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Secrecy Performance Analysis of Location-Based
Beamforming in Rician Wiretap Channels

Shihao Yan and Robert Malaney

Abstract—We propose a new optimal Location-Based Beam-
forming (LBB) scheme for the wiretap channel, where both the
main channel and the eavesdropper’s channel are subject to
Rician fading. In our LBB scheme the two key inputs are the
location of the legitimate receiver and the location of the potential
eavesdropper. Notably, our scheme does not require as direct
inputs any channel state information of the main channel or the
eavesdropper’s channel, making it easy to deploy in a host of
application settings in which the location inputs are known. Our
beamforming solution assumes a multiple-antenna transmitter,
a multiple-antenna eavesdropper, and a single-antenna receiver,
and its aim is to maximize the physical layer security of the
channel. To obtain our solution we first derive the secrecy outage
probability of the LBB scheme in a closed-form expression that
is valid for arbitrary values of the Rician K-factors of the main
channel and the eavesdropper’s channel. Using this expression
we then determine the location-based beamformer solution that
minimizes the secrecy outage probability. To assess the usefulness
of our new scheme, and to quantify the value of the location
information to the beamformer, we compare our scheme to other
schemes, some of which do not utilize any location information.
Our new beamformer solution provides optimal physical layer
security for a wide range of location-based applications.

Index Terms—Physical layer security, Rician fading, location-
based beamforming, secrecy outage probability.

I. I NTRODUCTION

Physical layer security guarantees secrecy regardless of an
eavesdropper’s computational capability and does not require
complex key distribution and management [1]. In early studies
[2, 3], a wiretap channel model was proposed as the funda-
mental system model to examine such physical layer security
in single-input single-output systems. In the wiretap channel,
an eavesdropper (Eve) overhears the wireless communication
between a transmitter (Alice) and an intended receiver (Bob).
More recently, motivated by multiple-input multiple-output
(MIMO) techniques, physical layer security in MIMO wiretap
channels has garnered much interest (e.g., [4–9]). However,
many of the works in MIMO-based physical layer security
assume the (instantaneous) CSI of themain channel (the
channel between Alice and Bob) is perfectly known by Alice
or Bob (e.g., [4–6]). This assumption is usually very difficult to
justify in practice (e.g., in massive MIMO techniques the CSI
of a channel cannot be perfectly known even to a receiver due
to pilot contamination issues [10–13]). Another assumption
adopted in the literature is that the CSI of theeavesdropper’s
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channel (the channel between Alice and Eve) is known to
Alice, which is even harder to justify in practice.

However, there are many circumstances wherelocation
information of Bob and Eve could be available. For example,
in some specific military application scenarios, Alice may ob-
tain Bob’s location through direct communications, and Eve’s
location through some (possiblya priori) surveillance. Other
circumstances could be where Bob and Eve are known users
of the system (but still requiring secret communications onan
individual basis), and their location information is routinely
broadcasted as per the requirements of the network protocol.
Examples of such circumstances would be in IEEE 1609.2 for
vehicular networks, or in some location-based social-media
applications.

Regardless of the application scenario, the main point
we focus on here is that if there is a line-of-sight (LOS)
component in the main channel or the eavesdropper’s channel,
it is possible to utilize location information directly in order
to enhance the physical layer security. More specifically, we
propose and analyze a new Location-Based Beamforming
(LBB) scheme in the wiretap channel, where both the main
channel and the eavesdropper’s channel are subject to Rician
fading. Our scheme does not require the CSI of either the main
channel or the eavesdropper’s channel - thus making it quite
general, as well as pragmatic. The basicmodus operandi of
the scheme we propose is that given the input locations of
Bob and Eve, we output the optimal beamformer solution and
the security level (the secrecy outage probability) associated
with this solution.1 Detailing how these outputs are determined
forms the core of our work.

Surprisingly, there has been little previous work in this
area, with the closest works perhaps those of [14] and [15].
In [14], the ergodic secrecy rate was examined for multiple-
antenna wiretap channels with Rician fading. However, in
[14] it was assumed that the CSI of the main channel was
perfectly known by Alice. The work of [15] analyzed the
secrecy performance of orthogonal space-time block codes
when the main channel is assumed to be subject to Rician
fading. But the eavesdropper’s channel was assumed to be
subject to Rayleigh fading in [15] and therefore Eve’s location
information was not that useful.

The direction of this paper and our contributions are sum-
marized as follows. (i) We first derive the secrecy outage
probability of the LBB scheme in a closed-form expression,

1Although our scheme works for any input locations. It is possible that the
secrecy outage probability approaches one (e.g., as Bob moves further from
Alice whilst Eve moves closer). We leave it to the system operator to decide
whether the secrecy outage predicted justifies the sending of data.
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which is valid for arbitrary values of the RicianK-factors
of the main channel and the eavesdropper’s channel. (ii) We
then determine the optimal location-based beamformer and the
minimum secrecy outage probability for the scheme. (iii) In
order to fully appreciate the gains of the LBB scheme, we
also analyze, for comparison, the secrecy performance of a
Non-Beamforming (NB) scheme. (iv) As a final comparison,
we also consider the effect on the LBB scheme of the full CSI
of Bob being made available to Alice, and the effect of Eve’s
location information becoming untrustworthy.

The rest of this paper is organized as follows. Section II
details our system model; Section III provides our analytical
solutions; Section IV provides numerical simulations; and
Section V draws concluding remarks. Secrecy performances
of the comparison schemes are provided in Appendices. We
adopt the following notations in this work. Scalar variables are
denoted by italic symbols. Vectors and matrices are denoted
by lower-case and upper-case boldface symbols, respectively.
Given a complex numberz, |z| denotes the modulus ofz.
Given a complex vectorx, ‖x‖ denotes the Euclidean norm,
xT denotes the transpose ofx, x† denotes the conjugate
transpose ofx, and Re(x) denotes the real part ofx. The
L × L identity matrix is referred to asIL and E[·] denotes
expectation.

II. SYSTEM MODEL

Our LBB scheme was examined for the simpler case of a
pure LOS channel in one of our previous works [16]. Here, we
expand on that simple scenario by considering more generic
and realistic channel conditions. That is, we will assume
KB > 0 andKE > 0, whereKB andKE are the RicianK-
factors of the main channel and the eavesdropper’s channel,
respectively. The wiretap channel of interest is illustrated
in Fig. 1, where Alice and Eve are equipped with uniform
linear arrays (ULAs) withNA and NE antenna elements,2

respectively; and Bob is equipped with a single antenna. As
we will show later, our analysis provided in this work is also
valid for other antenna arrays beyond ULAs at Eve. We assume
that Alice, Bob, and Eve are static.

As shown in Fig. 1, we adopt the polar coordinate system,
where Alice’s location is selected as the origin, Bob’s location
is denoted as(dB, θB), and Alice’s location is denoted as
(dE , θE). For presentation convenience, without other state-
ments we assume that the coordinate system is set up such
that 0 ≤ θB ≤ π and 0 ≤ θE ≤ π. The orientation of the
ULA at Alice is also shown in this figure. We also assume that
the main channel and the eavesdropper’s channel are subjectto
quasi-static Rician fading with equal block length but different
RicianK-factors, and that aK-factor map (K as a function
of locations) is known in the vicinity of Alice via somea
priori measurement campaigns. We further assume that the

2We will assumeNE is also known to Alice. This is reasonable in
circumstances where Alice can determine physical constraints on the size of an
eavesdropper’s antenna, knowledge of which, coupled to theknown frequency
of transmission, can allow for a reliable upper bound onNE to be set. If an
upper bound onNE is set, then our solutions become bounds (worst case
scenarios). In other circumstances, where Eve is at times a legitimate user,
we can assumeNE is known.

Fig. 1. Illustration of the Rician wiretap channel of interest.

CSI of the main channel is unknown to Alice, but that Bob’s
location is known to Alice.3 Additional assumptions are that
Eve knows the CSI of the eavesdropper’s channel and the
beamformer adopted by Alice; that Eve applies Maximum
Ratio Combining (MRC) in order to maximize the probability
of successful eavesdropping [8, 9]; and that Eve’s locationis
known to Alice. As we discuss later, our analysis also covers
the case where Eve’s location is unavailable at Alice.

As per the aforementioned assumptions, the1 × NA main
channel vector is given by

h =

√
KB

1 +KB
ho +

√
1

1 +KB
hr, (1)

where ho is the LOS component, andhr is the scattered
component. The entries ofhr are independent and identi-
cally distributed (i.i.d) circularly-symmetric complex Gaussian
random variables with zero mean and unit variance, i.e.,
hr ∼ CN (0, INA

). DenotingρA as the space between two
antenna elements of the ULA at Alice,ho is given by [17]

ho = [1, · · · , exp(j(NA − 1)τA cos θB)] , (2)

whereτA = 2πf0ρA/c, f0 is the carrier frequency, andc is
the speed of propagation of the plane wave. TheNE × NA
eavesdropper’s channel matrix is given by

G =

√
KE

1 +KE
Go +

√
1

1 +KE
Gr, (3)

whereGo is the LOS component, andGr is the scattered com-
ponent represented by a matrix with i.i.d circularly-symmetric
complex Gaussian random variables with zero mean and unit

3We note that using Bob’s location saves feedback overhead relative to use
of the CSI of the main channel. This is due to the following twofacts: (i)
the CSI varies during different fading blocks and has to be fed back for each
fading block, meanwhile the location information only has to be fed back
once for a static Bob; and (ii) the CSI is anNA-dimension complex vector
(2NA variables embedded), meanwhile Bob’s location is determined by only
two real numbers.
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variance. Given the locations of Alice and Eve,Go can be
written as [18]

Go = rTo go (4)

where ro and go are the array responses at Eve and Alice,
respectively, which are given by

ro = [1, · · · , exp(−j(NE − 1)τE cosφE)] , (5)

go = [1, · · · , exp(j(NA − 1)τA cos θE)] . (6)

In (5), we haveτE = 2πf0ρE/c, where ρE is the space
between two antenna elements of the ULA at Eve, andφE is
the direction of arrival from Eve to Alice which is dependent
on the orientation of the ULA at Eve. As we show later, the
signal-to-noise ratio (SNR) of the eavesdropper’s channelis
independent ofφE when Eve utilizes MRC to combine the
received signals. As such, the secrecy performance of the LBB
scheme does not depend onφE and thus Alice does not have
to knowφE .

The received signal at Bob is given by

y =
√
g(dB)hbx + nB, (7)

whereg(dB) is the path loss component of the main channel
given byg(dB) = (c/4πf0d0)

2
(d0/dB)

ηB (d0 is a reference
distance andηB is the path loss exponent4 of the main
channel),b is a normalized beamformer (i.e.,‖b‖ = 1), x is
the Gaussian distributed information bearing signal satisfying
E[|x|2] = P (P is the total transmit power of Alice5), andnB
is the additive white Gaussian noise of the main channel with
zero mean and varianceσ2

B. Likewise, the received signal at
Eve is given by

z =
√
g(dE)Gbx+ nE , (8)

whereg(dE) is the path loss component of the eavesdropper’s
channel given byg(dE) = (c/4πf0d0)

2
(d0/dE)

ηE (ηE is the
path loss exponent of the eavesdropper’s channel), andnE is
the additive white Gaussian noise vector of the eavesdropper’s
channel with zero mean and variance matrixσ2

EINE
, i.e.,

nE ∼ CN (0, σ2
EINE

)
Then, the SNR of the main channel is given by

γB =
Pg(dB)|hb|2

σ2
B

= γB|hb|2, (9)

where γB is defined asγB , Pg(dB)/σ
2
B. Assuming Eve

applies MRC to combine the received signals at different
antennas, the SNR of the eavesdropper’s channel is given by

γE =
Pg(dE)‖Gb‖2

σ2
E

= γE‖Gb‖2, (10)

whereγE is defined asγE , Pg(dE)/σ
2
E .

4The path loss exponentηB is dependent on the RicianK-factorKB . For
example,ηB → 2 asKB → ∞. For simplicity, we assumeηB is known
to Alice sinceKB is known. This declaration also applies to the path loss
exponent of the eavesdropper’s channelηE and the RicianK-factor KE .

5It is straightforward to prove that the secrecy outage probability is
a monotonically decreasing function of Alice’s transmit power for given
locations of Bob and Eve. As such, we assume that Alice alwayssets her
transmit power at the maximum valueP .

III. L OCATION-BASED BEAMFORMING SCHEME

In this section, we first examine the secrecy performance
of our proposed LBB scheme in terms of the secrecy outage
probability and the probability of non-zero secrecy capacity.
We then determine the optimal location-based beamformer of
the LBB scheme that minimizes the secrecy outage probability.

A. Preliminaries

In order to derive the secrecy performance metrics of our
scheme (e.g., the secrecy outage probability), we first derive
the probability density functions (pdfs) ofγB andγE . Without
loss of generality, we derive such pdfs for a generalb, which
is independent ofhr andGr. To this end, we first determine
the distribution type of|hb|. As per (1), we have

hb =

√
KB

1 +KB
hob

︸ ︷︷ ︸
h̃o

+

√
1

1 +KB
hrb

︸ ︷︷ ︸
h̃r

. (11)

Sinceb is independent ofhr, h̃r is still a circularly-symmetric
complex Gaussian random variable. Noting thath̃o is deter-
ministic, we conclude that|hb| follows a Rician distribution.
We next determine the parameters of this Rician distribution.
Following (11), we have

|h̃o|2 =
KB

1 +KB
|hob|2 (12)

and

E[|h̃r|2] =
1

1 +KB
E[|hrb|2] =

1

1 +KB
. (13)

We note that|h̃o|2 is the power of the LOS (deterministic)
component andE[|h̃r|2] is the average power of the non-LOS
(random) component. As such, we conclude that|hb| follows
a Rician distribution withK̃B and γ̃B as the RicianK-factor
and total power, respectively, wherẽKB and γ̃B are given by

K̃B ,
|h̃o|2

E[|h̃r|2]
= |hob|2KB, (14)

γ̃B , E[γB ]=γB

(
|h̃o|2 + E[|h̃r |2]

)
=

(
KB|hob|2 + 1

)
γB

1 +KB
.

(15)

The pdf of Rician random variables involves the zero-order
modified Bessel function of the first kind, which is not
suitable for further analysis (e.g., deriving the secrecy outage
probability). To make progress, it is convenient to interpret the
Rician fading as a special case of Nakagami fading. As such,
the pdf ofγB is approximated as [20]

fγB(γ) =

(
m̃B

γ̃B

)m̃B γm̃B−1

Γ(m̃B)
exp

(−m̃Bγ

γ̃B

)
, (16)

wherem̃B is the Nakagami fading parameter given bym̃B =
(K̃B+1)2/(2K̃B+1) andΓ(µ) =

∫∞

0 e−ttµ−1dt, Re(µ) > 0,
is the Gamma function.

Following (10), the SNR of the eavesdropper’s channel can
be rewritten as

γE =

NE∑

i=1

γE,i, (17)
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where γE,i = γE |gib|2, gi is the 1 × NA channel vector
between Eve’si-th antenna and Alice, i.e.,gi is the i-th row
of G. As per (3), we have

gi =

√
KE

1 +KE
ǫigo +

√
1

1 +KE
gr,i, (18)

whereǫi = e−j(i−1)τE cosφE andgr,i is the i-th row of Gr.
For any value ofi (i = 1, 2, . . . , NE), we have

|ǫigob| = |gob|. (19)

As such, following a procedure similar to that used in obtain-
ing fγB (γ), the pdf ofγE,i can be approximated as

fγE,i
(γ) =

(
m̃E

γ̃E

)m̃E γm̃E−1

Γ(m̃E)
exp

(−m̃Eγ

γ̃E

)
, (20)

wherem̃E is given bym̃E = (K̃E + 1)2/(2K̃E + 1), K̃E is
given byK̃E = |gob|2KE, and γ̃E is given by

γ̃E , E[γE ] =

(
KE |gob|2 + 1

)
γE

1 +KE
. (21)

Since theγE,i are independent, following (21) the pdf ofγE
can be approximated as

fγE (γ) =

(
m̃E

γ̃E

)NEm̃E γNEm̃E−1

Γ(NEm̃E)
exp

(−m̃Eγ

γ̃E

)
. (22)

Following (19), we note thatγE is independent ofro. This
indicates that the SNR at Eve is independent ofφE when Eve
adopts MRC to combine received signals (we do not need to
know the orientation of the ULA at Eve for our analysis).
This also reveals that the SNR at Eve is independent of the
type of antenna array at Eve (e.g., other antenna arrays beyond
ULAs) since different antenna arrays only impactro. As such,
our following analysis is also valid for other antenna arrays at
Eve (e.g., non-uniform linear arrays, circular arrays, rectangle
arrays).

B. Secrecy Performance of the LBB Scheme

In the wiretap channel, the secrecy capacity is defined as

Cs =

{
CB − CE , γB > γE
0 , γB ≤ γE ,

(23)

whereCB = log2 (1 + γB) is the capacity of the main channel
andCE = log2 (1 + γE) is the capacity of the eavesdropper’s
channel. SinceCB andCE are unavailable at Alice, the perfect
secrecy cannot be guaranteed in the wiretap channel of interest.
For this reason we adopt the secrecy outage probability and
the probability of non-zero secrecy capacity as our secrecy
performance metrics. The secrecy outage probability is defined
as the probability of the secrecy capacityCs being less than
the target secrecy rateRs (bits/channel-use), which can be
formulated as [8, 9]6

O (Rs) = Pr (Cs < Rs)

=

∫ ∞

0

fγE (γE)

[∫ 2Rs (1+γE)−1

0

fγB (γB)dγB

]
dγE . (24)

6The secrecy outage probability is the most common metric used in physical
layer security when CSI on the channels is unavailable at Alice. However, it
is important to note this metric does not distinguish between reliability and
security [19].

With regard to the secrecy performance of the LBB scheme,
we first provide the following theorem.

Theorem 1: The secrecy outage probability of the LBB
scheme for a givenRs is

O(Rs) =

m̃m̃B

B m̃NEm̃E

E 2m̃BRs

Γ(NEm̃E)γ̃
−NEm̃E

B γ̃
−m̃B

E

+∞∑

n=0

2nRs exp

(
−m̃B(2Rs−1)

γ̃B

)

m̃−n
B γ̃

n

BΓ(m̃B + n+ 1)
×

+∞∑

l=0

(
m̃B+n
l

) (
2Rs−1

)l (
γ̃B γ̃E

)n−l
ΓG(m̃B+NEm̃E+n−l)

2lRs

(
2Rsm̃B γ̃E + m̃E γ̃B

)m̃B+NEm̃E+n−l
,

(25)

whereΓG(·) is the generalized gamma function (also valid for
negative integers), which is given by [21]

ΓG(α)=

{
(−1)−α

(−α)!

(∑−α
i=1

1
i +α

)
, α is a negative integer,

Γ(α), otherwise.
(26)

Proof: Substituting (16) into (24),O(Rs) is derived as

O(Rs) =

∫ ∞

0

fγE (γE)
γ
(
m̃B,

2Rs (1+γE)−1

m̃−1

B
γ̃B

)

Γ(m̃B)
dγE , (27)

where γ (α, µ) =
∫ µ
0
e−ttα−1dt, Re{α} > 0, is the lower

incomplete gamma function. In order to obtain the result in
(27), we have utilized the following identity [22, Eq. (3.381.1)]

∫ u

0

tν−1e−µtdt = µ−νγ(ν, µu). (28)

To make progress, we adopt the following identity to expand
γ (α, µ) [22, Eq. (8.354.1)]

γ (α, µ) =

+∞∑

n=0

Γ(α)µα+ne−µ

Γ(α+ n+ 1)
. (29)

As per (29), we have

γ

(
m̃B ,

2Rs(1 + γE)− 1

m̃−1
B γ̃B

)

=

+∞∑

n=0

Γ(m̃B)
(

2Rs (1+γE)−1

m̃−1

B γ̃B

)m̃B+n

exp
(
− 2Rs (1+γE)−1

m̃−1

B γ̃B

)

Γ (m̃B + n+ 1)

=

+∞∑

n=0

Γ(m̃B)(2
RsγE)

m̃B+n
(
1 + 2Rs−1

2RsγE

)m̃B+n

(
γ̃B

m̃B

)m̃B+n

exp
(

2Rs (1+γE)−1

m̃−1

B
γ̃B

)
Γ(m̃B + n+ 1)

=
+∞∑

n=0

Γ(m̃B) exp
(
− 2Rs(1+γE)−1

m̃−1

B
γ̃B

)
(2RsγE)

m̃B+n

(
γ̃B

m̃B

)m̃B+n

Γ(m̃B + n+ 1)

×
+∞∑

l=0

(
m̃B + n

l

)(
2Rs − 1

2RsγE

)l
, (30)
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in which the identity [22, Eq. (1.110)]

(1 + µ)
α
=

+∞∑

l=0

(
α

l

)
µl (31)

is employed. Substituting (22) and (30) into (27), we have

O (Rs) =

∫ ∞

0

(
m̃E

γ̃E

)NEm̃E γNEm̃E−1
E

Γ(NEm̃E)
exp

(−m̃EγE

γ̃E

)
×

+∞∑

n=0

exp
(
−2Rs(1+γE)−1

m̃−1

B γ̃B

)
(2RsγE)

m̃B+n

(
γ̃B

m̃B

)m̃B+n

Γ(m̃B + n+ 1)

×

+∞∑

l=0

(
m̃B + n

l

)(
2Rs − 1

2RsγE

)l
dγE

=
m̃m̃B

B m̃NEm̃E

E 2m̃BRs

Γ(NEm̃E)γ̃
m̃B

B γ̃
NEm̃E

E

+∞∑

n=0

m̃n
B2

nRs exp

(
−m̃B(2Rs−1)

γ̃B

)

γ̃
n

BΓ(m̃B + n+ 1)

+∞∑

l=0

(
m̃B+n
l

) (
2Rs−1

)l

2lRs

∫ ∞

0

γm̃B+NEm̃E+n−l−1
E

exp

(
(2Rsm̃B γ̃E+m̃E γ̃B)γE

γ̃B γ̃E

)dγE .

(32)

We then obtain the desirable result in (25) by solving the
integral in (32) as per the following identity [22, Eq. (3.381.4)]

∫ ∞

0

tν−1e−µtdt =
1

µν
ΓG(ν). (33)

We first note the secrecy outage probability derived in (25)
is a function of Bob and Eve’s locations and the beamformerb,
all of which are embedded in the parametersm̃B, m̃E , γ̃B, and
γ̃E . We also note that (25) is valid for arbitrarỹmB andm̃E

(m̃B andm̃E can be equal), and thus (25) is valid for arbitrary
KB andKE. As such, our derived expression for the secrecy
outage probability is of more generality than that presented in
[8], which is only valid for integralm̃B and m̃E . Although
the expression presented in (25) involves two infinite series,
they both can be approximated by finite series accurately. We
approximate the infinite series

∑+∞
n=0 and

∑+∞
l=0 by truncating

them at finite numbers. As we will show in Section IV, the
accuracy of such approximations is acceptable as long as the
truncating numbers are larger than approximately 100.

An important performance parameter associated with the
secrecy outage probability is the secrecy diversity order,which
determines the slope of the curve for the secrecy outage
probability (in dB) versusγB (in dB) asγB → ∞ for finite
γE . Mathematically, the secrecy diversity order is defined as

β = lim
γB→∞

log10 O (Rs)

log10(1/γB)
. (34)

The secrecy diversity order of the LBB scheme is presented
in the following corollary.

Corollary 1: The secrecy diversity order of the LBB
scheme ism̃B .

Following a procedure similar to that used in deriving
the secrecy diversity order of the antenna selection schemes
presented in [8, 9], we can obtain in a straightforward manner

the secrecy diversity order of the LBB scheme asm̃B. As
such, we omit the proof of the above corollary here. We note
that maximum value of̃mB is (NAKB + 1)2/(2NAKB + 1)
due to|hob|2 ≤ ‖ho‖2‖b‖2 = NA.

The probability of non-zero secrecy capacity is defined as
the probability that a positive secrecy capacity is achieved. As
per (23), it can be formulated as

Pnon = Pr(Cs > 0)

= 1−
∫ ∞

0

fγE(γE)

(∫ γE

0

fγB (γB)dγB

)
dγE . (35)

Then, the probability of non-zero secrecy capacity of the LBB
scheme is presented in the following corollary.

Corollary 2: The probability of non-zero secrecy capacity
of the LBB scheme is given by

Pnon = 1− m̃m̃B

B m̃NEm̃E

E

Γ(NEm̃E)γ̃
−m̃B

E γ̃
−NEm̃E

B

+∞∑

n=0

m̃n
B γ̃

n

E

Γ(m̃B + n+ 1)

× Γ (m̃B +NEm̃E + n)
(
m̃B γ̃E + m̃E γ̃B

)m̃B+NEm̃E+n
. (36)

Proof: As per (35), the probability of non-zero secrecy
capacity can also be formulated as

Pnon = 1−O(Rs = 0). (37)

SubstitutingRs = 0 into (25), we obtain the desirable result
in (36).

We note that the expression for the probability of non-zero
secrecy capacity is simpler than that for the secrecy outage
probability and it only involves one infinite series. This infinite
series can also be approximated by truncating it at a finite
number. This approximation is very accurate even when the
truncating number is small (e.g.,10).

C. Optimal Location-based Beamformer

A location-based beamformer can be written as

b =
1√
NA

[1, · · · , exp(−j(NA − 1)τA cosψ)]
T
, (38)

whereψ (0 ≤ ψ ≤ π) is the beamforming direction. In this
work we define the optimal location-based beamformer,b∗,
as the one that minimizes the secrecy outage probability fora
givenRs. Therefore, defining

ψ∗ = argmin
0≤ψ≤π

O(Rs), (39)

and settingψ = ψ∗ in (38) completely define the optimal
beamformerb∗. We note that the value range ofψ is selected
based on the symmetric property of the ULA (e.g.,ψ = π/3
and ψ = −π/3 lead to the same beamformerb). We note
that (39) is a one-dimensional optimization problem, which
can be solved through numerical search. Substitutingb∗ into
(25), we achieve the minimum secrecy outage probability of
the LBB scheme, which is denoted asO∗(Rs). We would like
to highlight thatψ∗ can be analytically determined in some
special cases as detailed in the following corollaries.
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Fig. 2. F(Nx, νx) versusNxνx/π for different values ofNx.

Corollary 3: ForKB > 0, the solution to (39) isψ∗ = θB
in the following cases: (i) whenγB → ∞ for finite γE , (ii)
whenKE = 0, or (iii) when θE is unavailable at Alice.

Proof: In Case (i), asγB → ∞ the secrecy diversity
order determines the secrecy outage probability. As such,
as γB → ∞ the optimal location-based beamformer is to
maximize the secrecy diversity order given in Corollary 1 (i.e.,
m̃B) in order to minimize the secrecy outage probability. To
this end,ψ∗ is to maximizeK̃B. Following (14),ψ∗ finally is
to maximize|hob|2. In Case (ii), there is no LOS component
in the eavesdropper’s channel due toKE = 0 and ψ does
not impactγE . As such,ψ∗ is to maximizeγB in order to
minimize the secrecy outage probability. Following (9),ψ∗

finally is to maximize|hob|2 in this case. In Case (iii), Alice
is not sure howψ impactsγE sinceθE is unknown. Then,ψ
is to maximizeγB and thus to maximize|hob|2 based on (9).

As we can see from the above discussion, in all three cases
of the corollary the value ofψ∗ is the one that maximizes
|hob|2. So, to complete the proof we now prove that this value
is indeedθB . DenotingνA = τA(cos θB − cosψ), as per (2)
and (38), forνA 6= 0 we have

hob =
1√
NA

exp (jNtνA)− 1

exp (jνA)− 1

=
1√
NA

−ejNAνA/2
(
−e−jNAνA/2 − ejNAνA/2

)

−ejνA/2
(
−e−jνA/2 − ejνA/2

)

=
1√
NA

sin
(
1
2NAνA

)

sin
(
1
2νA

) ejνA(NA−1)/2. (40)

For νA = 0, we havehob =
√
NA. Then, following (40) we

have

|hob|2 = F(NA, νA), (41)

whereF(·, ·) is defined as

F(Nx, νx) =






Nx, νx = 0,

1
Nx

(
sin( 1

2
Nxνx)

sin( 1

2
νx)

)2

, 0 ≤ νx < 2π.
(42)

It is straightforward to prove that the maximum value of
F(Nx, νx) is Nx, which is achieved forνx = 0. This is also
confirmed by Fig. 2, where we plotF(Nx, νx) versusNxνx/π
for different value ofNx. As such,|hob|2 is maximized when
νA = 0 and thus we haveψ∗ = θB (we ignore the negative
solutions due to0 ≤ ψ ≤ π) in order to maximize|hob|2.

We note that forψ∗ = θB we haveb∗ = h†
o/
√
NA

and |hob|2 = NA. As such, we haveK̃B = NAKB and
γ̃B = (NAKB + 1)γB/(1 + KB). We denote the secrecy
outage probability of the LBB scheme with unknown Eve’s
location (i.e.,ψ∗ = θB) asOb(Rs).

Corollary 4: ForKE > 0, the (multiple) solution to (39) is
ψ∗ = arccos

(
cos θE + 2nAπ

NAτA

)
, nA = 1, . . . , NA − 1, in the

following cases: (i) whenγE → ∞ for finite γB, (ii) when
KB = 0, or (iii) when θB is unavailable at Alice.

Proof: Following similar arguments to those used in the
proof of Corollary 3, we know thatψ∗ is to minimize|gob|2
for all three cases in Corollary 4. The value of|gob|2 is given
by

|gob|2 = F(NA, νE), (43)

whereνE = τA(cos θE − cosψ). We note that the minimum
value of F(Nx, νx) is achieved whenνx = 2nxπ for nx =
1, . . . , Nx − 1, which is also confirmed by Fig. 2. As such,
|gob|2 is minimized whenνE = 2nAπ for nA = 1, . . . , NA−
1, and thus we obtain Corollary 4.

IV. N UMERICAL RESULTS

In this section we present numerical simulations to verify
our secrecy performance analysis of the LBB scheme, and
examine the impact of different system parameters (e.g.,KB,
KE, γB, andγE) on the LBB scheme. To better illustrate the
gains obtained by our scheme, we will also present simulations
of the secrecy performance of the NB (non-beamforming)
scheme. This latter scheme represents the case when an
isotropic beamforming pattern is produced by Alice (see Ap-
pendix A for an analytical analysis of this scheme). To conduct
simulations, we deploy Bob and Eve at specific locations and
then map such locations intoγB andγE , respectively. Such a
mapping is based on Alice’s transmit power (i.e.,P ) and path
loss exponents of the main channel and the eavesdropper’s
channel (i.e.,ηB and ηE ). For presentation convenience, we
only specify the values ofγB andγE adopted in our following
simulations. We note that in the following figures we use
“Theo” and “Simu” as the abbreviations of “Theoretic” and
“Simulated”, respectively.

In Fig. 3 we first verify our derived secrecy outage probabil-
ities for Nakagami fading channels. To this end, we generate
channel realizations as per the Nakagami fading channel,
where we have set̃mB = 2mB, m̃E = mE , γ̃B = 3γB,
and γ̃E = γE , wheremB = (KB + 1)2/(2KB + 1) and
mE = (KE + 1)2/(2KE + 1). The theoretic secrecy outage
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probability of the LBB scheme,O(Rs), and the secrecy outage
probability of the NB scheme, denoted asONB(Rs), are
obtained through (25) and (49), respectively, where relevant
infinite series are truncated at 100. In this figure, we observe
that the theoreticO(Rs) andONB(Rs) precisely match the
simulatedO(Rs) andONB(Rs), respectively. This confirms
the correctness of our derived secrecy outage probabilities.

Recall that for mathematical convenience, our analysis
approximates a Rician channel with a Nakagami channel. To
see the effect of this, in Fig. 4 we again plot the secrecy
outage probabilities of the LBB scheme and the NB scheme,
but this time for specific Rician fading channels. In this figure,
we observe that the simulated minimum secrecy outage prob-
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Fig. 5. Minimum secrecy outage probability of the LBB schemeversus
different values ofθE , whereNA = 2, NE = 2,KB = 10 dB,KE =
10 dB, γB = 10 dB, γE = 10 dB, andRs = 1.

ability of the LBB scheme,O∗(Rs), and the secrecy outage
probability of the NB scheme,ONB(Rs), match extremely
well the theoreticO∗(Rs) andONB(Rs), respectively, thus
confirming the validity of our channel approximation. We note
that we have setθE very close toθB in Fig. 4 (i.e.,θB = π/3
andθE = π/4). The gap betweenO∗(Rs) andONB(Rs) can
even be larger whenθE is not so close toθB.

In Fig. 5, we plot the minimum secrecy outage probability of
the LBB scheme,O∗(Rs), versus different values ofθE . Again
we observe that the theoreticO∗(Rs) matches extremely well
the simulatedO∗(Rs), which again confirms the validity of
our analysis. Fig. 5 is also useful in that it more visually
represents how the minimum secrecy outage probability of
the LBB scheme depends on the locations of Bob and Eve.
For example,O∗(Rs) is maximized whenθB = θE . In
the simulations to obtain Fig. 5, we also observe that the
optimal beamforming directionψ∗ shifts away fromθB as
θE approaches toθB.

In Fig. 6, we examine the secrecy outage probability of
the LBB scheme without knowing Eve’s location,Ob(Rs).
As per Corollary 3, we know thatb∗ = h†/‖h‖ when Eve’s
location is unavailable at Alice. In Fig. 6 we also compare the
the solution with no information on Eve’s location to the NB
scheme. To conduct a fair comparison with the NB scheme,
we assume Eve’s location is uniformly distributed on a circle
centered at Alice, i.e.,θE uniformly distributes between0 and
2π, θE ∼ U [0, 2π]. We then averageOb(Rs) overθE to obtain
the average secrecy outage probability, denoted asOb(Rs). As
expected, we observe thatOb(Rs) is lower thanONB(Rs),
which demonstrates that the LBB scheme still outperforms
the NB schemeon average, even when Eve’s location is
unavailable at Alice. This is due to the fact that the LBB
scheme improves the quality of the main channel based on
Bob’s location, which on average reduces the secrecy outage
probability. However, the most important result obtained from
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the simulations of Fig. 6 is that the secrecy outage probability
of the LBB scheme without Eve’s location increases (e.g., by
approximately a factor of 5 forγB = 10dB) relative to that
of the LBB scheme with Eve’s location. This quantifies the
value of the location information of Eve to the beamformer
solution.

It is worth mentioning how relaxations of some key as-
sumptions we have made impact the results presented here.
Of course, in reality it will never be the case that all reported
locations, allK map information, and all path loss exponents
are known with zero error. Errors in these quantities are
intermingled in the sense that an error in one leads to an error
in another. We have attempted to encompass such correlated
errors in a range of additional simulations. Our general result
is that a percentage error of15% in any of these inputs leads to
an approximately10% percentage error in our reported outage
probabilities. For anticipated error inputs, we can therefore say
that our analysis remains reasonably accurate.

Finally, although outside the spirit of our low-complexity
LBB scheme, it is perhaps worth discussing the gains to be
made when the full CSI information of the main channel
is made available to Alice (where the transmission scheme
is named as the full-CSI scheme). If Eve’s location is also
available at Alice in the full-CSI scheme, the full-CSI scheme
will of course outperform the LBB scheme for any values of
system parameters. For example, under the simulation settings
of Fig. 4, the secrecy outage probability of this full-CSI
scheme with Eve’s location is15% lower than that of the
LBB scheme forγB = 10dB and γE = 5dB (determined
from simulations). If Eve’e location is unavailable at Alice (in
both schemes) then the full-CSI scheme outperforms the LBB
scheme by40% for γB = 10dB andγE = 0dB under the same
simulation setting of Fig. 6 (determined from simulations and
analysis). For completeness, the secrecy performance analysis
of the full-CSI scheme is given in Appendix B.

V. CONCLUSIONS

We proposed and analyzed a novel beamforming scheme
in the wiretap channel where both the main channel and the
eavesdropper’s channel are subject to Rician fading. Our new
LBB scheme solely requires as inputs the location informa-
tion of Bob and Eve, and does not require the CSI of the
main channel or the eavesdropper’s channel. We derived the
secrecy outage probability of the LBB scheme in a closed-
form expression valid for arbitrary values ofKB andKE . We
then determined the optimal location-based beamformer that
minimizes the secrecy outage probability. Comparisons with a
range of other schemes were then carried out so as to better
understand the performance gains offered by our location-
based solution. The work we presented will be important for
a range of application scenarios in which Rician channels are
expected to be dominant and where location information of
potential users and adversaries are known.

APPENDIX A
SECRECY PERFORMANCE OF THENB SCHEME

In the NB scheme, Alice distributes her total transmit power
uniformly among theNA orthogonal independent transmit
directions (i.e., the covariance matrix ofbx is P INA

/NA)
[23, 24]. Then, the SNR at Bob is given by [23, 24]

γNB

B =
γB||h||2
NA

. (44)

Interpreting Rician fading as a special case of Nakagami
fading, the pdf ofγNB

B can be approximated by

fγNB

B
(γ) =

mNAmB

B γNAmB−1e
−

NAmBγ

γB

Γ(NAmB)(γB/NA)
NAmB

. (45)

We assume that Eve applies MRC to combine the received
signals at different antenna elements. As such, the SNR at
Eve is given by

γNB

E =
γE ||s†0G||2

NA
=
γEλ

2
0

NA
, (46)

wheres0 is theNE × 1 eigenvector for the largest eigenvalue
λ0 of G. The theoretical expression for the distribution of
λ20 has been derived in [25]. However, this expression is too
complicated to be used for further analysis. To make progress,
we adopt the simple approximation for the pdf ofλ20 proposed
in [26]. As such, the pdf ofγNB

E can be approximated by

fγNB

E
(γ) =

(NAmE)
NANEmEγNANEmE−1

Γ(NANEmE)(γEλ0)
NANEmE

exp

(
−NAmEγ

γEλ0

)
,

(47)

whereλ0 is the mean of the per-branch largest eigenvalue (i.e.,
λ0 = E[λ0]/NANE). The value ofλ0 can be approximated
by [26]

λ0 =





KE

KE+1 + 1
KE+1

NA+NE

NANE+1 , KE ≥ 0.5,
(
NA+NE

NANE+1

) 4−KE
6

, KE < 0.5.
(48)

We note that we haveλ0 = 1 for arbitraryKE whenNE = 1.
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Following a similar procedure to that used in deriving
O(Rs) in Theorem 1, the secrecy outage probability of the
NB scheme is derived as

ONB (Rs)=

∫ ∞

0

fγNB

E
(γE)

[∫ 2Rs (1+γE)−1

0

fγNB

B
(γB)dγB

]
dγE

=
mNAmB

B mNANEmE

E 2NAmBRs

Γ(NANEmE)γ
−NANEmE

B (γEλ0)
−NAmB

×

+∞∑

n=0

mn
B2

nRs exp

(
−NAmB(2Rs−1)

γB

)

γnBΓ(NAmB + n+ 1)
×

+∞∑

l=0

(
NAmB+n

l

) (
2Rs−1

)l

N−l
A 2lRs

×
(
γBγEλ0

)n−l
ΓG(NAmB +NANEmE + n− l)

(
2RsmBγEλ0 +mEγB

)NAmB+NANEmE+n−l
. (49)

As per (49), we can see that the secrecy outage probability
of the NB scheme is independent ofθB and θE . However,
(49) is a function ofγB and γE , which are dependent on
dB and dE , respectively. We note that the secrecy diversity
order of the NB scheme isNAmB, which is the full secrecy
diversity order. Also, following a similar procedure to that used
in deriving Pnon in Corollary 2, the probability of non-zero
secrecy capacity of the NB scheme is derived as

PNB

non = 1− mNAmB

B mNANEmE

E γNANEmE

B

Γ(NANEmE)(γEλ0)
−NAmB

×
+∞∑

n=0

mn
B

(
γEλ0

)n

Γ(NAmB + n+ 1)
×

Γ (NAmB +NANEmE + n)
(
mBγEλ0 +mEγB

)NAmB+NANEmE+n
.

(50)

APPENDIX B
SECRECYPERFORMANCE OF THEFULL -CSI SCHEME

In the full-CSI scheme, Alice knows the CSI of the main
channel (Bob feeds back the CSI to Alice), but Alice does not
know the CSI of the eavesdropper’s channel or Eve’s location.
Then, Alice adoptsh†/‖h‖ as the beamformerb to maximize
the SNR of the main channel [24, 27] in order to minimize the
secrecy outage probability. The SNR at Bob of the full-CSI
scheme is given by [24, 27]

γCSI

B = γB||h||2. (51)

Again using the Nakagami fading to approximate the Rician
fading, the pdf ofγCSI

B can be approximated by

fγCSI

B
(γ) =

mNAmB

B γNAmB−1 exp
(
−mBγ

γB

)

Γ(NAmB)γ
NAmB

B

. (52)

We assume that Eve knowsh by eavesdropping on the
feedback from Bob to Alice. We also assume that Eve knows
that Alice adoptsh†/‖h‖ as the beamformer. Assuming that

Eve applies MRC to combine the received signals at different
antenna elements, the SNR at Eve is given by

γCSI

E =
γE‖Gh†‖2

‖h‖2 = γE

NE∑

i=1

γCSI

E,i , (53)

whereγCSI

E,i = |gih†|/‖h‖. In order to derive the pdf ofγCSI

E ,
we next first derive the pdf ofγCSI

E,i . As per (1) and (3), we
have

gih
†

‖h‖ =
1

‖h‖ (eoǫigo + ergr) (boho + brhr)
†

=
boeoǫigoh

†
o

‖h‖ +
breoǫigoh

†
r

‖h‖ +
ergrh

†

‖h‖ , (54)

where

bo =

√
KB

KB + 1
, br =

√
1

KB + 1
,

eo =

√
KE

KE + 1
, er =

√
1

KE + 1
.

To make progress, we make the following approximation

gih
†

‖h‖ ≈ boeoǫigoh
†
o√

NA︸ ︷︷ ︸
hCSI
o

+
breoǫigoh

†
r√

NA
+
ergrh

†

√
NA︸ ︷︷ ︸

hCSI
r

. (55)

We note that in (55)hCSI
o is deterministic andhCSI

r is a
circularly-symmetric complex Gaussian random variable. As
such, gih†/

√
NA follows a Rician distribution. Following

(55), we have

|hCSI

o |2 =
b2oe

2
o|goh†

o|2
NA

=
KBKE |goh†

o|2
NA(1 +KB)(1 +KE)

,

and

E[|hCSI

r |2] = b2re
2
o

N
E[|goh†

r|2] +
e2r
N

E[|grh†|2]
= b2re

2
o + e2r

=
KB +KE + 1

(KB + 1)(KE + 1)
.

Then, the RicianK-factor of gih†/
√
NA is given by

K̈E ,
|hCSI
o |2

E[|hCSI
r |2] =

KBKE |goh†
o|2

NA(KB +KE + 1)
. (56)

Following (55), we also have

γ̈E , E[γCSI

Ei ] = γE
(
|hCSI

o |2 + E[|hCSI

r |2]
)

=
KBKE |goh†

o|2+NA(KB+KE+1)

γ−1
E NA(KB + 1)(KE + 1)

. (57)

Then, the pdf ofγCSI

Ei can be approximated by

fγCSI

E,i
(γ) =

(
m̈E

γ̈E

)m̈E γm̈E−1

Γ(m̈E)
exp

(−m̈Eγ

γ̈E

)
, (58)

wherem̈E = (K̈E+1)2/(2K̈E+1). SinceγCSI

E,i are indepen-
dent from each other, the pdf ofγCSI

E can be approximated
by

fγCSI

E
(γ) =

(
m̈E

γ̈E

)NEm̈E γNEm̈E−1

Γ(NEm̈E)
exp

(−m̈Eγ

γ̈E

)
.

(59)
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Following a similar procedure to that used in deriving
O(Rs) in Theorem 1, the secrecy outage probability of the
full-CSI scheme is then derived as

OCSI(Rs)=

∫ ∞

0

fγCSI

E
(γE)

[∫ 2Rs (1+γE)−1

0

fγCSI

B
(γB)dγB

]
dγE

=
mNAmB

B m̈NEm̈E

E 2NAmBRs

Γ(NEm̈E)γ
−NEm̈E

B γ̈
−NAmB

E

×

+∞∑

n=0

2nRs exp

(
−mB(2Rs−1)

γB

)

m−n
B γ̈

−n
E Γ(NAmB + n+ 1)

× (60)

+∞∑

l=0

(
NAmB+n

l

) (
2Rs−1

)l
ΓG(NAmB+NEm̈E+n−l)

(
γB γ̈E

)l
2lRs

(
2RsmB γ̈E + m̈EγB

)NAmB+NEm̈E+n−l
.

As per (60), we know that the secrecy outage probability of
the full-CSI scheme is dependent on the locations of both Bob
and Eve. This means that we require Bob and Eve’s locations
for the secrecy performance analysis of the full-CSI scheme.
The locations of both Bob and Eve are not only required by
the LBB scheme. We note that the secrecy diversity order the
full-CSI scheme is alsoNAmB (full diversity order). Again
following a similar procedure of derivingPnon in Corollary 2,
the probability of non-zero secrecy capacity of the full-CSI
scheme is derived as

PCSI

non = 1− mNAmB

B m̈NEm̈E

E

Γ(NEm̈E)γ̈
−NAmB

E γ−NEm̈E

B

×

+∞∑

n=0

mn
B γ̈

n
E

Γ(NAmB + n+ 1)
×

Γ (NAmB +NEm̈E + n)
(
mB γ̈E + m̈EγB

)NAmB+NEm̈E+n
.

(61)
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