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Abstract—We consider the delay minimization problem in
an energy harvesting communication network with energy
cooperation. In this network, nodes harvest energy from nature
to sustain the power needed for data transmission, and may
transfer a portion of their harvested energies to neighboring
nodes through energy cooperation. For fixed data and energy
routing topologies, we determine the optimum data rates,
transmit powers and energy transfers, subject to flow and
energy conservation constraints, in order to minimize the
network delay. We start with a simplified problem where
data flows are fixed and optimize energy management at each
node for the case of a single energy harvest per node. This is
tantamount to distributing each node’s available energy over
its outgoing data links and energy transfers to neighboring
nodes. For this case, with no energy cooperation, we show
that each node should allocate more power to links with more
noise and/or more data flow. In addition, when there is energy
cooperation, our numerical results indicate that, energy is
routed from nodes with lower data loads to nodes with higher
data loads. We then extend this setting to the case of multiple
energy harvests per node over time. In this case, we optimize
each node’s energy management over its outgoing data links
and its energy transfers to neighboring nodes, over multiple
time slots. For this case, with no energy cooperation, we show
that, for any given node, the sum of powers on the outgoing
links over time is equal to the single-link optimal power over
time. Finally, we consider the problem of joint flow control and
energy management for the entire network. We determine the
necessary conditions for joint optimality of a power control,
energy transfer and routing policy. We provide an iterative
algorithm that updates the data flows, energy flows and power
distribution over outgoing data links sequentially. We show
that this algorithm converges to a Pareto-optimal operating point.

Index Terms—Energy cooperation, energy harvesting, wireless
energy transfer, optimal routing, resource allocation

I. I NTRODUCTION

We consider an energy harvesting communication network
with energy cooperation as shown in Fig. 1. Each node
harvests energy from nature and all nodes may share a portion
of their harvested energies with neighboring nodes through
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energy cooperation [1]. We focus on the delay minimization
problem for this network. The delay on each link depends on
the information carrying capacity of the link, and in particular,
it decreases monotonically with the capacity of the link for
a fixed data flow through it; see e.g., [2, eqn. (5.30)]. The
capacity, in turn, is a function of the power allocated to the
link, and in particular, it is a monotonically increasing function
of the power, for instance, through a logarithmic Shannon
type capacity-power relationship; see e.g., [3, eqns. (9.60) and
(9.62)]. In addition, the delay on a link is a monotonically
increasing function of the data flow through it, for a fixed link
capacity [2, eqn. (5.30)].

In this paper, we consider the joint data routing and capacity
assignment problem for this setting under fixed data and en-
ergy routing topologies [2, Section 5.4.2]. Our work is related
to and builds upon classical and recent works on data routing
and capacity assignment in communication networks [2], [4]–
[12], and recent works on energy harvesting communications
[13]–[17] and energy cooperation [1], [18]–[34] in wireless
networks. In our previous work [1], [28], we studied the
optimal energy management problem for several basic multi-
user network structures with energy harvesting transmitters
and one-way wireless energy transfer. Inspired by joint routing
and resource allocation problems in the classical works such
as [4]–[7], [10], [12], in our current work, we study joint
routing of energy and data in a general multi-user scenario
with data and energy transfer. We specialize in the objective
of minimizing the total delay in the system. To the best of
our knowledge, this problem has not been addressed in the
context of energy harvesting wireless networks with energy
cooperation. Among previous works, the approach that is
most related to ours is that in reference [26], which studies
networkwide optimization of energy and information flows
in communication networks with simultaneous energy and
information transfer. We also note the references [22], [23]
for related joint data routing and energy transfer schemes
in networks with special energy transfer capabilities and no
energy harvesting. Finally, we refer the reader to [30]–[34]
for a related line of research about resource allocation in base
stations powered by renewable energy and energy cooperation.

We divide our development in this paper into three parts.
In the first part, we assume that the data flows through the
links are fixed, and each node harvests energy only once. In
this setting, we determine the optimum energies allocated to
outgoing data links of the nodes and the optimum amounts of
energies transferred between the nodes. In the second part,we
extend this setting to the case of multiple energy harvests for
each node. In the last part, we optimize both data flows on
the links and energy management at the nodes. We determine

http://arxiv.org/abs/1509.05395v1
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Fig. 1. System model.

the jointly optimal routing of data and energy in the network
as well as distribution of power over the outgoing data links
at each node.

In the first part of the paper, in Section III, we focus on
the optimal energy management problem at the nodes with
a single energy harvest at each node. First, we consider the
case without energy cooperation. We show that this problem
can be decomposed into individual problems, each one to be
solved for a single node. We show that more power should
be allocated to links with more noise and/or more data flow,
resembling channel inversion type of power control [35]. Next,
we consider the case with energy cooperation, where nodes
transfer a portion of their own energies to neighboring nodes.
In this case, we have the joint problem of energy routing
among the network nodes and energy allocation among the
outgoing data links at each node. For this problem, we develop
an iterative algorithm that visits all energy links sufficiently
many times and decreases the network delay monotonically.
We numerically observe that energy flows from nodes with
lightly loaded data links to nodes with heavily loaded data
links.

In the second part of the paper, in Section IV, we extend our
setting to the case of multiple energy harvests at each node,
by allowing time-varying energy harvesting rates over large
time frames. We incorporate the time variation in the energy
harvests and solve for the optimal energy management at each
node and energy routing among the nodes. First, we focus on
the case without energy cooperation. We show that the sum
powers on the outgoing data links of a node over time slots is
equal to the single-link optimal transmit power of that node
over time and can be found using [13]–[15]. When the optimal
sum powers are known, we show that the problem reduces
to a problem with a single energy arrival and can be solved
using our method. Next, we focus on the case with energy
cooperation. We show that this problem can be mapped to the
original problem with no energy cooperation by constructing
an equivalent directed graph.

In the last part of the paper, in Section V, we consider
the problem of determining the jointly optimal data and
energy flows in the network and the power distribution over

the outgoing data links at all nodes. We determine a set
of necessary conditions for the joint optimality of a power
control, energy transfer and data routing policy. We then
develop an iterative algorithm that updates the data flows,
energy flows and distribution of power over the outgoing data
links at each node in a sequential manner. We show that this
algorithm converges to a Pareto-optimal operating point.

II. N ETWORK FLOW AND ENERGY MODEL

We use directed graphs to represent the network topology,
and data and energy flows through the network. All nodes
are energy harvesting, and are equipped with separate wireless
energy transfer units. Information and energy transfer channels
are orthogonal to each other.

A. Network Data Topology

We represent the data topology of the network by a directed
graph. In this model, a collection of nodes, labeledn =
1, . . . , N , can send and receive data across communication
links.In particular, a node can be either a source node, a
destination node or a relay node. A data communication link
is represented as an ordered pair(i, j) of distinct nodes. The
presence of a link(i, j) means that the network is able to
send data from the start nodei to the end nodej. We label
the data links asl = 1, . . . , L. The network data topology can
be represented by anN × L matrix,A, in which every entry
Anl is associated with noden and link l via

Anl =











1, if n is the start node of data linkl

−1, if n is the end node of data linkl

0, otherwise

(1)

We defineOd(n) as the set of outgoing data links from node
n, andId(n) as the set of incoming data links to noden. We
defineN -dimensional vectors whosenth entrysn denotes the
non-negative amount of exogenous data flow injected into the
network at noden. On each data linkl, we let tl denote the
amount of flow and we call theL-dimensional vectort the
flow vector. At each noden, the flow conservation implies:

∑

l∈Od(n)

tl −
∑

l∈Id(n)

tl = sn, ∀n (2)

The flow conservation law over all the network can be com-
pactly written as:

At = s (3)

We definecl as the information carrying capacity of linkl.
Then, we requiretl ≤ cl, ∀l.

B. Network Energy Topology

All nodes are equipped with energy harvesting units. In this
section, we describe the energy model for the case of a single
energy harvest per node. We present the extension to the case
of multiple energy harvests in Section IV. Here, each noden
harvests energy in the amount ofEn. We useN -dimensional
vectorE to denote the energy arrival vector for the system. In
the energy cooperation setting, there are energy links similar
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to data links. An energy link is represented as an ordered pair
(i, j) of distinct nodes where the presence of an energy link
means that it is possible to send energy from the start node
to the end node. Energy links are labeled asq = 1, . . . , Q.
Energy transfer efficiency on each energy link is denoted with
0 < αq ≤ 1 which means that whenδ amount of energy is
transferred on linkq from nodei to nodej, nodej receives
αqδ amount of energy. We assume that the directionality and
the position of energy transfer links are fixed whereas the
amount of energy transferred on these links are unknown. The
network energy topology can be represented by anN × Q
matrix, B, in which every entryBnq is associated with node
n and energy linkq via

Bnq =











1, if n is the start node of energy linkq

−αq, if n is the end node of energy linkq

0, otherwise

(4)

On each energy linkq, we let yq be the amount of energy
transferred. We call theL-dimensional vectory the energy
flow vector. We denote byOe(n) andIe(n), respectively, the
sets of outgoing and incoming energy links at noden.

C. Communication Model and Delay Assumptions

Following the M/M/1 queueing model in [2], we represent
the delay on data linkl as:

Dl =
tl

cl − tl
(5)

where tl is the flow and cl is the information carrying
capacity of link l, with tl ≤ cl, ∀l. This delay expression
is a good approximation for systems with Poisson arrivals
at the entry points, exponential packet lengths and moderate-
to-heavy traffic loads [2]. In view of energy scarcity in the
network, moderate-to-heavy traffic load assumption generally
holds. The packet arrival and packet length assumptions are
made for convenience of analysis. Moreover, we assume that
the slot length is sufficiently large to enable convergence to
stationary distributions. In particular, we assume that the slot
length is sufficiently longer than the average delay yieldedby
the M/M/1 approximation. Each noden, on the transmitting
edge of data linkl, with channel noiseσl, enables a capacity
cl by expanding powerpl. These quantities are related by the
Shannon formula [3, eqn. (9.60)] as:

cl =
1

2
log

(

1 +
pl
σl

)

(6)

where alllogs in this paper are with respect to basee. At each
noden, the total power expanded on data and energy links are
constrained by the available energy, i.e.,

∑

l∈Od(n)

pl +
∑

q∈Oe(n)

yq ≤ En +
∑

q∈Ie(n)

αqyq, ∀n (7)

Using L-dimensional vectorp = (p1, . . . , pL) andF = A+

where (A+)nl = max{Anl, 0}, the energy availability con-
straints can be compactly written as:

Fp+By ≤ E (8)

We note that we use power and energy interchangeably in (8)
and in the rest of the paper by assuming slot lengths of 1 unit.

III. C APACITY ASSIGNMENT PROBLEM FORSINGLE TIME

SLOT

In this section, we consider the capacity assignment problem
for the case of a single energy harvest per node. We assume
that the flow assignments,tl, on all links are fixed and are
serviceable by the harvested energies and energy transfers. The
total delay in the network is:

D =
∑

l

tl
cl − tl

(9)

The capacity assignment problem, with the goal of minimizing
the total delay in the network is:

min
cl,pl,yq

∑

l

tl
cl − tl

s.t. Fp+By ≤ E

tl ≤ cl, ∀l (10)

By using the capacitiescl in (6), we write the problem in
terms of the link powerspl and energy transfersyq only as:

min
pl,yq

∑

l

tl
1
2 log

(

1 + pl

σl

)

− tl

s.t. Fp+By ≤ E

pl ≥ σl

(

e2tl − 1
)

, ∀l (11)

We solve the problem in (11) in the rest of this section. We
first identify some structural properties of the optimal solution
in the next sub-section. The following analysis relies on the
standing assumption that this problem has at least one feasible
solution. To see if this problem is feasible, one can replace
the objective function of (11) with a constant and solve a
feasibility problem, which turns out to be a linear program.

A. Properties of the Optimal Solution

First, we note that the objective function can be writ-
ten in the form

∑

i fi(g(xi)) where fi(xi) = ti
xi−ti

and
g(xi) =

1
2 log (1 + xi). Sincef is convex and non-increasing

andg is concave, the resulting composition function is convex
[36]. The constraint set is affine. Therefore, (11) is a convex
optimization problem. The Lagrangian function is:

L =
∑

l

tl
1
2 log

(

1 + pl

σl

)

− tl
+
∑

n

λn





∑

l∈Od(n)

pl

+
∑

q∈Oe(n)

yq − En −
∑

q∈Ie(n)

αqyq





−
∑

l

βl

[

pl − σl

(

e2tl − 1
)]

−
∑

q

θqyq (12)

whereλn andβl are Lagrange multipliers corresponding to the
energy constraints of the nodes in (8) and the feasibility con-
straintstl ≤ cl, respectively. The KKT optimality conditions
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are:

h′
l(pl) + λn(l) − βl = 0, ∀l (13)

λm(q) − αqλk(q) − θq = 0, ∀q (14)

wherehl(pl) , tl

(

1
2 log

(

1 + pl

σl

)

− tl

)−1

, n(l) is the be-

ginning node of data linkl, m(q) andk(q) are the beginning
and end nodes of energy linkq, respectively. The additional
complementary slackness conditions are:

λn





∑

l∈Od(n)

pl +
∑

q∈Oe(n)

yq − En −
∑

q∈Ie(n)

αqyq



 = 0, ∀n

(15)

βl

[

pl − σl

(

e2tl − 1
)]

= 0, ∀l (16)

θqyq = 0, ∀q (17)

We now identify some properties of the optimal power
allocation in the following three lemmas.

Lemma 1 If the problem in (11) is feasible, thenβl = 0, ∀l.

Proof: If the problem in (11) is feasible, its objective function
must be bounded. Equality in the second set of constraints in
(11) for anyl implies that the objective function is unbounded.
Therefore, we must have strict inequality in those constraints
for all l, and from (16), we conclude thatβl = 0, ∀l. �

Lemma 2 At every noden, the optimal power allocation
amongst outgoing data links satisfies

h′
l(pl) = h′

m(pm), ∀l,m ∈ Od(n) (18)

Proof: From (13) and Lemma 1 we have,

h′
l(pl) = −λn(l), ∀l (19)

For outgoing data linksl andm that belong to the same node
n,

h′
l(pl) = −λn = h′

m(pm) (20)

which gives the desired result.�

Lemma 3 If some energy is transferred through energy link
q across nodes(i, j), then,

h′
l(pl) = αqh

′
m(pm), ∀l ∈ Od(i), ∀m ∈ Od(j) (21)

Proof: If some energy is transferred through energy linkq,
thenyq > 0, and from (17),θq = 0. From (14), we have,

λi = αqλj (22)

Writing (13) for nodesi andj, we have,

h′
l(pl) = −λi, ∀l ∈ Od(i) (23)

h′
m(pm) = −λj , ∀m ∈ Od(j) (24)

and the result follows from combining (22), (23) and (24).�

In the following two sub-sections, we separately solve the
problem for the cases of no energy transfer and with energy
transfer.

B. Solution for the Case of No Energy Transfer

In the case of no energy transfer, we haveyq = 0, ∀q, and
the problem becomes only in terms ofpl as stated below:

min
pl

∑

l

tl
1
2 log

(

1 + pl

σl

)

− tl

s.t.
∑

l∈Od(n)

pl ≤ En, ∀n

pl ≥ σl

(

e2tl − 1
)

, ∀l (25)

This problem can be decomposed intoN sub-problems as:

min
pl

∑

n

∑

l∈Od(n)

tl
1
2 log

(

1 + pl

σl

)

− tl

s.t.
∑

l∈Od(n)

pl ≤ En, ∀n

pl ≥ σl(e
2tl − 1), ∀l (26)

Since the constraint set depends only on the powers of node
n, there is no interaction between the nodes. Every node will
independently solve the following optimization problem:

min
pl

∑

l∈Od(n)

tl
1
2 log

(

1 + pl

σl

)

− tl

s.t.
∑

l∈Od(n)

pl ≤ En

pl ≥ σl

(

e2tl − 1
)

, ∀l ∈ Od(n) (27)

The feasibility of (27) requiresEn ≥
∑

l∈Od(n)
σl(e

2tl − 1)
which we assume holds. Similar to (11), (27) is a convex
optimization problem with the KKT optimality conditions:

h′
l(pl) + λ = 0, ∀l ∈ Od(n) (28)

with the complementary slackness condition:

λ





∑

l∈Od(n)

pl − En



 = 0 (29)

The Lagrange multipliers for the second set of constraints in
(27) are not included, because similar to Lemma 1, they will
always be satisfied with strict inequality. From (28), we have

−λ = h′
l(pl) (30)

=
−tl
2σl

[

1

2
log

(

1 +
pl
σl

)

− tl

]−2(

1 +
pl
σl

)−1

(31)

After some algebraic manipulations shown in Appendix A, we
have

pl(λ) = σl

(

e2(W (zl)+tl) − 1
)

(32)

where zl =
√

tle
−2tl

2λσl
and W (·) is the Lambert W function

defined as the inverse of the functionw → wew [37]. Next, we
prove some monotonicity properties for the optimal solution,
as a function of the qualities of the channels and the amounts
of data flows through the channels.

Lemma 4 For fixed tl, pl is monotone increasing inσl.
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Proof: By differentiating (32) and using the following prop-
erty [37]

dW (x)

dx
=

W (x)

x(1 +W (x))
(33)

it can be verified as shown in Appendix B that

∂pl
∂σl

= e2tl
e2W (zl)

1 +W (zl)
− 1 > 0 (34)

where the inequality follows frome2tl > 1, ∀tl > 0, and
e2z

1+z
> 1, ∀z > 0, proving the lemma.�

This lemma shows that, for fixed data flows, more power
should be allocated to channels with more noise power, similar
to channel inversion power control [35].

Lemma 5 For fixedσl, pl is monotone increasing intl.

Proof: By differentiating (32), it can be verified as shown in
Appendix C that

∂pl
∂tl

=
σl(W (zl) + 2tl) e

2(W (zl)+tl)

tl(1 +W (zl))
> 0 (35)

proving the lemma.�

This lemma shows that, for fixed channel qualities (i.e.,
fixed noise powers), more power should be allocated to links
with more data flow.

Finally, we solve (27) as follows: From the total energy
constraint, we have

∑

l pl(λ
∗) = En. We perform a one

dimensional search onλ to find λ∗ that satisfies
∑

l pl(λ
∗) =

En, wherepl(λ∗) is given in (32). Onceλ∗ is obtained, the
optimal power allocations are found from (32).

C. Solution for the Case with Energy Transfer

Now, we consider the case with energy transfer, i.e.,yq ≥ 0
for someq. Assume that some energyyq > 0 is transferred
from nodei to nodej on energy linkq. Writing (32) for the
outgoing data links of nodei and nodej, we have,

pl(λi) = σl

(

e2(W (zil)+tl) − 1
)

, ∀l ∈ Od(i) (36)

pl(λj) = σl

(

e2(W (zjl)+tl) − 1
)

, ∀l ∈ Od(j) (37)

where zil =
√

tle
−2tl

2λiσl
and zjl =

√

tle
−2tl

2λjσl
. From (22), we

haveλi = αqλj . The energy causality constraints on nodei
and nodej are:

∑

l∈Od(i)

pl(λ
∗
i ) = Ei − yq (38)

∑

l∈Od(j)

pl(λ
∗
j ) = Ej + αqyq (39)

Equations (22), (38) and (39) imply

αq

∑

l∈Od(i)

pl(αqλ
∗
j ) +

∑

l∈Od(j)

pl(λ
∗
j ) = αqEi + Ej (40)

which can be solved by a one-dimensional search onλ∗
j .

We solve (11) by iteratively allowing energy to flow through
a single link at a time provided all links are visited infinitely

Algorithm 1 Algorithm to solve capacity assignment problem
for single time slot

Initialize ⊲ No energy transfer

1: for i = 1 : N do
2: Find λi such that

∑

l∈Od(i)
pl(λi) = Ei, pl is (32)

3: end for

Main Algorithm

4: for q = 1 : Q do ⊲ All energy links
5: Set (i, j)← (origin,destination) of energy linkq
6: if λi < αqλj then ⊲ Perform energy transfer

Find λ∗
j such that

αq

∑

l∈Od(i)
pl(αqλ

∗
j ) +

∑

l∈Od(j)
pl(λ

∗
j ) = αqEi + Ej

Set Tapq = Ei −
∑

l∈Od(i)
pl(αqλ

∗
j ) ⊲ Update tap level

⊲ Update battery levels
SetEi =

∑

l∈Od(i)
pl(αqλ

∗
j ), Ej =

∑

l∈Od(j)
pl(λ

∗
j )

7: else ifλi > αqλj then ⊲ Recall some energy
8: while Tapq ≥ 0, λi > αqλj , Ej ≥ 0 do

⊲ Recall ǫ energy
SetEi = Ei + ǫ, Ej = Ej − αqǫ,Tapq = Tapq − ǫ
Find λi, λj such that
Ei =

∑

l∈Od(i)
pl(λi), Ej =

∑

l∈Od(j)
pl(λj)

9: end while
10: end if
11: end for

often. Since we do not know which energy links will be
active in the optimal solution, we may need to call back any
transferred energy in the previous iterations. To perform this,
we keep track of transferred energy over each energy link by
means of meters as in [1]. Initially, we start from the no energy
transfer solution and computeλn for every noden as described
in the previous section. At every iteration, we open only one
energy linkq at a time, and whenever energy flows through
link q, (40) must be satisfied withEi andEj in (40) replaced
with the battery levels of nodesi andj at the current iteration.
In particular, ifλi < αqλj , we search forλ∗

j that satisfies (40).
If no solution to (40) can be found, this meansλi > αqλj ,
and then previously transferred energy must be called back
to the extent possible according to the meter readings. The
algorithmic description is given below as Algorithm 1. From
the strict convexity of the objective function, we note thateach
iteration decreases the objective function as described similarly
in [1, Section V.A]. Our algorithm converges since bounded
real monotone sequences always converge, and the limit point
is a local minimum because, the iterations can only stop when
λi = αqλj for the energy links whereyq > 0 which are the
KKT optimality conditions from (22). This local minimum is
also the unique global minimum due to the convexity of the
problem.

IV. CAPACITY ASSIGNMENT PROBLEM FOR MULTIPLE

TIME SLOTS

In this section, we consider the capacity assignment problem
for the scenario where the energy arrival rates to the nodes can
change over time. We assume that the time is slotted and there
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are a total ofT equal-length slots. In slotsi = 1, . . . , T , each
noden harvests energy with amountsEn1, En2, . . . , EnT , and
the arriving energies can be saved in a battery for use in
future time slots. The subscripti denotes the time slot, and
the quantitiestli, cli, pli, σli andyqi denote the flow, capacity,
power, noise power, and energy transfer in sloti. We assume
that the flow allocation and channel noises do not change
over time, i.e.,tli = tl and σli = σl, ∀i, ∀l. We further
assume that the slots are long enough so that the M/M/1
approximation is valid at every sloti. In particular, slot length
is sufficiently larger than the average delay resulting fromthe
M/M/1 approximation. Then, the average delay on linkl at
time slot i is given as,

Dli =
tl

cli − tl
(41)

where cli = 1
2 log

(

1 + pli

σl

)

. As the energy that has not
arrived yet cannot be used for data transmission or energy
transfer, the power policies of the nodes are constrained by
causality of energy in time. These constraints are written as:

k
∑

i=1

(

∑

l∈Od(n)

pli +
∑

q∈Oe(n)

yqi

)

≤

k
∑

i=1

(

Eni +
∑

q∈Ie(n)

αqyqi

)

, ∀n, ∀k (42)

The capacity assignment problem with fixed link flows to
minimize the total delay over all links and all time slots can
be formulated as:

min
pli,yqi

T
∑

i=1

∑

l

tl
1
2 log

(

1 + pli

σl

)

− tl

s.t.
k
∑

i=1

(

∑

l∈Od(n)

pli +
∑

q∈Oe(n)

yqi

)

≤

k
∑

i=1

(

Eni +
∑

q∈Ie(n)

αqyqi

)

, ∀n, ∀k

pli ≥ σl(e
2tl − 1), ∀l, ∀i (43)

The problem in (43) is convex and the Lagrangian function
can be written as:

L =
T
∑

i=1

∑

l

hl(pli) +
∑

n

T
∑

k=1

λnk





k
∑

i=1





∑

l∈Od(n)

pli

+
∑

q∈Oe(n)

yqi − Eni −
∑

q∈Ie(n)

αqyqi









−
∑

q

T
∑

i=1

θqiyqi (44)

where hl(pli) , tl

[

1
2 log

(

1 + pli

σl

)

− tl

]−1

. The Lagrange
multipliers for the second set of constraints for (43) are not
included here because similar to before, they will always be
satisfied with strict inequality. The KKT optimality conditions

are:

h′
l(pli) +

T
∑

k=i

λn(l)k = 0, ∀l, ∀i (45)

T
∑

k=i

λm(q)k − αq

T
∑

k=i

λr(q)k − θqi = 0, ∀q, ∀i (46)

wheren(l) is the beginning node of data linkl, m(q) and
r(q) are the beginning and end nodes of energy linkq. The
additional complementary slackness conditions as:

λnk

[

k
∑

i=1

(

∑

l∈Od(n)

pli +
∑

q∈Oe(n)

yqi − Eni

−
∑

q∈Ie(n)

αqyqi

)]

= 0, ∀n, ∀k (47)

θqiyqi = 0, ∀q, ∀i (48)

Now, we extend Lemmas 2 and 3 to the case of multiple
energy arrivals over time.

Lemma 6 At every noden, the optimal power allocation
amongst outgoing data links satisfies

h′
l(pli) = h′

m(pmi), ∀l,m ∈ Od(n), ∀i (49)

Proof: From (45), we have,

h′
l(pli) = −

T
∑

k=i

λn(l)k (50)

For outgoing data linksl andm that belong to the same node
n,

h′
l(pli) = −

T
∑

k=i

λnk = h′
m(pmi), ∀i (51)

from which the result follows.�

Lemma 7 If some energy is transferred through energy link
q across nodes(a, b) at time sloti,

h′
l(pli) = αqh

′
m(pmi), ∀l ∈ Od(a), ∀m ∈ Od(b) (52)

Proof: If some energy is transferred through energy linkq at
time slot i, thenyqi > 0, and from (48),θqi = 0. From (46),
we have,

T
∑

k=i

λak = αq

T
∑

k=i

λbk (53)

Then, we have,

h′
l(pli) = −

T
∑

k=i

λak = −αq

T
∑

k=i

λbk

= αqh
′
m(pmi), ∀l ∈ Od(a), ∀m ∈ Od(b) (54)

where the first equality follows from writing (45) for nodea,
the second equality follows from (53), and the third equality
follows from writing (45) for nodeb. �
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In the following two sub-sections, we separately solve the
problem for the cases of no energy transfer and with energy
transfer.

A. Solution for the Case of No Energy Transfer

In this case, we haveyqi = 0, ∀i, ∀q. The problem becomes
only in terms ofpli as follows:

min
pli

T
∑

i=1

∑

l

tl
1
2 log

(

1 + pli

σl

)

− tl

s.t.
k
∑

i=1

∑

l∈Od(n)

pli ≤

k
∑

i=1

Eni, ∀n, ∀k

pli ≥ σl(e
2tl − 1), ∀l, ∀i (55)

The problem can be decomposed intoN sub-problems as:

min
pli

T
∑

i=1

∑

n

∑

l∈Od(n)

tl
1
2 log

(

1 + pli

σl

)

− tl

s.t.
k
∑

i=1

∑

l∈Od(n)

pli ≤

k
∑

i=1

Eni, ∀n, ∀k

pli ≥ σl(e
2tl − 1), ∀l, ∀i (56)

Since the constraint set depends only on the powers of node
n, there is no interaction between the nodes. Every node will
independently solve the following optimization problem:

min
pli

T
∑

i=1

∑

l∈Od(n)

tl
1
2 log

(

1 + pli

σl

)

− tl

s.t.
k
∑

i=1

∑

l∈Od(n)

pli ≤

k
∑

i=1

Eni, ∀k

pli ≥ σl(e
2tl − 1), ∀l ∈ Od(n), ∀i (57)

Solving (57) entails finding the optimal energy management
policy for each linkl, over all time slotsi. We definebli =
pli−σl(e

2tl −1) andGni = Eni−|Od(n)|σl(e
2tl −1). Then,

(57) becomes:

min
bli

T
∑

i=1

∑

l∈Od(n)

tl
1
2 log

(

e2tl + bli
σl

)

− tl

s.t.
k
∑

i=1

∑

l∈Od(n)

bli ≤

k
∑

i=1

Gni, ∀k

bli ≥ 0, ∀l ∈ Od(n), ∀i (58)

For feasibility of (58) we needGni ≥ 0 which we assume
holds. Now, we state an important property of the optimal
policy which is proved in Appendix D.

Lemma 8 The optimal total power allocated to outgoing data
links at each sloti,

∑

l∈Od(n)
bli, is the same as the single-link

optimal transmit power with energy arrivalsGni.

From Lemma 8 we have that the sum powers in outgoing
data links are given by the single-link optimal transmit powers

which can be found by the geometric method in [13] or by the
directional water-filling method in [15]. Once the sum powers
are obtained, individual link powers are found by solvingx(si)
which is defined in (92) in Appendix D. The problem inx(si)
includes a single energy harvest and is in the form of (27),
therefore, we use the method proposed in Section III-B to find
the individual link powers.

B. Solution for the Case with Energy Transfer

From (45) and some algebraic manipulations we have

pli = σl

(

e2(W (zil)+tl) − 1
)

(59)

wherezil =
√

tle
−2tl

2(
∑

T
k=i

λn(l)k)σl
andW (·) is the Lambert W

function. The Lagrangian structure of this problem is more
complicated compared to the previous case since the power
allocation at timei depends on{λn(l)k}

T
k=i. Therefore, here,

we offer an alternative solution.
In the scenario described above, the nodes have the capa-

bility to save their energies to use in future slots. We note that
saving energy for use in future slots is equivalent to transfer-
ring energy to future slots with energy transfer efficiency of
α = 1. In light of this observation, an equivalent representation
of (43) can be obtained by modifying the network graph where
each time slot is treated as a new node with a single energy
arrival and saving energy for future slots is represented by
energy transfer links of efficiency 1. The modification to the
network graph is performed in the following way. First, we
makeT replicas of the network graph including all the nodes
and the existing data and energy transfer links. Each replica
will denote the network at one time slot. We let each replica
node receive one energy harvest which amounts to the energy
harvested by that node in that time slot. We keep the existing
energy and data links but we add new energy links between
different replicas of the same node. For every noden, we add
energy links of efficiency1 between replicask andk+1, where
k = 1, . . . , T−1. Relabeling the nodes, we obtain a new graph
where all nodes have one energy harvest. Essentially, we have
reduced this problem to the case in Section III-C and we use
the solution provided in that section.

We finally remark that our framework can easily be ex-
tended to address variations in channel fading coefficientsand
energy transfer efficiencies by allowing the noise powersσl

and energy transfer efficienciesαl to vary from slot to slot,
i.e., definingcli = 1

2 log
(

1 + pli

σli

)

and replacingαl with αli.

V. JOINT CAPACITY AND FLOW OPTIMIZATION

In this section, we consider the joint optimization of capac-
ity and flow assignments, in contrast to capacity assignment
only with fixed flows, as considered in the previous sections.
We focus on the case with a single energy harvest per node
as in Section III. The delay minimization problem with joint
capacity and flow allocation can be formulated as:

min
pl,yq,tl

∑

l

tl
1
2 log

(

1 + pl

σl

)

− tl

s.t. Fp+By ≤ E
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pl ≥ σl(e
2tl − 1), ∀l

At = s (60)

where we optimize not only the powerspl and energy transfers
yq, but also the data flowstl. In (60), the first set of constraints
are the energy constraints, the second set of constraints are
the capacity constraints on individual links, and the last set of
constraints are the flow conservation constraints at all nodes.

We assume that the exogenous arrivalss is serviceable by
the energy harvests and energy transfers. This means that
problem (60) has a bounded solution and furthermore no data
link is operating at the capacity, i.e., the capacity constraints
are never satisfied with equality unlesstl = pl = 0. We
solve the problem in (60) in the remainder of this section.
Here, the constraint set is convex, however, the objective
function is not jointly convex inpl and tl [2], therefore, (60)
is not a convex optimization problem. We study the necessary
optimality conditions by writing the Lagrangian function as
follows:

L =
∑

l

tl
1
2 log

(

1 + pl

σl

)

− tl
+
∑

n

λn

[

∑

l∈Od(n)

pl

+
∑

q∈Oe(n)

yq − En −
∑

q∈Ie(n)

αqyq

]

−
∑

l

βl[pl

− σl(e
2tl − 1)] +

∑

n

νn

[

∑

l∈Od(n)

tl −
∑

l∈Id(n)

tl − sn

]

−
∑

q

θqyq −
∑

l

γltl (61)

The KKT optimality conditions are:1

−tl
2σl

[

1

2
log

(

1 +
pl
σl

)

− tl

]−2(

1 +
pl
σl

)−1

+ λn(l)

− βl = 0, ∀l (62)

1

2
log

(

1 +
pl
σl

)[

1

2
log

(

1 +
pl
σl

)

− tl

]−2

+ νn(l) − νm(l) − γl + 2βlσle
2tl = 0, ∀l (63)

λk(q) − αqλz(q) − θq = 0, ∀q (64)

wheren(l) andm(l) are the source and destination nodes of
data linkl, k(q) andz(q) are the source and destination nodes
of energy linkq, respectively. The complementary slackness
conditions are:

λn





∑

l∈Od(n)

pl +
∑

q∈Oe(n)

yq − En −
∑

q∈Ie(n)

αqyq



 = 0, ∀n

(65)

νn





∑

l∈Od(n)

tl −
∑

l∈Id(n)

tl − sn



 = 0, ∀n (66)

1With the objective function of (60), there is an uncertaintywhen tl =

pl = 0. Nonetheless, we argue as in [2, page 441] that the objectivefunction
of (60) is differentiable over the set of allpl with 1

2
log

(

1 +
pl
σl

)

> tl and
∂L
∂pl

= 0, ∂L
∂tl

= 0 and ∂L
∂yq

= 0 are necessary conditions for optimality.

θqyq = γltl = 0, ∀q, ∀l (67)

βl

[

pl − σl(e
2tl − 1)

]

= 0, ∀l (68)

λn, βl, θq, γl ≥ 0, ∀l, ∀q, ∀n (69)

We note thatνn < 0 is allowed since the Lagrange multiplier
ν corresponds to an equality constraint. Lemma 9, proved in
Appendix E, states the necessary optimality conditions.

Lemma 9 For a feasible set of flow variables{tl}Ll=1,
transmission power allocations{pl}Ll=1 and energy transfers
{yq}

Q
q=1 to be the solution to the problem in (60), the following

conditions are necessary.
1) For every noden, there exists a constantλn > 0 such that

tl
2σl

[

1

2
log

(

1 +
pl
σl

)

− tl

]−2(

1 +
pl
σl

)−1

≤ λn,

∀l ∈ Od(n) (70)

and with equality ifpl > 0.
2) For every noden, there exists a constant̃νn ≥ 0 such that

∑

l∈Fn,d

1

2
log

(

1 +
pl
σl

)[

1

2
log

(

1 +
pl
σl

)

− tl

]−2

= ν̃n,

∀d = 1, . . . , D (71)

whereFn,d is a data path that starts from noden and ends
at destination noded and for whichpl > 0, ∀l ∈ Fn,d. The
condition in (71) is valid for all such data paths that start
from noden and end at any destination node.
3) For all energy transfer linksq, and ∀l ∈ Od(n), ∀k ∈
Od(m) such thatpl > 0 and pk > 0 wheren andm are the
origin and destination nodes of energy transfer linkq

tl
2σl

[

1

2
log

(

1 +
pl
σl

)

− tl

]−2(

1 +
pl
σl

)−1

≥

αq

tk
2σk

[

1

2
log

(

1 +
pk
σk

)

− tk

]−2(

1 +
pk
σk

)−1

(72)

where (72) is satisfied with equality ifyq > 0.

From Lemma 9, the structure of the optimal solution is
as follows: We definehl(pl, tl) as the objective function of

the problem in (60),hl(pl, tl) , tl

[

1
2 log

(

1 + pl

σl

)

− tl

]−1

.
We see from (70) that nodes should allocate more power on
links where the quantity

∣

∣

∣

∂hl

∂pl

∣

∣

∣ is large and less power on
links where this quantity is small. Similarly, from (71), wesee
that less flow should be allocated on paths where the quantity
∑

l∈Fn,d

∂hl

∂tl
is large and more flow on paths where this quantity

is small. Finally, (72) tells us the necessary conditions for
energy transfer. We describe our solution to the problem in
(60) in the next section.

A. Algorithmic Solution for the Joint Capacity and Flow
Optimization Problem

In this section, we propose an iterative algorithm. There are
three steps to each iteration as summarized below. We start
from a feasible point(t0,p0).
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1) Energy Management Step:We fix a stepsizeξp > 0.
Each node computes∂hl

∂pl
for their own outgoing data

links wherepl > 0. Every node performs the following
iteration:

pk+1
l =















pkl + ξp, if l = argmaxl∈Od(n)

∣

∣

∣

∂hl

∂pl

∣

∣

∣

pkl − ξp, if l = argminl∈Od(n)

∣

∣

∣

∂hl

∂pl

∣

∣

∣

pkl , otherwise
(73)

wherek denotes the iteration number, and the derivatives
are computed at the current iteration, i.e., for(tk,pk).

2) Data Routing Step:We fix a stepsizeξt > 0. Each node
n computes

∑

l∈Fn,d

∂hl

∂tl
for the data paths originating

from source noden and ending at any destination.
Assume the pathF∗

n maximizes
∑

l∈Fn,d

∂hl

∂tl
and the

path G∗n minimizes
∑

l∈Fn,d

∂hl

∂tl
for eachn. Every node

performs the following iteration:

tk+1
l =











tkl − ξt, if l ∈ F∗
n

tkl + ξt, if l ∈ G∗n
tkl , otherwise

(74)

3) Energy Routing Step:This step is the same as described
in Section III-C. Specifically, every node goes through
its energy transfer links and makes the comparison
∣

∣

∣

∂hl

∂pl

∣

∣

∣ ≷ αq

∣

∣

∣

∂hm

∂pm

∣

∣

∣ wherem is the receiving node of

energy link q. If
∣

∣

∣

∂hl

∂pl

∣

∣

∣ < αq

∣

∣

∣

∂hm

∂pm

∣

∣

∣, then some energy

is transferred through linkq. If
∣

∣

∣

∂hl

∂pl

∣

∣

∣ > αq

∣

∣

∣

∂hm

∂pm

∣

∣

∣,
then some energy must be called back, as explained in
Section III-C.

4) Go back to step 1, or terminate if sufficiently many
iterations are performed.

We describe our Algorithm in tabular form as Algorithm 2
below. We note that our algorithm reduces to the one in [12]
in the case of no energy harvesting or energy transfer. Next,
we discuss the convergence and optimality properties of our
algorithm.

B. Convergence and Optimality Properties of the Proposed
Algorithm

Every iteration of the algorithm decreases the objective
function and the iterations are bounded. Using the fact that
real monotone bounded sequences converge, we conclude that
the algorithm converges. Assume(t∗,p∗,y∗) is a convergence
point of the algorithm. Next, we show that this point satisfies
the KKT optimality conditions stated in Lemma 9.

Lemma 10 (t∗,p∗,y∗) satisfies the conditions stated in
Lemma 9.

Proof: When the algorithm converges, we must havepk+1
l =

pkl . From (73), this is only possible when∂hl

∂pl
is constant for

l ∈ Od(n) which is equivalent to (70). Similarly, we must have

Algorithm 2 Algorithm to solve joint capacity and flow
assignment problem for single time slot

Initialize

1: Generate initial point

Energy management step

2: for n = 1 : N do ⊲ All nodes
Find argmaxl∈Od(n)

∂hl

∂pl
, perform (73) as long aspl ≥

σl(e
2tl − 1) is still satisfied

3: end for

Data routing step

4: for n = 1 : N do ⊲ All Nodes
Find path F∗

n that maximizes andG∗n that minimizes
∑

l∈Fn,d

∂hl

∂tl
whered ∈ Od(n)

5: for l ∈ F∗
n do tk+1

l = tkl − ξt
6: end for
7: for l ∈ G∗n do tk+1

l = tkl +ξt as long aspl ≥ σl(e
2tl−

1) is still satisfied
8: end for
9: end for

Energy routing step

10: for q = 1 : Q do ⊲ All energy links
11: Set (i, j)← (origin,destination) of energy linkq

12: Setλi =
∣

∣

∣

∂hi

∂pi

∣

∣

∣
andλj =

∂hj

∂pj

13: Use steps6 : 10 of Algorithm 1
14: end for

15: Repeat until convergence

tk+1
l = tkl and from (74), this is only possible when

∑

l∈Fn,d

∂hl

∂tl

is constant over all paths, which is equivalent to (71). Using
a similar argument we conclude that energy transfers satisfy
(72). This means that(t∗,p∗,y∗) satisfies Lemma 9.�

Now, we remark that even though we cannot claim global
optimality of the solution, we have the followingPareto-
optimality condition.

Remark 1 Assume that(t∗,p∗,y∗) satisfies the conditions
stated in Lemma 9, then the vector of link delays is Pareto-
optimal, i.e., there does not exist another pair of feasible
allocations(t̂, p̂, ŷ) such that

hl(p̂l, t̂l) ≤ hl(p
∗
l , t

∗
l ), ∀l (75)

with at least one inequality being strict.

This remark means that at the Pareto-optimal point, the
average delay cannot be strictly reduced on one link withoutit
being increased on another. The proof of this remark follows
similar lines as the proof in [12, Thm. 4] and is omitted here
for brevity. We note that, in particular, any local optimal point
is Pareto-optimal due to the fact that local optimal points
satisfy KKT conditions in Lemma 9.
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queue
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Fig. 2. Network topology 1.

VI. N UMERICAL RESULTS

In this section, we give simple numerical results to illus-
trate the resulting optimal policies. We study three network
topologies shown in Figs. 2, 3 and 4. For all examples, we
assumeσl = 0.1 units ∀l. The slot length is of 1 unit for
convenience, so that we use power and energy; rate and data
interchangeably.

A. Network Topology 1

We first consider the network topology in Fig. 2 with
one source, one destination and three relays in between.
The data and energy links are shown and labeled as
in Fig. 2, where lis represent data links andyqs rep-
resent energy links. The fixed data flows aret =
[t1, . . . , t7] = [2, 1, 0.5, 0.125, 2.125, 0.375, 0.5] units. We
consider two time slots. The energy arrival vector isE =
[(E11, E12), . . . , (E41, E42)] = [(15, 10), (8, 6), (5, 9), (1, 6)]
units and energy transfer efficiencies areα = [α1, α2, α3] =
[0.6, 0.5, 0.5].

The optimal energy transfer vector is found as
y = [(y11, y12), (y21, y22), (y31, y32)] = [(0, 3.75),
(3.93, 9.52), (2.35, 9.81)] units and power allocation vector
after energy transfer isp = [(p11, p12), . . . , (p71, p72)] =
[ (7.5, 7.5), (3.13, 3.13), (0.62, 1), (0.13, 0.22), (9.17, 11),
(0.45, 0.74), (0.48, 0.73)] units. Lemmas 6 and 7 can be
verified numerically:h′

l(pli) equalizes for different outgoing
links of the same node, for example, on linksl1 and l2
(Lemma 6); and where some energy is transferred,h′

l(pli) is
proportional to the energy transfer efficiency of that energy
transfer link, for example,h′

2(p22)/h
′
3(p32) = α1 (Lemma 7).

Lemma 8 can also be verified numerically: after the energy
transfers, the sum powers of the links are the optimal single-
link powers. For example, node 1 has harvested(15, 10)
energies and transferred(0, 3.75) of them. Equivalently
node 1 has harvested(15, 6.25) and the single-link optimal
powers for these harvests are(10.625, 10.625) which is
(p11 + p21, p12 + p22). It is interesting to note that node

4

5

2

1

3

6

l4

E4

E5

y1 y2

y3

y5

y4

l1

l2

l3

l5

E1

E2

E3

Fig. 3. Network topology 2.

4 has transferred more energy than it initially had, which
means that most of the transferred energy has been routed
from other nodes. This is due to the high data flow on link
l5 which leads to a higher energy demand at node 2.

B. Network Topology 2

We next consider the star topology in Fig. 3 where
five sources are communicating with one destination simi-
lar to a multiple access scenario. The data flows aret =
[0.5, 2, 0.5, 0.5, 2] units. We consider a single time slot. The
energy arrivals to all the nodes are the same, i.e.,En = 15
units, ∀n. The wireless energy transfer efficiencies areαq =
0.5, ∀q.

The optimal energy transfer vector is found asy =
[11.92, 0, 9.66, 16.29, 0] units and the power vector after en-
ergy transfer isp = [3.07, 20.96, 5.33, 3.53, 23.15] units. This
system is symmetric in terms of energy arrivals, channel noises
and energy transfer efficiencies, and furthermoret1 = t3 = t4
and t2 = t5. In this scenario, one might expectp1 = p3 = p4
andp2 = p5. However, in the optimal solutionp5 > p2. The
reason for this asymmetry is as follows. Due to the high data
loads on linksl2 andl5, there is no incentive for these nodes to
share their energy. Then, in the optimal solution,y2 = y5 = 0
and nodes2 and 5 act as energy sink nodes where energy
is collected and not sent out. We see that node 5 has two
nodes transferring energy to it while node 2 has only one
node transferring energy. Then,p5 > p2.

C. Network Topology 3

In this last numerical example, we demonstrate the joint
optimization of flow allocation and capacity assignment. We
consider the diamond network topology shown in Fig. 4 where
one source is communicating with one destination with two
relays in between. The only exogenous data arrival to the
network occurs at node 1 with the amountt = 2 units. The
energy arrivals are[E1, E2, E3] = [2, 0.5, 1.5]. Energy transfer
efficiencies are given asα1 = α2 = 0.8. In this topology, there
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t y2
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2
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4

E1

E2

Fig. 4. Network topology 3.

are six unknowns to be determined, i.e.,p1, p2, t1, t2, y1, y2.
By exhaustively searching over these parameters, we can
obtain the minimum achievable delay region as shown in
Fig. 5(top). In the diamond network, there are two paths of
data flow. One is the top path which includes linksl1 and l3
and the other is the bottom path which includes linksl2 and
l4. In Fig. 5(top), we plot the delay on bottom path versus
the delay on top path. Any delay which is to the interior
of this curve is achievable whereas other delays are not. All
points on this boundary are Pareto-optimal points. We observe
that energy cooperation enhances the achievable delay region.
In Fig. 5(bottom), we demonstrate the convergence of our
algorithm to a Pareto-optimal point. We start our algorithm
from two different initial points and observe that they converge
to a point which is on the boundary of the achievable delay
region, demonstrating Remark 1.

VII. C ONCLUSION

We considered the energy management and energy routing
problems for delay minimization in energy harvesting net-
works with energy cooperation. In this network, there are data
links where data flows and energy links where energy flows.
We determined the jointly optimal data and energy flows in the
network and the energy distribution over outgoing data links at
all nodes. We established necessary conditions for the solution,
and proposed an iterative algorithm that updates powers, data
routing and energy routing sequentially and converges to a
Pareto-optimal operating point. In the special case of fixeddata
flows and no energy cooperation, we showed that each link
should allocate more power to links with more noise and/or
more data flow. In the case with multiple energy harvests,
and no energy cooperation, we showed that the optimal sum
powers on the outgoing data links of each node at every
slot must be equal to the optimal single-link transmit powers.
Our numerical results indicate that when data flows are fixed,
energy is routed from nodes with lower data loads to nodes
with higher data loads; while in the more general problem,
where data flows are optimized also, allocation of data and
energy flows are performed in a balanced fashion.
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Fig. 5. (top) Achievable delay regions with and without energy cooperation.
(bottom) Convergence of our algorithm.

APPENDIX A
DERIVATION OF (32)

Starting from (31), we have

λ =
tl
2σl

[

1

2
log

(

1 +
pl
σl

)

− tl

]−2(

1 +
pl
σl

)−1

(76)

We letrl , 1
2 log

(

1 + pl

σl

)

− tl, then1+ pl

σl
= e2(rl+tl). With

these definitions, we rewrite (76):

λ =
tl
2σl

r−2
l e−2(rl+tl) (77)

Or equivalently,

rle
rl =

√

tle−2tl

2λσl

(78)

From here,rl = W (zl) where zl ,
√

tle
−2tl

2λσl
and W (·) is

the Lambert W function defined as the inverse function of
w → wew [37]. From the definition ofrl,

1

2
log

(

1 +
pl
σl

)

− tl = rl = W (zl) (79)

and

pl = σl

(

e2(W (zl)+tl) − 1
)

(80)

which is (32).
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APPENDIX B
DERIVATION OF (34)

From (32), we have

pl = σl

(

e2(W (zl)+tl) − 1
)

(81)

with zl =
√

tle
−2tl

2λσl
. Our aim is to find∂pl

∂σl
. To this end, define

vl , e2(W (zl)+tl) − 1. Now we have,

∂pl
∂σl

=
(

e2(W (zl)+tl) − 1
)

+ σl

∂vl
∂zl

∂zl
∂σl

(82)

The first partial derivative on the right hand side of (82) is,

∂vl
∂zl

= e2(W (zl)+tl)2
W (zl)

zl(1 +W (zl))
(83)

where we have used (33). The second partial derivative in (82)
is,

∂zl
∂σl

= −
1

2

√

tle−2tl

2λσl

1

σl

= −
1

2

zl
σl

(84)

Using (83) and (84) in (82), we have

∂pl
∂σl

= e2tl
e2W (zl)

1 +W (zl)
− 1 (85)

which is (34).

APPENDIX C
DERIVATION OF (35)

Starting from (32), we have

pl + σl = σle
2(W (zl)+tl) (86)

with zl =
√

tle
−2tl

2λσl
. Our aim is to find∂pl

∂tl
. Taking logarithm

of (86), and differentiating both sides with respect totl, we
have

1

2

1

σl + pl

∂pl
∂tl

=
∂W (zl)

∂zl

∂zl
∂tl

+ 1 (87)

∂W (zl)
∂zl

is evaluated from (33) and∂zl
∂tl

is

∂zl
∂tl

=
1

2

√

tle−2tl

2λσl

1

tl
−

√

tle−2tl

2λσl

= zl

(

1

2tl
− 1

)

(88)

Using (33) and (88) in (87), we obtain

∂pl
∂tl

= 2(σl + pl)

[

W (zl)

1 +W (zl)

(

1

2tl
− 1

)

+ 1

]

(89)

= σle
2(W (zl)+tl)

W (zl) + 2tl
tl(1 +W (zl))

(90)

which is (35).

APPENDIX D
PROOF OFLEMMA 8

Assume that sum powers at each slotsi ,
∑

l bli is given
for eachi. Consider the inner optimization in (58) for a fixed
slot, say sloti. For convenience, we drop the slot indexi, and

denotesi by s, andbli by bl. We define a functionx(s) as the
minimization overbl for fixed s as follows:

x(s) = min
bl

∑

l

tl
1
2 log

(

e2tl + bl
σl

)

− tl

s.t.
∑

l

bl = s, bl ≥ 0, ∀l (91)

which is the inner optimization in (58) for fixedi, and is also
equivalent to:

x(s) = min
bl

∑

l

tl
1
2 log

(

e2tl + bl
σl

)

− tl

s.t.
∑

l

bl ≤ s, bl ≥ 0, ∀l (92)

Now, we claim thatx(s) is non-increasing and convex in
s. Since increasings can only expand the feasible set,x(s) is
non-increasing ins. To prove the convexity: Lets1, s2 ∈ R+.
Let 0 ≤ λ ≤ 1 and λ̄ = 1 − λ. Let b1 be the solution of
the problem withs1, andb2 be the solution of the problem
with s2. Note thatb1 and b2 exist and are unique due to
convexity. The vectorλb1 + λ̄b2 is feasible for the problem
with λs1 + λ̄s2 since the constraints are linear. Then,

x(λs1 + λ̄s2) ≤
∑

l

tl
1
2 log

(

e2tl + λb1l+λ̄b2l
σl

)

− tl
(93)

≤
∑

l

λtl
1
2 log

(

e2tl + b1l
σl

)

− tl

+
λ̄tl

1
2 log

(

e2tl + b2l
σl

)

− tl
(94)

= λx(s1) + λ̄x(s2) (95)

where (93) follows because the minimum value of the problem
can be no larger than the objective value of any feasible point,
(94) follows from the convexity of 1

log(a+x) , and (95) follows
from the fact thatb1 solves the problem withs1 andb2 solves
the problem withs2. Now, the optimization problem in (58)
can be written as:

min
si

T
∑

i=1

x(si)

s.t.
k
∑

i=1

si ≤
k
∑

i=1

Gi, ∀i, ∀k (96)

The problem in (96) is in the same form as the problems in
[14, eqn. (2)], [15, eqns. (6)-(8)] and [17, eqn. (15)] and is
equivalent to the problem in [13, eqn. (3)], where a concave
non-decreasing function of powers is maximized subject to
energy harvesting constraints. In addition, [14], [15], [17] have
additional finite battery constraints which we do not have
here. References [13], [14] showed that the solution to this
problem is invariant to the specific form of the function as
long as it is convex (in minimization problems) or concave
(in maximization problems). We follow the proof in [17,
Appendix B] and conclude thats, the optimal solution of (96),
is given by the single-link optimal transmit powers.
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APPENDIX E
PROOF OFLEMMA 9

We show that the conditions in (70)-(72) are equivalent
to (62)-(64) therefore proving the necessity statement of the
lemma.
1) Writing (62) for noden and the data linksl ∈ Od(n)
connected to it

tl
2σl

[

1

2
log

(

1 +
pl
σl

)

− tl

]−2(

1 +
pl
σl

)−1

= λn − βl

≤ λn (97)

Now, we claim that whenpl > 0, βl = 0. Assumepl > 0
and βl > 0. From (68), this means thatpl = σl(e

2tl − 1)
and the delay at linkl becomestl0 which is unbounded for
tl > 0. Then, we must havetl = 0, but this meanspl = 0, as
otherwise power has been consumed on a link with zero flow.
This is a contradiction topl > 0. Thus,βl = 0 whenpl > 0
and (70) is satisfied with equality.
2) We choose any origin destination pair(n, d) and identify
a path starting from noden and ending at destination noded,
and in which all link powers and therefore flows are strictly
positive. We denote this path byFn,d. We write the conditions
(63) on links on this path and sum them to get

∑

l∈Fn,d

1

2
log

(

1 +
pl
σl

)[

1

2
log

(

1 +
pl
σl

)

− tl

]−2

=
∑

l∈Fn,d

νm(l) − νn(l) − 2βlσle
2tl + γl (98)

=
∑

l∈Fn,d

νm(l) − νn(l) (99)

= νd − νn (100)

= −νn (101)

where (99) follows fromβl = γl = 0 sincepl > 0, tl > 0,
(100) follows from telescoping the sum

∑

l∈Fn,d
νn(l)−νm(l),

and (101) follows from settingνd = 0 since it is a destination
node and there are no flow conservation constraints at that
node. We let̃νn = −νn and get (71).
3) For energy linkq between nodesn andm, k(q) = n and
z(q) = m in (64). From (64), we haveλn = αqλm + θq ≥
αqλm sinceθq ≥ 0. Then,

tl
2σl

[

1

2
log

(

1 +
pl
σl

)

− tl

]−2(

1 +
pl
σl

)−1

= λn (102)

≥ αqλm (103)

= αq

tk
2σk

[

1

2
log

(

1 +
pk
σk

)

− tk

]−2(

1 +
pk
σk

)−1

(104)

where (102) and (104) are from using part 1 of Lemma 9 for
noden andm, respectively. Equality is achieved whenyq > 0,
since in this caseθq = 0 from (67).
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