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Abstract—We  consider the delay minimization problem in energy cooperatiori[1]. We focus on the delay minimization
an energy harvesting communication network with energy problem for this network. The delay on each link depends on
cooperation. In this network, nodes harvest energy from naire the information carrying capacity of the link, and in pautar,

to sustain the power needed for data transmission, and may . ) . . .
transfer a portion of their harvested energies to neighborig it decreases monotonically with the capacity of the link for

nodes through energy cooperation. For fixed data and energy @ fixed data flow through it; see e.g./ [2, egn. (5.30)]. The
routing topologies, we determine the optimum data rates, capacity, in turn, is a function of the power allocated to the

transmit powers and energy transfers, subject to flow and |ink, and in particular, it is a monotonically increasingifion
energy conservation constraints, in order to minimize the of the power, for instance, through a Iogarithmic Shannon

network delay. We start with a simplified problem where . . .
data flows are fixed and optimize energy management at each type capacity-power relationship; see e.g., [3, eqns0f%hd

node for the case of a single energy harvest per node. This is(9.62)]. In addition, the delay on a link is a monotonically
tantamount to distributing each node’s available energy oer increasing function of the data flow through it, for a fixedcklin
its outgoing data links and energy transfers to neighboring capacity [2, eqn. (5.30)].

nodes. For this case, with no energy cooperation, we show |, thig naper, we consider the joint data routing and capacit

that each node should allocate more power to links with more . ¢ bl for thi i der fixed dat d
noise and/or more data flow. In addition, when there is energy assignment probiem for this setting under fixed data and en-

cooperation, our numerical results indicate that, energy $ €rgy routing topologies [2, Section 5.4.2]. Our work is teth
routed from nodes with lower data loads to nodes with higher to and builds upon classical and recent works on data routing

data loads. We then extend this setting to the case of multipl and capacity assignment in communication netwdrks [2}; [4]
energy harvests per node over time. In this case, we optimize [12], and recent works on energy harvesting communications

each node’s energy management over its outgoing data links h . .
and its energy transfers to neighboring nodes, over multipg [13]-{17] and energy cooperation![1]. [18]=[34] in wiretes

time slots. For this case, with no energy cooperation, we sho Networks. In our previous work [1],[[28], we studied the
that, for any given node, the sum of powers on the outgoing optimal energy management problem for several basic multi-

links over time is equal to the single-link optimal power ove yser network structures with energy harvesting transsitte
time. Finally, we consider the problem of joint flow control and and one-way wireless energy transfer. Inspired by jointingu

energy management for the entire network. We determine the d I fi bl in the classical K
necessary conditions for joint optimality of a power contrd, ana resource aflocation probiems in the classical works suc

energy transfer and routing policy. We provide an iterative as [4]-[7], [10], [12], in our current work, we study joint
algorithm that updates the data flows, energy flows and power routing of energy and data in a general multi-user scenario

distribution over outgoing data links sequentially. We shev  with data and energy transfer. We specialize in the objectiv
that this algorithm converges to a Pareto-optimal operatirg point. of minimizing the total delay in the system. To the best of
our knowledge, this problem has not been addressed in the
context of energy harvesting wireless networks with energy
cooperation. Among previous works, the approach that is
most related to ours is that in referencel[26], which studies
networkwide optimization of energy and information flows
. INTRODUCTION in communication networks with simultaneous energy and

We consider an energy harvesting communication netwdfiformation transfer. We also note the references [22]] [23
with energy cooperation as shown in Figl 1. Each nopf%r related joint data routing and energy tran§fe_r schemes
harvests energy from nature and all nodes may share a portfo€tworks with special energy transfer capabilities and n

of their harvested energies with neighboring nodes throu§Re'dY harvesting. Finally, we refer the reader|to [30/H34
or a related line of research about resource allocatioraseb
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energy link the outgoing data links at all nodes. We determine a set

control, energy transfer and data routing policy. We then
develop an iterative algorithm that updates the data flows,

é of necessary conditions for the joint optimality of a power

transmi@ .e energy flows and distribution of power over the outgoing data
| data link ; . . A
relay links at each node in a sequential manner. We show that this

o algorithm converges to a Pareto-optimal operating point.

energy

queue .
receiver

data queue - 5 5 Il. NETWORK FLOW AND ENERGY MODEL
i J

:[-_ L We use directed graphs to represent the network topology,

transmitter and data and energy flows through the network. All nodes

are energy harvesting, and are equipped with separateegsrel
11N energy transfer units. Information and energy transfennbés
relay relay are orthogonal to each other.
Fig. 1. System model. A. Network Data Topology

We represent the data topology of the network by a directed

the jointly optimal routing of data and energy in the networbraph_ In this model, a collection of nodes, labeled=
as well as distribution of power over the outgoing data Iinkp’ ..., N, can send and receive data across communication
at each node. links.In particular, a node can be either a source node, a

In the first part of the paper, in Sectignllll, we focus omjestination node or a relay node. A data communication link
the optimal energy management problem at the nodes wighrepresented as an ordered pairj) of distinct nodes. The
a single energy harvest at each node. First, we consider giesence of a link,j) means that the network is able to
case without energy cooperation. We show that this problesend data from the start nodeto the end nodg. We label
can be decomposed into individual problems, each one to the data links a$ = 1, ..., L. The network data topology can

solved for a single node. We show that more power shoul@ represented by aN x L matrix, A, in which every entry
be allocated to links with more noise and/or more data flow,,; is associated with node and link via

resembling channel inversion type of power confrol [35]xt\e o ,

we consider the case with energy cooperation, where nodes 1, if nis the start node of data link
transfer a portion of their own energies to neighboring sode ~ An = ¢ —1, if n is the end node of data link (1)
In this case, we have the joint problem of energy routing 0, otherwise

among the network nodes and energy allocation among the defi h f ing data links f d
outgoing data links at each node. For this problem, we dﬂvelgve efine0y(n) as the set of outgoing data links from node

an iterative algorithm that visits all energy links suffiily ' "fmdzd@) as t.he set of incoming data links to nodee
many times and decreases the network delay monotonicaﬂgﬁneN—d!mensmnaI vectos whosenth entrysn.d.enotes.the
We numerically observe that energy flows from nodes witfon-negative amount of exogenous data flow injected into the
lightly loaded data links to nodes with heavily loaded daﬁetwork at noder. On each data "F"" we lett, denote the
links. amount of flow and we call thé.-dimensional vectot the

In the second part of the paper, in Seciioh IV, we extend Oﬂ(r)w vector. At each node, the flow conservation implies:
setting to the case of multiple energy harvests at each node, Z t — Z =5, Vn 2
by allowing time-varying energy harvesting rates over éarg 1€04(n) 1€Ta(n)
time frames. We incorporate the time variation in the ener .
harvests and solve for the optimal energy management at e%;f(;ﬁ flow .conser\./atlon law over all the network can be com-

. . pactly written as:

node and energy routing among the nodes. First, we focus'on
the case without energy cooperation. We show that the sum At =s (3)
powers on the outgoing data links of a node over time slots is ' . . . ! .
equal to the single-link optimal transmit power of that nod¥’e definec; as the information carrying capacity of link
over time and can be found using [13]]15]. When the optimglhen’ we requirg; < ¢, Vi.
sum powers are known, we show that the problem reduces
to a problem with a single energy arrival and can be solvé& Network Energy Topology
using our method. Next, we focus on the case with energyAll nodes are equipped with energy harvesting units. In this
cooperation. We show that this problem can be mapped to #tion, we describe the energy model for the case of a single
original problem with no energy cooperation by construgtinenergy harvest per node. We present the extension to the case
an equivalent directed graph. of multiple energy harvests in SectibnlIV. Here, each nade

In the last part of the paper, in Sectifd V, we considdrarvests energy in the amount Bf,. We useN-dimensional
the problem of determining the jointly optimal data andectorE to denote the energy arrival vector for the system. In
energy flows in the network and the power distribution ovehe energy cooperation setting, there are energy linkdaimi



to data links. An energy link is represented as an ordered peie note that we use power and energy interchangeably in (8)
(i,4) of distinct nodes where the presence of an energy lid in the rest of the paper by assuming slot lengths of 1 unit.
means that it is possible to send energy from the start node

to the end node. Energy links are labeledg@s: 1,...,Q. || CcapaciTY ASSIGNMENTPROBLEM FORSINGLE TIME
Energy transfer efficiency on each energy link is denoteti wit SLoT

0 < oy < 1 which means that whef amount of energy is . ) . . .

transferred on linky from nodei to nodej, node; receives In this section, we consider the capacity assignment pnoble
a,6 amount of energy. We assume that the directionality af@f the case of a single energy harvest per node. We assume
the position of energy transfer links are fixed whereas tif@at the flow assignmentg;, on all links are fixed and are
amount of energy transferred on these links are unknown. T¥Fviceable by the harvested energies and energy tranbfers
network energy topology can be represented bynanx @ fotal delay in the network is:

matrix, B, in which every entryB,,, is associated with node D t 9
n and energy linkg via a ; o — 1t ©)

1, if n is the start node of energy link The capacity assignment problem, with the goal of miningjzin

Bny = { —ay, if nis the end node of energy link (4) the total delay in the network is:
0, otherwise t
min Z !

On each energy linlg, we lety, be the amount of energy €L-PLYq Ca—t
transferred. We call the.-dimensional vectoly the energy s.t. Fp+By <E
flow vector. We denote by, (n) andZ.(n), respectively, the t<e. VI (10)

sets of outgoing and incoming energy links at nade
By using the capacities; in (@), we write the problem in
terms of the link powerg; and energy transferg, only as:

C. Communication Model and Delay Assumptions ,
l

Following the M/M/1 queueing model in][2], we represent gliyn 1 o
the delay on data link as: o I glog (1 + (TL) —h
t s.t. Fp+By <E
D, = 5
: c—1 ®) P> oy (e2tz _ 1) , Vi (12)

where ¢; is the flow and¢; is the information carying \ye golve the problem iHT11) in the rest of this section. We
capacity (;)f link, with ¢ fS ¢, VI. This QElay eXpression Eirst identify some structural properties of the optimalsioin

s a good approximation for systems with PoISSOn arvajs o eyt sub-section. The following analysis relies oe th
at the entry p.0|nts, exponentla_l packet lengths anq mpderaétanding assumption that this problem has at least onebfeasi
to-heavy traffic loads[]2]. In view of energy scarcity in & olution. To see if this problem is feasible, one can replace

network, moderate-to-_heavy traffic load assumption ge_ilyerathe objective function of[{11) with a constant and solve a
holds. The packet arrival and packet length assumptions ai&gipjjity problem, which turns out to be a linear program.
made for convenience of analysis. Moreover, we assume that

the slot length is sufficiently large to enable convergermce t
stationary distributions. In particular, we assume thatstot A. Properties of the Optimal Solution
length is sufficiently longer than the average delay yieldgd  First we note that the objective function can be writ-

the M/M/1 approximation. Each node, on the transmitting ten in the formY", fi(g(z;)) where fi(z;) = —t— and
edge of data link, with channel noise;, enables a capacityg(xi) i zi—t;

. b = Llog (1 + z;). Sincef is convex and non-increasing
¢; by expanding powep;. These quantities are related by th . 2 ; i P
! ! @ndg is concave, the resulting composition function is convex
Shannon formuld[3, egn. (9.60)] as:

[36]. The constraint set is affine. Therefole,](11) is a canve

1 1 optimization problem. The Lagrangian function is:
a=glog(1l+=— (6) _
o
t
where alllogs in this paper are with respect to baseé\t each L= Z : : . + Z An Z pi
noden, the total power expanded on data and energy links are 1 3 log (1 + a—ﬁ) -t n [ 1€0a(n)
constrained by the available energy, i.e., 7
St Y yg<Eat Y age Yo (7) D DIRTES ) R
1€0.(n)  q€O.(n) 4€Z.(n) 1€0:(n) a€le(n) ]
2t
Using L-dimensional vectop = (pi1,...,pz) andF = A+ - Zﬁl [P —ou (e = 1)] = Zequ (12)
where (A1), = max{A,,;,0}, the energy availability con- ! 1
straints can be compactly written as: where)\,, andj; are Lagrange multipliers corresponding to the
energy constraints of the nodes [ (8) and the feasibility-co
Fp+By <E ®)  straintst; < ¢, respectively. The KKT optimality conditions



are: B. Solution for the Case of No Energy Transfer

W(p) + Ay — B =0, W (13 In the case of no energy transfer, we haye= 0, V¢, and
’ the problem becomes only in terms f as stated below:
Am(q) = @qMr(q) — 0 =0, Vg (14) P Y o
-1 min Z b
where hy(p) £ 1 (%log (1 + %) - tz) , n(l) is the be- 2 T~ Llog (1 i %) —y
ginning node of data link, m(q) andk(q) are the beginning
and end nodes of energy link respectively. The additional S:t. Z p< En, Vn
complementary slackness conditions are: 1€0a(n)
p=o (¥ —1), WV (25)
An Z p+ Z Yqg — Ep — Z aqyq | =0,Vn  This problem can be decomposed imfosub-problems as:
1eOy(n) g€ (n) q€Zc(n) . t
(15) w2 2 1 (L;ﬂ)—t
Bilp—or (¥ —1)] =0, W (16) n 1€04(n) 5108 - !
Oy =0, Vg (17) st > n<E, n
leOd(n)

We now identify some properties of the optimal power 2,
allocation in the following three lemmas. pzo(e™ —1), Vi (26)
Since the constraint set depends only on the powers of node
n, there is no interaction between the nodes. Every node will

r{'ndependently solve the following optimization problem:

Lemma 1 If the problem in[(IL) is feasible, thef) = 0, Vi.

Proof: If the problem in[[11) is feasible, its objective functio

must be bounded. Equality in the second set of constraints in min Z 2]
(1) for anyl implies that the objective function is unbounded. 2 leOtn) 1og (1 + ﬂ) -
Therefore, we must have strict inequality in those constsai . i
for all I, and from [I6), we conclude tha = 0,v.. B s.t. Z n < Ep
l€04(n)
Lemma 2 At every noden, the optimal power allocation P> oy (e2tl — 1) . Vle Oyn) (27)

amongst outgoing data links satisfies o _
The feasibility of [27) requiress,, > 3~ () o1(e*"" — 1)

hi(p1) = hy(Pm), VI, m € O4(n) (18) which we assume holds. Similar th {11), (27) is a convex
optimization problem with the KKT optimality conditions:

h;(pl) +A=0, VieO4n) (28)

Proof: From [13) and Lemm@al1l we have,

h;(pl) = —/\n(l), Vl (19) ) .
) ) with the complementary slackness condition:
For outgoing data link$ andm that belong to the same node

n,

h;(pl) =-Ap = h;n(pm) (20) 1€04(n)
which gives the desired resulll The Lagrange multipliers for the second set of constraimts i

(212) are not included, because similar to Lenitha 1, they will
Lemma 3 If some energy is transferred through energy linklways be satisfied with strict inequality. From1(28), we dav
g across nodegi, j), then,

=X = hi(p) (30)
hi(p1) = aghty (), V1€ Oali), Ym € Oulj) (21 4 o 2N
= — {— lo <1+—> —tl] <1+—> (31)
Proof: If some energy is transferred through energy link 201 |2 o1 gl
theny, > 0, and from [I¥).0, = 0. From [13), we have, After some algebraic manipulations shown in Appeindix A, we
have
)\i = Oéq/\j (22) (W () 12)
[ Z1 l
Writing (I3) for nodes andj, we have, ) = o (e 1) (32)
B(p) =—Ni, Ve Oui) (23) wherez = (/4" and () is the Lambert W function
B (pm) = =Aj,  Ym € O4(5) (24) defined as the inverse of the function— we" [37]. Next, we

prove some monotonicity properties for the optimal solutio
and the result follows from combining_(22]. {23) afdl(2M. as a function of the qualities of the channels and the amounts
In the following two sub-sections, we separately solve thef data flows through the channels.
problem for the cases of no energy transfer and with energy
transfer. Lemma 4 For fixedt;, p; is monotone increasing iay.



Proof: By differentiating [32) and using the following prop-Algorithm 1 Algorithm to solve capacity assignment problem

erty [37] for single time slot
dW(z) W (x) - Initialize > No energy transfer
dr  z(1+W(z)) 1 for i =1:Ndo .
it can be verified as shown in AppendiX B that 2 endeI(r)]:j Ai such that) e, ;) pu(Ai) = Ei, pu s (32)
2W (2
% — 2l 67“) —1>0 (34) Main Algorithm
(90'[ 1+ W(Zl) -
) _ . 4: for g =1:@ do > All energy links

Wzrlere the inequality .follows from=* > 1,Vt; > 0, and & Set (i, j) « (origin,destination) of energy link
itz > 1, ¥z >0, proving the lemma M 6: if \; < ag)\; then > Perform energy transfer

This lemma shows that, for fixed data flows, more power Find A7 such that
should be allocated to channels with more noise power,amil %4 Zle@d(i) pi(agh}) + Zle(’)d(j) n(A]) = agEi + E;

to channel inversion power contrél [35]. Set Tap = E; — > _jc0,(i) Pi(agh;) > Update tap level
> Update battery levels
Lemma 5 For fixedo;, p; is monotone increasing ity. SetE; =3 ico, ) Pilag))), Ej = Zleodij) pi(AT)
7: else if \; > agA; then > Recall some energy
Proof: By differentiating [32), it can be verified as shown in 8: while Tap, > 0, A; > ag);, E; > 0 do
Appendix[@ that > Recalle energy
SetE, =FE;,+¢,E;, =FE;, —age, Tap, = Tap, — ¢
2(W (z1)+t;) ) ) J a~ q q
I _ a(W(z) +2t)e oo (35) Find \;, \; such that
(%1 tl(l “I‘W(Zl)) Ei = Zle(’)d(i)_pl()\i)’Ej = Zle@d(j) pl()\J)
proving the lemmal 9: end while
. . . . 10: end if
This lemma shows that, for fixed channel qualities (i.e’,
11: end for

fixed noise powers), more power should be allocated to links
with more data flow.

Finally, we solve [(2I7) as follows: From the total energy _ i ) _
constraint, we havey, p/(\*) = E,. We perform a one ofte_zn. _Smce we do not !<now which energy links will be
dimensional search on to find \* that satisfiess™, pi(\*) = active in the optlme}l solution, we may n_eed to call ba<_:k any
E,., wherep;(\*) is given in [32). Once\* is obtained, the transferred energy in the previous iterations. To perfdnrg,t
optimal power allocations are found frof{32). we keep track of transferred energy over each energy link by

means of meters as inl[1]. Initially, we start from the no egyer
C. Solution for the Case with Energy Transfer _transfer sol_ution and_ compule, for every node: as described

Now, we consider the case with energy transfer, g 0 in the previous section. At every iteration, we open only one
for someq. Assume that some energy, > 0 is transferred ﬁ:lf r;yyélgy ?m?;tabgrgzii;il% V:V?t%r:e;r?(; ;hier:géljl)oxspglcrgg gh
from nodei to node; on energy linkg. Writing (32) for the i, the battery levels of nodesand; at the current iteration.
outgoing data links of nodeand nodej, we have, In particular, if\; < ag);, we search fon’ that satisfies(40).

n(\) = o (eQ(W(z“)thl) _ 1) . Ve 04(i) (36) If no solution t_o [[40) can be found, this meahs > ag\;,
and then previously transferred energy must be called back
p(Nj) =0 (eQ(W(zjl)+tl) - 1) . VleOu)  (37) to the extent possible according to the meter readings. The
algorithmic description is given below as Algorithm 1. From
where z;; = tLQeAf:l and z;, = téifztl_ From [22), we _the st_rict convexity of the que_ctive fun_ction, we note tbath
have; = agh;. Th(la energy causality] clonstraints on nade !teratlon de_creases the objectlye function as des_crlbndbsly
and nodej are: in [1, Section V.A]. Our algorithm converges since bounded
real monotone sequences always converge, and the limit poin

Z pi(A]) = Ei — yq (38) is a local minimum because, the iterations can only stop when
1€04 (i) Ai = ag); for the energy links wherg, > 0 which are the
Z pi(X)) = Ej + agy, (39) KKT optima_lity conditions_ ffom [(2R). This local minimum is
1€0a0) ' also the unique global minimum due to the convexity of the
problem.

Equations[(2R),[(38) and (B9) imply

Qg Z pi(ag)y) + Z pi(\j) = oo + E;  (40) IV. CAPACITY ASSIGNMENTPROBLEM FORMULTIPLE

1€0a(i) 1€04(5) TIME SLOTS
which can be solved by a one-dimensional searcthjpn In this section, we consider the capacity assignment pnoble
We solve[(I1) by iteratively allowing energy to flow througHor the scenario where the energy arrival rates to the noaes ¢
a single link at a time provided all links are visited infilyte change over time. We assume that the time is slotted and there



are a total ofl’ equal-length slots. In slots=1,...,T, each are:

noden harvests energy with amount,;, .2, .. ., E,,7, and T

the arriving energies can be saved in a battery for use in ) (pi;) +Z/\n(l)k =0, VI, Vi (45)
future time slots. The subscriptdenotes the time slot, and k—i

the quantities;;, ¢;;, pii, 01 andy,,; denote the flow, capacity, T T

power, noise power, and energy transfer in glofVe assume Z Am(q)k — Q4 Z Ar(gk — 0qi =0, Vg, Vi (46)
that the flow allocation and channel noises do not change k=i k=i

over time, i.e.t; = t; and oy = o0,Vi, V. We further wheren() is the beginning node of data link m(q ) and
is sufficiently larger than the average delay resultlng fitbim

k
M/M/1 approximation. Then, the average delay on lihkt

time sloti is given as,

i=1 \1€04(n) g€0c(n)

4]

41
cli — 1t 4D - Z aq%ﬁ)] =0, Vn,Vk (47)
where ¢;; = %1og§)1+ Ei). As the energy that has not q€Ze(n) , Vo, Vi 48
arrived yet cannot be used for data transmission or energy aitei =0, V0, VI (49)

transfer, the power policies of the nodes are constrained byNow, we extend Lemmds 2 afd 3 to the case of multiple
causality of energy in time. These constraints are writt&n aenergy arrivals over time.

Dy; =

k
Z Z P + Z Yai Lemma 6 At every noden, the optimal power allocation
= leOd(n) 4€0u(n) amongst outgoing data links satisfies
Ry(pii) = hly(pmi)s VI, m € Oq(n), Vi 49
<Z (E"ﬁ 2. aquz> ¥n, Yk (42) ((pi) = P (Pni) a(n) (49)
q€Z(n)

Proof: From [45), we have,

The capacity assignment problem with fixed link flows to

minimize the total delay over all links and all time slots can R (pis) = Z)\ Ok (50)
be formulated as:

) Z Z For outgoing data link$ andm that belong to the same node
min
110g(1+m1)_tl n,

k .
S.t. Z < Z Pli + Z yqz> plz = Z)\nk = h pmz) Vi (51)

1=1 n n .
leod( ) 9€0e(n) from which the result foIIowsl

PiiyYqi

< Z (Em + Z aquz>, Vn, Vk
q€Z.(n) Lemma 7 If some energy is transferred through energy link
i > o.l(82tz 1), VI,Vi (43) ¢ across nodega, b) at time sloti,

The problem in[[@B) is convex and the Lagrangian function 71(Pii) = aqhs, (pmi), V1 € Oala), ¥m € Oq(b)  (52)

can be written as:
" Proof: If some energy is transferred through energy linkt

- Zzhl o) + ZZ)‘W i Z o time sloti, theny,; > 0, and from [48)0,; = 0. From [46),

. we have,
n k=1 i=1 \l€O4(n)

T T
+ Z Yqi — Eni — Z 0gYqi ; Aak = Qg ; Abk (53)

q€0(n) q€Zc(n)

T
— 04iYqi (44)
zq:; e 1(pui) = Z)\ak——aqz)\bk

Then, we have,

A

where hi(p;) = {1 log (1 + p“‘) —1;| . The Lagrange = aqh (p,m-), = Od( ), Vm € Oq4(b)  (54)
multipliers for the second set of constraints forl(43) aré no
included here because similar to before, they will always l?
satisfied with strict inequality. The KKT optimality conidihs

where the first equality follows from writing_(#5) for node
fe second equality follows froni_(b3), and the third eqyalit
follows from writing (43) for node). W



In the following two sub-sections, we separately solve thehich can be found by the geometric method’in [13] or by the
problem for the cases of no energy transfer and with enerdiyectional water-filling method i .[15]. Once the sum posver

transfer. are obtained, individual link powers are found by solvirg;)
which is defined in[(92) in AppendIXID. The problem:is; )
A. Solution for the Case of No Energy Transfer includes a single energy harvest and is in the form[of (27),

therefore, we use the method proposed in Se€fionllll-B to find

In this case, we havg,; = 0, Vi, Vq. The problem becomesthe individual link powers.

only in terms ofp;; as follows:

min Z Z B. Solution for the Case with Energy Transfer
Pui 10g (1 4 Ph) -1 From [453) and some algebraic manipulations we have
pii = 0y (QQ(W(ZM)JFtl) _ 1) (59)

s.t. Z > plZ<ZEm, Vn, Vk

i=11€0a(n) wherez; = /s=H——— and W(-) is the Lambert W

2t 2327 Akl
pi > oi(e™ —1), VI, Vi (55) function. The Lagrangian structure of this problem is more
complicated compared to the previous case since the power

allocation at time; depends or{)\n(l)k};{:i. Therefore, here,

—21;

The problem can be decomposed infosub-problems as:

. we offer an alternative solution.
o ZZ Z o In the scenario described above, the nodes have the capa-
=1 1€0a( 3108 (1 + ) —h bility to save their energies to use in future slots. We nbé t
saving energy for use in future slots is equivalent to tramsf
S.t. Z Z pii < ZEm, Vn, Vk ring energy to future slots with energy transfer efficiendy o
i=11€04(n) « = 1. In light of this observation, an equivalent representatio
pu > oy(e* —1), VI, Vi (56) of (@3) can be obtained by modifying the network graph where

each time slot is treated as a new node with a single energy
fival and saving energy for future slots is represented by
ergy transfer links of efficiency 1. The modification to the
network graph is performed in the following way. First, we

Since the constraint set depends only on the powers of n
n, there is no interaction between the nodes. Every node V\g
independently solve the following optimization problem:

. T 4 makeT replicas of the network graph including all the nodes
min Z Z and the existing data and energy transfer links. Each eplic
bri i=1 10, (n) 3108 (1 + p“) t will denote the network at one time slot. We let each replica
node receive one energy harvest which amounts to the energy
s.t. Z Z pi < ZE’”’ harvested by that node in that time slot. We keep the existing
i=11€04(n) energy and data links but we add new energy links between
pi > o€ — 1), VIe Oyn), Vi (57) dn‘ferent_ replicas _of_ the same node. Fpr every nadeve add
energy links of efficiency between replicas andk+1, where
Solving [5T) entails finding the optimal energy managemept= 1, ..., 7—1. Relabeling the nodes, we obtain a new graph
policy for each linkl, over all time slotsi. We defineb;; = where all nodes have one energy harvest. Essentially, we hav
pii —oi(e*" —1) andGp; = Epni —|Oq4(n)|oi(e* —1). Then, reduced this problem to the case in Secfionll-C and we use
(B7) becomes: the solution provided in that section.
T We finally remark that our framework can easily be ex-
min Z Z tended to address variations in channel fading coefficieamds
bui i=1 1€04(n) %1og (thl + %) —1 energy transfer efficiencies by allowing the noise powsars
and energy transfer efficiencies to vary from slot to slot,
s.t. Z Z by < ZG”“ Vi i.e., defininge;; = 3 log (1 + g—i) and replacingy; with «y;.
1=11€04(n)
b >0, VieOun), Vi (58) V. JOINT CAPACITY AND FLOW OPTIMIZATION

. _ In this section, we consider the joint optimization of capac
Eolrdfeaﬁlblllty of [58) we need,; > 0 which V‘;e r?ssume P/ and flow assignments, in contrast to capacity assignment
OI N howh we stat% anAmpor;agDproperty of the Opt'm%nly with fixed flows, as considered in the previous sections.
policy which is proved in Appendi We focus on the case with a single energy harvest per node

. ) as in Sectioi1ll. The delay minimization problem with joint
Lemma 8 The optimal total power allocated to outgoing dat%apacny and flow allocation can be formulated as:

links at each slof, Zzeo (n) bi;, is the same as the single-link
optimal transmit power With energy arrivals,,;. min Z 2

. . PLYat 3 log (1 + ﬂ) — 1
From LemmdB we have that the sum powers in outgoing 2 a1
data links are given by the single-link optimal transmit gosv S.t. Fp+By <E




p > oi(e —1), Vi Oqyq = it1 =0, Vg, VI (67)
At =s (60) 3 [pl — Ul(€2tl — 1)] =0, Vi (68)
where we optimize not only the powessand energy transfers Ans 5150, 2 0, VI, Vg, ¥ (69)

Yq, but also the data flows. In (80), the first set of constraints\yg note that,, < 0 is allowed since the Lagrange multiplier

are the energy constraints, the second set of constraiets aicorresponds to an equality constraint. Lendtha 9, proved in
the capacity constraints on individual links, and the lastad  Appendix(E, states the necessary optimality conditions.
constraints are the flow conservation constraints at alesod

We assume that the exogenous arrivals serviceable by | emma 9 For a feasible set of flow variablegt,}2 |

the energy harvests and energy transfers. This means thatsmission power allocation§p;}- , and energy transfers
prob_lem @)_has a bounded ;olu_tlon and furthe_rmore_ no dz{tﬁ}qcz:l to be the solution to the problem {60, the following
link is operating at the capacity, i.e., the capacity caists ., 4itions are necessary.

are never satisfied with equality unless = p; = 0. We 1) ror every nodes, there exists a constart, > 0 such that
solve the problem in[(80) in the remainder of this section.

—2 -1
i i jecti |1
Here, the constraint set is convex, however, the objective % [_ o <1+ g) —tz} <1+ g) <,
o1

function is not jointly convex irp; andt; [2], therefore, [(GD) 20, |2 ol

is not a convex optimization problem. We study the necessary VI € Oy(n) (70)
optimality conditions by writing the Lagrangian functios a ) o

follows: and with equality ifp; > 0.

2) For every noden, there exists a constamt, > 0 such that

t _

Yt Y] Y L N[ () T

1 §Og(1+o_l)_tl n 1€O4(n) Z Eog +;l Eog +;l — 1 = Up,
lE]‘—n,d

© Y w B X o] - X =10 )
9€0(n) 9€Ze(n) ! where F,, ; is a data path that starts from node and ends

B 2, B B at destination nodel and for whichp; > 0,VI € F, 4. The
aie D]+ Zy’ll Z b Z b S"] condition in [71) is valid for all such data paths that start

1€0aln)  1€Taln) from noden and end at any destination node.
= gy — > it (61) 3) For all energy transfer linksy, and VI € Ogy(n),Vk €
q l Og4(m) such thatp; > 0 and p;, > 0 wheren andm are the
The KKT optimality conditions arg: origin and destination nodes of energy transfer link
—t; |1 yoi -2 ”m -1 2] |:11 (1+pl) t:|_2 (1+pl)_l>
—|Zlog(1+ =) —t 1+ = A 95 |28 — ) - Z
20, [2 0g ( + Ul) l:| ( + Ul) + n(l) 207 |2 o] (;'l )
_ 3= Tl - _
Pr=0, W (62) aget [ Zlog (1+22) 4| (1422 (72)
—2 2Uk 2 Ok Ok
11 1+ ﬂ 11 1+ ﬂ —t . _— . Lo
598 o) |28 o l where [72) is satisfied with equality 4, > 0.

2t __
V() = Vi) =+ 20107 =0, VI (63) From Lemmal[®, the structure of the optimal solution is
Ak(q) — QA=) — 0 =0, Vg (64) as follows: We defineh;(p;,t;) as the objective function of

—1
wheren(l) andm(l) are the source and destination nodes #he problem in[(80)/(p;, ;) £ t; |5 log (1 + o) - tl}
data linkl, k(g) andz(q) are the source and destination noded/e see from[(70) that nodes should allocate more power on
of energy linkg, respectively. The complementary slacknesfks where the quantit g—zll is large and less power on

conditions are: links where this quantity is small. Similarly, frofi({71), wee
that less flow should be allocated on paths where the quantity
Ml DS m+ DY we—E.— ) agg | =0,¥n X tislarge and more flow on paths where this quantity

ler
1e0y4(n Oe(n Ze(n T In,d 3 .
£Oatn) 4e0:m) acteln) (65) IS small. Finally, [7R) tells us the necessary conditions fo

energy transfer. We describe our solution to the problem in

60) in the next section.
| S e S s | =0 v 66) €0

1€04(n) I€Z4(n)
A. Algorithmic Solution for the Joint Capacity and Flow

) - ) ) ) Optimization Problem
lwith the objective function of[{G0), there is an uncertainthen t; =

pi = 0. Nonetheless, we argue as i [2, page 441] that the objefttivetion In this section, we propose an iterative algorithm. Theee ar

of (60) is differentiable over the set of ai} with J log (1 + %) >t and  three steps to each iteration as summarized below. We start
= 0, o0 = 0 and Dy = 0 are necessary conditions for optimality.  from a feasible pom(to, PO)-



1) Energy Management SteM/e fix a Stepsizip > 0. Algorlthm 2 Algorlthm tO SOIV.e jOint Capacity and flow
Each node compute%% for their own outgoing data assignment problem for single time slot

links wherep; > 0. Every node performs the following Initialize
iteration: 1: Generate initial point
P4 &p, i I =argmaxico,m) g_Zf Energy management step
it = pf =&, if l=argmineo,m 2—1’;; 2: forn=1:N do > All nodes
ok, otherwise Find arg max;co,(n) g_f,f' perform [Z3) as long ag; >
(73) oi(e*" — 1) is still satisfied

_ ) 3 end for
wherek denotes the iteration number, and the derivatives

are computed at the current iteration, i.e., fef, p*).
2) Data Routing StepWe fix a stepsiz&; > 0. Each node 4: for n=1: N do > All Nodes

Data routing step

n computes > %—ZL for the data paths originating  Find path F; that maximizes andj; that minimizes
l€Fn,a Ohy
from source noden and ending at any destination. le; | du whered € Oa(n)
* H oh w
Assume the pathF} maX|m|zesl€; ) 20 and the o for 1€ Fx dotht =tk —¢,
L . 6: end for
ath G* minimizes 9 for eachn. Every node
path &, le% Lo " y 7: for 1 € G: dot;™ = tf+¢ as long ag; > oy(e? —
performs the following iteration: 1) is still satisfied
X , . 8: end for
th =&, ifler, 9: end for
=Stk g, ifleg: (74) :
i otherwinse Energy routing step
I

_ ) ) ~10: for g=1:Q do > All energy links
3) Energy Routing Steprthis step is the same as described;. Set (i, j) « (origin,destination) of energy link
in Section[1[-=C. Specifically, every node goes through . Set) — ‘% and s — 2k
its energy transfer links and makes the comparison’ ! 31’1‘J I Op;

J
. . : Use steps : 10 of Algorithm 1
g—m > ‘g’;ﬂj‘ where m is the receiving node of " o ¢ - P g
; oh Ohy, .
energy linkq. If oo | < aq gzl then some energy ;. Repeat until convergence
; ; oh Ohum
is transferred through link;. If ’6_1’; > g |52
then some energy must be called back, as explained in
Section(1I-G. _ _ - t;*' =t} and from[7#), this is only possible wher}_ g
4) Go back to step 1, or terminate if sufficiently many o ) LEFn a .
iterations are performed. Is constant over all paths, which is equivalent[fal (71). gsin

We describe our Algorithm in tabular form as Algorithm via S'm'T"’;‘]T argumenti]wu(:e* Cofdlide tftTa]E. eneLrgy trngs;ers galisf
below. We note that our algorithm reduces to the oné in [1%2)' is means that”, p*, y*) satisfies Lemm@

in thg case of no energy harvesting or energy trangfer. Next'Now, we remark that even though we cannot claim global
we discuss the convergence and optimality properties of Oéfitimality of the solution, we have the followingareto-

algorithm. optimality condition.

B. Convergence and Optimality Properties of the Propos

Algorithm (?gemark 1 Assume thatt*,p*,y*) satisfies the conditions

stated in Lemm&l9, then the vector of link delays is Pareto-

Every iteration of the algorithm decreases the objecti¢ptimal, i.e., there does not exist another pair of feasible
function and the iterations are bounded. Using the fact tfﬁ“ocations(f-”f)7y) such that

real monotone bounded sequences converge, we conclude that .

the algorithm converges. Assurfi, p*, y*) is a convergence ha(prt) < la(py,t7), Vi (75)
point of the algorithm. Next, we show that this point satsfie i, 4t |east one inequality being strict.

the KKT optimality conditions stated in Lemnia 9.

_ This remark means that at the Pareto-optimal point, the

Naverage delay cannot be strictly reduced on one link witktout
being increased on another. The proof of this remark follows
similar lines as the proof in [12, Thm. 4] and is omitted here

Proof: When the algorithm converges, we must h@{?e“l = for brevity. We note that, in particular, any local optimalint

pF. From [Z3), this is only possible whe%fl—ll is constant for is Pareto-optimal due to the fact that local optimal points

I € Oq4(n) which is equivalent td{20). Similarly, we must havesatisfy KKT conditions in LemmE]9.

Lemma 10 (t*,p*,y*) satisfies the conditions stated
Lemmd®.
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VI. NUMERICAL RESULTS 4 has transferred more energy than it initially had, which
means that most of the transferred energy has been routed

In this section, we give simple numerical results to IIIUSf'rom other nodes. This is due to the high data flow on link

trate the resulting optimal policies. We study three nekwor, . :
topologies shown in Figgl Z] 3 amd 4. For all examples, we which leads to a higher energy demand at node 2.

assumeo; = 0.1 units VI. The slot length is of 1 unit for

convenience, so that we use power and energy; rate and d&tdNetwork Topology 2

interchangeably. We next consider the star topology in Fifl 3 where
five sources are communicating with one destination simi-
lar to a multiple access scenario. The data flows tare

A. Network Topology 1 ; . . .
[0.5,2,0.5,0.5,2] units. We consider a single time slot. The

We first consider the network topology in Fifil 2 withyoroy arrivals to all the nodes are the same, Fa.— 15

one source, one destlna.tlon and three relays in betweﬁﬂits,Vn. The wireless energy transfer efficiencies ae=
The data and energy links are shown and labeled &S, Vq

in Fig. [@, wherel;s represent data links ang,s rep- The optimal energy transfer vector is found gs —

resent energy links. The fixed data flows gte —  [11.92,0,9.66,16.29, 0] units and the power vector after en-
[t1,... 7] = [2,1,0.5,0.125,2.125,0.375,0.5] units. We ooy yransfer igp = [3.07, 20.96, 5.33, 3.53, 23.15] units. This
consider two time slots. The energy arrival vectorBis= " o 1o js symmetric in terms of energy arrivals, channelemi
[(Ell’ Era),..., (Bai, Eq)] - [(15’,10)’ (8,6):(5:9): (1, 6)]  ang energy transfer efficiencies, and furthermgre: t5 = t,
units and energy transfer efficiencies ate= [a1, as, a3] = andt, — £5. In this scenario, one might expegt — ps — pa
[0'6’0'5’0'5]_' ) and p», = ps. However, in the optimal solutiop; > p,. The
The optimal energy transfer vector is found aSyaq0n for this asymmetry is as follows. Due to the high data
y = [yv2) (ger,922), (ws1,932)] = [(0.3.75), 15545 on linkd,, andls, there is no incentive for these nodes to
(3.93,9.52), (2.35,9.81)]_ units and power allocation vectorgp . a their energy. Then, in the optimal solutign= s — 0
after energy transfer ip = [(pi1,p12),.... (pr1,072)] = and nodes and 5 act as energy sink nodes where energy
[(7.5,7.5), (3.13,3.13), (0'62_’1)’ (0.13,0.22), (9.17, 11), is collected and not sent out. We see that node 5 has two
(0.45,0.74), (0.48,0.73)] units. Lemmas[16 andl7 can be,,qas transferring energy to it while node 2 has only one
verified numerically:h;(pi;) equalizes for different outgoing o 4e transferring energy. Theps > po.
links of the same node, for example, on links and [,

(Lemma[6); and where some energy is transfertgth;;) is

proportional to the energy transfer efficiency of that egerd=- Network Topology 3

transfer link, for exampleh} (pa2) /s (ps2) = ax (Lemma). In this last numerical example, we demonstrate the joint
Lemmal[8 can also be verified numerically: after the energyptimization of flow allocation and capacity assignment. We
transfers, the sum powers of the links are the optimal singleonsider the diamond network topology shown in Elg. 4 where
link powers. For example, node 1 has harves{éd, 10) one source is communicating with one destination with two
energies and transferred0,3.75) of them. Equivalently relays in between. The only exogenous data arrival to the
node 1 has harvested5, 6.25) and the single-link optimal network occurs at node 1 with the amount 2 units. The
powers for these harvests arg0.625,10.625) which is energy arrivals aréf,, E», E3] = [2,0.5,1.5]. Energy transfer
(p11 + po1,p12 + p22). It is interesting to note that nodeefficiencies are given ag; = as = 0.8. In this topology, there
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are six unknowns to be determined, i.gy, p2,t1,t2, Y1, Yo

By exhaustively searching over these parameters, we can
obtain the minimum achievable delay region as shown in
Fig. [H(top). In the diamond network, there are two paths of
data flow. One is the top path which includes linksand s

and the other is the bottom path which includes linkand

l4. In Fig. [H(top), we plot the delay on bottom path versus
the delay on top path. Any delay which is to the interior T a5 B % % A
of this curve is achievable whereas other delays are not. All total delay on the top path

points on this bounda.'ry are Pareto-optlmallpomts. we abseli:ig. 5. (top) Achievable delay regions with and without gyecooperation.
that energy cooperation enhances the achievable delaynteg}yotiom) Convergence of our algorithm.

In Fig. [H(bottom), we demonstrate the convergence of our

algorithm to a Pareto-optimal point. We start our algorithm

from two different initial points and observe that they cerge

to a point which is on the boundary of the achievable delay APPENDIX A

region, demonstrating Remdrk 1. DERIVATION OF (32)

181
161
141

12r

‘ *initial point 2|
L ]

total delay on the bottom path

10+

Starting from [(31l), we have

VIl. CONCLUSION 1 -2 -1
[— log (1 n ﬂ) - tl} (1 n ﬂ) (76)
2 gy a]

A= N
We considered the energy management and energy routing 201

problem_s for delay minimi_zation in_ energy harvesting ne{p,e letr; £ %log 1+42) —¢), thenl+ 2 — e2(ri+t) \With

works with energy cooperation. In thl_s network, there ariadathese definitions, we réwritﬂl?G): !

links where data flows and energy links where energy flows.

We determined the jointly optimal data and energy flows in the A\ = irl—%*?(ﬁﬂz) (77)

network and the energy distribution over outgoing datadiak 201

all nodes. We established necessary conditions for théisoju Or equivalently,

and proposed an iterative algorithm that updates poweta, da

routing and energy routing sequentially and converges to a et = [tie—2h (78)

Pareto-optimal operating point. In the special case of foatd 2X0

flows and no energy cooperation, we showed that each link —

should allocate more power to links with more noise and/&rom here,; = W (z) wherez £ (/%= and W(-) is

more data flow. In the case with multiple energy harvestfie Lambert W function defined as the inverse function of

and no energy cooperation, we showed that the optimal sum— we® [37]. From the definition of;,

powers on the outgoing data links of each node at every 1 m

slot must be equal to the optimal single-link transmit pawver 5 log (1 + ;l) —ty=r =W(z) (79)

Our numerical results indicate that when data flows are fixed,

energy is routed from nodes with lower data loads to nod@sd

with higher data loads; vv_hil_e in the more ge_neral problem, b = oy (eQ(W(zl)+tl) _ 1) (80)

where data flows are optimized also, allocation of data and

energy flows are performed in a balanced fashion. which is [32).




APPENDIX B
DERIVATION OF (34)

From [32), we have

=01 (62(W(zl)+tl) - 1) (81)

tie 2t

with zZ] = INo
u £ e2W(ED+) _ 1 Now we have,

Pt _ (2wt _ O 0
80’[ o (6 1) * ai 8zl 80’[ (82)
The first partial derivative on the right hand side [of](82) is,
vy 2(W (z1)+t1) W ()
— = 2T 83
oz ¢ 21+ W(z)) (83)

. Our aim is to findg—g. To this end, define

12
denotes; by s, andb;; by b;. We define a function:(s) as the
minimization overb,; for fixed s as follows:

. 2
x(s) = min
b 1 %log (€2tl + g—ll) -1

Zbl:S, blZO, Vl
l

s.t. (92)

which is the inner optimization in (58) for fixed and is also
equivalent to:

. 12
x(s) = min
b . 4 log (eztl + g—ll) —1
Z bl S S, bl Z O, Vl
l

s.t. (92)

where we have usefl (83). The second partial derivatiie i (82 Now, we claim thatz(s) is non-increasing and convex in

IS,

s. Since increasing can only expand the feasible sets) is

e 1 [oe—2t 1 15 non-increasing irs. To prove the convexity: Let;, s> € RT.
8—l =3 12)\ — = —§—l (84) Let0O < A <1andX =1-— A Let by be the solution of
ot a9 ai the problem withs;, andb, be the solution of the problem
Using [83) and[(84) in[(82), we have with s;. Note thatb; and b, exist and are unique due to
9 2W (21) convexity. The vectonb; + Abs is feasible for the problem
T | (85) with As; + As» since the constraints are linear. Then,
oy 14+ W(z) ) )
which is . x(As1 + Asg) < = (93)
9 2z: 3 log (62“ + L”;M’”) -1
At
APPENDIXC < - ;
DERIVATION OF (35) ~ Llog (ezu + #) _y
Starting from [(3R), we have + Al (94)
1 2t 4 bar)
pt+o = o-leQ(W(Zl)JFtl) (86) 3 10g (67 U4 0211) t;
— = A\x(s1) + Az(s2) (95)
with z; = “23 L. Our aim is to find%. Taking logarithm
oy} 1

where [93B) follows because the minimum value of the problem
can be no larger than the objective value of any feasibletpoin
(©4) follows from the convexity om, and [95) follows
from the fact thab; solves the prob%em with; andby solves
the problem withs,. Now, the optimization problem i _(58)

can be written as:

of ([88), and differentiating both sides with respectttpwe

have
1 1 apl - aW(Zl) azl +1

200+p Ot Ou Oh
oW (z1) i
%Ll) is evaluated from[{33) anét—f IS

(87)

0z 1 [te2n1 he? (1) eg min Y a(si)
a2\ 2o w2 _Zl(2_tl_> (88) oo
Using [33) and[(88) in[(87), we obtain st Z s; < Z G:, Vi, Vk (96)
op; Wiz 1 i=1 i=1
3_]; =2(o1 + 1) [%W()zl) (2_tl - 1) + 1] (89 The problem in[(36) is in the same form as the problems in
W (z) + 24, [14, eqn. (2)], [15, eqns. (6)-(8)] and [17, eqn. (15)] and is
= Uzez(W(“)””W (90) equivalent to the problem in 13, eqn. (3)], where a concave
(1 +Wla) non-decreasing function of powers is maximized subject to
which is [35). energy harvesting constraints. In addition, [14], [15F][have
additional finite battery constraints which we do not have
APPENDIXD here. References$ [113],_[14] showed that the solution to this

problem is invariant to the specific form of the function as
long as it is convex (in minimization problems) or concave

Assume that sum powers at each sipt: >, bii is given (in maximization problems). We follow the proof in_[17,
for eachi. Consider the inner optimization il (58) for a fixedAppendix B] and conclude that the optimal solution of(36),
slot, say slot. For convenience, we drop the slot indgxand is given by the single-link optimal transmit powers.

PROOF OFLEMMA [
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PROOF OFLEMMA [9 [3]

We show that the conditions i (I70)-(72) are equivalents]
to (62)-[64) therefore proving the necessity statementhef t
lemma. [
1) Writing (€2) for noden and the data linkd € Og4(n)
connected to it

—1
—) =0 — B

t 1 n -
<A (97)

Now, we claim that wherp, > 0, 5, = 0. Assumep; > 0
and 5; > 0. From [68), this means that; = o;(e?! — 1)
and the delay at link becomes% which is unbounded for [10]
t; > 0. Then, we must havg = 0, but this meang; = 0, as
otherwise power has been consumed on a link with zero roEllvl]
This is a contradiction t;, > 0. Thus,3;, = 0 whenp; > 0

and [70) is satisfied with equality.

2) We choose any origin destination péir, d) and identify [12]
a path starting from node and ending at destination node

and in which all link powers and therefore flows are strictlyi3]
positive. We denote this path b, 4. We write the conditions
(&3) on links on this path and sum them to get

1 1 -2
Z — log (1—1—&) [—log (1—1—&) —tl}
2 gy 2 a]

(6]

(7]
(8]
El

[14]

[15]

l€Fn.d
= Z Vi) — Vn() — 2B100€>" + 7 98) 14
1€Fn,d
= Z V() = Vn(l) (99) 7
1€EFn,d
=Vg—Up (100) (18]
— (101)

where [[99) follows from3;, = +, = 0 sincep; > 0, t; > 0, [19]
(I00) follows from telescoping the squlejr Vn(l) = Vm(l)»

and [TI01) follows from setting,; = 0 since it is a destination [20]
node and there are no flow conservation constraints at that
node. We letr,, = —v,, and get[(71L). (21
3) For energy linkg between nodes andm, k(q) = n and [
z(q) = m in (€4). From [[G4), we have,, = az\, + 0, >

agAm sinced, > 0. Then, [23]

t |1 DI - m\

g (14 2) =y 142

207 {2 og< + Ul> l] < * U[> [24]
=\, (102)

> agdm (103) [29]

¢ 1 -2 —1
—ag [Zlog (1+22) | (1+2 (104)
201 |2 Ok Ok

where [10P) and(104) are from using part 1 of Lenitha 9 for
noden andm, respectively. Equality is achieved when> 0, 2
since in this casé, = 0 from (64).

[26]

7]
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