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HybridSNN: Combining Bio-machine Strengths by

Boosting Adaptive Spiking Neural Networks
Jiangrong Shen, Yu Zhao, Jian K. Liu, and Yueming Wang

Abstract—Spiking neural networks (SNNs), inspired by the
neuronal network in the brain, provide biologically relevant
and low-power consuming models for information processing.
Existing studies either mimic the learning mechanism of brain
neural networks as closely as possible, e.g. the temporally local
learning rule of Spike-Timing-Dependent Plasticity (STDP), or
apply the gradient descent rule to optimize a multi-layer SNN
with fixed-structure. However, the learning rule used in the
former is local and how the real brain might do the global-scale
credit assignment is still not clear, which means that those shallow
SNNs are robust but deep SNNs are difficult to be trained globally
and could not work so well. For the latter, the non-differentiable
problem caused by the discrete spike trains leads to inaccuracy
in gradient computing and difficulties in effective deep SNN.
Hence, a hyrid solution is interesting to combine shallow SNNs
with an appropriate machine learning technique not requiring the
gradient computing, which is able to provide both energy-saving
and high-performance advantages. In this paper, we propose a
HybridSNN, a deep and strong SNN composed of multiple simple
SNNs, in which data-driven greedy optimization is used to build
powerful classifiers, avoiding the derivative problem in gradient
descent. During the training process, the output features (spikes)
of selected weak classifiers are fed back to the pool for the
subsequent weak SNN training and selection. This guarantees
HybridSNN not only represents the linear combination of simple
SNNs, as what regular AdaBoost algorithm generates, but also
contains neuron connection information, thus closely resembling
the neural networks of a brain. HybridSNN has the benefits
of both low power consumption in weak units and overall data
driven optimizing strength. The network structure in HybridSNN
is learned from training samples, which is more flexible and ef-
fective compared with existing fixed multi-layer SNNs. Moreover,
the topological tree of HybridSNN resembles the neural system in
the brain, where pyramidal neurons receive thousands of synaptic
input signals through their dendrites. Experimental results show
that the proposed HybridSNN is highly competitive among the
state-of-the-art SNNs.

Index Terms—Spiking Neural Networks, HybridSNN, Boost-
ing, Adaptive Structures.
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I. INTRODUCTION

THE human brain, with more than 100 billion neurons,

is capable of myriad complex intelligent tasks. Based on

limited collective understanding of brain mechanisms, artificial

models have been intensely explored to simulate the efficient

information propagation of the brain [1]. Meanwhile, the

rapidly increased computational power and largely enriched

training datasets made it possible for brain-inspired computing

systems, such as artificial neural networks (ANNs), to achieve

breakthroughs, especially in pattern recognition and machine

learning fields [2] [3] [4].

However, ANNs are highly energy-consuming since they

transfer information in the real-number model, rather than

using discrete spikes as in the brain systems. Specifically, the

brain neuron emits an action potential, or spike, upon stimulus

larger than the firing threshold of the neuron membrane; or

otherwise, it keeps silent. Spiking neural networks (SNNs),

known as the third generation of the artificial neural systems,

are developed based on such event-driven mechanisms of

the brain to transmit information. SNNs are therefore more

biologically relevant and energy-efficient than ANNs [5] [6]

[7].

Much effort has been made on designing SNN architectures

trained by different kinds of methodologies. [8]. These SNN

structures can be roughly categorized into single- and multi-

layer networks.

Tempotron [9] is a supervised synaptic learning algorithm

commonly used for binary classification problems and can

perform effectively in single-layer neural networks. But the

shallow structure of single-layer network shows limited fea-

ture extraction capability and Tempotron cannot be directly

extended to multi-layer networks due to the abandonment

of precise firing time data which is required to transfer

information across layers. To overcome such problem, various

methods based on the Widrow-Hoff learning rule [10] were

introduced to single-layer SNNs, including remote supervised

learning method (ReSuMe) [11], precise spike-driven synaptic

plasticity (PSD) [12], and spike pattern association neuron

(SPAN) [13]. In addition, the single-layer SNN model based on

Spike-Timing-Dependent Plasticity (STDP) was also explored.

For instance, the network with competitive STDP neurons was

constructed to detect repeating patterns, in which the neuron

firing behavior would trigger the inhabitation of other neurons

through the lateral connections [14]. Among them, ReSuMe

and PSD could be extended to multi-layer frameworks by

backpropagation (BP) rule [15] [16]. However, these extended

models still perform poorly in solving complex problems, such
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as recognizing digits in the MNIST dataset. On the other hand,

the shallow structures of single-layer SNNs exhibit limited

feature extraction capability. Hence, sophisticated and power-

ful SNN frameworks remain highly desirable for carrying out

complex tasks.

Since, researchers have proposed several advanced multi-

layer SNN models. The mainstream ones aim to train the

systems by gradient descent algorithms (supervised) and/or

STDP (unsupervised) rule [17]. Based on the approximate

gradient descent rule, the Spikeprop learning algorithm [18]

was introduced, followed by the Quickprop and RProp for

faster convergence [19]. Combining event-based STDP and

BP rule, BP-STDP is developed to update weights at each

time step as a temporal local learning approach [20]. To

overcome the non-differentiable nature of spike event, Lee

et al. [21] considered the discontinuity of spiking signal as

noise and treated the membrane potential of spiking neurons

as the differentiable signal. Hence, the error backpropagation

mechanism can be employed to train deep SNNs directly.

To achieve the remarkable performance comparable to con-

volutional networks (ConvNets)[22], the conversion method

from ANNs to SNNs was designed in [23]. By employing the

rectified linear units (ReLUs) during training and introducing

the new weight normalization method to regulate the firing

rate, it further enhanced the performance of SNNs obtained

from the conversion process. Meanwhile, unsupervised learn-

ing methods have also been developed for SNNs. A three-

layer network, with the winner-take-all (WTA) circuit of

excitatory neurons and inhibitory ones, was designed and

trained by STDP to categorize data [24]. However, this model

could not be extended to multiple layers directly to build

a strong and deep SNN. There are also some SNN models

proceeding optimization by combining the unsupervised learn-

ing and supervised learning method. For instance, to better

initialize the parameters in the unsupervised training multi-

layer networks prior to supervised optimization, a two-phase

training methodology was introduced in [25]. It first trained

the convolutional kernels in an unsupervised layer-specific

way, then fine-tuned the synaptic weights with spike-based

supervised gradient descent backpropagation. Moreover, the

spiking deep convolutional neural network (SDNN) [26] and

the spiking convolutional neural network (SpiCNN) [27] with

deeper layers were proposed for object recognition. These two

networks are composed of several convolutional and pooling

layers followed by the linear SVM or the fully-connected

layer as the final classifier. Furthermore, the SpiCNN model

improved the feature learning efficiency by introducing 3*3

kernels in two convolutional layers. In these two models, the

convolutional layer were trainable through unsupervised STDP

rule while the classifiers were trained by supervised method.

Furthermore, the ensemble unsupervised spiking neural net-

work was proposed for objective recognition [28]. Several

SNNs with the same structure were integrated together and

computed the final classification result by voting algorithm.

The accuracies of this model on image classification problem

were comparable with the deep neural networks. In aggregate,

these methods made tremendous contribution to the multi-layer

SNN development. However, these existing models could not

implement the adaptive learning process when building the

deep SNNs model architectures in the data-driven manner.

From the above, two common types of deep SNN design

strategies emerged in these studies. One is to resemble the

network structure and learning paradigms of brain neural

networks as closely as possible. Most of these models are

trained with the temporally local unsupervised STDP and

always introduce some brain-inspired component, such as

lateral inhabitation connections, to make model efficient to

generate selective responses. Nevertheless, the scalability of

those model is limited by the insufficient understanding of

brain mechanisms. That is, the exact networks structures and

the global credit assignment mechanism in brain networks are

not clear enough to support the designing and learning of a

thorough brain-style deep SNN [29] [30]. In consequence,

the performance of those models usually is limited by their

shallow structures and can hardly compete with the supervised

deep SNNs or the traditional artificial neural networks, such as

convolutional neural networks (CNNs), on open AI challenges

using public datasets. The other strategy is to combine the

basic SNN principles with machine learning (ML) techniques.

Those models often employ the predefined and fixed network

structures and are trained by the BP algorithms with gradient

descent rule. However, the non-differential problem caused by

the discrete spike trains hampers the optimization progress by

BP algorithms in SNNs. Since then, the BP algorithms in some

SNNs are implemented by approximate functions or surrogate

gradient method with the built-in inaccuracy or the lack

of theoretical foundations [31]. Meanwhile, there are some

SNNs converted from a fully-trained deep neural networks,

which may suffer from the performance loss caused by the

converting process. In addition, most of the structures of these

models are fixed and can not be generated adaptively. Despite

such drawback, the strategy combining SNN units with ML

methods remains attractive because the SNN frameworks have

the advantage of energy efficiency and the data-driven ML

methods offer high performance. With the above two parts

complementing each other, such hybrid SNN hence became

highly appealing.

Herein, we propose a new SNN framework, called Hybrid-

SNN. Unlike the existing models using fixed network struc-

tures, HybridSNN can construct the deep SNNs adaptively. It

treats simple SNNs as basic processing units, greedily searches

the best units in a data-driven manner, and assembles them into

a deep and strong SNN. An SNN unit can be a single- or multi-

layer SNN trained to become a weak classifier. Then the best

weak classifiers are greedily selected and integrated into the

model, one at a time. Next, the training data gets re-weighted

so that the correctly classified samples are assigned with small

weights and the mistaken samples are set with large values.

The process iterates until a final strong model is established.

This approach has something in common but quite different

from the ensemble procedure of AdaBoost [32], that is, we

use simple SNNs as weak classifiers, and the output features

(spikes) of selected classifiers are fed back to the sample pool

for subsequent training and selection. This feedback operation

is important for building an SNN system with neural networks,

rather than just a linear combination of weak SNNs.
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Our method has the following advantages:

• HybridSNN has the benefits of both biologically plausible

model and data-driven optimizing strength by using a

data-driven greedy optimization method to boost an effec-

tive combination of shallow SNN units instead of gradient

descent. The resulting model retains an energy-saving

advantage and the boosting learning part is able to train

a deep SNN pursuing higher performance comparable to

ANNs. Thus it has both strengths in energy efficiency

and performance.

• The network topologies of HybridSNN are more flex-

ible and adaptable compared with those of the existing

single- and multi-layer SNNs. Instead of using fixed deep

structures, we start from a single unit and then assemble

a deep network through iterations of classifier selection

and incorporation. The network structure in HybridSNN

is learned adaptively and depends on the training samples,

which provides promising scalability for our model to

suit different pattern recognition tasks and improves the

computational efficiency.

• HybridSNN has a tree-like structure and each weak

classifier contributes to the final result. This is different

from most existing deep multi-layer SNNs that use only

the output of the last layer to produce the final result.

The topology of HybridSNN is closer to that of biological

neuronal networks [33], [34], where pyramidal neurons

receive thousands of input signals through their dendrites.

HybridSNN is therefore not just the linear combination of

simple SNNs. It contains neuron connection information

since the output spikes are fed back to the pool of training

samples. Thus, it performs tasks by making committee

decisions like a brain neural system.

Experiments were carried out on the MNIST and CIFAR-

10 datasets. Three models of HybridSNN framework were

tested: T-HybridSNN, a single-layer SNN with Tempotron

learning [9]; M-HybridSNN, a multi-layer SNN with the

learning rules proposed by Mostafa [35]; and C-HybridSNN,

a deep convolutional SNN model designed in [36]. For T-

HybridSNN, we explore how to speed up the convergence

through the built-in pretraining method, discuss the generated

tree-like network structures and investigate the effect of the

ensemble way. For weak learners in M-HybridSNN and C-

HybridSNN, we adopted the learner weight enhancement

method to improve the performance on MNIST and CIFAR-

10 dataset, respectively. Our approach outperformed not only

the original weak learners but also most of the benchmark

learning methods.

II. METHOD

In this section, we first introduce the framework of Hy-

bridSNN, in which the processing units are simple single-

or multi-layer SNNs. For each unit, the best classifier is

greedily sought in a data-driven manner. Finally, the selected

units are assembled into a deep and powerful SNN. Also, we

describe the detailed process of how to train T-HybridSNN

with single-layer SNN, M-HybridSNN with multi-layer SNNs,

C-HybridSNN with deep convolutional SNNs, respectively.

A. The Framework of HybridSNN

Inspired by the AdaBoost algorithm of forward stage-wise

additive modeling using a multi-class exponential loss function

[32], [37], we designed the HybridSNN by employing a

process to iteratively generate the pool of weak SNN classifiers

that are strengthened through learning and the best performing

classifier is chosen during each iteration.

As shown in Fig. 1, for each iteration of the HybridSNN

framework, the weak learner pool consists of m learning

models of Ξm
0 ,Ξm

1 ,Ξm
2 , ...,Ξm

m−1, in which Ξm
l denotes the

classifier unit that utilizes the output of lth trained classifier as

the input data and Ξm
0 regards the weighted raw data as input

data. In detail, based on the raw training samples with the same

normalized weights, the HybridSNN builds its initial classifier

pool with only one classifier unit Ξ1
0. Then the weights of

training samples are updated according to the classification

results of Ξ1
0. As soon as a training sample is misclassified,

its corresponding weight would be adjusted, which is also

known as changing the bias of the input samples through an

increased intensity of misclassified samples. The classifier in

the first iteration can only be Ξ1
0 and marked as T 1. The next

iteration has a pool consisting of Ξ2
0 and Ξ2

1, where Ξ2
0 is built

on the weighted input data updated by the previous training

stage, and Ξ2
1 takes the output of Ξ1

0 classifier as the input

data. The classifier T 2 is chosen from Ξ2
0 and Ξ2

1 according to

the performance. As such, there would be a total M chosen

classifiers (T 1, T 2, ..., TM ) at the completion of the training

process. Due to their input data sources, these classifiers are

naturally connected and each makes a contribution to the final

decision making, furnishing together a tree-like topology.

B. Training Process of HybridSNN

The training process of HybridSNN is illustrated in Algo-

rithm 1. Given input data with the same normalized weights,

the HybridSNN is trained to obtain M classifiers T (m),m ∈
{1, 2, ...,M} with different performance scores. The classifier

pool contains m SNN units Ξm
l , l ∈ {0, 1, ...,m − 1}. The

first step is to train these classifiers by the weighted data.

Then err∗(l) is computed from the weighted classification

results. Finally, the classifier T (m) with the smallest err∗(l)

value is chosen and assigned a performance score α(m), which

will further update the sample weights. The sample weights

are normalized. After the training process, the assembled

classifier C(xi) proceeds to predict data categorization with

weighted weak learners in the testing process. In this paper,

we consider three models: T-HybridSNN, M-HybridSNN, and

C-HybridSNN. The specific training method for each of the

three models is described as below:

1) T-HybridSNN as Single Layer Network Learned by

Tempotron: T-HybridSNN is a scenario where a single-layer

network is used as the basic classifier in HybridSNN. We start

the training process with the classical Tempotron algorithm.

To speed up the convergence, we adopt a pretraining method

to initialize the weight of the weak learner.

HybridSNN with classical Tempotron learning. Each

learner pool consists of different SNN classifiers. To ef-

fectively compute and assign the sample weights for the



4

Weighted Input 
Data by 1

Input Spikes

Weighted Input 
Data by 2

Data by 

1

2

Weighted Output 
Data of 1

Weighted Output 
Data of 2

Weighted Output 
Data of 

1 Weak learner pool SNN weak learner

…

Weighted Input 

Weighted Input 
Data by 

Weighted Output 
Data of 

M-1 M-1 M-1 M-1 M-1 M-1

M-1

M-1

M-2

M-2

M-2

HybridSNN framework

-1

...

Fig. 1: The framework of HybridSNN. We assume there are M iterations in the HybridSNN model. Each iteration uses one

weak learner pool. During the mth iteration, the weak learner pool consists of m classifiers: Ξm
0 ,Ξm

1 ,Ξm
2 , ...,Ξm

m−1. These

classifiers compete against each other performance-wise. The best learner Tm is chosen after the competition. Hence, there

would be M classifiers (T 1, ..., TM ) chosen after the entire training process. These classifiers are associated with each other

through their input data source and iteration indexes. The input data source could be the original dataset or the output from the

selected classifiers in the previous iterations. The first classifier Ξm
0 in the mth iteration employs the original data weighted by

the prior classifier Tm−1 as the input source. The remaining classifiers employ the weighted output data of the corresponding

prior classifiers. For instance, Ξm−1
2 utilizes the weighted output spikes of T 2 as input. As such, a tree-like topology will be

generated by the HybridSNN model at the completion of the training process.

Algorithm 1 The training process of HybridSNN framework.

Initialization:

Input data: xi, i = 1, 2, ..., N .

Labels of input data: ci, i = 1, 2, ..., N .

Number of classes: K.

The weights of sample: W s
i = 1/N, i = 1, 2, ..., N.

for m = 1 to M do ← HybridSNN Iterations

for l = 0 to m−1 do ←Weak Learner Pool

min error = Inf.
(a) Train the classifier Ξm

l (xi) with W s
i .

(b) Compute error:

err∗(l) =
∑N

i=1 W
s
i Γ(ci ̸= Ξm

l (xi))/
∑N

i=1 W
s
i .

If err∗(l) < min error
min error = err∗(m) = err∗(l).
T (m)(xi) = Ξm

l (xi).
end for

(c) Compute α(m) = log 1−err(m)

err(m) + log(K − 1).

(d) Set W s
i ←W s

i · exp(α
(m)Γ(ci ̸= T (m)(xi))).

(e) Re-normalize W s
i =

W s
i∑

N
1 W s

i

.

end for

Output:

C(xi)← argmaxk

∑M

m=1 α
(m) · Γ(T (m)(xi) = k).

SNNs, we adopt the Tempotron learning rule for its excellent

classification ability working with spike patterns.

Neuron model. The widely used Leaky Integrate-and-Fire

(LIF) model is applied as the fundamental neuronal unit to

construct the network. The membrane potential of a specific

LIF neuron j is calculated as follows:

Vj(t) =

NI
∑

i=1

Θ(t− ti)WijK(t− ti), (1)

where NI is the total number of input neurons and Θ is

the Heaviside step function. K denotes the vanishing kernel

function of postsynaptic potential for ti > t, which can be

further represented as:

K(t− ti) = V0(exp(−
t− ti
τm

)− exp(−
t− ti
τs

)), (2)

where V0 is used for normalization to ensure that the maximum

kernel value is 1.0 and the synaptic efficacies Wij becomes

the amplitude of the unitary postsynaptic potential. The pa-

rameters τm and τs are the decay time constants of membrane

integration and synaptic currents, respectively, and are set to

be 15 ms and 3.75 ms for the LIF neuron, respectively. Once

the membrane potential Vj crosses the threshold Vthr of 1.0,

the neuron j emits a spike. Each neuron is permitted to emit

a spike only once.

In binary classification, the input patterns to the neurons

belong to one of the two types, ⊕ and ⊖. The neuron fires a

spike when ⊕ arrives, and remain inert upon ⊖ input. Tem-
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potron rule updates the synaptic weights of Wij to minimize

the error signals as:

Ej =

{

W s
j ∗ (Vthr − Vj(tmax)) if ⊕ error,

W s
j ∗ (Vj(tmax)− Vthr) if ⊖ error,

(3)

where W s
j denotes the weight of the sample j, tmax is the

time when the neuron reaches its maximum voltage. ⊕ error

represents the false negative error when the neuron should

emit spikes but fails to, while ⊖ error is the false positive

error when the neuron wrongly emit spikes. The gradients of

parameter Wij are computed as following:
{

∆W+

ij = W s
j ∗ λw

∑

ti<tmax
K(tmax − ti) if ⊕ error,

∆W−

ij = −W s
j ∗ λw

∑

ti<tmax
K(tmax − ti) if ⊖ error,

(4)

where λw is the learning rate for network weights update.

The pretraining method for classifiers in the HybridSNN

model. Before training, the parameters of each classifier

(except the first one) are set to be the corresponding values

of the trained classifier from the last iteration. This approach

can effectively accelerate the convergence process.

2) M-HybridSNN as a Multi-layer Network Learned by

Mostafa model: M-HybridSNN is a HybridSNN model using

a multi-layer network as the primary weak learner. We first

choose the Mostafa algorithm for the learning procedure of this

model. In order to balance the weights of classifiers in different

iterations, we introduce the score enhancement method for

HybridSNN.

Neuron model. The Mostafa method employs non-LIF

neurons with exponentially decaying synaptic current kernels.

Assuming the postsynaptic neuron j receives NI spikes at

time {t1, t2, ..., tNI
} with weights {w1, w2, ..., wNI

} from NI

presynaptic neurons, and each neuron is only permitted to fire

once, the membrane potential of neuron j can be represented

as follows:

Vj(t) =

NI
∑

i=1

Θ(t− ti)wi(1− exp(−(t− ti))). (5)

Once the value of Vj crosses the threshold Vthr = 1, the

neuron j emits a spike. The casual set Cj = {i : ti < tj}
is defined to collect the presynaptic spikes that determine the

time point at which postsynaptic neuron fires the first spike.

Hence tj satisfies:

1 =
∑

i∈Cj

wi(1− exp(−(tj − ti))). (6)

After transforming the spike times by exp(tx)→ zx, the first

spike of neuron j can be described in the z-domain as:

zj =

∑

i∈Cj
wizi

∑

i∈Cj
wi − 1

. (7)

Mostafa as a supervised learning method. For the feedfor-

ward process of fully connected multi-layer SNNs, the firing

time of each neuron is computed according to its causal set.

If the causal set is empty, the output spike time is set to be

infinity. The cross-entropy loss is applied to make the neuron

of the correct class fires earlier than others in the output layer.

Assuming the spike time of the output layer is zo, and the

target class is g, the cost of output layer is as follows:

L(g, zo) = W s ∗N ∗ (−ln
exp(−zo[g])

∑

k exp(−zo[k])
), (8)

where W s denotes the sample weights. Moreover, for the

backward propagation, the derivatives of the presynaptic neu-

rons’ first spike times in the z-domain and the corresponding

weights are given by:

dzj
dwi

=

{

zi−zj∑
i∈Cj

wi−1 if i ∈ Cj ,

0 Otherwise.
(9)

dzj
dzi

=

{

wi∑
i∈Cj

wi−1 if i ∈ Cj ,

0 Otherwise.
(10)

Based on these formulas, the derivatives of other variables

in the networks can be obtained with standard backpropagation

technique, using the errors transferred through the layers.

Besides, the constraints on synaptic weights and gradient

normalization are applied to ensure neurons can fire spikes.

HybridSNN stages balanced by score enhancement.

Compared with single-layer SNNs, the multi-layer SNNs can

generally represent features more effectively, hence achieving

better performance for classification problems. However, when

a multi-layer SNN is used as the basic weak learner in

HybridSNN, the performance is mostly determined by the

initial classifier due to its high classification accuracy and high

performance score. The classifiers of the following iterations

of HybridSNN seem to be unworkable due to their dramati-

cally lower scores, and the proposed HybridSNN hence fail

to take advantage of the hierarchical cascading structure. To

solve this problem, we design a brand new method to achieve a

more balanced state among different training stages previously

disturbed by ultra-big/small imbalanced weights.

An enhanced parameter of es is introduced to the score

enhancement method. With this parameter, the weight score

α(m) of trained weak learner m is computed as follows:

α(m) =
log 1−err(m)

err(m) + log(K − 1)

es
, (11)

in which es decreases as the iterations proceed. It can be

designed as C/m, where C is a constant and m denotes

the iteration index. In this way, the weight score of the deep

iterations can be enhanced, while the domination effect of the

initial classifier on the result is avoided. Once misclassified

samples occur in the first iteration, this score enhancement

procedure can correct the wrong labels for the HybridSNN

model.

3) C-HybridSNN model: The deep convolution SNN struc-

ture is designed with spike-based supervised gradient descent

backpropagation algorithm [36], which employs an approxi-

mate derivative for LIF neuronal function.

Neuron model. The LIF neuron sub-threshold dynamics is

as follows:

τq
dV

dt
= −V +

Ni
∑

i=1

Θ(t− ti)Wi, (12)
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where V is the postsynaptic membrane potential and τq is

the time constant, which is set to be 100. The neuron fires a

spike when V >= Vthr. Each neuron can fire multiple spikes.

Using this basic LIF model with Vthr = 1, the output of

hidden layers, including the convolutional layer and spatial

pooling layer, can be computed according to the neuron model.

Especially, in the last time step of the final layer, the firing

threshold Vthr is set to be ∞ and the output of neuron

outputfinal is obtained by:

outputfinal =
Vmem(T )

number of total time steps
, (13)

where Vmem(T ) represents the accumulated membrane po-

tential over T time steps. With these operations, the deep

convolutional SNN structure, such as VGG and ResNet, could

be efficiently constructed. Herein, this deep convolutional SNN

with VGG structure is chosen as the basic weak learner, and

named as C-HybridSNN model. The spike train generated in

the fully-connected layer of each weak learner is regarded as

its output data and will be transmitted to the next iteration in

the C-HybridSNN model. The aforementioned score enhance-

ment method is also adopted in the C-HybridSNN model.

III. RESULTS

A. Experiment Settings

Numerical experiments were conducted with the MNIST

dataset and CIFAR-10 dataset. Each image can be encoded as

a series of spike patterns [38], [35], [39], and used as input

for HybridSNN.

In addition, we categorized the whole MNIST dataset into

complex groups and simple groups according to the binary

classification results using the original Tempotron rule. In

particular, a pair of digits that were too similar to distinguish

from each other was considered as a complex group. The rest

pairs were simple groups. There were a total of C2
10 = 45

groups for binary classification, 6 among which are complex

groups, namely 2&3, 3&5, 3&8, 4&9, 5&8, 7&9. A number of

both complex and simple groups were chosen as experimental

examples to illustrate the HybridSNN model.

B. Encoding Method

In order to encode images as spike trains, we employ a

temporal coding scheme to encode the original image dataset

into spatial-temporal patterns. The T-HybridSNN model uses

encoding model in the convolutional SNN (CSNN) model

[38], which converts the activation values of the perceptron

algorithm into delay spike times by linear mapping. The

strongly activated value would fire earlier, and vice versa.

This sparse spatiotemporal representation extracts the key

information from the original images. On the other hand, the

M-HybridSNN model adopts the image binarization method to

generate spike trains. The encoding neuron with high-intensity

pixels fires a spike at time 0, while neuron with low-intensity

pixels fires at time ln(6) = 1.79, corresponding to z = 6
in the z-domain. This setting provides a suitable temporal

interval between spikes mapping from high- and low-intensity

pixels. Since the C-HybridSNN model is used to recognize

the color images in the CIFAR-10 dataset, the input pixels

are normalized and bounded to the range of [−1, 1]. Next,

these normalized pixel intensities are converted to Poisson-

distributed spike trains.

C. The Performance of T-HybridSNN with Single-layer SNN

In this section, we evaluate the performance of the T-

HybridSNN model, which is the HybridSNN framework with

single-layer Tempotron model. Firstly, the influence of the

pretraining method for the T-HybridSNN is explored. Sec-

ondly, the generated tree-like structure by the T-HybridSNN

model is analyzed. Finally, the effect of the ensemble learning

way of the T-HybridSNN is investigated by comparing its

performance to the Adaboost method with Tempotron model.

1) The Influence of Pretraining Method on T-HybridSNN:

We investigate the performance of T-HybridSNN with pre-

training method by computing the classification accuracies on

MNIST dataset. In detail, the training and test accuracies of

the T-HybridSNN model are evaluated on two complex groups,

4&9 and 5&8 within 200 training iterations. For these binary

classifications, the number of decoding neurons in the basic

weak learner of Tempotron is set to be 80.

We find that this pretraining method could accelerate the

convergence of the T-HybridSNN model. As illustrated in Fig.

2 (a), the test accuracy for 4&9 classification with pretraining

rises to 95% at the 23rd iteration, while it takes 165 iterations

to reach the same level of test accuracy for model without

pretraining, even though the final test results tend to be

close after 200 iterations. Meanwhile, as shown in Fig. 2

(b), the test accuracy for 5&8 classification with pretraining

outperforms the model without pretraining by at least 1% after

100 iterations, although the gap between the two decreases

over the subsequent course. In summary, experimental results

show that the learning process of T-HybridSNN model can be

accelerated by pretraining method.

2) The Generated Tree-like Structure of T-HybridSNN: We

then proceed to explore the learned network structure of T-

HybridSNN. After 200 iterations, the connection among T-

HybridSNN learners appears to be a tree-like topology, resem-

bling the neural system of a brain. Here we choose several

representative subtrees/networks generated by T-HybridSNN

for the binary classification of 4&9. As illustrated in Fig.

3, the deepest subtree has six layers. Combining with Fig. 2

(a), we further analyze the relationship between the generated

network structure and classification accuracy. Firstly, we find

the weak learner prefers to take raw data as input when the test

accuracy of the prior classifier declines. For discrete cascading

T-HybridSNN, the test accuracy keeps falling from the 40th to

the 50th iteration. Thus, the following 50th to 54th iterations

employ raw data as input features, which in turn improve the

test accuracy until a small peak is reached. Secondly, after the

model is trained thoroughly and becomes stable, the iterations

tend to distribute in the deeper layers of the tree. The test

accuracy converges from the 150th to 200th iteration, located

in the 3rd to 6th layers in the generated networks.

3) The Effect of the Ensemble Way of T-HybridSNN: Here,

we analyze the impact of different cascading systems on SNN
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Fig. 2: The classification accuracies of the pretraining method for T-HybridSNN. ‘T-HybridSNN with pretraining’ and ‘T-

HybridSNN w/o pretraining’ denote the discrete cascade SNNs with and without the pretraining method, respectively. (a), (b)

show the performances of 4&9 , 5&8, respectively, in comparison.
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Fig. 3: Generated tree topology of T-HybridSNN by the classification of 4&9. Several subtrees from the topology are visualized.

Each node represents a weak learner chosen from the pool of weak classifiers and is marked as Tm in Fig. 1. The number on

each node denotes the index of the corresponding weak learner pool in the HybridSNN framework.

and compare their performances on two complex groups of

MNIST dataset. Two models are compared: T-AdaBoost that

is the original AdaBoost framework with Tempotron classifier

and T-HybridSNN with Tempotron learning algorithm.

We find that the ensemble way of T-HybridSNN has an

advantage over T-Adaboost. We compute the classification

accuracies on two complex groups of the MNIST dataset,

4&9 and 5&8. These results are obtained with validation

dataset, which is split from training dataset with 80% propor-

tion. The validation set can be used to find the appropriate

moment to measure the result during the training process.

As shown in Fig. 2 (a), the test accuracy curve exists the

oscillation phenomenon. These small oscillations are caused

by few samples that are classified corretly in the last iteration

but wrongly in the next iteration. Considering that case, we

employ the validation set to record the optimal parameters that

contain the number of iterations and the corresponding weak

learners during the training process of T-HybridSNN. For each

iteration, the weak learner is chosen only when the validating

accuracy increases after it is assembled. As illustrated in Fig. 4

(a), the T-HybridSNN model performs better than T-AdaBoost

on 4&9 binary recognition, with final test accuracies of

95.73% and 94.02%, respectively. For 5&8 (Fig. 4 (b)) binary

recognition, the test accuracy of T-HybridSNN increases first,

then decreases, and increases again to the value of 96.68%.

Also, this T-HybridSNN model achieves higher test accuracy

than T-AdaBoost on 5&8 recognition. In addition, both these

two results in Fig. 4 obtain competitive test accuracies with

fewer weak learners compared with the results in Fig. 2, 30 and

47 weak learners for 4&9 and 5&8 classification, respectively.

These weak learners compose the necessary nodes for the

generated tree-like structure by T-HybridSNN. In this way, the

generated tree is relatively simple, instead of the redundancy

structure in Fig. 3. We therefore conclude that T-HybridSNN

outperform T-AdaBoost on these classifications, which indi-

cates the effect of the ensemble way of T-HybridSNN.
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Fig. 4: The classification accuracies of the T-Adaboost, T-HybridSNN on two complex groups, 4&9 and 5&8. T-AdaBoost

represents the AdaBoost algorithm with the Tempotron model as the weak learner. T-HybridSNN denotes the HybridSNN with

the original Tempotron. The markers on the lines represents the chosen classifiers by validation datasets within 200 iterations.
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Fig. 5: The classification accuracies of the T-HybridSNN on

the entire MNIST dataset.

However, the performance improvement of T-HybridSNN

seems quite limited, which is caused by the weakness of

the basic weak learner. To illustrate this phenomenon more

clearly, we further investigate the classification accuracy of

T-HybridSNN on the entire MNIST dataset. To improve the

fitting ability of the basic weak learner, a relatively powerful

Tempotron with a bit more complex network structure is

employed as the basic weak learner here. That is, the number

of decoding neurons in the output layer of Tempotron is set to

be 120. The T-HybridSNN with this Tempotron is attempted

to classify the MNIST dataset into 10 digit classes using

30 iterations. As shown in Fig. 5, we find that the training

accuracy and test accuracy of T-HybridSNN keep improving

slowly with the increasing of iterations and finally converge

to be 85.07% and 84.51%, respectively. These training ac-

curacy and test accuracy are higher than that of the original

Tempotron classifier with 83.58% and 83.3%. This is because

the HybridSNN can learn something more useful information

for recognition compared with the single one Tempotron.

The boosting theory indicates that weak classifiers can be

assembled to a stronger one by adjusting sample weights and

training each weak classifier recognizing a part of samples

only [37]. In this case, a weak Tempotron does not need to

learn information on all samples but only focuses on a few

samples. This reduces the influence of the weak property of

Tempotron and makes that information learnable. Then step

by step, the trained Tempotron are connected to complement

each other until a final strong classifier (T-HybridSNN). As

shown in Fig. 5, the experiment results demonstrate the above

analysis. The learning curve of T-HybridSNN continuously

goes up meaning it has successfully learned information for

recognition. Accordingly, both the training accuracy and the

test accuracy are higher than those of the single Tempotron. It

is worth noting that this does be one advantage of HybridSNN.

Nevertheless, the results achieved by T-HybridSNN are still

not competitive to most of the commonly used classifiers.

Hence, we change the weak learner unit from a single-layer

Tempotron to multi-layer Mostafa SNN. The test accuracy

in ten-class MNINST reaches 97.84%, which is higher than

baselines and comparable to the state-of-the-art as shown in

Table IV. Therefore, the limited performance of HybridSNN

model is related to the weak learners’ capability.

In fact, this is consistent with another property of the

boosting algorithm [40] [41]. That is, when the problem is

not so difficult such as the frontal face detection (a binary

classification problem) [42], the weak classifier can be really

weak but still helpful for the final strong classifier, as long as

its error rate is lower than 50%. It is easy to satisfy since

it just needs an error rate slightly better than the random

guess in a binary classification problem. Thus, T-HybridSNN

obtains a higher accuracy in binary classification with a weak

and single-layer SNN, i.e. Tempotron. However, classification

units cannot be too weak when the problem changes to multi-

class classification. Because the task becomes difficult, the

boosting algorithm needs relatively strong classifier units to

guarantee that the training process reachs a strong classifier

with nice generalization ability. Thus, in this case, the multi-

layer Mostafa SNN works better than Tempotron and obtains

comparable performance to the state-of-the-art model as il-
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lustrated in Table IV. Therefore, how to choose the basic

SNN unit in the HybridSNN model to achieve comparable

performance depends on the properties of problems and the

unit itself. Hence, we would choose the more powerful weak

learners, such as the three-layer SNNs and convolutional

SNNs, to compose the M-HybridSNN and C-HybridSNN

model and implement the data recognition for MNIST dataset

and CIFAR-10 dataset in the next sections, respectively.

D. The Performance of M-HybridSNN with Multi-layer SNNs

As introduced in the last section, considering the limited

performance of T-HybridSNN with single-layer SNN, the

more powerful M-HybridSNN with multi-layer SNN is ex-

plored in this section. Firstly, the influence of the parameter

in the score enhancing operation is investigated to find the

optimal parameter. Secondly, the relationship between the

recognized dataset’s complexity and the depth of the generated

tree-like structure is discussed. Finally, the performance of M-

HybridSNN is compared to different kinds of SNNs models

to show its benefits.

1) The Influence of the Score Enhancing Parameters on

M-HybridSNN: To explore the effect of different parameters

of M-HybridSNN, we recorded the classification accuracy of

HybridSNN after 10 iterations with fixed 800 hidden neurons.

Experiments are done with four groups of datasets containing

two complex sample groups (2&3, 5&8) and two simple ones

(0&1, 1&2) in MNIST.

As shown in Table I, the best results are achieved when

the weak learner enhancement parameter es is set to be

(e∗ ln10)/t after 20 iterations, where e is the base of the nat-

ural logarithm. Meanwhile, the accuracy continues to improve

when the number of iteration grows with otherwise the same

enhancement parameters. Noticeably, the average accuracy of

M-HybridSNN exceeds that of the original Mostafa method,

indicating that the proposed score enhancement mechanism

can effectively avoid the problem of domination by the first

iteration in our M-HybridSNN model.

2) The Depth of the Tree-like Structure Generated by

M-HybridSNN: To explore the learned structures of M-

HybridSNN, we assess the performance of HybridSNN mod-

els on several representative complex and simple groups in

MNIST datasets by recording the accuracy of both training and

test processes. Meanwhile, the maximum number of cascading

layers is counted to show the depth of the tree-like network

structures.

We conducted the binary classification on all complex

groups. As illustrated in Table II, the average accuracy of M-

HybridSNN is better than that of the original Mostafa method

with a 0.4% improvement on the test dataset. Besides, there

are 3 or 4 cascading layers after the training process for the

M-HybridSNN. Meanwhile, we randomly select six simple

groups for binary classification, as shown in Table III. The

average accuracy of HybridSNN reaches 99.52% on the test

dataset, exceeding that of the original Mostafa method by

0.24%. And the average cascading layers are 2.5 for simple

groups, confirming that the network needs a deeper structure to

solve complex problems than simple ones. In conclusion, we

find that M-HybridSNN can achieve better average accuracy

than the original Mostafa model for both complex and simple

samples. Moreover, the performance can be improved more

readily on complex sample groups than simple ones due to

more cascading layers. Hence, the more complicated the prob-

lems to solve, the more complex and deeper network structures

are needed. And our HybridSNN model proves to have the

scalability to adapt to different pattern recognition tasks by

the capability of generating flexible network topologies.

3) The Accuracy Comparison of the M-HybridSNN with

Other Models: In this section, we compare our proposed Hy-

bridSNN with other existing models using the entire MNIST

dataset. All 60000 training samples and 10000 testing samples

are used for performance comparison with several typical

learning algorithms of SNN by recording the classification

accuracy. We also assess the performance of HybridSNN by

comparing the original Mostafa SNN with a similar network

structure of a fixed topology.
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Fig. 6: The classification accuracy of M-HybridSNN on the

entire MNIST dataset.

To evaluate the classification capability of M-HybridSNN,

we analyze the accuracy changes during the iterations and

then compare it with other types of SNN models. Firstly, the

improvement of training accuracy and test accuracy during

iterations are analyzed for M-HybridSNN. As shown in Fig.

6, it draws the classification accuracy of the M-HybridSNN

model with 10 iterations on MNIST dataset. We find that

the inference accuracy of M-HybridSNN starts to increase

quickly within the first three iterations, then keeps enhancing

slowly. It is reasonable because the assembled strong classifier

within the first three iterations has improved most of the

wrongly-classified samples’ learning intensity by enhancing

their sample weights. The following iterations could correct

the samples that are harder to be categorized than the wrongly-

classified samples within the first three iterations stage by

stage. Then we compare the results of M-HybridSNN with

other models. As illustrated in Table IV, our M-HybridSNN

model achieves a test accuracy of 97.84%. The test accuracy

of M-HybridSNN exceeds two commonly used supervised

learning SNNs, namely BP-STDP [20] and Equilibrium Prop-

agation (EP) [43], which train models with several shallow

fully-connected layers directly. However, when compared with
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TABLE I: The classification accuracy comparison for M-HybridSNN model with different parameters.

Method es Epoch Train-23 Test-23 Train-58 Test-58 Train-01 Test-01 Train-12 Test-12 Average Accuracy

Mostafa - 100 99.980% 98.920% 99.992% 98.242% 100.000% 99.811% 99.992% 99.585% 99.565%

M-HybridSNN 1 20 100.000% 99.168% 100.000% 99.089% 100.000% 99.905% 100.000% 99.631% 99.724%

M-HybridSNN e*ln10 20 100.000% 99.461% 100.000% 99.089% 100.000% 99.905% 99.961% 99.631% 99.756%

M-HybridSNN (ln10)/t 20 100.000% 99.070% 100.000% 98.875% 100.000% 99.905% 100.000% 99.539% 99.674%

M-HybridSNN (e*ln10)/t 10 99.942% 99.265% 99.911% 99.196% 100.000% 99.905% 99.961% 99.631% 99.726%

M-HybridSNN (e*ln10)/t 20 100.000% 99.412% 100.000% 99.196% 100.000% 99.905% 100.000% 99.585% 99.762%

TABLE II: The performance of M-HybridSNN on complex sample groups of the MNIST dataset. Depth is the number of

cascade layers for the generated tree-like structure by M-HybridSNN.

Method
4&9 5&8 3&8 3&5 2&3 7&9 Average Accuracy

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

Mostafa 99.98% 98.14% 99.99% 98.24% 99.98% 98.84% 99.99% 98.37% 99.98% 98.92% 99.98% 98.13% 99.98% 98.44%

M-HybridSNN

(Accuracy/Depth)

100% 98.29% 100% 99.20% 100% 98.69% 100% 98.79% 100% 99.41% 99.97% 98.48% 99.99% 98.81%

4 3 3 4 3 3 3.33

TABLE III: The performance of M-HybridSNN on simple sample groups of the MNIST dataset. Depth is the number of

cascade layers for the generated tree-like structure by M-HybridSNN.

Method
0&1 1&2 3&4 5&6 7&8 8&9 Average Accuracy

Train Test Train Test Train Test Train Train Train Test Train Test Train Test

Mostafa 100% 99.81% 99.99% 99.59% 100% 99.70% 99.99% 98.65% 100% 99.10% 100% 98.84% 100% 99.28%

M-HybridSNN

(Accuracy/Depth)

100% 99.91% 100% 99.59% 100% 99.80% 100% 99.30% 100% 99.55% 100% 98.94% 100% 99.52%

2 3 2 3 3 2 2.50

TABLE IV: The classification accuracies comparison among

different algorithms on the entire MNIST dataset.

Method Network Structure Test Accuracy

Tavanaei et al. (BP-STDP) [20] 784-500-150-10 97.2 %

O’Connor et al. (EP) [43] 784-500-500-10 97.66 %

Diehl et al. (ANN-SNN Conversion) [23] 784-1200-1200-10 98.64 %

Wu et al. (STBP) [44] 784-800-10 98.89 %

Shrestha et al. (SLAYER) [45]
28x28-12c5-2a-

64c5-2a-10o
99.36 %

Mostafa (with one hidden layer) [35] 784-800-10 96.46 % (97.2 %)

Mostafa (with two hidden layers) [35] 784-800-800-10 97.09 %

Our M-HybridSNN 784-800∼800-10 97.84 %

the converted Spiking MLP model [23], our model falls

behind by about 0.8% in accuracy. It is not surprising that

the Spiking MLP, converted from powerful ANN, displays

better accuracy. To our best knowledge, there is no directly

trained SNN that can outperform a CNN-to-SNN model to

date. Nonetheless, the Spiking MLP model requires more

resources for conversion, hence lacking overall efficiency

compared with our model, which is multi-layer by nature

and can be trained directly. In addition, the result of M-

HybridSNN falls behind the SLAYER [45] and STBP model

[44]. These two models achieve high test accuracy by intro-

ducing convolutional layer to enhance the feature extraction or

employing iterative LIF neurons to describe timing-dependent

temporal domain information. In addition, the M-HybridSNN

also improves the classification accuracy of basic weak learner

from 96.46%, the score of the original Mostafa SNN [35], to

97.84%. Since there are two cascading layers (784-800∼800-

10) in M-HybridSNN after the training process, we construct

a Mostafa network with 2 hidden layers for better comparison.

As a result, the M-HybridSNN performs better than the new

Mostafa network with a similar two-layer structure, since

the HybridSNN can preserve more input features efficiently.

Although the performance of M-HybridSNN is lower than

STBP and SLAYER, it is worth noting that our study is more

focused on demonstrating the feasibility and effectiveness of

the hybrid idea. Overall, our HybridSNN model performs

competitively among the supervised learning SNN models.

E. The Performance of C-HybridSNN with Convolutional

SNNs

From the above, the M-HybridSNN achieves the compet-

itive performance on the MNIST dataset. However, the M-

HybridSNN could not perform well on CIFAR-10 dataset

because of its big scale and data complexity. Hence, the C-

HybridSNN model with convolutional SNNs as weak learners

is employed to implement the data recognition application

for CIFAR-10 dataset in the this section. For C-HybridSNN

model, the time step is set to be 100. Here we run multiple

trials and compute the average accuracy. In our experiments,

the random initializations are the same between C-HybridSNN

and the baseline during one trial. That is, they have the same

initial network weights at the beginning of training.

As shown in Table V, after 40 training epoches, the test

accuracy of the basic deep convolutional VGG9 model is

85.31%. Using the C-HybridSNN framework with seven it-

erations, on the other hand, can improve the test accuracy to

87.05%. Moreover, with five weak learner and 120 epoches for

each one, the C-HybridSNN model can achieve an accuracy of

91.15%, which is slightly better than 90.05% of the original

deep convolutional VGG9 model [36], one of the newest

competitors. Besides, we compare the test accuracy of C-

HybridSNN with other deep convolutional SNNs. The results

show that the test accuracy of C-HybridSNN is higher than
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TABLE V: The classification accuracies comparison with other

method on CIFAR-10 dataset.

Method Epoch Test Accuracy

Kim et al. (BNTT) [46] - 90.5 %

Wu et al. (Tandem Learning) [47] - 90.98 %

Wu et al. (NeuNorm) [48] - 90.53 %

Ma et al. (Local TDLL) [49] - 88.01 %

Park et al. (ANN-SNN conversion) [50] - 91.4 %

Lee et al. (DCSNN) [36] 40 85.31 %

Lee et al. (DCSNN) [36] 120 90.05 % (90.45 %)

Our C-HybridSNN 40 87.05 %

Our C-HybridSNN 120 91.15 %

the convolutional SNNs in [46] [47] [48] and the STDP-

based spiking networks in [49]. Meanwhile, the test accuracy

achieved by C-HybridSNN still could not beat the conver-

sion method from ANN to SNN, such as [50]. Overall, C-

HybridSNN achieves quite competitive test accuracy among

different convolutional SNNs models on CIFAR-10 dataset.

However, the final tree topology of C-HybridSNN has only

one cascade layer, which means that this learned model is

equivalent to the AdaBoost algorithm using SNN as the weak

learner. The reason for the lack of connected nodes in the

structure can be ascribed to the information loss during the

feature extraction by the basic learner in the deep convolu-

tional VGG9 model, which prevents the output of the prior

iteration from being chosen as the input of the current stage.

IV. DISCUSSION

A. The Relationship Between the HybridSNN and Existing

Models

Multilayer SNN

  SNN-1 SNN-2Three-layer SNN

HybridSNN

(a) (b)

Fig. 7: The comparison between three-layer SNN and Hybrid-

SNN.

Our HybridSNN framework uses a flexible network struc-

ture rather than the fixed topologies of the existing SNN

models. The SNN with fixed structure is merely used as a

basic unit in HybridSNN. Hence, if the training has only one

cycle, the HybridSNN can be treated as a single-layer SNN.

The initial HybridSNN (Fig. 8 (b)) contains traditional

multi-layer neural structures (Fig. 8 (a)) where many con-

nections between neurons are missed. The computation of a

traditional multi-layer neural network is described as X →
H1 → H2, ..., Y , which satisfies:

H1 = G(x), H2 = G(H1), ... (14)

Hi+1 = G(Hi), ..., Y = G(Hn),

Multilayer SNN

1 2

1 2 3

… …

1 2 3

… …

Dense SNN

HybridSNN

… …
(a)

(b)

(c)

Fig. 8: The comparison between HybridSNN and other multi-

layer SNNs. (a) Traditional multi-layer neural network topol-

ogy; (b) Dense neural network topology (same as the initial

state of HybridSNN); (c) Topology of trained HybridSNN.

where G is the operation function between connected layers

in the network, such that the connections between layers are

unidirectional and fixed. However, whether a connection is

preserved or abandoned in HybridSNN is determined by our

learning rule, mentioned previously.

The network topology of HybridSNN after training is shown

in Fig. 8 (c). The trained topology has a connection density

in between those of a traditional multi-layer SNN and a

dense neural networks [51]. The training process optimizes the

network connections of the HybridSNN model with different

weights.

The trained HybridSNN Φ is a linear combination of M
classifiers chosen from weak learner pools, which can also be

regarded as an ensemble of multi-layer SNNs:

Φ =α1T
1(X1) + α2T

2(X2) + ...+ αiT
i(Xi) + ...

+αNTM (XM ) (15)

= (αkT
k(Xk) + ...+ αlT

l(Xl)) + (αmTm(Xm) + ...

+αoT
o(Xo)) + ...+ (αrT

r(Xr) + ...+ αsT
s(Xs)),

where T i(Xi) is the ith classifier chosen from the ith weak

learner pool with a weight score of αi. The weighted classifiers

from αkT
k(Xk) and αlT

l(Xl) use raw data as input, which

thus constitute the first layer. Similarly, the second cascading

layer consists of the weighted classifiers from αmTm(Xm)
and αoT

o(Xo), which utilize the output of the first layer as

input data. In this way, the cascading layers can be considered

as ensembles of multi-layer SNNs and the number of layers

represents the depth of HybridSNN.

Fig. 7 illustrates the relationship between HybridSNN and

multi-layer SNN wherein an M-HybridSNN with two con-

nected single-layer SNN is displayed in contrast to a three-

layer SNN.

Assume that there are NH and NO neurons in the hidden

and output layers, respectively. In the three-layer SNN, the

membrane potential of neuron j in the hidden layer is given

as Equation 5. Hence when the firing threshold is set to be 1,
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it satisfies Equation 6, and tj can therefore be simplified as:

exp(tj) =

∑

i∈Cj
wiexp(ti)

∑

i∈Cj
wi − 1

. (16)

With the exponential transformation in mind, one can denote

these spike time variables as in z-domain fashion, as shown in

Equation 7. Similarly, the fire time of neuron k in the output

layer can be computed as:

zk =

∑

j∈Ck
wjzj

∑

j∈Ck
wj − 1

. (17)

And the loss function can be given by:

C1(x) = L(g, zo) = −ln
exp(−zo[g])

∑

k exp(−z
o[k])

. (18)

Now consider an M-HybridSNN with two connected weak

learners with N input samples. For the first stage, the spike

time of neuron j in the output layer can be defined as the

same as Equation 7. Hence the loss function is described as:

L(g, zh) = −ln
exp(−zh[g])

∑

j exp(−z
h[j])

∗N ∗W s
0 , (19)

where W s
0 is the initial sample weights, being set to be 1/N .

Assume the wrongly classified samples by this weak learner

are U (1) = {X1
u1
, X2

u1
, ..., XV

u1
}, and there are two classes

(K = 2). Then the weight of this weak learner can be

computed according to the AdaBoost algorithm:

α(1) = log 1−error∗(1)
error∗(1) = logN−V

V
,

where

error∗(1) =

N
∑

i=1

SiΓ(Ci ̸= T (1)(Xi))/

N
∑

i=1

Si. (20)

For the mistaken samples, their weights are updated as:

Si = Siexp(α
(1)Γ(Ci ̸= T (1)(Xi))) (21)

= 1
N
exp(logN−V

V
) = N−V

NV
.

After re-normalizing Si, the weights of correctly classi-

fied samples are Si =
1
N

1
N

(N−V )+N−V
NV

V
= 1

2N−2V ,

while the weights of wrongly classified samples are Si =
N−V
NV

1
N

(N−V )+N−V
NV

V
= 1

2V .

Moreover, for the second iteration of HybridSNN, the spike

time of neuron k in the output layer can be described the

same as Equation 17. We assume the set of mistaken samples

is U (2) = {X1
u2
, X2

u2
, ..., XR

u2
}, which contains R1 samples

that are recognized correctly by the weak learner of the first

iteration but wrongly by that of the second one, and R2

samples that are recognized wrongly by both weak learners.

Hence error∗(2) is given by:

error∗(2) =
R1

2N − 2V
+

R2

2V
. (22)

And

α(2) = log
1− ( R1

2N−2V + R2

2V )
R1

2N−2V + R2

2V

= log(
2V (N − V )

R1V + (N − V )R2
−1).

(23)

Thus the loss function of the second-iteration weak learner is:

L(g, zo) = −ln
exp(−zo[g])

∑

k exp(−z
o[k])

∗N ∗W s
1 . (24)

And the decision function of HybridSNN is:

C2(x) = logN−V
V
∗ (−ln exp(−zh[g])∑

j exp(−zh[j])
)−

(log 2V (N−V )
R1V+(N−V )R2

− 1) ∗ ln exp(−zo[g])∑
k exp(−zo[k]) . (25)

Considering the difference between the Equation 18 and

Equation 25, we let logN−V
V

be 0, then N = 2V . Meanwhile,

log 2(N−V )V
R1V+(N−V )R2

−1 is set to be 1, then V = e2(R1+R2)/2.

Under these conditions, the two-iteration HybridSNN model

has similar transmitted information as a three-layer SNN.

Therefore, the multi-layer neural network can be regarded as

a specific type of HybridSNN under particular conditions.

In recent years with the upsurge of ANNs, another strategy

is used to construct multi-layer SNNs, that is, to train ANNs

with deep layers with various types of conversion algorithms

which can transfer weights to equivalent deep SNNs [23] [52]

[53]. However, these models cannot optimize the networks

through temporal spike events during the training process.

Moreover, these transforming algorithms are based strictly on

layered structures that have exactly the same network topology

and encoding mechanism as ANNs. It is our hope that these

multi-layer neural networks converted from ANNs to SNNs

can be fitted into the HybridSNN framework in the future.

B. Classifier Pruning

One potential pivotal advantage of the SNN-based ar-

chitecture proposed herein is its high energy efficiency

when implemented using the emerging classes of ultra-low-

power-consuming spike-based neuromorphic hardware, such

as TrueNorth [54], SpiNNaker [55], Tianjic [56]. Based on

the theoretical estimation, the power consumption on advanced

hardware is conducted to demonstrate the potential energy-

efficiency of the proposed HybridSNN systems. In order to

make the estimation convincing, we provide a detailed analysis

and comparison of energy consumption between HybridSNN

on neuromorphic hardware and HybridSNN on various hard-

ware platforms, including CPU, and GPU. The energy estima-

tion adopts a common methodology used in many studies [54]

[57] [58] [59], that is, the energy consumption is roughly es-

timated by multiplying the energy per floating-point operation

by the number of operations for CPU and GPU. Similarly,

the energy consumption of SNN could also be estimated

through multiplying the energy per synaptic operations per

second by the time steps and the number of synaptic events.

We take the M-HybridSNN model as an example and record

the number of synaptic operations per second (SOPS) and

floating-point operations per second (FLOPS) to estimate the

energy consumption, respectively. The power of FLOPS on

CPU and GPU are obtained from Titan V100 [60] and Xeon

Platinum 9282 [61], respectively. The energy consumption of

SOPS is referred from TrueNorth [54], where one time step is

equal to 1ms. As shown in Tables VI and VII, the analytical

results show that the proposed HybridSNN implemented on
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neuromorphic hardware platform has consistently one to three

orders of magnitude higher energy efficiency than it was

implemented on other hardware platforms (CPU and GPU).

The conclusion is close to the reported results regarding ad-

vantage of neuromorphic computing [58] [54]. In summary, the

HybridSNN model has the benefits of low-power consumption

on neuromorphic hardware.

TABLE VI: The energy estimation of M-HybridSNN model

on GPU (Titan V100) [60] and CPU (Xeon Platinum 9282)

[61]

Hardware GFLOPS/W Energy/Op FLOPs Energy (J)

GPU 56 - 6.47 M 1.16E-04

CPU - 42.9pJ 6.47 M 2.78E-04

TABLE VII: The energy estimation of M-HybridSNN model

on TrueNorth neuromorphic chips [54].

Hardware GSOPS/W SOPS Power(W) Time steps Energy (J)

TrueNorth 400 6.47 M 1.618E-05 5000 8.09E-05

Except the power consumption, we study the training time

and test time for HybridSNN. In our scenario, most of the com-

putation takes place in the classifier selection process indeed.

We run M-HybridSNN (using multi-layer SNN as the weak

learner) on MNIST dataset to record the model’s training time

and test time. The running time of M-HybridSNN is measured

on a single-thread CPU-E5-2620v4 and a GTX 1080Ti x4.

The results show that the training and testing time of M-

HybridSNN on the MNIST classification task are 21.08 hr for

60000 samples and 4.54 min for 10000 samples, respectively.

As these results illustrate, most of the time is spent in the

training stage. Considering the flexibility advantage of the

proposed model, we believe such a level of time length on

a single core PC for training is not a problem, compared to

the training time of some commonly used machine learning

algorithms.

The presented HybridSNN framework selects the best-

performing SNN units from the weak learner pools and

assembles them into a cohesive system. Such aggregation is

optimized iteratively in a greedy fashion. The final structure of

HybridSNN has a tree-like topology with a medium connec-

tion density. Although more parameters usually entail larger

network capacity, they can also be superfluous. To find out

more, we explore the relationship between the connection

density and network performance using the pruning method.

As mentioned earlier, trained HybridSNN has a tree-like

topology, whereof each node represents a weighted classifier,

and all nodes contribute to the final decision. The denser

the network, the more parameters it contains. In order to

optimize the density, we introduce a pruning method to the

trained HybridSNN and illustrate it in Fig. 9, taking the binary

classification of 4&9 as an example. Post the training process,

all 500 classifier weights are sorted by their values. The bigger

the value, the more critical the node, and hence more likely

to be kept during pruning. The x-axis denotes the number
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Fig. 9: The visualization for accuracy of weakening Learners.

Statistical analysis of the accuracy variation in the classifica-

tion of 4&9 during the weakening process.

of kept classifiers with the biggest weights. During pruning,

if the weight of a parent node is smaller than that of the

child node, both nodes will be discarded. As we can see,

the accuracy increases along with the total weights until the

curves flatten. Notably, performance fluctuation occurs when

the number of the node is between 20 and 30, which is better

visualized in the enlarged subfigure. This may result from the

removal of essential nodes. There is thus a trade-off between

network sparsity and performance. Such analysis also gives an

indication of the optimal number of SNN units to keep for a

specific task. The implementations of neuromorphic chips can

also benefit from this pruning strategy.

TABLE VIII: The comparison between pruned M-HybridSNN

and two-layer Mostafa models.

Model Paramaters Test Accuracy

Mostafa’s Networks(784-800-800-10) 1275200 97.09%

Prunned M-HybridSNN (784-569-10) 1110688 97.24%

Next, we apply this classifier pruning method to the trained

M-HybridSNN network. It turns out that with 569 hidden

neurons, the parameters in M-HybridSNN are almost identical

to those of the Mostafa model with 784-800-800-10 structure.

This includes the case when there is only one layer of

classifiers. We then run the M-HybridSNN model with 569

hidden neurons on the MNIST dataset. The depth of the trained

topological tree turns out to be 3. The following pruning

process appears to preserve the branch connecting the three

most weighted nodes, and abandon the rest. As shown in

Table VIII, the number of parameters after pruning operation

is 784*569+569*10+(569*569+569*10)*2=1110688, smaller

than that of the Mostafa model. Meanwhile, the test accuracy

after pruning is 97.24%, better than 97.09% of the Mostafa

model with 784-800-800-10 structure.

V. CONCLUSION

This paper proposes an adaptive learning framework,

namely HybridSNN, for spiking neural networks. We ensem-

ble the existing single- or multi-layer SNN models into a
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deep and strong SNN system in a data-driven manner. Hy-

bridSNN combines the benefits of both biologically plausible

model and overall data-driven optimization. Inspired by brain

mechanisms, HybridSNN could learn the network structure

adaptively and provide flexible network topologies to enhance

the scalability and improve the computation efficiency for

solving various tasks.

The trained tree-like topology is neither too dense nor

too sparse, with a structure adaptive to the complexity of

different tasks. Unlike the fixed structures of existing artificial

neural networks, this framework gathers the output spikes from

each weak SNN unit and feeds them back to the pool of

classifiers. In order to show the potential of HybridSNN sys-

tem, experiments are conducted on both MNIST and CIFAR-

10 datasets. The results show that the proposed framework

achieves competitive performance among supervised learning

models of SNN. As a novel SNN model, HybridSNN could not

only serve as the basic model in a multi-node cluster system

but also plays a potentially powerful role in the multi-core

neuromorphic hardware systems in the near future.
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