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Abstract

This work considers communication over Gaussian interference channels with processing energy cost, which

explicitly takes into account the energy expended for processing when transmitters are on. In the presence of

processing energy cost, transmitting all the time as in the conventional no-cost case is no longer optimal. For a

two-user Gaussian interference channel with processing energy cost, assuming that the on-off states of transmitters

are not utilized for signaling, several transmission schemes with varying complexities are proposed and their sum-

rates are compared with an interference-free upper bound. Moreover, the very strong interference regime, under

which interference does not incur any rate penalty, is identified and shown to be larger than the case of no processing

energy cost for certain scenarios of interest. Also, extensions to a three-user cascade Gaussian Z interference channel

with processing energy cost are provided, where schedulingof user transmissions based on the channel set-up is

investigated.

Index Terms

processing energy, interference channel, bursty transmission.

I. INTRODUCTION

In wireless communications, it is often the case that a considerable fraction of the total energy ex-

pended by a battery-limited terminal is for processing related to communication. A simple model for this

“processing energy” is to assume that it is equal to a constant when the transmitter is on. The impact of

processing energy for communicating over an additive whiteGaussian noise (AWGN) channel was first

studied by Youssef-Massaad et al. in [2] [3], where it was shown that, under the assumption that turning

the transmitter on and off does not convey additional information, Gaussian signaling while keeping the

transmitter on for only a fraction of the time is optimal. We will call this strategy “bursty” transmission.

The authors also extended the analysis to an M-user multipleaccess channel (MAC) [4] and showed that

time division multiple access outperforms other schemes interms of the sum rate. In [5], for the relay
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Fig. 1. Two-user Gaussian interference channel.

channel, Kramer provided a framework for considering processing energy at the source and the relay by

modeling power consumed in the sleeping and talking states in a cost function.

This paper extends the previous works by studying the impactof transmitter processing energy cost

on interference channels. More specifically, we consider two distinct interference models with transmitter

processing energy cost. The first one is a standard two-user Gaussian interference channel (IC) [6], while

the second one is a three-user cascade Gaussian Z interference channel (CGZIC) [7]. The former, shown

in Fig. 1, is an information theoretical building block to investigate interference. We assume that the

transmitters are energy-limited while the receivers do nothave any energy constraints. This could, for

example, happen in an up-link scenario in which the transmitters and the receivers are mobile users with

limited battery and base stations with stable power supply,respectively. By studying such a model, we

will show how bursty transmission schemes can be employed tomitigate the effect of interference in the

presence of processing energy cost. The latter model, shownin Fig. 2 on the other hand, is an extension

of the two-user Gaussian Z interference channel (ZIC) to thethree-user case. With more than two users

in the network, the three-user CGZIC provides the simplest model enabling us to assess the performance

advantages of bursty transmission when multiple interfering users need to be scheduled for transmission.

For the case of no processing energy cost, characterizationof the capacity region for the general IC

remains an open problem; however, the capacity region or thesum-rate capacity for the two-user Gaussian

IC is known in special cases such as the strong interference [8] [9] or the noisy interference [10], and the

sum-rate capacity for the three-user CGZIC is known in certain regimes [7]. With processing energy cost,

the characterization of the capacity region or the sum capacity becomes more involved as each transmitter

may choose to be on for only a fraction of the time. Moreover, each transmitter can potentially convey

additional information by modulating the on-off states andGaussian inputs are no longer optimal [5] [11].
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Fig. 2. Three-user cascade Gaussian Z interference channel.

For tractability, as in [3], in all the transmission schemesconsidered in this paper, we will assume the

on-off states of each transmitter is known beforehand and thus not utilized for signaling.

For the two-user Gaussian IC with processing energy cost, wediscuss several transmission schemes

with varying complexities. The sum-rate performances of these schemes are analyzed and compared with

an interference-free upper bound. It is shown that, compared with the case of no processing energy cost, in

certain cases of interest, a larger range of cross-link power gains ensures interference-free rates, thereby

extending the usual very strong interference regime [6]. Next, we extend the analysis to the case of

three-user CGZIC with processing energy cost to assess the benefits of scheduling users’ transmission

bursts.

The remainder of this paper is organized as follows. SectionII presents the system models and relevant

assumptions used. In Section III, for a two-user Gaussian ICwith processing energy cost, we propose

several transmission schemes with varying complexities tomaximize the sum rate and identify the very

strong interference regime with processing energy cost. The analysis is then extended to a three-user

CGZIC with processing energy cost in Section IV. Finally, wemake concluding remarks in Section V.

II. SYSTEM MODEL

We consider communication for two different types of interference channels with transmitter processing

energy cost. The first scenario is a standard two-user two-sided Gaussian IC, as shown in Fig. 1, in which

two users send messages to their respective receivers, causing interference to each other. The second one is

a three-user CGZIC as shown in Fig. 2, in which the first user isinterference-free and the second and third

users experience only one interference component coming from the first and second users, respectively.
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This simple three-user interference model is investigatedbecause of its analytical tractability and because

of its ability to capture the essence of scheduling over interference channels with more users. For both

set-ups, our goal is to design efficient transmission schemes that maximize the achievable sum rate of the

system given limited energy budgets at the transmitters.

A. Two-User Gaussian Interference Channel

The two-user standard Gaussian IC in Fig. 1 can be expressed as,

Y1,t = X1,t +
√
aX2,t + Z1,t, (1)

Y2,t =
√
bX1,t +X2,t + Z2,t, (2)

whereXi,t andYi,t represent the input and output of useri ∈ {1, 2} at time t, respectively,Z1,t andZ2,t

are i.i.d. Gaussian noises with zero mean and unit variance,and receiveri is only interested in the message

sent by transmitteri. Encoding and decoding are done overn channel uses, forn large. For standard

definitions of the encoder, the decoder, probability of error and achievable rates, see [6]. Transmitter

i is subject to a maximum average power constraintPi. Following [2], the processing energy cost of

transmitteri is modeled as a constant amountǫi whenever transmitteri is on, with ǫi ≤ Pi, i = 1, 2. The

power constraint at transmitteri is given by

1

n

n
∑

t=1

[

|Xi,t|2 + ǫi · 1{Xi,t 6=0}
]

≤ Pi, (3)

where1{·} is the indicator function.

Due to the processing energy cost, it may not be optimal for each transmitter to transmit all the time.

In this case, we can model each transmitter as operating in one of two states: the “on” state and the

“off” state. If transmitteri is in the off state at timet, we can model it as transmiting a zero signal, i.e.,

Xi,t = 0. If userj (j 6= i) is turned off and only useri transmits, by [2], the optimal transmission scheme

for useri when on-off states are fixed (see Section II-C for more discussions on this) is to let transmitter

i and receiveri be turned on for a prescribedθ∗i fraction of the time with Gaussian signaling of power

ν∗i such that

θ∗i = min

(

1,
PiW (e−1(ǫi − 1))

(ǫi − 1)(W (e−1(ǫi − 1)) + 1)

)

, (4a)

and ν∗i =
Pi

θ∗i
− ǫi, (4b)
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whereW (·) is the LambertW function.1 Note that Eq. (4a) above suggests that under processing energy

cost, the optimal fraction of time useri should transmit,θ∗i , generally depends on the average power

constraintPi and the per-channel-use processing energy costǫi. Moreover, for any givenPi, only when

ǫi is sufficiently small, we haveθ∗i = 1 as in the case of no processing cost.

If θ∗1 + θ∗2 ≤ 1, it is easily seen that users can employ time division to avoid interference and can thus

obtain the same rates as the single user case. In this paper, we primarily focus on the more interesting

caseθ∗1 + θ∗2 > 1 when the two users need to compete for the available degrees of freedom.

B. Three-User Cascade Gaussian Z Interference Channel

The three-user CGZIC as shown in Fig. 2 can be expressed as

Y1,t = X1,t + Z1,t, (5)

Y2,t =
√
a1X1,t +X2,t + Z2,t, (6)

Y3,t =
√
a2X2,t +X3,t + Z3,t, (7)

whereXi,t andYi,t represent the input and output of useri ∈ {1, 2, 3} at timet, respectively, andZ1,t, Z2,t

andZ3,t are i.i.d. Gaussian noises with zero mean and unit variance.As in the previous scenario, receiver

i is only interested in the message sent by transmitteri, and transmitteri is subject to a maximum average

power constraintPi and a constant processing energy costǫi joules per time slot when transmitteri is

on, with Pi and ǫi satisfyingǫi ≤ Pi for i = 1, 2, 3. This leads to (3) for each transmitter,i = 1, 2, 3. For

definitions of the encoder, the decoder, probability of error and achievable rates, the readers are referred

to [7].

Moreover, it is assumed that the three users’ single-user optimal transmission fractions in (4a) satisfy

θ∗1 + θ∗2 ≥ 1 and θ∗2 + θ∗3 ≥ 1 to have a non-trivial solution. The transmission schemes discussed later

could be modified appropriately to address the cases when either θ∗1 + θ∗2 < 1 or θ∗2 + θ∗3 < 1 holds.

C. Fixed Transmitter On-Off States

In our transmission schemes, similar to [2], we assume on-off states of transmitters arefixed, and the

receivers are informed beforehand about when each transmitter is in the “on” or “off” state. Furthermore,

we use Gaussian signaling when the transmitters are on.

1W (x) is the solution ofWeW = x.
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Note that if on-off states are allowed to berandom instead, on-off signaling such as pulse position

modulation can be employed to transmit additional information to receivers. However, in that case, frequent

and fast transition between the two states is required. Accordingly, the energy cost of on-off transition [12]

cannot be neglected any more and our assumption of modeling the processing energy cost as a constant

would break down. Recall that, in the fixed case, each transmitter can remain in the on and off states for

long durations of time and very few transitions are needed. Moreover, having the on-off states also carry

information may result in non-Gaussian inputs being optimal for X1, X2 andX3, further complicating

code design [5] [11]. Since the on-off states carry at most one bit per channel use, we conjecture that the

rate loss due to using fixed transmitter on-off states is at most one bit per user.

III. T WO-USER GAUSSIAN IC WITH PROCESSINGENERGY COST

For a general two-user Gaussian IC with no transmitter processing energy cost, the best known achiev-

able rate region is given by the full Han-Kobayashi (H-K) rate region [9]. The computation of the full

H-K region requires taking the union of all power splits intocommon and private messages and time

sharing, which is difficult due to numerous degrees of freedom involved [13]. Therefore, for the purpose

of evaluating and computing the achievable sum rate in the processing energy cost case and for practical

considerations, we consider several achievable schemes with lower complexity and argue that in certain

regimes, the performance is close to optimal. This is in accordance with the no processing energy case,

where, for example, a simplified H-K type scheme with fixed power split and no time-sharing is known

to achieve a rate region that is within half a bit to the capacity region in [14].

We now formally define a class of simple H-K schemes, which will be used later for the transmission

schemes proposed for the Gaussian IC with processing energycost.

Definition 1. In a simple H-K scheme for two-user Gaussian IC, useri, i = 1, 2, employs a superimposed

Gaussian codebook, whereτi portion of the power is used to encode the common informationand (1−τi)

portion to encode the private information, with0 ≤ τi ≤ 1. Receiveri decodes the common part of the

interference and its own signal jointly by treating the private part as noise. Hence, each simple H-K

scheme in the class is uniquely specified by the power split pair (τ1, τ2), which we refer to as HK(τ1, τ2).

It follows from [13] that, for the two-user Gaussian IC in Section II-A, the achievable sum rate for
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HK(τ1, τ2) is given bymin(ψ1, ψ2, ψ3, ψ4), where

ψ1 = C

(

P1

1 + a(1− τ2)P2

)

+ C

(

P2

1 + b(1− τ1)P1

)

, (8)

ψ2 = C

(

P1 + aτ2P2

1 + a(1− τ2)P2

)

+ C

(

(1− τ2)P2

1 + b(1− τ1)P1

)

, (9)

ψ3 = C

(

(1− τ1)P1

1 + a(1− τ2)P2

)

+ C

(

P2 + bτ1P1

1 + b(1− τ1)P1

)

, (10)

and

ψ4 = C

(

(1− τ1)P1 + aτ2P2

1 + a(1− τ2)P2

)

+ C

(

(1− τ2)P2 + bτ1P1

1 + b(1− τ1)P1

)

, (11)

with C(x) = (1/2) log2(1 + x). Therefore, the maximum achievable sum rate, maximized over all

HK(τ1, τ2) schemes, is given by

Rsum(P1, P2) = max
τ1,τ2

min(ψ1, ψ2, ψ3, ψ4). (12)

Remark 1. Under certain conditions,Rsum(P1, P2) is the sum capacity of the two-user Gaussian IC with

ǫi = 0 for i = 1, 2. In the strong interference regimea ≥ 1 and b ≥ 1, it is optimal for both the two users

to send only common information, i.e., to setτ1 = τ2 = 1 [9]; in the noisy interference regime whena,

b, P1 and P2 satisfy
√
a(bP1 + 1) +

√
b(aP2 + 1) ≤ 1, it is optimal for the users to send only private

information, i.e., to setτ1 = τ2 = 0 [10]. In general, [14] provides an approximately optimal power split

(τ1, τ2) that performs close to the sum capacity.

A. Transmission Schemes

This subsection investigates four different transmissionschemes for the general case of processing

energy cost (ǫi > 0, i = 1, 2). Scheme I uses the HK(τ1, τ2) scheme described above without any

burstiness, while Scheme II is the TDM scheme when the two users do not overlap their transmission.

Different from Scheme I and Scheme II, Scheme III allows for fractional overlap of transmission time

and sends independent information over different time fractions. In particular, the HK(τ1, τ2) scheme is

employed during the overlapped fraction. By contrast, Scheme IV is a generalization of the HK(τ1, τ2)

scheme under strong interference to the case of processing energy cost, which allows the users to code

across different time fractions to achieve higher sum rate.
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1) Scheme I: Simple H-K Scheme with No Burstiness:Consider a simple scheme in which both users

transmit over all then time slots. In this case, useri has at mostνi = Pi − ǫi joules per time slot for

transmission. Using the class of HK(τ1, τ2) schemes, the maximum achievable sum rate is

Rsum,I = Rsum(P1 − ǫ1, P2 − ǫ2), (13)

whereRsum(·) is as in (12).

2) Scheme II: Time Division Multiplexing (TDM):In this scheme, the two users employ TDM to

avoid interference such that user 1 usesθ1 (0 < θ1 < 1) fraction of the time while user 2 is left with

1 − θ1 fraction. It is easy to see that to maximize the sum rate, it suffices to restrictθ1 to the range

1− θ∗2 ≤ θ1 ≤ θ∗1. The maximum achievable sum rate can be found by

Rsum,II = max
1−θ∗

2
≤θ1≤θ∗

1

θ1C

(

P1

θ1
− ǫ1

)

+ (1− θ1)C

(

P2

1− θ1
− ǫ2

)

. (14)

3) Scheme III: Fractional Transmission Overlap, Simple H-KScheme During the Overlap:Unlike the

previous two schemes, Scheme III allows the two users to overlap their transmission over a flexible period

of time, as shown in Fig. 3. Suppose users 1 and 2 transmit overθ1 andθ2 fractions of the time respectively,

with θ1 + θ2 − 1 fraction overlapping. Since the goal is to maximize the sum rate, the parametersθ1 and

θ2 need to satisfy

1− θ∗j ≤ θi ≤ 1, i, j ∈ {1, 2}, i 6= j, (15a)

θ1 + θ2 ≥ 1. (15b)

We observe that useri does not see any interference for1 − θj fraction of the time but suffers from

interference for the remainingθ1 + θ2 − 1 fraction, i, j = 1, 2. We assume that useri sends independent

information over these two fractions. For the(θ1 + θ2 − 1)-fraction of overlapping transmissions, the two

users employ a given simple H-K scheme, HK(τ1, τ2), where the power split pair(τ1, τ2) can be optimized

as in (12). Therefore, the maximum achievable sum rate of Scheme III can be found by

Rsum,III = max
θ1,θ2

(1− θ2)C

(

P1

θ1
− ǫ1

)

+ (1− θ1)C

(

P2

θ2
− ǫ2

)

+ (θ1 + θ2 − 1)Rsum

(

P1

θ1
− ǫ1,

P2

θ2
− ǫ2

)

,

(16)

where the maximization is taken over allθ1 andθ2 satisfying (15). Note that here we have assumed that

useri has the same average power for the(1−θj)-fraction and the(θ1+θ2−1)-fraction of its transmission,
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Fig. 3. Bursty transmission profile(θ1, θ2) for the two-user Gaussian IC: users 1 and 2 transmit during the first θ1 fraction and the lastθ2
fraction of the time slots respectively, withθ1 + θ2 − 1 faction of the time slots overlapping.

j 6= i. This is motivated by [1], where it is numerically shown thatfor the one-sided interference case

(b = 0), allowing power control brings little performance gain over the no power control case.

4) Scheme IV: Fractional Transmission Overlap, Joint Encoding/Decoding: In Scheme III, we assume

the two users send independent information over different fractions of the time. However, coding across

each user’s entire transmission can be advantageous, sinceeach receiver may leverage the information

overheard during the fraction of the time when its own transmitter is off to facilitate decoding of the

interference signal. Note that this scheme is most appealing when interference is strong, i.e.,a ≥ 1 and

b ≥ 1, since the overheard signal is stronger than the signal received at the intended receiver. Thus, in

Scheme IV, we assume both users send only common messages andeach receiver jointly decodes its own

information and the interfering user’s information using the signals received during the entiren time slots.

In order to obtain the maximum achievable sum rate of Scheme IV for a ≥ 1 andb ≥ 1, we first obtain

an achievable rate region by having each receiver jointly decode both users’ messages. We divide the

total n time slots into three fractions as shown in Fig. 3, and assumethat useri transmits with constant

powerPi/θi− ǫi during theθi fraction of the time when its transmitter is on. With each receiver decoding

both users’ messages, the Gaussian IC becomes equivalent toa Gaussian compound MAC. For any given

choice of (θ1, θ2), using standard arguments [6], if both transmitters use Gaussian codebooks, the rate

pairs (R1, R2) in the following rate region can be shown to be achievable

R1 ≤ θ1C

(

P1

θ1
− ǫ1

)

, (17a)

R2 ≤ θ2C

(

P2

θ2
− ǫ2

)

, (17b)

R1 +R2 ≤min

{

(θ1 + θ2 − 1)C

(

P1

θ1
− ǫ1 + a

(

P2

θ2
− ǫ2

))

+ (1− θ2)C

(

P1

θ1
− ǫ1

)

+ (1− θ1)C

(

a

(

P2

θ2
− ǫ2

))

, (θ1 + θ2 − 1)C

(

b

(

P1

θ1
− ǫ1

)

+
P2

θ2
− ǫ2

)

+(1− θ2)C

(

b

(

P1

θ1
− ǫ1

))

+ (1− θ1)C

(

P2

θ2
− ǫ2

)}

. (17c)



10

Taking the union over all(θ1, θ2) satisfying (15), we obtain the desired achievable rate region for a ≥ 1

and b ≥ 1. Then, the maximum achievable sum rate by Scheme IV can be obtained immediately as

Rsum,IV =max
θ1,θ2

min

{

θ1C

(

P1

θ1
− ǫ1

)

+ θ2C

(

P2

θ2
− ǫ2

)

,

(θ1 + θ2 − 1)C

(

P1

θ1
− ǫ1 + a

(

P2

θ2
− ǫ2

))

+ (1− θ2)C

(

P1

θ1
− ǫ1

)

+ (1− θ1)C

(

a

(

P2

θ2
− ǫ2

))

,

(θ1 + θ2 − 1)C

(

b

(

P1

θ1
− ǫ1

)

+
P2

θ2
− ǫ2

)

+ (1− θ2)C

(

b

(

P1

θ1
− ǫ1

))

+ (1− θ1)C

(

P2

θ2
− ǫ2

)}

,

(18)

where the maximization is taken over all(θ1, θ2) satisfying (15).

We remark that, Scheme IV is a generalization of the simple H-K scheme from the conventional case

of continuous transmission to the processing energy case when both users employ a bursty transmission

profile as in Fig. 3, for the strong interference regimea ≥ 1 andb ≥ 1. It is generally superior to Scheme

III in terms of the achievable sum rate, since coding the two users’ messages across all then time slots

improves communication rates compared to independent encoding and decoding for different fractions.

However, in Scheme IV, receiveri needs to be on even when transmitteri is silent.

B. Very Strong Interference Regime with Processing Energy Cost

In this subsection, we determine the range of power gains(a, b) for which interference does not incur

any rate penalty to either user. The no-loss range is referred to asvery strong interference regime with

processing energy cost. Recall that, in the case of no processing energy cost, the very strong interference

regime is given bya ≥ 1 + P1 andb ≥ 1 + P2. Our main contribution in this subsection is the derivation

of a new very strong interference regime when processing energy costs are taken into account.

Proposition 1. The two users in the Gaussian IC with processing energy cost can both achieve their

maximum interference-free rates(C(ν∗1), C(ν
∗
2)) if the following conditions are satisfied:

1 + ν∗2 ≤ (1 + aν∗2)
ρ1

(

1 +
aν∗2

1 + ν∗1

)1−ρ1

, (19a)

1 + ν∗1 ≤ (1 + bν∗1)
ρ2

(

1 +
bν∗1

1 + ν∗2

)1−ρ2

, (19b)

whereρ1 = (1− θ∗1)/θ
∗
2 and ρ2 = (1− θ∗2)/θ

∗
1. Here θ∗i and ν∗i represent useri’s optimal burstiness and

signal power level in the interference-free case given in (4a) and (4b) respectively.

Proof: Using the achievable rate region bounded by (17a)-(17c), inorder for both users to achieve
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their interference-free rates as in the single user case, the inequality in (17c) should be redundant for

transmission fractions(θ∗1, θ
∗
2) as in (4a). Mathematically, this is satisfied if

θ∗1C(ν
∗
1) ≤(1− θ∗2)C(bν

∗
1) + (θ∗1 + θ∗2 − 1)C

(

bν∗1
1 + ν∗2

)

, (20a)

θ∗2C(ν
∗
2) ≤(1− θ∗1)C(aν

∗
2) + (θ∗1 + θ∗2 − 1)C

(

aν∗2
1 + ν∗1

)

, (20b)

whereν∗i = Pi/θ
∗
i − ǫi. These conditions can be simplified as (19) in Proposition 1 sinceρ1 = (1−θ∗1)/θ∗2

andρ2 = (1− θ∗2)/θ
∗
1.

The regime in Proposition 1 can be considered as a generalization of the very strong interference regime

to the processing overhead case. Note that in the case of no processing overhead, we haveρi = 0 and the

conditions in (19) reduce to the usual very strong interference regime.

To further simply these conditions is difficult in general. In the following, we focus on the special case

when ǫi → 0, Pi → 0 andPi/
√
2ǫi = λi for some constantλi > 0, i = 1, 2. In this case,θ∗i in (4a) can

be simplified asθ∗i = min(1, λi) > 0. Henceρi ≥ 0. Also, by (4b) it follows thatν∗i → 0. Using Taylor

series approximation, we have

1 + ν∗2 ≤(1 + ρ1aν
∗
2)

(

1 + (1− ρ1)
aν∗2

1 + ν∗1

)

, (21a)

and 1 + ν∗1 ≤(1 + ρ2bν
∗
1)

(

1 + (1− ρ2)
bν∗1

1 + ν∗2

)

. (21b)

Ignoring terms containing(ν∗1)
2 or (ν∗2)

2 on the right side of (21a) and (21b), we find the following

sufficient conditions

a ≥ 1 + ν∗1
1 + ρ1ν∗1

, and b ≥ 1 + ν∗2
1 + ρ2ν∗2

. (22)

Moreover, givenρ1 ≥ 1− θ∗1, we have

1 + ν∗1
1 + ρ1ν∗1

≤ 1 + ν∗1
1 + (1− θ∗1)ν

∗
1

(23a)

=
(1 + ν∗1)(1 + θ∗1ν

∗
1)

1 + ν∗1 + θ∗1(1− θ∗1)(ν
∗
1)

2
(23b)

≤ 1 + θ∗1ν
∗
1 (23c)

< 1 + θ∗1(ν
∗
1 + ǫ1) = 1 + P1. (23d)

Similarly, we have(1 + ν∗2)/(1 + ρ2ν
∗
2) < 1+P2. Thus, the conditions in (22) suggest that a larger range
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Fig. 4. The maximum sum rates achieved by various schemes forthe two-user Gaussian IC,Rsum, along with the interference-free upper
bound, as a function of cross-link power gaina for a ≥ 1, whenb = 3, P1 = P2 = 3.5 and ǫ1 = ǫ2 = 2.

of power gainsa and b ensure very strong interference under processing energy cost.

Depending on the values ofλ1 andλ2, we can write out the exact very strong interference regime as

in the following:

• λi < 1 (i = 1, 2): in this case,ν∗i ≈

√
2ǫi and θ∗i = λi. Accordingly, ρ1 = (1 − λ1)/λ2 and

ρ2 = (1− λ2)/λ1. Thus, we can simply the inequalities in (22) as

a ≥ P2 +
√
2ǫ1P2

P2 +
√
2ǫ2(

√
2ǫ1 − P1)

, ā, (24a)

b ≥ P1 +
√
2ǫ2P1

P1 +
√
2ǫ1(

√
2ǫ2 − P2)

, b̄. (24b)

Note thatθ∗1 + θ∗2 =
P1√
2ǫ1

+ P2√
2ǫ2

> 1, i.e.,
√
2ǫ1P2 >

√
2ǫ2(

√
2ǫ1 − P1); hence,̄a > 1. Moreover, we

have proved that̄a < 1 + P1 in (23d). Thus, we have1 < ā < 1 + P1. Similarly, 1 < b̄ < 1 + P2.

• λ1 < 1, λ2 ≥ 1: in this case,ν∗1 ≈

√
2ǫ1, θ1 = λ1, θ∗2 = 1 andν∗2 = P2− ǫ2. Accordingly,ρ1 = 1−λ1

andρ2 = 0. Thus, the inequalities in (22) can be simplified asa ≥ 1+
√
2ǫ1

1+
√
2ǫ1−P1

and b ≥ 1 + P2 − ǫ2.

• λ1 ≥ 1, λ2 < 1: similar to the caseλ1 < 1, λ2 ≥ 1, we can simplify the inequalities in (22) as

a ≥ 1 + P1 − ǫ1 and b ≥ 1+
√
2ǫ2

1+
√
2ǫ2−P2

.

• λi ≥ 1 (i = 1, 2): in this case,θ∗1 = θ∗2 = 1 and henceρ1 = ρ2 = 0. The inequalities in (22)

degenerates into the one in the trivial casea ≥ 1 + P1 and b ≥ 1 + P2.
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Fig. 5. The maximum sum rates achieved by various schemes forthe two-user Gaussian IC,Rsum, along with the interference-free upper
bound, as a function of processing energy costǫ, under the assumption thatǫ1 = ǫ2 = ǫ, whena = b = 3 andP1 = P2 = 3.5.
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Fig. 6. The maximum sum rates achieved by various schemes forthe two-user Gaussian ZIC,Rsum, along with the interference-free upper
bound, as a function of cross-link power gaina for 0 < a < 1, whenb = 0, P1 = P2 = 3.5 and ǫ1 = ǫ2 = 2.

C. Illustration of Results

In this subsection, we numerically evaluate the achievablesum rate of the proposed transmission schemes

for the two-user Gaussian IC through examples. Fig. 4 plots the sum rates as a function of cross-channel

power gaina for a ≥ 1 when b = 3, P1 = P2 = 3.5, ǫ1 = ǫ2 = 2. Sincea ≥ 1 and b ≥ 1, the optimal

power split(τ1, τ2) that maximizes the sum rate in (12) is given by(1, 1) [8] [9]. Given these parameters,

we haveθ∗1 = θ∗2 = 0.76 and ν∗1 = ν∗2 = 2.59 [2], and thus the conditionθ∗1 + θ∗2 > 1 is satisfied. For

comparison, the sum of users’ maximum interference-free rates is provided as an upper bound. In Fig.

4, Scheme IV outperforms the others in terms of sum rate. Moreover, it achieves the upper bound when

a is greater than 2.3. This is consistent with Proposition 1, which says that in this case, the very strong
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interference regime corresponds toa ≥ 2.3 and b ≥ 2.3. As TDM does not depend ona and b, the

sum rate of Scheme II remains constant. Depending on the value of a, Scheme I and Scheme II may

outperform one another. By allowing a flexible overlap of time slots, Scheme III can generally gain better

sum rates than Scheme I and Scheme II. It is worth noting that,the sum rate achieved by TDM is strictly

less than that of Scheme IV except whena = 1. In contrast, recall that in [4], under the same assumption

of fixed on-off states, TDM was shown to be the best scheme in maximizing the sum rate for the MAC

with processing energy cost.

In Fig. 5, assumingǫ1 = ǫ2 = ǫ, we plot the sum rates as a function ofǫ when we seta = b = 3

andP1 = P2 = 3.5. We observe that, forǫ ≤ 1.2, Scheme I, Scheme III and Scheme IV have the same

performance, which is strictly superior to Scheme II. This is consistent with the intuition that non-bursty

transmission remains optimal for sufficiently small processing energy costs. Asǫ gradually increases, the

performance of Scheme I deteriorates fast, Scheme IV startsto outperform Scheme III and meets the

interference-free upper bound atǫ = 1.6. At the same time, Scheme II results in a higher sum rate than

Scheme I asǫ grows larger than 2.1, and becomes equivalent to Scheme III when ǫ increases to 2.6.

Finally, Scheme II coincides with the interference-free upper bound and Scheme IV whenǫ reaches 3.4.

This is because, forǫ ≥ 3.4, due to the very large processing energy cost, each user’s optimal burst fraction

in the single-user case is smaller than 0.5, and therefore TDM can be employed to avoid interference.

Next, we evaluate the sum rate performance of the proposed schemes for the special case of Gaussian

ZIC with weak interference, i.e.,0 < a < 1 andb = 0. The result will serve as a basis for the analysis of

the sum rate of the three-user CGZIC in Section IV. Fig. 6 plots the sum rate as a function of cross-link

power gaina for 0 < a < 1 when P1 = P2 = 3.5 and ǫ1 = ǫ2 = 2 as in Fig. 4. Scheme IV, which

is tailored fora ≥ 1 and b ≥ 1, is not considered. Sinceb = 0, the optimal power split(τ1, τ2) that

maximizes the sum rate in (12) is given by(0, 0) [10]. As shown in Fig. 6, Scheme III has the best

sum-rate among all three schemes and is strictly better thanTDM for a ≤ 0.28, which suggests that

allowing the two users to overlap their transmission and treating interference as noise during the overlap

is beneficial when interference is sufficiently weak. However, as a grows beyond 0.28, TDM starts to

coincide with Scheme III in terms of the sum rate. This implies that TDM is in fact the best scheme in

terms of maximizing the sum rate for a large range of moderately weak a’s.

Finally, in order to quantitatively evaluate how the destructive effect of interference can be mitigated

via bursty transmission in the case of processing energy cost, in Fig. 7, assumingǫ1 = ǫ2 = ǫ, we compare
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Fig. 7. Normalized maximum achievable sum ratesRsum/Rub for the two-user Gaussian IC with processing energy costǫ1 = ǫ2 = ǫ,
as a function of cross-link power gaina for ǫ = 2 and ǫ = 0 when b = 3, andP1 = P2 = 3.5, whereRsum = Rsum,IV andRub is the
interference-free upper bound.

the maximum achievable rateRsum, normalized by the interference-free upper boundRub, i.e., the ratio

Rsum/Rub, for the processing energy caseǫ = 2 and the no processing energy caseǫ = 0. Sincea ≥ 1

and b ≥ 1, Rsum is set toRsum,IV in (18), which reduces to (12) for the case of no processing energy

cost. It can be observed from Fig. 7 that, for alla ≥ 1, the normalized sum rate in the case ofǫ = 2

is substantially larger than its counterpart in the case ofǫ = 0. This demonstrates that leveraging bursty

transmission as in Scheme IV reduces the rate loss incurred by interference substantially in the processing

energy cost case. Moreover, in the case ofǫ = 2, the normalized sum rate reaches 1 for sufficiently large

a while in the case ofǫ = 0, it saturates at 0.9. This is because the very strong interference regime with

no processing energy cost requiresb ≥ 1 + P2 = 4.5 but we haveb = 3 in this example.

IV. THREE-USER CGZIC WITH PROCESSINGENERGY COST

This section extends the analysis on the impact of transmitter processing energy cost in interference

channels from the two-user Gaussian IC to the three-user cascade CGZIC introduced in Section II-B.

Similar to Section III-A, we study several achievable schemes with relatively low complexity for the

purpose of maximizing the sum rate. As mentioned in Section II-B, we focus on the non-trivial case

θ∗1 + θ∗2 ≥ 1 andθ∗2 + θ∗3 ≥ 1. Moreover, we study the mixed interference regimea1 ≥ 1 and0 < a2 < 1

in detail, for which we show how the optimal transmission bursts of all the users are interconnected. The

other regimes fora1 anda2 will also be discussed at the end of this section.

We note that, the class of simple H-K schemes defined in Definition 1 can be extended in a straight-

forward manner to the three-user CGZIC. That is, useri, i = 1, 2, 3, employs a superimposed Gaussian
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codebook, withτi portion of the power used to encode the common information and (1 − τi) portion

used to encode the private information, where0 ≤ τi ≤ 1. Receiveri decodes the common part of the

interference and its own signal jointly by treating the private part as noise. With a total of three users,

each simple H-K scheme is then uniquely specified by the powersplit tuple(τ1, τ2, τ3), which we refer to

as HK(τ1, τ2, τ3). Moreover, in [7], Liu and Erkip argued that, with no processing energy cost, for all the

power gains(a1, a2), settingτi = 0 or 1, i = 1, 2, 3, is optimal under the class of simple H-K schemes

described above, leading to a maximum sum rate

Rsum(P1, P2, P3) =
3

∑

i=1

C(γiPi), (25)

whereγ1 = 1 and for i = 2, 3,

γi =











1
1+ai−1Pi−1

, ai−1 ≤ γi−1

min
(

(ai−1−γi−1)Pi−1+Pi

Pi+γi−1Pi−1Pi
, 1
)

, ai−1 > γi−1

. (26)

For a1 ≥ 1 and0 < a2 < 1, [7] shows that it is optimal to let user 1 send only common information (i.e.,

τ1 = 1), to let user 2 send only private information (i.e.,τ2 = 0) if a2 ≤ γ2 and only common information

(i.e., τ2 = 1) if a2 > γ2, and to let user 3 send only private information (i.e.,τ3 = 0). Under certain

conditions,Rsum(P1, P2, P3) is known to be either equal to or close to the sum capacity of the three-user

CGZIC. For example, for a mixed regime with1 ≤ a1 < 1+P2 anda2 ≤ 1/(1+a1P1), Rsum(P1, P2, P3)

is within half a bit to the sum capacity. The readers are referred to [7] for more details.

In the following, using the above results, we provide several communication schemes for the three-user

CGZIC in the case of processing energy cost. These schemes are similar to those studied in Section III-A.

The emphasis here will be how one can schedule the users’ transmission bursts based on the fact that there

is at most one interference component at each receiver in theCGZIC set-up. For convenience, notations

similar to those in Section III-A are used.

A. Transmission Schemes

1) Scheme I: Simple H-K Scheme with No Burstiness:Consider a simple scheme in which all the three

users transmit over all then time slots, i.e.,θ1 = θ2 = θ3 = 1. In this case, useri has at mostνi = Pi− ǫi
joules per time slot for transmission. Using the class of HK(τ1, τ2, τ3) schemes, the maximum achievable
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Fig. 8. Bursty transmission profile(θ1, θ2, θ3) for the three-user CGZIC: users 1 and 3 transmit during the first θ1 andθ3 fractions of the
time respectively, while user 2 transmits during the lastθ2 fraction of the time.

sum rate is given by

Rsum,I = Rsum(P1 − ǫ1, P2 − ǫ2, P3 − ǫ3), (27)

whereRsum(·) is as in (25).

2) Scheme II: TDM:In this scheme, users employ TDM to avoid interference. Notethat, since users 1

and 3 do not interfere with each other in the cascade Z set-up,we allow their transmission to overlap as

much as possible, but impose that user 2’s transmission doesnot interfere with that of either user 1 or user

3. That is, if users 1 and 3 transmitθ1 andθ3 fractions of the time, then user 2 is left with the remaining

1 −max(θ1, θ3) fraction, where1 − θ∗2 ≤ θ1 ≤ θ∗1 and 1 − θ∗2 ≤ θ3 ≤ θ∗3. The maximum achievable sum

rate of TDM can be found by

Rsum,II = max
θ1,θ3

θ1C

(

P1

θ1
− ǫ1

)

+ θ3C

(

P3

θ3
− ǫ3

)

+ (1−max(θ1, θ3))C

(

P2

1−max(θ1, θ3)
− ǫ2

)

. (28)

3) Scheme III: Fractional Transmission Overlap, Simple H-KScheme During the Overlap:For the set-

up in Fig. 2, if we consider the ZIC with the first two users only, from [1], it follows that it is advantageous

to have user 2’s transmission overlap with user 1’s for a certain fraction sincea1 > 1, i.e.,θ2 > 1−θ1. On

the other hand, for the ZIC with the last two users only, for0 < a2 < 1, the numerical results in Section

III-C indicate that in most cases it is better to let users 2 and 3 operate in a time-division manner, i.e.,

users 2 and 3’s transmission bursts should satisfyθ2 = 1− θ3. This suggests there is generally a trade-off

in selectingθ2. Given the above observations, in this scheme, user 2 may overlap its transmission partially

with users 1 and 3. As in Scheme II, since users 1 and 3 do not interfere with each other, they maximize

the transmission overlap. Hence, without loss of optimality, we assume that the three users transmit using

the bursty transmission profile(θ1, θ2, θ3) as shown in Fig. 8, where users 1 and 3 transmit during the

first θ1 and θ3 fractions of the time respectively, while user 2 transmits during the lastθ2 fraction. For
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simplicity, the parameters(θ1, θ2, θ3) are assumed to satisfy2

1− θ∗2 ≤ θk ≤ 1, k = 1, 3, (29a)

1−max(θ∗1, θ
∗
3) ≤ θ2 ≤ 1, (29b)

and θ2 +min(θ1, θ3) ≥ 1. (29c)

Moreover, as in Scheme III of Section III, we assume each usersends independent information over

different fractions of the time with constant power, i.e., we haveνi = Pi/θi − ǫi, i = 1, 2, 3. For any

transmission profile(θ1, θ2, θ3) with θ1 ≥ θ3, the resulting sum rate for all the users is given by

Rsum,III(θ1, θ2, θ3) =(1− θ1)C

(

P2

θ2
− ǫ2

)

+ (1− θ2)

(

C

(

P1

θ1
− ǫ1

)

+ C

(

P3

θ3
− ǫ3

))

+ (θ2 + θ3 − 1)Rsum

(

P1

θ1
− ǫ1,

P2

θ2
− ǫ2,

P3

θ3
− ǫ3

)

+ (θ1 − θ3)

·min

{

C

(

P1

θ1
− ǫ1

)

+ C

(

P2

θ2
− ǫ2

)

, C

(

a1

(

P1

θ1
− ǫ1

)

+
P2

θ2
− ǫ2

)}

. (30)

Note that in (30), for the(θ2 + θ3 − 1)-fraction when all the users transmit, we have the three-user

sum rateRsum(P1/θ1 − ǫ1, P2/θ2 − ǫ2, P3/θ3 − ǫ3) of (25), while for the(θ1 − θ3)-fraction when only

users 1 and 2 transmit, we can use the strong interference sumrate for the two-user Gaussian ZIC [15].

Similarly, we can obtain the sum rate for any transmission profile (θ1, θ2, θ3) with θ1 < θ3. Finally, the

maximum achievable sum rate of Scheme III,Rsum,III , can then be obtained through optimizing over all

the transmission profiles(θ1, θ2, θ3) satisfying (29).

4) Scheme IV: Fractional Transmission Overlap, SuccessiveInterference Cancelation at Receiver 2:In

this scheme, we assume the three users still transmit using the bursty profile(θ1, θ2, θ3) as shown in Fig.

8, with (θ1, θ2, θ3) constrained to satisfy (29), and with constant signal powers. However, sincea1 > 1,

similar to Scheme IV of Section III, we allow user 2’s receiver to listen to user 1’s transmission when its

own transmitter is off to facilitate decoding of the interference from user 1. We will further require that

user 2 perfectly cancels the interference from user 1. This is possible if user 1 transmits with a rate no

2More generally, we may allow user 2 to operate in a TDM manner with one of user 1 and user 3, i.e.,θ1 + θ2 < 1 or θ2 + θ3 < 1,
which is not investigated here for the sake of simplicity.
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Fig. 9. The maximum sum rates achieved by various schemes forthe three-user CGZIC, along with the interference-free upper bound, as
a function of cross-link power gaina1 whena2 = 0.5, P1 = 4, P2 = 3.5, P3 = 3 and ǫ1 = ǫ2 = ǫ3 = 2.

larger than3

R1 = min

{

θ1C

(

P1

θ1
− ǫ1

)

, (1− θ2)C

(

a1

(

P1

θ1
− ǫ1

))

+ (θ1 + θ2 − 1)C

(

a1 (P1/θ1 − ǫ1)

1 + P2/θ2 − ǫ2

)}

. (31)

After interference cancelation, user 2 sees an interference-free link. Therefore, the three-user CGZIC

effectively decomposes into a two-user Gaussian ZIC with users 2 and 3 being the transmitters, and a

separate point-to-point link for user 1 transmitting at rate R1. Since0 < a2 < 1, treating interference as

noise during the overlap is optimal, the maximum sum rate of users 2 and 3 can be written as

R2 +R3 = θ2C

(

P2

θ2
− ǫ2

)

+ (1− θ2)C

(

P3

θ3
− ǫ3

)

+ (θ2 + θ3 − 1)C

(

P3/θ3 − ǫ3
1 + a2 (P2/θ2 − ǫ2)

)

. (32)

The achievable sum rate for any given transmission profile(θ1, θ2, θ3) is obtained by summing (31) and

(32). Finally, the maximum achievable sum rate of Scheme IV,Rsum,IV , can be found by optimizing over

all the transmission profiles(θ1, θ2, θ3) satisfying (29).

B. Illustration of Results

Fig. 9 compares the maximum achievable sum rates of various schemes as a function of cross-link

power gaina1 for a mixed regime example whena1 ≥ 1 anda2 = 0.5, with P1 = 4, P2 = 3.5, P3 = 3,

and ǫ1 = ǫ2 = ǫ3 = 2. The interference-free upper bound is also plotted for comparison. If there is no

interference, the optimal single-user transmission fractions for the three users areθ∗1 = 0.87, θ∗2 = 0.76

3Note that user 1’s rate needs to chosen to satisfy two constraints: 1) Receiver 1 can successfully decode its signal; 2) Receiver 2 can
successfully decode user 1’s signal by treating its own signal as noise.



20

1 2 3 4 5 6
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

a
1

θ i

 

 

θ
1

θ
2

θ
3

Fig. 10. The optimal transmission fractions of the three users in Scheme IV as a function of cross-link power gaina1 when a2 = 0.5,
P1 = 4, P2 = 3.5, P3 = 3 and ǫ1 = ǫ2 = ǫ3 = 2.

andθ∗3 = 0.65, respectively. It is seen in Fig. 9 that, Scheme I has the worst sum rate among all. We also

observe that, the curve for Scheme III coincides with that for TDM for a1 smaller than 3. This implies

that whena1 is not sufficiently large, there is no benefit for user 2 to overlap its transmission with either

user 1 or user 3. However, asa1 grows larger, Scheme III starts to dominate TDM, since users1 and 2

can gain by allowing fractional transmission overlap. Scheme IV is superior to the other schemes except

for very largea1’s when Scheme III performs the same as Scheme IV. This shows the importance of

interference overhearing and cancelation at receiver 2 in Scheme IV.

The optimal transmission fractions of the three users in Scheme IV are plotted in Fig. 10 for the same

parameters as in Fig. 9. It can be observed that, whena1 = 1, user 2 operates in a time-division manner

with users 1 and 3. Asa1 grows, bothθ1 andθ2 increase and thus users 1 and 2 transmit in an overlapping

fashion. Meanwhile,θ3 decreases such that users 2 and 3 still operate in a time-division manner, which

is consistent with the results in Section III-C for a two-user Gaussian ZIC with weak interference. In this

regime, which takes place for1 ≤ a1 ≤ 2.1, θ3 and thus the achievable rate of user 3 are sacrificed to get

higher transmission fractions and rates for users 1 and 2. For largera1, θ1 reaches its optimal value in the

single-user case,θ∗1 = 0.87, andθ2 and θ3 remain constant at levels that are less than their counterparts

in the single-user case. The observations above show the interdependency of(θ1, θ2, θ3) in the CGZIC

setting.

Finally, as in Fig. 7 of Section III-C, in Fig. 11, we compare the maximum achievable rateRsum (in this

case, that of Scheme IV), normalized by the interference-free upper boundRub, i.e., the ratioRsum/Rub,

for the cases with and without processing energy cost in the cascade Z set-up. Similar improvements on
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Fig. 11. Normalized maximum achievable sum rates for the three-user CGZIC with processing energy costǫ1 = ǫ2 = ǫ3 = ǫ, as a function
of cross-link power gaina1 for ǫ = 2 and ǫ = 0 whena2 = 0.5, P1 = 4, P2 = 3.5 andP3 = 3, whereRsum = Rsum,IV andRub is the
interference-free upper bound.

the normalized sum rate are observed here as well, showing that for the three-user CGZIC, leveraging

bursty transmission and scheduling user transmission bursts appropriately based on the channel set-up are

essential in mitigating the effect of interference in the presence of the processing energy cost.

C. Discussion: Other Regimes for(a1, a2)

The achievable schemes studied in the previous subsectionsapply to the three-user CGZIC with

processing energy cost in the mixed regimea1 ≥ 1 and 0 < a2 < 1. For general power gains(a1, a2),

Scheme I, II and III follow in a similar manner. Below, we briefly discuss how Scheme IV would be

modified for different ranges of(a1, a2). For a1 ≥ 1 and a2 ≥ 1, in Scheme IV, both receivers 2 and

3 would benefit from overhearing their respective interference signals when their own transmitters are

silent, leading to a condition similar to (31) forR2. When0 < a1 < 1 anda2 ≥ 1, in Scheme IV, only

receiver 3 would benefit from overhearing the interference when its own transmitter is off. Finally, for

0 < a1 ≤ 1 and 0 < a2 ≤ 1, Scheme IV would not be applicable, since in this regime, either of the

interfered receivers cannot cancel the interference through overhearing of the interference signals.

V. CONCLUSIONS

In this paper, we have studied the impact of transmit processing energy cost on the achievable sum rate

of Gaussian interference channels. When the processing energy cost is present, it is no longer optimal

for each transmitter to transmit all the time as in the conventional no processing cost case. For the two-

user Gaussian IC and the three-user CGZIC, we have proposed transmission schemes with relatively low
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complexities for the purpose of maximizing the sum rate. Theresults from the former model highlight how

bursty transmission due to processing energy cost can be leveraged to mitigate the effect of interference.

We have also found that, with processing energy cost, a larger range of cross-link power gains could

ensure the very strong interference condition compared with its counterpart in the no processing cost

case. The investigation of the latter model suggests that one should take into consideration the channel

set-up when scheduling user transmissions. Future work anddirections include study of more practical

but tractable modeling of the processing energy cost and extensions to fading scenarios.
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