto Vi for each i while matching the Riemannian structures of
each Ui and Vi = f(Ui).

We solve the simultaneous segmentation and registration problem outlined above using a
variational framework. The energy functional ℰ is defined as a functional of a pair (F, γ1),
where γ1 is a set of closed curves on S1 and f : S1 → S2 is a homeomorphism which is C∞

on S1 \ γ1. Let f* g2 denote the pull-back metric on S1 . ℰ(f, γ1) is then defined as

(3)

where

(4)
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(5)

S1in and S1out are the regions of S1 inside and outside of γ1, respectively, and α, β are
positive weighting constants.

The quantity e defined in (4) provides, at each point on S1, a measure of similarity between
the Riemannian structures g1 and g2 as they correspond under the current estimate of f. As
such, it represents the local deviation from isometry, and its integral over the domain (we
have adopted the convention of using P1, the parametric domain of S1) provides a global
measure of how far the given deformation f is from an isometry. This is the first term in the
system energy represented in (3). In local (para-metric) coordinates, it is given by the
distance between the two matrices G1 and JtG2J

(6)

where J is the Jacobian of f when f is expressed from the local coordinate system of P1 onto
that of P2, and G1 and G2 are 2 × 2 are positive definite matrices expressing the metrics g1
and g2 in the coordinate systems of P1 and P2, respectively, as g2 in (1). The second term in
ℰ restricts the length of the segmenting curve, so as to achieve the minimal necessary
segmentation (shorter length and/or fewer open components) under the other energy
constrains. Finally, the third and fourth terms place a homogeneity constraint on e within
each connected component defined by the segmenting curve. This corresponds to our notion
that the curve should partition the surfaces in such a way as to isolate regions exhibiting one
sort of deformation characteristic from those exhibiting another. Note that these terms are
defined in terms of both f and f1, and as such the minimization of their energy will drive
both segmentation and registration. This coupling represents the fundamental difference
between a simultaneous framework and one in which the segmentation follows the
registration (in series).

III. Implemnetation of Energy Functional Minimization
The minimization of the system energy defined by (3) is achieved by alternating between the
deformation map and segmentation estimation processes. When optimization steps are
constrained to be sufficiently small, this alternation approximates minimization of ℰ
simultaneously with respect to both f and γ1. The Euler-Lagrange equation for (3) can be
derived through standard calculus of variations. The equation for f contains a fourth-order
expression involving f and its derivatives. Because of the high differential order of this
analytic expression, we instead choose to minimize the functional ℰ with respect to f
directly through a constrained optimization process (more detail in Sections III-B and III-C).
Minimization with respect to γ1, on the other hand, is implemented via a level set
segmentation as described by Chan and Vese in [3]. The only difference between this
module of our method and that described therein is our generalization of the process to
genus zero 2-manifolds, which entails respecting nonuniform surface length and area
elements in accordance with the metric information.

A. Hippocampal Surface Data Acquisition and Formatting
To produce the surface data used in this study, MRI scans were first acquired with a 1.5 T
MRI scanner (Siemens Magnetom 42SPA, Siemens Medical Systems, Iselin, NJ) using 3-D
magnetization-prepared rapid gradient echo (MPRAGE) sequences. The gradient echo
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images were transferred for postprocessing. The sequence parameters included the
following: obtained in sagittal plane, 250-mm field of view, repetition/echo times of 10/4
ms, T1 weighted sequence of 300 ms, 10° flip angle, 130 × 256 matrix, and 180-mm slab
with 128 partitions producing 1.25-mm gapless sections. The segmentation of the
hippocampal surfaces from the MRI data was done manually by a trained neuroanatomist,
and a smooth surface was fit to the marked points by using a deformable pedal surface as
described by Vemuri and Guo in [17]. Each segmented hippocampal surface obtained from
the application of this technique was represented by a 40 × 21 mesh of points on that
surface, periodic in one direction. (This mesh is the instantiation of the surface parametric
domain as discussed in Section II-A.) Homologous hippocampi were brought into rigid
alignment through application of the iterative closest points (ICP) algorithm following the
segmentation. The rigid alignment step included extraction of volume data and
normalization of the shapes with respect to this data.

B. Discrete Representation of Deformation Map and Segmentation Curve
An intrinsic map between two structures that are topologically equivalent to cylinders can be
stored (in discretized form) as a two-vector function over an m × n grid, where m and n are
the grid point counts in the u and v parameter directions. The two-vector at each grid point
on the domain grid represents the displacement vector between the domain grid point and
the corresponding target grid point. Since we are representing a cylinder, which is periodic
in one direction, with a grid, we must enforce this periodicity through a modulo arithmetic
implemented with respect to one of the grid coordinate directions (u). The grid must then be
bounded in the remaining (v) parametric direction, with the two bounded ends
corresponding to the “top” and “bottom” of the cylinder being parameterized. The
coordinates at the poles (columns 1 and n of the grid) are excluded from the map evolution
process, and so we conduct energy minimization with respect to mn displacement u
coordinates and m(n − 2) displacement v coordinates, which can be stored as a single
variable vector of size 2m(n − 1). Note that this optimization is constrained in that the v
component must everywhere with respect the boundaries corresponding to the top and
bottom of the cylinder. We choose also to restrict the modular family of solutions for the u
components (corresponding to 360° rotations around the cylindrical axis) to falling within a
modulus above or below the initial conditions. We evolve the system under these constraints
using the LargeScale version of Matlab's “fmincon” function, a subspace trust region
method based on the interior-reflective Newton method described in [4]. We exploit the
inherent sparsity structure of the Hessian (as described in Section III-C). The Riemannian
characteristics themselves, whose values of course drive the energy minimization process,
are calculated through analytical differentiation of a bicubic surface fit to the given points.

The segmenting curve is simply stored and evolved according to well established level set
curve evolution techniques (see [12] for extensive discussion). The one modification present
in our case is that length and area computations respect the distances between grid points by
using the appropriate Riemannian metric at each point (as opposed to the uniform Euclidean
metric used for flat domains and targets).

C. Sparsity of Hessian
The trust region method which conducts the energy minimization with respect to the map
(for a fixed segmentation) can exploit the fact that local changes in the map can only effect
local changes in the induced metric structure. To make this point clear, let us consider the
fact that the FFF is defined as in (1), where X is the surface spatial location 3-vector and u
and v are the 2-D parametric coordinates. The FFF at a point depends only on the derivatives
of X with respect to u and v. Furthermore, for a fixed segmentation, the energy itself is a
function only of the FFF structure on the target manifold imposed by the evolving map. But
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consider each component of the 2m(n−1) vector which we are evolving: infinitesimal
variation in one of these components can only perturb the metric structure on the target
manifold locally, as the FFF definition shows that it depends only on Xu and Xv at the given
(u, v), and these partial derivatives themselves are inherently local. It should then be
immediately clear that mixed second partials can only be nonzero when both variables being
differentiated against lie within the same neighborhood (as defined by the differentiation
scheme): this leads to the Hessian structure depicted in Fig. 2, wherein the solid diagonals
represent the nonzero matrix elements (and the map variable vector structure was explained
in Section III-B). Exploitation of this sparsity structure is necessary for a second-order
optimization scheme to achieve computational feasibility.

IV. Results
To illustrate the method's performance, we first present a visual display of its output and
follow by demonstrating the classification power of the extracted features. The input dataset
consisted of 60 L/R hippocampus pairs, collected and formatted as described in Section III-
A. Clinicians provided a trinary classification of this dataset: LATL (left atrophied temporal
lobe) epileptic, RATL (right atrophied temporal lobe) epileptic, and Control. In this step, six
samples were discarded due to ambiguity of their clinical class membership, leaving the
final set at 54 patient samples (15 LATL, 16 RATL, 23 Control).

A. Output Visualization
Our result visualization format can best be understood through reference to Fig. 1, in which
we present a holistic schematic. For each sample, we illustrate: 1) the deformation map f as
the warp necessary to carry points in P1 to their correspondents in P2; 2) the segmentation
γ1 and the deformation energy function e as they exist in P1; and 3) the segmentation γ1 as
it exists on S1 through the parametrizing function from P1 (there is a corresponding region
on S2 as well, not depicted here but fully specified for given f and γ1 through the
parametrizing functions: γ2 is specified by f and γ1). As noted in Fig. 1, the segmentation is
depicted on through the shading of its interior and exterior with red and blue, respectively;
the curve(s) itself is then of course the boundary between the shaded regions.

We first consider the case of a pair of cylinders, where one member of the pair has had its
surface distorted according to an outward normal vector field of magnitude dictated by a
Gaussian function confined to a known support. Since the support is known, we can use its
segmentation as one quantification of accuracy. Fig. 3 illustrates the obtained results. Here,
86% of the distortion area is included in the segmentation and 0% of the undistorted area is
included in the segmentation. This means that the segmenting curves lie slightly within the
distorted regions, as can be seen in the figure. Even the 14% “misclassification” cannot
necessarily be seen completely as error in this context: since the protrusions are far less
severe towards the boundaries of their support (the feet of the hills), they are accordingly far
more similar in deformation level to the undistorted regions than to the heavily distorted
regions towards the support centers. As such, the segmentation arrived at is in compliance
with the two-mean framework (which produces a high/low segmentation). While we do later
note that it is possible to refine this framework (see conclusion), it is important to
understand that this manner of grouping is not inherently a limitation, particularly
considering the intended application. We follow by demonstrating robustness of the
segmentation in the face of reparametrization of the surface of comparison and random noise
in the surface point cloud (see caption for parameter levels). When repeated under these
conditions, the segmentation remains 100% consistent at the pixel resolution with that
obtained prior.
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For the real cases described previously, we present the results obtained on one member of
each class (RATL, LATL, and control), as columns of Fig. 4. Each figures depicts a
mirrored left hippocampus on the left side of each panel and the corresponding right
hippocampus to which it is compared on the right side. This aspect of the study (inherently)
lacks ground truth, and a “correct” result is thus one in which the segmented regions indeed
appear to be the portions of one hippocampus which are shaped least like the corresponding
portions of the hippocampus to which they are being compared. This is readily evident in the
presented figures. The provision of an input device to allow for expert manual segmentation
(closed curves confined to the surface) for validation is itself a research problem. This does
not mean, however, that we cannot evaluate the quality of the data extracted from the real
set. We present a classification analysis as evidence.

B. Classification Analysis
As it is clear that volume does indeed contain information relevant in the shape comparison
of homologues, it is not surprising that it is a significant feature in distinguishing epileptics
from controls. However, it is equally evident that the complex process of neurodegeneration
associated with epilepsy cannot be captured in full so simply. The utility of volume as a sole
basis for classification is thus inherently limited. We have provided a fine-grained shape
difference characterization with a mind to overcoming precisely this limitation. The test
performance of a classifier should thus increase when our extracted features are included as
input. Note that we have worked with volume-normalized data to deliberately orthogonalize
the extracted features with respect to volume. Since volume itself is assumed to be a relevant
feature, it is possible that the best test classification accuracy will be obtained by using
volume and local shape difference information in conjunction.

Since we produce a segmented energy function over the entire surface (parametric) domain,
we have options as to how to present features to the classifier algorithm. We can collect
summary statistics that profit from both segmentation and deformation quantification, such
as mean deformation energy [e as defined in (4)] inside and outside of the segmenting
curves. Alternately, once the shapes have been volume-normalized and mutually registered,
we can compare the (quasi-)continuous e functions across patients by forming feature
vectors from the e values at corresponding sample locations. There is also an array of
supervised learning methods from which to select a preferred classification algorithm; we
choose the ones observed to give best test performance on all feature sets examined,
including volume alone (as further detailed in the following).

Fig. 5(a) demonstrates the success rates in classifying controls versus epileptics (LATL and
RATL groups combined into a single set) and Fig. 5(b) demonstrates analogous results for
the problem of separating RATL and LATL members. The training and test statistics were
collected through a standard leave-one-out cross validation procedure: test results should be
regarded as the reliable performance indicators (and high discrepancy between training and
test percentages as evidence of overfitting). The feature vectors being compared are: 1)
volume alone; 2) volume with a set of six summary statistics derived from the algorithm
output (total area within the curve(s), total area outside of the curve(s), total energy e within
the curve(s), total energy e outside of the curve(s), mean energy e within the curve, mean
energy e outside of the curve); 3) the function e at 600 sampled locations; and 4) a
concatenation of feature vectors (1), (2), and (3). The chosen abbreviations for these feature
vectors are “VOL,” “VOL+6SUM,” “E,” and “E+VOL+6SUM,” respectively. The
classifiers used are: 1) support vector machine with polynomial basis (SVM w/PB); 2)
support vector machine with radial basis (SVM w/RB); and 3) kernel Fisher discriminant
with polynomial basis (KFD w/PB).
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The results of both studies make the method's success clear. In the case of distinguishing
epileptics from controls, all experimental feature vectors demonstrated superior test
classification accuracy, with a maximum performance of 88.89% on “E VOL+6SUM” as
classified by SVM w/PB, as compared to 79.56% for “VOL” as classified by SVM w/RB.
Note in particular that feature vector “E” outperforms “VOL” as well, despite the fact that
“E” contains no volume information. This portion of the experiment confirms our notion
that local distortion information is an important complement to volume data and suggests
that it can in some cases outweigh volume in independent relevance. While we do not
observe this latter phenomenon in the LATL versus RATL case, we do still observe
substantial outperformance of “VOL” by “VOL+6SUM” (90.32% versus 80.65%), again
demonstrating the algorithm's extraction of clinically relevant shape information not
represented by volume. The large difference between training and test accuracies for the
other two feature vectors indicates overfitting, which is enabled by their higher
dimensionalities. This indicates that an overly fine-grained approach can confound
classification on this set, but that subregion identification and characterization remains
nonetheless crucial. We have not come across clinical test classification accuracies of this
level in any of the literature we have surveyed.

V. Conclusion
We have presented a novel scheme for simultaneous nonrigid registration and segmentation
of homologous shapes, wherein the registration and segmentation processes are driven by
intrinsic geometric characteristics of the shapes themselves. As such, we are able not only to
identify surface pairs representing large deformations, but also to specify which subregions
of the shapes appear most likely to be involved in the deformation, to produce an estimate of
the implicit deformation field, and to quantify the deformation energy of the segmented
subregions separately from that of the remaining surface patches. We have noted that the
method's results conform to ground truth in cases where it can be meaningfully defined and
to expectation in cases where it cannot. The most important validation comes in the form of
our substantial improvement of disease classification accuracy relative to standard
volumetric analysis. In the case of epileptics versus controls, we have provided evidence that
volume-independent local shape information is actually a more significant predictor than
volume itself.

It should be noted that the two-region Chan–Vese-inspired framework is merely a good
“first draft” of a segmentation scheme for this sort of problem. Extending the functional to
the multiple mean case, or to that of generalized Mumford-Shah (of which the Chan-Vese
approach is a special case), would potentially enable the identification of intermediate
deformation levels currently being grouped with their nearest matches in the high/low
system. The FFFs can also be compared using a norm other than Frobenius. Finally, all
evolution-based methods (apart from the most trivial cases) suffer from some amount of
initialization dependence. Global optimization schemes could be expected to further boost
the algorithm's performance.

Acknowledgments
Data sets were partially provided by Dr. C. Leonard of the UF McKnight Brain Institute. Thanks to S. Kodipaka for
his invaluable assistance in the data analysis portion of this work.

The work of B. Vemuri was supported in part by the NIH under Grant R01-NS046812. The work of N. A. Lord was
supported by a UF Alumni Fellowship.

Lord et al. Page 9

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



REFERENCES
1. Yezzi A, Zollei L, Kapur T. A variational framework for joint segmentation and registration. IEEE-

MMBIA. 2001:44–51.

2. Bouix S, Pruessner JC, Collins DL, Siddiqi K. Hippocampal shape analysis using medial surfaces.
NeuroImage. 2005; 25(4):1077–1089. [PubMed: 15850726]

3. Chan TF, Vese LA. Active contours without edges. IEEE Trans. Image Processing. Feb.; 2001
10(2):266–277.

4. Coleman TF, Li Y. An interior, trust region approach for nonlinear minimization subject to bounds.
SIAM J. Optimization. 1996; 6:418–445.

5. Csernansky JG, Wang L, Jones D, Rastogi-Cruz D, Posener JA, Heydebrand G, Miller JP, Miller
MI. Hippocampal deformities in schizophrenia characterized by high dimensional brain mapping.
Amer. J. Psychiatry. 2002; 159(12):2000–2006. [PubMed: 12450948]

6. Csernansky JG, Wang L, Swank J, Miller JP, Gado M, McKeel D, Miller MI, Morris JC. Preclinical
detection of alzheimer's disease: Hippocampal shape and volume predict dementia onset in the
elderly. NeuroImage. 2005; 25(3):783–792. [PubMed: 15808979]

7. Davies RH, Twining CJ, Allen PD, Cootes TF, Taylor CJ. Shape discrimination in the hippocampus
using an mdl model. Proc. IPMI. 2003:38–50.

8. do Carmo, MP. Differential Geometry of Curves and Surfaces. Prentice-Hall; Englewood Cliffs, NJ:
1976.

9. Gerig G, Muller KE, Kistner EO, Chi Y-Y, Chakos M, Styner M, Lieberman JA. Age and treatment
related local hippocampal changes in schizophrenia explained by a novel shape analysis method.
Proc. MICCAI. 2003:653–660.

10. Jin H, Yezzi AJ, Soatto S. Region-based segmentation on evolving surfaces with application to 3D
reconstruction of shape and piecewise constant radiance. Proc. ECCV. 2004; 2:114–125.

11. Pohl KM, Fisher J, Grimson WEL, Kikinis R, Wells WM. A Bayesian model for joint
segmentation and registration. NeuroImage. 2006; 31(1):228–239. [PubMed: 16466677]

12. Sethian, JA. Level Set Methods and Fast Marching Methods. Cambridge Univ. Press; Cambridge,
MA: 1996.

13. Shen L, Ford J, Makedon F, Saykin A. Hippocampal shape analysis: Surface-based representation
and classification. SPIE Proc. Med. Imag. 2003: Image Process. 2003:253–264.

14. Styner M, Gerig G, Lieberman J, Jones D, Weinberger D. Statistical shape analysis of
neuroanatomical structures based on medial models. Med. Image Anal. 2003; 7(3):207–220.
[PubMed: 12946464]

15. Styner M, Lieberman JA, Gerig G. Boundary and medial shape analysis of the hippocampus in
schizophrenia. Proc. MICCAI. 2003:464–471.

16. Unal GB, Slabaugh GG. Coupled PDEs for non-rigid registration and segmentation. Proc. CVPR.
2005:168–175.

17. Vemuri BC, Guo Y. Snake pedals: Compact and versatile geometric models with physics-based
control. IEEE Trans. Pattern Anal. Mach. Intell. 2000; 22:445–459.

18. Wang F, Vemuri BC. Simultaneous registration and segmentation of anatomical structures from
brain MRI. Proc. MICCAI. 2005:17–25.

19. Wang L, Joshi SC, Miller MI, Csernansky JG. Statistical analysis of hippocampal asymmetry in
schizophrenia. NeuroImage. 2001; 14(3):531–545. [PubMed: 11506528]

20. Wang Y, Chiang M-C, Thompson PM. Mutual information-based 3D surface matching with
applications to face recognition and brain mapping. Proc. ICCV. 2005:527–534.

21. Wyatt PP, Noble JA. Map MRF joint segmentation and registration of medical images. Med.
Image Anal. 2003; 7(4):539–552. [PubMed: 14561557]

22. Xiaohua C, Brady JM, Rueckert D. Simultaneous segmentation and registration of medical images.
Proc. MICCAI. 2004:663–670.

23. Young Y-N, Levy D. Registration-based morphing of active contours for segmentation of CT
scans. Math. Biosci. Eng. 2005; 2:79–96. [PubMed: 20369913]

Lord et al. Page 10

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Illustration of framework. Homologous shapes S1 and S2 are associated with flat
rectangular patches (with appropriate BCs) P1 and P2 respectively. Patches store all
Riemannian metric information g1 and g2 of their respective surfaces in terms of FFF
matrices G1 and G2. Metric information is then matched between P1 and P2 through a
homeomorphic map f of P1 onto P2 (diffeomorphic except possibly on the curves γ) and
segmenting curve γ1 in P1 which is carried by f into P2 as γ2. S1 and S2 are thus registered
and segmented via parametric correspondence. Note that f can be visualized as deformation
of P1 and that segmentation can be represented on S1 by shading interiors red and exteriors
blue.
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Fig. 2.
Hessian sparsity structure.
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Fig. 3.
Synthetic results. Top: segmentation of prominent distortions from cylindrical surface (left:
init.; middle: 5 its.; right: 20 its.). Bottom: performance under surface noise (σ = 0.01 for
unit cylinder) and reparametrization (left: warp field, σ = 0.2 in each component; middle:
segmented energy field in parametric domain; right: converged result, at 20 its.).
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Fig. 4.
Real results (left column: LATL member; middle column: RATL member; right column:
control member). (a) Segmentation evolution on sample patients (top to bottom:
initialization, three, ten iterations). (b) Converged segmentations (left: LATL member, top
right: RATL member, bottom right: control member). (c) Warp of parametric domain
induced by evolution process. (d) Final segmented distortion energy e graph as function over
parametric domain.
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Fig. 5.
Epilepsy classification results, optimal test accuracies over all classifiers shown in bold. (a)
Control versus epilepsy. (b) LATL versus RATL.
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