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Deep Attentive Video Summarization With
Distribution Consistency Learning

Zhong Ji , Member, IEEE, Yuxiao Zhao, Yanwei Pang , Senior Member, IEEE, Xi Li , and Jungong Han

Abstract— This article studies supervised video summarization
by formulating it into a sequence-to-sequence learning frame-
work, in which the input and output are sequences of original
video frames and their predicted importance scores, respectively.
Two critical issues are addressed in this article: short-term
contextual attention insufficiency and distribution inconsistency.
The former lies in the insufficiency of capturing the short-
term contextual attention information within the video sequence
itself since the existing approaches focus a lot on the long-term
encoder–decoder attention. The latter refers to the distributions
of predicted importance score sequence and the ground-truth
sequence is inconsistent, which may lead to a suboptimal solution.
To better mitigate the first issue, we incorporate a self-attention
mechanism in the encoder to highlight the important keyframes
in a short-term context. The proposed approach alongside the
encoder–decoder attention constitutes our deep attentive models
for video summarization. For the second one, we propose a
distribution consistency learning method by employing a simple
yet effective regularization loss term, which seeks a consistent
distribution for the two sequences. Our final approach is dubbed
as Attentive and Distribution consistent video Summarization
(ADSum). Extensive experiments on benchmark data sets demon-
strate the superiority of the proposed ADSum approach against
state-of-the-art approaches.

Index Terms— Distribution consistency, self-attention,
sequence-to-sequence (Seq2Seq) learning, video summarization.

I. INTRODUCTION

BY CONDENSING a video into a concise yet comprehen-
sive summary, video summarization provides an efficient

and effective video browsing and thus increases understanding
of video contents. It can be widely used in applications of
online video management, interactive browsing and searching,
and intelligent video surveillance [1]–[5]. Due to its great
significance, video summarization has been a crucially urgent
task, especially in the era of big video data.
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In recent years, some important signs of progress have
been made in the research of supervised learning-based video
summarization. To explicitly learn the summarization capa-
bility from human, it seeks supervised learning methods by
employing videos and their corresponding human-created sum-
mary ground truths as training data. Many supervised learning
methods, such as supervised subset selection [6], SVM [7],
multiple objective optimization [1], and sequence-to-sequence
(Seq2Seq) learning [2], [3], [8], have been developed.

Among them, Seq2Seq learning-based approach pioneers a
promising direction [2], [3], [8]–[10]. It formulates the video
summarization as a structure prediction problem on sequential
data, where the input is the original video frame sequence
and the output is the predicted importance score sequence
of video frames. Based on these predicted importance scores,
the keyframe/keyshot can be determined. This line of approach
advocates the use of long-short term memory (LSTM) [11] as
the encoder to map the visual sequence to a fixed dimensional
vector. LSTM stems from recurrent neural network (RNN)
architecture and is particularly good at modeling the variable-
range temporal dependences among video frames. It is a
crucial property for generating a meaningful summary since
one of the challenges for video summarization is to effectively
model the long-term temporal contextual information. Mean-
while, multilayer perceptron (MLP) and LSTM are usually
selected as decoders to decode the vector into an importance
score sequence.

One of the pioneering studies can be traced back to vsLSTM
approach [2], where a bidirectional LSTM (BiLSTM) is
exploited to encode the variable range dependence in a video,
and an MLP is employed to combine the hidden states of
LSTM layers and the visual features to indicate the likelihoods
of whether the frames should be chosen in the summary. AVS
[3], SASUMsup [8] and SUM-GANsup [9] follow this structure
by replacing MLP with LSTM in the encoder. Specifically,
as our baseline method, AVS [3] further exploits an encoder–
decoder attention mechanism in this framework to assign
different importance weights to different input frames for
strengthening their differences. By doing so, the long-term
contextual attention is strengthened.

While the results are encouraging, the short-term contextual
attention on the input frames is neglected. Similar to the
long-term contextual attention, we emphasize that the short-
term contextual attention should also be highlighted. This
is because the frames in a video clip contribute unevenly
to the encoded vector, especially in the case of motion.
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Fig. 1. Consecutive frames in a clip, from which we observe that the visual
contents change dramatically.

Fig. 1 shows some consecutive frames in a clip, where we
sample 2 frames every second from the video. Due to the
object motion, the visual representations vary greatly for
similar content, which makes them act different roles in the
short-term context. Therefore, the attention mechanism that
assigns different weights to different frames is essential to
make them more discriminative. To this end, we propose an
encoder self-attention mechanism to alleviate this short-term
contextual attention insufficiency issue. To the best of our
knowledge, there has been little previous work employing self-
attention in video summarization. Combining the proposed
self-attention for short-term contextual information and the
decoder attention for long-term contextual information [3]
together, we constitute a deep attentive model in our proposed
video summarization approach.

In addition, both vsLSTM [2] and AVS [3] train their
networks with mean square error (mse) loss function, which is
weak in reflecting the distribution relation. It is easily observed
that the importance score distributions between the predicted
one and the ground truth vary greatly even they have a small
mse loss, which leads to a suboptimal solution. Fig. 2 lists
five possible predicted importance score distributions with the
same ground truth and mse value. It can be observed that
these predicted sequences differ greatly from the ground truth
except for Fig. 2(a) and (b). This demonstrates that mse, as a
value-based loss function, is not a good choice for Seq2Seq
learning-based video summarization since it cannot guarantee
to reflect the distribution of the ground truth. To alleviate this
distribution inconsistency issue, we introduce a distribution-
based function as a complement for mse. In this way, both the
minimal distance and distribution consistency are satisfied for
the predicted importance score sequence against the ground-
truth one.

The contributions of this article are summarized as follows.

1) Two critical issues in video summarization are discov-
ered, i.e., short-term contextual attention insufficiency
and distribution inconsistency. The former refers to that
current approaches are deficient in capturing the short-
term contextual attention information within the video,
which is an important knowledge to be modeled in video
summarization. The latter is that the distributions of
predicted importance score sequence and the ground-
truth sequence are inconsistent, which may lead to a
suboptimal solution.

2) It proposes an encoder self-attention mechanism for
Seq2Seq learning-based video summarization. It assigns
weights to the encoder outputs according to their impor-
tance to the short-term context, which is complementary
to the encoder–decoder attention mechanism. By doing
so, both the short- and long-term contextual attentions
are satisfied, which is a prime requirement for effective
video summarization.

Fig. 2. Distributions of different predictions, where (a)–(e) have the
same ground-truth sequences but different predicted importance score
sequences. Although they have different distributions, they have the same mse
(mse = 1.0). (a) Possible distribution 1. (b) Possible distribution 2. (c) Possible
distribution 3. (d) Possible distribution 4. (e) Possible distribution 5.

3) It presents a distribution-based loss function to overcome
the limitation of employing mse individually. On the
premise of minimal distance between the sequences of
predicted importance score and ground truth, it learns the
distribution consistency from them, which guarantees a
better usage of the human annotations.

We evaluate our approach via extensive experiments on
the benchmark data sets of SumMe [12] and TVSum [13],
on which the results outperform the state-of-the-art approaches
by a large margin. In addition, we also conduct an ablation
study to prove the contribution of our encoder self-attention
and distribution consistency loss function.

The rest of this article is organized as follows. Section II
reviews the related video summarization methods. Section III
introduces the proposed Attentive and Distribution consistent
video Summarization (ADSum) approach. Section IV presents
the experimental results and analyses. Finally, conclusions and
future work are provided in Section V.

II. RELATED WORK

Video summarization, also called video abstraction or video
skim, has been an active research topic for more than two
decades [3], [14], [15]. Similar works also include video
keyframe selection [16], video highlight detection [17], and
video story segmentation [18]. The goals for these lines of
studies are similar, i.e., to provide a succinct yet informa-
tive video subsets (keyframes or keyshots) to facilitate the
browsing and understanding of individual videos. It should
be noted that this article is concerned with single video
summarization but not multiple video summarization [19],

Authorized licensed use limited to: University of Warwick. Downloaded on May 21,2020 at 09:16:40 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JI et al.: DEEP ATTENTIVE VIDEO SUMMARIZATION WITH DISTRIBUTION CONSISTENCY LEARNING 3

[20], whose purpose is to condense a set of query-related
videos into a compact summary. In the following, we first
briefly review the conventional approaches and then introduce
the state-of-the-art Seq2Seq learning-based approaches.

A. Conventional Approaches

Conventional approaches characterize themselves with
handcrafted features and shallow structures. Many of them
rely on the unsupervised approaches, such as clustering and
sparse coding. Specifically, the clustering-based approaches
generally select cluster centers as summary subsets. By doing
so, the redundant content can be removed and the video
is shortened. Accordingly, many efforts are devoted by
employing and designing various clustering methods, ranging
from k-means [21], Delaunay clustering [22], graph clustering
[23], and prototype selection [4], to archetypal analysis
[13]. The sparse coding-based approaches formulate video
summarization as a minimum sparse reconstruction problem
[24], [25] since the sparsity and reconstruction error terms in
it naturally accord with the problem of summarization. For
example, Cong et al. [24] exploited a sparse coding model to
leverage the dictionary as keyframes as they could reconstruct
the original video. Instead of using the L2,1 norm in [24],
Mei et al. [25] utilized the L0 norm in their proposed method.
For efficiency consideration, Zhao and Xing [26] exploited
a quasi-real-time approach to summarize videos. In addition,
motion state change detection is also employed in video
summarization. For example, Zhang et al. [27] proposed to
employ the spatiotemporal slices to analyze the object motion
trajectories and select motion state changes as a metric to
summarize videos. Specifically, the motion state changes are
formulated as a collinear segment on a spatiotemporal slice
problem, by which an attention curve is formed to generate
the summary.

Besides unsupervised approaches, there has been a dramatic
increase in designing supervised learning-based approaches
over the past few years. Prior work [1], [7], [28] includes
optimizing one or multiple objective functions for video
summarization. For example, SVM is employed to classify
each segment with importance score in [7], and those seg-
ments with higher scores are selected to constitute a video
summary. Li et al. [1] and Gygli et al. [28], respectively,
learned a combination function of them with a maximum
margin formulation to ensure that the generated summaries are
close to the human-created summaries and designed several
handcrafted criteria. By resorting to the human annotations,
this line of work usually has a better performance than the
unsupervised one.

B. Seq2Seq Learning-Based Approaches

Recent years have seen a surge in Seq2Seq learning-based
approaches for video summarization with the renaissance of
deep learning, especially the LSTM technique [2], [3], [29].
A typical framework for this line of work is to take the original
video frame sequence as input and the frame importance score
sequence as output and exploits LSTM to capture the long-
term contextual information. For example, Zhang et al. [2]
proposed to utilize BiLSTM as encoder and MLP as decoder in

their vsLSTM approach and further introduced determinantal
point process (DPP) to vsLSTM to enhance the diversity.
To further strengthen the long temporal dependences among
video frames, Zhao et al. [30] developed a hierarchical
architecture of LSTMs by employing an LSTM layer and a
BiLSTM layer as encoder and decoder, respectively.

A critical issue of the abovementioned methods is that they
considered the whole input frames as equally important, that
is to say, all the frames in the input video sequence are treated
with the same importance no matter what kind of output
frames are to be predicted, which weakens the discrimination
of the representative frames. To alleviate this issue, AVS [3]
introduces an encoder–decoder attention mechanism in the
Seq2Seq framework by conditioning the generative process
in the decoder on the encoder hidden states. By doing so,
different input frames are assigned different weights, which
can provide the inherent relations between the input video
sequence and the output keyframes. SASUM [8] proposes to
strengthen the semantic attention by resorting to additional
text descriptions. It first employs a Seq2Seq model to embed
the input visual information into text representation and then
presents a frame selector to exploit the embedded text descrip-
tion to find video keyframes that are relevant to the high-level
context.

Besides the abovementioned supervised approaches,
the Seq2Seq model can also be leveraged in an unsupervised
manner [9], [10]. For example, SUM-GAN [9] proposes
to formulate video summarization in the framework of
generative adversarial network (GAN), where the LSTM is
applied as generator and discriminator. Motivated by the
success of reinforcement learning, DR-DSN [10] formulates
video summarization as a sequential decision-making process,
where a reward function judges the qualification degree of the
generated summaries, and a Seq2Seq model is encouraged to
earn higher rewards by learning to produce more qualified
summaries.

Our proposed ADSum formulates video summarization as
a supervised Seq2Seq problem. Different from the existing
approaches, we exploit additional encoder self-attention to
strengthen the short-term contextual attention among input
video frames and an effective distribution learning loss
function.

III. PROPOSED APPROACH

This section introduces our proposed ADSum video
summarization approach in detail. As shown in Fig. 3,
ADSum formulates video summarization as a Seq2Seq
task, in which the input and output are sequences of video
frames and their predicted importance scores. Specifically,
the video is first downsampled into frame sequence, and
GoogleNet is employed to extract the visual features. Next,
BiLSTM is selected as an encoder, and the proposed self-
attention is applied on it. Then, LSTM is used as a decoder to
output the predicted importance scores for each frame, where
either additive or multiplicative attention is exploited on it.
Finally, the ground truth is employed as supervision against the
output importance scores, where both regression loss and the
proposed distribution loss are used as the final objective func-
tion. These steps constitute the training stage. After the model
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Fig. 3. Illustration of the proposed ADSum approach. The dotted line indicates an alternative step.

training is completed, a predicted importance score sequence
will be output when a test video is an input. Then, the sum-
mary for the test video is generated according to the output
importance score sequence. It can mainly be divided into
five components, which are encoder, encoder self-attention,
decoder with attention mechanism, loss functions, and
summary generation. We introduce these components in detail.

A. Encoder

We first downsample the videos into frame sequences in 2
frames/s. For fair comparison [2], [3], [10], [31], we choose
to use the output of pool5 layer of the GoogLeNet [32]
(1024 dimensionality), trained on ImageNet [33], as the visual
feature for each video frame. Afterward, the features of video
frame sequence X = {x1, x2, . . . , xT } are fed into a BiLSTM
network [34], which is selected as the encoder. BiLSTM is
usually employed as the encoder in recent studies of video
summarization [3], [8], [35] due to its capability of capturing
bidirectional long-term structural dependences among frames.
It splits the neurons of a regular LSTM [24] into two direc-
tions: one for positive time direction (forward states) and the
other for negative time direction (backward states), which
are called forward LSTM and backward LSTM. The major
difference between forward LSTM and backward LSTM is
that the former encodes information from the beginning to the
end and the latter encodes information from the end to the
beginning. BiLSTM can better capture bidirectional semantic
dependences since its output is the concatenation of forward
hidden states and backward hidden states, which is shown
in Fig. 4.

In forward LSTM, xt−1, xt , and xt+1 are its inputs, and
the corresponding outputs are h f

t−1, h f
t , and h f

t+1. Meanwhile,
the inputs of backward LSTM are xt+1, xt , and xt−1, and the
outputs are hb

t+1, hb
t , and hb

t−1. The final outputs of BiLSTM h
are the concatenation of forward hidden states and backward
hidden states at the same time, i.e., ht−1 = [h f

t−1, hb
t−1], ht =

[h f
t , hb

t ], and ht+1 = [h f
t+1, hb

t+1].

B. Encoder Self-Attention

Although BiLSTM is good at capturing the contextual infor-
mation among video frames, its limitation lies in treating each

Fig. 4. Flowchart of BiLSTM.

input with equal importance, that is to say, it is insufficient in
capturing the attention information within the video sequence
itself. To alleviate this issue, we propose to exploit both short-
and long-term contextual dependences with a deep attentive
mechanism. In this section, we develop to strengthen the short-
term contextual dependences with a self-attention mechanism,
as shown in Fig. 5.

First, the encoder outputs H = {h1, h2, . . . , hT } is con-
volved in one dimension with a convolution kernel of the
same size as h, in which the slide step is 1, and it slides
T times in total, which generates T weights. The output H of
encoder is fed into a convolutional layer to adjust the encoding
representations and obtain original weights belonging to each
frame. Next, original weights are mapped into a new space by
the sigmoid function to restrict their values between 0 and 1.
The formulation is shown as

S(H) = 1

1 + exp[conv(H)] (1)

where conv() denotes a convolutional operation,
exp() represents the exponential function, S(H) =
{s1, s2, . . . , sm , . . . , sT } means mapping output vectors
of original weights, and the attention scale T is the length
of S(H), which is set to 9 in this article. Then, the mapping
values sm are fed into the softmax function to obtain the
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Fig. 5. Flowchart of the proposed encoder self-attention mechanism.

attention weights, which is formulated as

αm = exp(sm)∑
m exp(sm)

(2)

where αm represents the weight of the mth frame vec-
tor, and it constructs interframe weight vector α =
{α1, α2, . . . , αm, . . . , αT }. In this way, the encoder self-
attention generates and delivers attention weights to each
frame. Then, we multiply each weight to its corresponding
frame vector to strengthen the differences among them in the
same sequence. The attentive encoding representation pm is
formulated as

pm = αmhm+hm . (3)

Since the attention is guided by the encoder outputs H itself
within an attention scale of T , it is a short-term contextual
self-attention.

C. Decoder With Attention Mechanism

The decoder is to generate the output importance score
sequence Y = {y�

1, y�
2, . . . , y�

n} conditioned on the sequence
features P = {p1, p2, . . . , pm, . . . , pT } got from encoder.
According to the type of output, different decoders can be
chosen. For example, if the output is an image or image
segments, the CNN is usually chosen as the decoder. When the
output is a language or importance score sequence, the LSTM
is a better selection. Thus, we employ LSTM as the decoder
in our approach. In addition, as discussed in Section II,
attention mechanism is capable of modeling of long-term
contextual dependences across the entire video, which has
been an integrant component in several Seq2Seq-based video
summarization approaches [3], [8]. To this end, we employ
the attention-based decoder method in [3] in our approach.

Specifically, we can write an LSTM as f (un−1, y�
n−1, pm),

where f () represents LSTM and un is hidden state at time
n. Since pm is a fixed length encoding vector and cannot
accurately reflect the temporal ordering across a long-term
video sequence, we apply the attention mechanism to pm , then
we have qn = ∑T

m=1 βn
mpm , where qn represents the attentive

vector of pm , and βn
m = (exp

(
zn

m

)
)/(

∑T
m=1 exp

(
zn

m

)
) is the

mth decoder input attention weight at time n whose sum is 1.
In detail, zn

m = φ(un−1, pm) is the similarity score between the
hidden states at time n − 1 and the mth decoder input, where

φ represents the attention approach. In this way, the decoder
is allowed to selectively focus on only a subset of inputs by
increasing their attention weights. The attentive decoder is then
formulated as

[
P

(
y�

n|{y�
1, . . . , y�

n−1}, qn
)
, un

] = f
(
un−1, y�

n−1, qn
)
. (4)

Then, the key is to choose the attention approach φ. According
to the relations between the input and the hidden states, similar
to [3], we employ either the additive attention approach [36]
[see (5)] or multiplicative attention approach [37] [see (6)] to
formulize φ. In particular, the additive attention approach is
written as

zn
m = (W3)

T tanh(W1un−1 + W2pm + b) (5)

and the multiplicative attention approach is formulated as

zn
m = (pm)T W4un−1 (6)

where W1, W2, W3, and W4 denote the fully connected layer
matrix and b is the bias. In the abovementioned decoding
process, the additive and multiplicative attention models can,
respectively, act on the hidden layers of the decoder to obtain
different attention vectors of the context. We could observe
that the additive attention approach concatenates the video
frames and the hidden states of the decoder, whereas the
multiplicative attention approach multiplies them to model
the relationship. Specifically, the additive attention model
adopts a feedforward neural network with a hidden layer
to allocate attention. In contrast, the multiplicative attention
model employs the matrix operation to assign attention weight,
which is more efficient. Accordingly, we can obtain attentive
frame-level importance score at the output of decoder. Since
the attention is guided by the decoder hidden state un−1 that
contains previous information, it is a long-term contextual
attention.

D. Loss Function

The design of loss function plays a critical role in sup-
porting a high-quality video summarization. For example,
Jung et al. [38] developed a variance loss to ensure the model
to predict output scores for each keyframe with high discrep-
ancy, which is simply defined as a reciprocal of variance of
the predicted scores. To preserve the semantic information in a
video summarization to the original video, Zhang et al. [29]
proposed a retrospective loss by embedding both the sum-
marization and original video into a shared space and min-
imizing their distances. Wei et al. [8] applied two variants
of sparsity losses to force the model to generate satisfying
summarizations. Among these loss functions, the regression
loss, especially mse, is the most popular loss employed in
video summarization [2], [3], [10], [29], and it minimizes the
discriminative losses by measuring elementwise discrepancy.

We also apply mse as our loss function, which is the
sum of squared distances between the predicted importance
scores sequences Y�

t and ground-truth sequences Yt in the tth
batch. It is formulated as

Lmse = 1

n

∑(
Y�

t − Yt
)2

(7)
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where n is the number of input samples in a batch. However,
we could observe that there may exist a lot of possible
sequence forms of the predicted importance scores even for
the same mse value ( �= 0), that is to say, the distributions
between the predicted importance scores and the ground truth
may vary greatly even they have a small regression loss,
as shown in Fig. 2. To better mitigate this distribution incon-
sistency issue, we propose a distribution consistency learning
strategy as a complement for mse loss by employing a simple
yet effective Kullback–Leibler (KL) regularization loss term.
It aims at seeking a consistent distribution for the predicted
importance scores with the ground truth by regularizing their
KL divergence. Specifically, we feed both the predicted impor-
tance scores and ground truth into the softmax function to
embed them in a shared space, which is formulated as

SYt = softmax(Yt) (8)

SY�
t = softmax

(
Y�

t

)
(9)

where SYt and SY�
t represent the normalized ground-truth

sequences and normalized predicted importance score
sequences in the tth batch, respectively. In video summa-
rization, high importance score means the corresponding
frame or shot could be chosen as keyframe or keyshot. Since
the keyframe or keyshot is used to represent its relevant
frames/shots, we could approximatively view the normalized
importance score of each frame as its probability distribution.
To this end, we could describe the KL loss function as

Lkl = 1

n

∑(
SYt · log(SYt) − SYt · log

(
SY�

t

))
. (10)

With the KL loss function, we restrict the distribution
consistency between the predicted importance scores and the
ground truth, which guarantees a better prediction. Accord-
ingly, the final loss function is made up of two parts: mse loss
and KL loss, described as follows:

Lmk = Lmse + λLkl (11)

where λ is a balance parameter. The mse loss measures the
distance between the predicted importance scores and the
ground truth, whereas the KL loss guarantees their distribution
consistency.

E. Summary Generation

We follow [2] and [3] to generate the video summarization
in forms of keyshots based on the frame-level importance
scores. In particular, due to the lack of ground-truth tempo-
ral segmentation in video summarization data sets, we first
employ the kernel temporal segmentation (KTS) [9] algo-
rithm to split a video into a set of nonintersecting temporal
shots. Then, the predicted importance score Y�

t is divided
into shot-level importance scores according to different shots,
which are calculated by averaging the frame importance
scores within each shot. For the purpose of ensuring that the
total summarization length is set to a predefined length �,
where we follow [12] to set � to be less than 15% of the

length of the original video, we need to solve the following
optimization problem:

max
n∑

i=1

μiγi , s.t.
n∑

i=1

μiηi ≤ �, μi ∈ {0, 1} (12)

where n is the number of shots after video segmentation, and
γi and ηi are the shot-level importance score and the length
of the i th shot, respectively. Notice that μi ∈ {0, 1}, where
μi = 1 indicates that the i th shot is selected as a keyshot.
We hope to find the shots of the highest sum of shot-level
importance score and ensure the specific video summary
length at the same time, which belongs to the 0/1 knapsack
problem. After following [13] to solve it with dynamic
programming, the keyshots conforming to the summary are
obtained. Finally, the summary is created by concatenating
those keyshots in a chronological order.

IV. EXPERIMENTS

A. Experimental Setup

1) Data Sets: We evaluate the proposed ADSum method
on three publicly available benchmark data sets of video
summarization: SumMe [12], TVSum [13], and YouTube
[21]. Specifically, the SumMe data set contains 25 user videos
that record a variety of events such as holidays, sports, and
history. The videos range from 1.5 to 6.5 min in length. The
TVSum data set is a collection of 50 videos from YouTube,
which is organized into ten categories, such as grooming an
animal, parade, attempting a bike trick, and so on. YouTube
has 39 videos, including cartoons, news, and sports. The
length of these videos ranges typically from 1 to 10 min.
It is worth noticing that there are two types of ground-truth
annotations for both TVSum and SumMe data sets: indicator
vector (0 or 1) and frame-level importance score vectors.
Most approaches [2], [3], [6], [10] employ the frame-level
importance scores as the ground truth, and thus, we follow
this setting. Since YouTube only provides selected keyframes
as ground truths, we set them as our evaluation target
directly.

2) Evaluation Metric: We apply the popular F-measure to
evaluate the performance of automated generated summary
compared with the ground-truth summary [1]–[3], [9], [12],
[13], [28]. Similar to [2] and [3], our ADSum approach
generates a summary S that is less than 15% in duration of the
original. Given a generated summary S and the ground-truth
summary G, the precision P and the recall R for each pair of S
and G are calculated as a measure with the temporal overlaps
between them as follows:

P = overlaped duration of S and G

duration of S
× 100% (13)

R = overlaped duration of S and G

duration of G
× 100%. (14)

Finally, the F-measure is computed as

F = 2 × P × R

P + R
× 100%. (15)
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3) Implementation Details: We implement experiments on
the Tensorflow platform and all experiments are conducted
on an NVIDIA Tesla K40c GPU. We employ BiLSTM with
256 hidden units in an encoder and one-layer LSTM with
256 hidden units in a decoder, and we optimize the network
with the gradient descent algorithm and set the learning rate
to 0.15. In addition, the batch size is 16 and attention scales
are 9. The balance parameter λ in (11) is set to 1. As in the
prior work [2], [3], [8], we report the average of F-scores of
all testing videos. As for the training/testing data, we apply
the same standard supervised learning setting as [2] and [3]
where the training and testing are from the disjoint part of the
same data set. We employ 20% for testing and the remaining
80% for training and validation, where the proportion of the
training set and validation set is also 4:1.

B. Comparison With State-of-the-Art Approaches

Since SumMe and TVSum are most popular data sets,
we first perform experiments on them. Then, we provide the
experimental result on the YouTube data set.

To demonstrate the superiority of the proposed ADSum
approach, 12 state-of-the-art supervised approaches are
selected for comparison on SumMe and TVSum data sets, and
all of them employ the image CNN as visual features and the
experiments are performed in the same settings with ADSum.
We retrieve their results from published articles.

Specifically, we are interested in comparing ADSum
with those approaches within the Seq2Seq learning-based
framework, i.e., vsLSTM [2], dppLSTM [2], SUM-GANsup

[9], DR-DSNsup [10], SASUMsup [8], A-AVS [3], and M-AVS
[3]. Concretely, as an early encoder–decoder-based approach,
vsLSTM [2] formulates video summarization as a struc-
ture prediction problem on sequential data by employing
LSTMs for sequence modeling. As a variant for vsLSTM,
dppLSTM [2] boosts the diversity by combining LSTM and
DPP. By introducing the idea of GAN into the encoder–
decoder framework, SUM-GANsup [9] makes itself a super-
vised method by further adding a sparse regularization with
the ground-truth summarization labels. Similarly, DR-DSNsup

[10] incorporates the idea of reinforcement learning in the
framework, where the reward function accounts for diversity
and representativeness. The remaining three approaches are
closer to our ADSum since they also exploit the attention
mechanism. SASUMsup [8] presents a semantic attention net-
work by leveraging additional text descriptions as the semantic
guidance. The video summarization is implemented by mini-
mizing the distance between the generated text description of
the summarized video and the ground-truth text description
of the original video and the importance scores between
the generated keyframes and the ground truth. AVS [3] is
a baseline for our ADSum. It explores the encoder–decoder
attention mechanism to assign importance weights to different
frames and takes the mse as its loss function. The additive
and multiplicative attention mechanisms are leveraged, which
corresponds to the approaches of A-AVS and M-AVS.

We also choose five additional supervised approaches with-
out using Seq2Seq learning-based framework for comparison.

TABLE I

F-SCORE (%) PERFORMANCE COMPARISON WITH STATE OF THE ARTS ON
THE SUMME AND TVSUM DATA SETS. THE FIRST SECTION AND THE

SECOND SECTION SHOW RESULTS WITHOUT AND WITH USING

SEQ2SEQ FRAMEWORK. AVERAGE DENOTES THE AVERAGE

PERFORMANCE ON BOTH DATA SETS

In particular, the approach of Gygli et al. [28] formulated video
summarization as a subset selection problem by learning sub-
modular mixtures of objectives for different criteria directly.
Zhang et al. [39] proposed to learn to transfer summary struc-
tures from training videos to test ones. Li et al. [1] developed
a general framework for both edited and raw videos with
the idea of property-weight learning. Considering the influ-
ence of video structure on summarization results, HSA-RNN
[40] integrates shot segmentation and video summarization
into a hierarchical structure-adaptive RNN to jointly exploit
the video structure and content. Also, DySeqDPP [31] is a
dynamic sequential DPP approach, which aims at enforcing
the local diversity in a reinforcement learning manner.

Table I summarizes the comparison results of F-score on
the SumMe and TVSum data sets. We can observe that the
proposed ADSum achieves the best performance on both data
sets. Specifically, on the SumMe data set, ADSum-A and
ADSum-M outperform the runner-up approach, SASUMsup,
in 0.6% and 0.8%, respectively,and on the TVSum data set,
they outperform the runner-up approach, M-AVS, in 3.5%
and 3.3%, respectively. Considering the average performance
on both data sets, ADSum-A and ADSum-M have inter-
estingly the same performance of 55.2%. It is higher than
that of the runner-up approach of M-AVS in 2.5%, which
is quite a large margin due to the challenge of the data
sets. Besides, we could observe that the top five approaches
on average metric all employ attention model, which proves
the effectiveness of encoding contextual attentive information.
Furthermore, the superiority of the proposed ADSum against
the M-AVS, A-AVS, and SASUMsup mainly lies on the fact
of exploiting the self-attention and the distribution consistency
loss. Finally, we could observe that all approaches perform
better on TVSum than SumMe, which is mainly due to their
supervised property, that is to say, since the correlations among
videos in TVSum are closer than those in SumMe, it is easier
to obtain more useful supervision knowledge for supervised
approaches from the training of TVSum data set.

Then, we conduct experiments on the YouTube data set,
as shown in Table II. Five state-of-the-art approaches are
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TABLE II

F-SCORE (%) PERFORMANCE COMPARISON WITH STATE OF THE ARTS ON
THE YOUTUBE DATA SET

chosen for comparison, whose results are retrieved from [35].
Note that all approaches employ the GoogleNet as the visual
features. We could observe that our proposed approaches
achieve the best performance. Specifically, ADSum-A and
ADSum-M outperform the corresponding baseline A-AVS
and M-AVS approaches in 4.4% and 4.3%, respectively.
In addition, they outperform the second-best approaches,
Fu et al. [35], in 0.5% and 0.8%, respectively. The experi-
mental results on YouTube further prove the effectiveness of
the proposed approaches.

C. Ablation Studies

To further reflect the impacts of encoder self-attention and
the KL loss function, we take the AVS approach as the baseline
and conduct the ablation experiments by employing encoder
self-attention (AVS+SA) and KL loss function (AVS+KL).
Note that the proposed ADSum approach could be considered
as AVS+SA+KL. As shown in Table III, the utilization of
self-attention and KL loss function contributes to the per-
formance improvements for both additive and multiplicative
attention versions. Specifically, it can be clearly observed that
the performance gains of A-AVS+SA against A-AVS are 4.7%
and 0.2%, and the gains of M-AVS+SA against M-AVS are
3% and 0.4%, both on TVSum and SumMe. These results
prove that the short-term contextual attention is quite helpful
for video summarization. In addition, there are 4.5% and
0.5% gains for A-AVS+KL against A-AVS, and 2.7% and
0.1% for M-AVS+KL against M-AVS, both on TVSum and
SumMe. These results prove that the distribution consistency is
really useful for video summarization. Interestingly, it is more
obvious for the TVSum data set due to the closer associations
among the videos. The results prove the effectiveness of both
the proposed components. Moreover, we could find that both
ADSum-A and ADSum-M further improve the performance,
which demonstrates that both components complement each
other. These ablation studies validate our motivation that both
encoder self-attention and distribution consistency are helpful
to Seq2Seq learning-based video summarization.

D. Experiments on Combined Data
Set and Augmented Data Set

It is seen from the abovementioned experiments that our
proposed encoder self-attention mechanism and the KL loss
function contribute greatly to the improvement of the perfor-
mance. In the interest of verifying the generalizability of our
model, we first make further efforts to experiments on the

TABLE III

ABLATION EXPERIMENTS IN F-SCORE (%)

Fig. 6. Parameter sensitivity analysis for attention scales on the Combined
data set.

TABLE IV

EXPERIMENTAL RESULTS ON THE COMBINED DATA SET

combination of both SumMe and TVSum data sets, which is
dubbed Combined data set in this article. A similar setting can
be found in many existing summarization approaches [2], [40].
Similarly, we also employ 20% for testing and the remaining
80% for training and validation.

There are several observations from Table IV. First, both
the proposed ADSum-A and ADSum-M achieve better per-
formance than A-AVS and M-AVS. Second, ADSum-A and
ADSum-M have a similar performance, which is consistent
with the results of AVS and those shown in Table I. It shows
that both multiplicative attention and additive attention are
competent for capturing the attentive knowledge in our deep
attention framework. Finally, the performances on the Com-
bined data set are a little inferior to those on average in Table I
for both ADSum-A and ADSum-M. This lies in the fact that
there is a distinct data difference in SumMe and TVSum,
which cannot provide enough supervised information to each
other after merging.

Then, following [2], [3], and [9], we conduct augmentation
experiments on the SumMe and TVSum data sets. Besides
the YouTube data set, the OVP data set [41] is also employed
as the augmented data set, which has 50 videos from various
genres (e.g., documentary and educational) and their lengths
vary from 1 to 4 min. Under this setting, given the data set of
SumMe or TVSum, we randomly select 20% of it for testing
and apply the remaining 80% with the other three data sets
to form the augmented training data set. For example, when
testing the performance on the SumMe data set, its 20% videos
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Fig. 7. Exemplar video summaries (orange intervals) from a sample video (Uncut_Evening_Flight of SumMe) along with the ground-truth importance
scores (blue background). The corresponding keyframes are ordered in numerical order. (a) A-AVS, F-score (%) = 44.8. (b) M-AVS, F-score (%) = 47.9.
(c) ADSum-A, F-score (%) = 50.0. (d) ADSum-M, F-score (%) = 56.2.

are taken for test data, and the remaining 80% videos together
with the TVSum, YouTube, and OVP are used as training data
set. In this way, the training data sets are augmented. Since
more training data are employed, better performance should
be obtained by comparing the experimental results shown
in Table I, which is referred to as a canonical setting.

Table V shows the results on augmented setting. There
are four state-of-the-art approaches are chosen for compar-
ison, which utilizes the same GoogleNet visual features.
We could observe that the performances on this setting have
consistent improvements against the canonical setting. For
example, on the SumMe data set, there are 1.4% and 1.5%
improvements for augmented setting against canonical setting
for ADSum-A and ADSum-M, respectively. There are also
1.3% and 1.4% improvements on the TVSum data set for

two proposed approaches, respectively. This confirms our
conjecture that the augmented training data are helpful to
improve the generalization of supervised learning approaches.
In addition, we could observe that the proposed ADSum-M
outperforms the second-best M-AVS approach in 1.5% on the
SumMe data set and 3.9% on the TVSum data set, which
proves the superiority of our proposed approaches.

E. Parameter Sensitivity Analysis

In this section, we evaluate the impact of attention scale
T on the Combined data set. As shown in Fig. 6, when
the attention scale value is within the range from 3 to
17, the F-scores of ADSum-A and ADSum-M fluctuate within
the range of 1.05% and 1.22%. In addition, it is obvious
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TABLE V

EXPERIMENTAL RESULTS ON THE AUGMENTED SETTING

that the values of ADSum-M under different attention scales
are always higher than those of ADSum-A, which indicates
the fact that the multiplicative attention model is better at
taking advantage of the decoder hidden layer output and the
optimized visual features to obtain attentive information. It can
be observed that the performance is the best when the attention
scale value is 9.

F. Qualitative Results

To get some intuition about qualitative effects on the tem-
poral selection pattern, we visualize some selected keyframes
on an example video with a duration of 5.22 min in Fig. 7.
It shows the results from A-AVS, M-AVS, ADSum-A, and
ADSum-M models on the video “Uncut_Evening_Flight” of
SumMe. The video shows a story that some people control
a remote-controlled aircraft to shoot an aerial video with a
camera attached to the left wing. The blue blocks represent the
ground-truth frame-level importance scores, and the marked
orange regions are the selected subsets. As shown in Fig. 7,
we can observe that the summaries generated by our methods
have a more consistent distribution with the ground truth
than those generated by AVS models. Besides, the keyframes
chosen by our ADSum-A and ADSum-M approaches have
larger importance scores than the others.

V. CONCLUSION AND DISCUSSION

In this article, we have proposed a novel deep attentive
video summarization approach, called ADSum. It effectively
addressed the short-term contextual attention insufficiency and
distribution inconsistency issues, which have been neglected
before. It considers both the long- and short-term contextual
attention with encoder–decoder attention and encoder self-
attention in a supervised Seq2Seq framework. In addition,
it develops a simple yet effective KL loss for learning the dis-
tribution consistency between the predicted importance score
sequences and ground-truth sequences. Extensive experiments
clearly demonstrate the superiority of ADSum.

One limitation of the ADSum approach is that it is defi-
cient in modeling very long-term contextual attention. This
is mainly due to that LSTM is not effective enough in
coping with sequence structure longer than 80 time steps [42].
Although we downsample the video into 2 frames/s, 80 time
steps are only 40 s. However, one topic in a video may last
several minutes. Therefore, it is an important research direction

in modeling very long-term important research direction while
paying attention to short-term contextual attention.

Another limitation is that it requires large training data. As a
supervised learning approach, only sufficient can guarantee a
satisfying performance. However, current data sets are still
relatively small. One promising way to address this issue is to
exploit the idea of transfer learning to transfer the knowledge
of other related data sets to video summarization. Of course,
a large, well-annotated, publicly available data set is also
necessary for promoting the progress of video summarization
domain.

In our future work, we will explore some other loss
functions to better mimic the way of summarizing videos
of human, such as maximum mean discrepancy (MMD) and
Wasserstein distance.
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