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Scalable and Passive Wireless Network Clock
Synchronization

Dave Zachariah, Satyam Dwivedi, Peter Händel and Petre Stoica

Abstract—Clock synchronization is ubiquitous in wireless sys-
tems for communication, sensing and control. In this paper
we design a scalable system in which an indefinite number of
passively receiving wireless units can synchronize to a single
master clock at the level of discrete clock ticks. Accurate
synchronization requires an estimate of the node positions. If
such information is available the framework developed here
takes position uncertainties into account. In the absence of such
information we propose a mechanism which enables simultaneous
synchronization and positioning. Furthermore we derive the
Cramer-Rao bounds for the system which show that it enables
synchronization accuracy at sub-nanosecond levels. Finally, we
develop and evaluate an online estimation method which is
statistically efficient.

I. INTRODUCTION

Time synchronization plays a key role in wireless communi-
cation, sensing and control. Indeed, many wireless applications
require upkeep of timing in accomplishing their objectives.

In wireless cellular communications, accurate time infor-
mation is traditionally needed for signal acquisition, demod-
ulation, multiple access coordination, etc [1], [2]. Accurate
timing and synchronization are also requirements in real-time
wireless channel characterization and in several concepts in
wireless communications, including beamforming and interfer-
ence alignment [3]–[6]. Such requirements are also mentioned
in [3] as the main challenge for distributed beamforming to
work in the next generation wireless communication systems.
Similarly, in [4]–[6], accurate time synchronization is shown to
be a requirement for interference alignment to work. Emerging
concepts like femto-cells pose more challenging synchroniza-
tion requirements in terms of scalability and accuracy as
discussed in [7]. The sub-nanosecond time and phase synchro-
nization is also needed in distributed radar applications [8].
Wireless ranging and positioning require time synchronization
in time-difference-of-arrival (TDOA) based schemes, where
anchor nodes are synchronized in time [9]. Wireless control
networks are also critically dependent on synchronized sensors
and actuators [10].

Variants of the Network Time Protocol (NTP) [11] and
the Precision Time Protocol (PTP) [12] constitute the most
popular methods for time reference and synchronization in
wired networks [13]. The emergence of a variety of wireless
networks during the past decade has led to the development
of wireless time-synchronization protocols and localization
schemes. The Reference Broadcast Synchronization (RBS)
and the Time synchronization Protocol for Sensor Networks
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Fig. 1. Wireless network of nodes with local clocks. The highlighted clock
(blue) is a transmitting master unit to which all passively receiving units
should synchronize.

(TPSN) emerged as popular wireless time synchronization
protocols around the same time [14], [15]. In RBS, the nodes
in a wireless network synchronize through a broadcast by a
master node and inter-node exchanges to remove any sender
uncertainty. TPSN works by creating a hierarchical tree-based
structure where every leaf node synchronizes to its parent
node through message exchanges. Neither RBS nor TPSN
accounts for propagation delays nor do they enable passive
synchronization. For the aimed accuracies of these protocols,
the signal time-of-flight over a wireless channel is assumed to
be negligible. The protocol developed in [16] enables higher
accuracy by using separate channels for communication and
measurements required for synchronization.

Global Positioning System (GPS) signals are also used for
synchronizing time in wireless communication systems [6]–
[8], [17], [18]. GPS-based timing solutions enable an indefinite
number of nodes to perform simultaneous self-localization
and time synchronization. This joint feature is important in
deployed wireless sensor networks where both position and
time need to be resolved at each sensing node. In GPS-
based solutions, a signal known as pulse per second (PPP)
is extracted from pseudorange measurements and satellite
ephemeris data at the GPS receivers. The PPP signal is then
used as a reference in frequency synthesizers to generate high
frequency signals [5], [8], [19]. However, GPS signals cannot
be accessed indoors and the timing accuracy obtained does not
reach nanosecond levels.

In this paper we develop a scalable system in which passive,
receiver-only nodes can synchronize to a single master clock
at the level of discrete clock ticks. We show that the synchro-
nization performance of the system can reach sub-nanosecond
levels. When position information is lacking, we propose a
mechanism which enables simultaneous synchronization and
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positioning at each node using three additional transceivers.

A. Prior art and our contributions

Time synchronization schemes are evolving to provide
nanosecond-level synchronization, which requires accounting
for signal time-of-flight between nodes. A scalable multihop
scheme to synchronize the nodes to nanosecond accuracy was
proposed in [20].

Several works have developed system proposals as well
as presented theoretical analyses of time synchronization, cf.
[21]–[23]. Fundamental limits on time synchronization in sen-
sor networks were given in [21]. The authors of [22] suggested
using factor-graph methods for network clock estimation. In
[23], clock synchronization is achieved using eavesdropping
measurements. The synchronizing unit is a receiver-only node
and hence the method is claimed to be energy efficient. In [24]
a joint localization method for source nodes was proposed us-
ing TDOA which implicitly synchronizes an arbitrary number
of anchor nodes.

Our proposed method for clock synchronization in wireless
networks enables system performance beyond the state-of-the-
art. Specifically, we highlight the following attributes of our
proposal.
• Accuracy: We focus on enabling nanosecond accuracy.

NTP provides millisecond accuracy over IP networks and
has been overtaken by PTP over wired networks. PTP
provides accuracy levels of a few nanoseconds using
specialized hardware. For wireless solutions, such as
RBS and TPSN, the accuracy for sensor network syn-
chronization methods is on the order of microseconds.
These methods do not need to take time of flight into
account as their requirements are less stringent. GPS-
based synchronization methods can typically synchronize
to a 100 nanosecond-level. For nanosecond levels, time
of flight needs to be estimated accurately as in [20].

• Scalability: Another feature of the proposed synchroniza-
tion method is its scalability. Scalability has been ad-
dressed previously in a few papers, albeit only implicitly.
RBS, TPSN and the scheme proposed in [20] are scalable
by virtue of providing synchronization to nodes through
adhoc multihop connections. In these systems, nodes
synchronize through mutual exchanges of signals among
them. The signal exchange could be two-way round-
trip time measurements or timestamps recording time-of-
arrival information. By contrast, systems like GPS and the
one proposed in [23] are receiver-only systems and hence
they allow any number of nodes to synchronize with
the reference clock. Our proposed method is similar to
the latter class of scalable solutions. Indeed, we develop
a method that is scalable as each synchronizing node
requires only a receiver to sychronize to a reference, as
in GPS. The lack of transmission requirement for the
synchronizing nodes makes the solution energy efficient.

• Positioning for synchronization: Our proposed solution
is similar to GPS with respect to scalability but enables
nanosecond accuracy using existing hardware technolo-
gies. In addition, it can be used in indoor scenarios.

We will propose a local positioning system along with
the synchronization mechanism to enable time-of-flight
estimation. The proposed positioning system for synchro-
nization builds upon our previous works [25]–[28].

We consider a general scenario as illustrated in Figure 1.
The observed clock time in a wireless network is traditionally
modeled as a continuous function of clock skew α and the
phase offset β [23], [29], [30],

Cm(t) = t and Cu(t) = αt+ β, (1)

where Cm(t) denotes a reference master clock and Cu(t)
denotes the local clock of a node u in the network. In this
model the local clock time can be resolved into that of the
master clock by identifying the clock parameters. Network
synchronization is achieved by resolving the observed time at
each node to a common clock.

In digital clocks, however, time is recorded by counting
the number of periods of a repeating clock signal. At each
rising clock edge of the periodic signal, an integer time counter
is incremented. Our goal is to resolve the time observed on
clocks at nodes u = 1, . . . , U . To achieve resolution levels
below that of the clock period we propose using a time
measuring device that can observe intervals between discrete
time events. Such events are defined as periodic ticks on the
digital clock and as received signals from the master node m.

More concretely, to enable sub-nanosecond accuracy in time
synchronization, we propose the usage of:

• High bandwidth signals. As is widely documented in the
literature, the precision of time of arrival measurements
is inversely proportional to the square bandwidth of the
transmitted signal [31], [32].

• Accurate time-interval measurement device. Examples
include high speed analog-to-digital (ADC) converters
and time-to-digital converters (TDC); such devices can
measure time intervals with sub-nanosecond accuracy. In
[20] a high speed ADC was used with sampling frequency
greater than 1 Giga samples per second. In [33], clock
parameter estimation for two clocks was experimentally
demonstrated using a TDC with a precision of nearly 100
picoseconds.

The solution proposed in [24] is a recent, novel way of syn-
chronizing fixed anchor nodes while estimating the positions
of several emitting source nodes. In our setup, passive nodes
with unknown positions can synchronize to a master node.

B. Problem formulation

The state of each digital clock is the integer number
of cycles that have elapsed since some initialization event.
Suppose the master clock operates with a period Tm. Then its
clock state nm ∈ {0, 1, 2, . . . } corresponds to times

Cm ∈ {0, Tm, 2Tm, . . . }.

The master clock initializes the counters by transmitting a
signal across the wireless network. The clock at node u, which
operates with period Tu, will have a relative offset φu due to
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Fig. 2. Space-time diagram of nodes m and u, with one vertical spatial di-
mension and a horizontal time dimension. The digital clock states correspond
to discrete events or ticks along the time-axes (dots). The master node m and
passive node u have clock periods Tm and Tu, respectively. The transmission
event from the master defines the initial tick of the system clock (white). Upon
receiving the signal, the corresponding initial tick on the local clock (gray)
will be subject to an unknown offset φu.

the propagation delay and nonsynchronicity as illustrated in
Fig. 2. Its clock state nu ∈ {0, 1, 2, . . . } corresponds to times

Cu ∈ {φu, Tu + φu, 2Tu + φu, . . . }.

Therefore the current clock state nu of the node can be
resolved into a common time if the clock parameters φu and
Tu are identified. In addition, identification of Tm enables also
coordination with respect to the master periodic signal across
the wireless network.

Based on the previous discussion we may write

Cm = Tmnm and


C1 = T1n1 + φ1

C2 = T2n2 + φ2
...

CU = TUnU + φU

. (2)

By identifying the clock parameters at each node u =
1, . . . , U , synchronization is achieved since a common time
frame is shared across the entire network. This enables coor-
dination relative to the master clock among all nodes.

Note that nominal values of the clock frequencies, and there-
fore of the periods Tu and Tm, are typically available given.
However, usually, these values are not sufficiently precise. To
obtain more accurate estimates of Tu it is possible to use a
device that measures the intervals between ticks. Similarly, as
the signal from the master clock is repeated periodically after
M cycles, Tm can also be estimated accurately. The primary
challenge, however, is to estimate the relative offset φu.

In this paper, we design a system in which passively re-
ceiving nodes are synchronized by estimating their respective
clock parameters. The system is scalable to an indefinite
number of nodes, i.e. U � 1. Furthermore, we study the
resolution limits of the system using the Cramér-Rao bounds.
Using existing hardware performance figures, we show that
the proposed system enables sub-nanosecond accuracy. While
the estimation of Tm and Tu can be performed separately from
φu, we derive a joint online estimator that takes into account

the uncertainties of all estimates. The proposed estimator is
subsequently evaluated in several numerical experiments.

Remark: An implementation of the estimator along with
numerical simulation examples is available at the webpage of
KTH Dept. Signal Processing under ‘Reproducible research’.

II. SYSTEM MODEL

To achieve the objectives stated above, we propose a system
with the following features:

1) All passive units can measure time-intervals ∆ = t − t′
between events at times t and t′, using a time mea-
surement device. This enables observations at a higher
resolution than that of the digital clock and is grounded
in the emerging TDC and ADC technologies.

2) The master periodically transmits a time-resolvable signal
after M clock cycles. Among others, this ensures the
identifiability of Tm. The transmission event from the
master defines the starting point of a system-wide clock
with period Tm. We call the period of M clock cycles
an epoch.

3) The master node m is located at a known position
xm. The position of an arbitrary synchronizing node u,
denoted x, is unknown. Together with the assumption
that an epoch is longer than the clock period of any
synchronizing node, i.e., MTm > Tu, that fact that xm is
known enables the identifiability of φu as we will show
below.

We will model the unknown position as x ∼ N (x̄,Λ−1x )
when we have access to a prior estimate x̄ with a dispersion
matrix Λ−1x . When such prior position information is lacking,
i.e. when Λx = 0, then φu cannot be identified. To ensure
identifiability in such a case, under the assumption that the
positions are expressed in three-dimensional coordinates, we
consider a system with the following additional features:

4) There exists three transceiving nodes, deployed at known
positions {x1,x2,x3}, cf. Fig. 3. The transceivers trans-
mit sequentially in the order {m, 1, 2, 3}, and repeatedly.

5) When receiving a signal from the preceding transmitter in
the above order, the subsequent transceiver transmits after
a fixed delay ∆0, which can be generated independently
of the local clock [28]. This is to avoid interfering
signals from the master and transceivers during an epoch.
Specifically, we assume

MTm � ∆0 > max. distance to transmitter/c,

where c is the propagation velocity. Then each transmitted
signal can reach all nodes before the subsequent signal
is transmitted.

Making use of these features together, we will show that
it is possible to synchronize any number of passively receiv-
ing nodes. That is, each synchronizing node u can resolve
the unknown clock parameters φu, Tu and Tm in (2). The
scalable wireless network synchronization system is abbrevi-
ated SWINS.
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Fig. 3. System model with three additional transceivers at known positions.

m

u

φu

Tu

Tm

1
cρm,u ∆1

Fig. 4. Space-time diagram of nodes m and u. ∆1 is defined as the time
interval between the received signal and the subsequent clock tick at u (gray).
The time of flight equals 1

c
ρm,u.

A. Data model

First, consider the initial signal received by a passive node
u from m, as depicted in Fig. 4. Node u can only record time
intervals, and we define ∆1 as the time between the received
signal and the next clock tick at u. Given that the time of
flight of the signal is 1

cρm,u, where c is the signal propagation
velocity and ρm,u = ‖xm − x‖2 is the range between m and
u, the following relation

∆1 = φu −
1

c
ρm,u (3)

applies to the first epoch.

At node u, the number of clock cycles till the subsequent
epoch begins, denoted N , is recorded and corresponds to a
constant time interval NTu ≥ MTm. Observing each N th
clock tick we can derive a relation between the observed
intervals as follows, see Fig. 5 which illustrates the basic
principle. Let ∆k denote the time between receiving a signal
and the kN th clock tick for k > 1. Then it follows that
∆k−1 + NTu = MTm + ∆k. This relation for k intervals

m

u

MTm

∆k−1 ∆k

NTu

Fig. 5. Space-time diagram of nodes m and u over an epoch of M clock
cycles for the master clock (white). At the local clock, each N th clock cycle
is observed (gray).

together with (3) can be written as the following recursion

∆k = ∆k−1 +NTu −MTm
...

∆2 = ∆1 +NTu −MTm

∆1 = φu −
1

c
ρm,u

which comprises the unknown clock and position parameters.
Using this recursion, we can write the observed interval ∆k

at the kth epoch as

yφ,k = φu −
1

c
ρm,u + (k − 1)(NTu −MTm) + wφ,k, (4)

where wφ,k is a zero-mean noise. From the above equation we
see that φu cannot be identified without determining also the
range ρm,u which is a function of the unknown position x.

Next, we show that it is possible to resolve x using
scheduled transmissions from the three transceivers during an
epoch. The basic principle is illustrated in Fig. 6. When the
master signal reaches transceiver node 1, it transmits after a
known delay ∆0. The subsequent transceiving nodes do the
same according to the given transmission order {m, 1, 2, 3}.
For the kth epoch, the time-intervals between each received
signals at node u can be written as

y1,k =
1

c
ρm,1 + ∆0 +

1

c
ρ1,u −

1

c
ρm,u + w1,k,

y2,k =
1

c
ρ1,2 + ∆0 +

1

c
ρ2,u −

1

c
ρ1,u + w2,k,

y3,k =
1

c
ρ2,3 + ∆0 +

1

c
ρ3,u −

1

c
ρ2,u + w3,k,

(5)

where ρi,j = ‖xi − xj‖2. Each time-interval measurement
produces a hyperbolic constraint on x, cf. the principles of
TDOA approach [28]. Thus three constraints are sufficient for
identifying x in the three-dimensional space, and therefore
also for resolving φu.

At the end of the kth epoch, its duration is recorded,
resulting in

ym,k = MTm + wm,k, (6)

where M is known and therefore we can resolve Tm from
(5). Similarly, for each epoch at u, N ticks are recorded at the
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cρm,1
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cρm,u

1
cρ1,u

∆0

m

1

u

MTm

Fig. 6. Space-time diagram of nodes m, 1 and u over an epoch. Upon
receiving a signal, the transceiving node 1 transmits its signal after a known
delay ∆0. The interval between the received signals at u is: 1

c
ρm,1 + ∆0 +

1
c
ρ1,u− 1

c
ρm,u. Note that the apparent congruence with ∆0 is a coincidence

of the example in one-dimensional space and does not hold in general.

local clock, and the observed time interval is

yu,k = NTu + wu,k. (7)

In sum, using the above observations, made at a passive
node u, ensures that φu, Tu and Tm are identifiable parameters.
This enables wireless synchronization to the master clock
m. The additional transceivers also render x identifiable and
therefore enable self-localization at each node u.

B. Noise model

Each observed time-interval above is subject to two sources
of error arising from its start and stop events, respectively.
In (5) and (6), the start and stop events are triggered by
uncorrelated RF signals. A nominal value of error variance
σ2
0 from such events can be assigned but in practice varying

RF conditions produce outliers so that we assume a varying
σ2
k. The total noise variance for these measured intervals is

E[w2
i,k] = 2σ2

k for i = m, 1, 2, 3 since they are based on
a pair of RF measurements. In (6), one RF measurement is
shared with (4) so that the errors of the observed intervals
are correlated: E[wφ,kwm,k] = σ2

k. Furthermore, because two
consecutive measurements share one RF measurement in (6)
and (5), we can write:

E[wi,kwj,k] =


2σ2

k, i = j

σ2
k, j follows i, or vice versa,

0, otherwise.

We assume that the RF noise yields the dominant part of
σk and that the noise contribution of the timing device itself
is only a small fraction 0 < α < 1 of σk, which depends on
the performance figures of the device. In practice α = 0.1 is
a reasonable value for existing hardware [33], and this is the
value we will assume in what follows. Then since the start

and stop events of the interval in (7) are triggered solely by
two clock ticks, we have E[w2

u,k] = 2α2σ2
k. Finally, beacause

(4) is based on one RF and one clock tick we have E[w2
φ,k] =

(1 + α2)σ2
k. We model the noise sources as jointly Gaussian

and omit the correlation between consecutive epochs.

III. CRAMÉR-RAO BOUNDS

To study some basic properties of SWINS, we begin by
collecting the observed time intervals from epoch k in a vector

yk , Sk
[
yφ,k yu,k ym,k y1,k y2,k y3,k

]> ∈ Rnk ,
(8)

where

Sk =

{
I6 if transceiving nodes present in epoch k,
[I3 03×3] otherwise

(9)
is a selection matrix and nk is the number of measured
intervals in epoch k. Combining (4), (7), (6), and (5), we can
write (8) as

yk = µk + Hkc +
1

c
Gkρ(x) + wk ∈ Rnk , (10)

where c , [φu Tu Tm]> contains the parameters of interest.
The mean vector

µk = Sk


0
0
0

1
c‖xm − x1‖+ ∆0
1
c‖x1 − x2‖+ ∆0
1
c‖x2 − x3‖+ ∆0

 ∈ Rnk

is known and the vector of ranges

ρ(x) =


‖x− xm‖2
‖x− x1‖2
‖x− x2‖2
‖x− x3‖2

 ∈ R4,

is a function of the unknown position x. The known system
matrices in (10) can be written as

Hk = Sk


1 (k − 1)N −(k − 1)M
0 N 0
0 0 M
0 0 0
0 0 0
0 0 0

 ,

Gk = Sk


−1 0 0 0
0 0 0 0
0 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1

 .

Based on the noise model introduced in Section II-B,
the measurement noise vector wk has a covariance matrix
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σ2
kQk , E[wkw

>
k ], given by:

Qk = Sk


(1 + α2) 0 1 0 0 0

0 2α2 0 0 0 0
1 0 2 1 0 0
0 0 1 2 1 0
0 0 0 1 2 1
0 0 0 0 1 2

S>k .

As the noise wk is modeled as Gaussian, we have

yk|c,x, σ2
k ∼ N (µk + Hkc +

1

c
Gkρ(x), σ2

kQk). (11)

This data model enables an analysis of how accurately the
clock parameters can be estimated in SWINS.

A. Cramér-Rao bound

Define the vector

θ ,

[
c
x

]
∈ R3+d,

where d = 2 or 3 is the spatial dimension. The Fisher
information matrix of θ for the kth epoch data model in (11)
is given by [34, ch. 3] [35, App. B.3]:

Jk(x, σ2
k) =

1

σ2
k

[
Hk

1

c
GkΓ(x)

]>
Q−1k

[
Hk

1

c
GkΓ(x)

]
,

(12)
where the Jacobian of the range function ρ(x) is

Γ(x) , ∂xρ(x) =


(x−xm)>

‖x−xm‖2
(x−x1)

>

‖x−x1‖2
(x−x2)

>

‖x−x2‖2
(x−x3)

>

‖x−x3‖2

 ∈ R4×d.

In the above model, the data from each epoch are mutually
uncorrelated. Therefore the information from each epoch is
additive and the total information matrix after k epochs equals

Λk = Λk−1 + Jk, (13)

where Λ0 = 0. Then the mean-square error (MSE) matrix
of any unbiased estimator θ̂ is bounded via the Cramér-Rao
inequality:

Ey[(θ − θ̂)(θ − θ̂)>] � Λ−1k ,

and specifically for ĉ we have

Ey[(c− ĉ)(c− ĉ)>] � (Λc,k −Λ>xc,kΛ
−1
x,kΛxc,k)−1, (14)

where the right-hand side is obtained by partitioning the
information matrix as

Λk =

[
Λc,k Λ>xc,k
Λxc,k Λx,k

]
.

Note that the information matrix, via (12), is dependent on x
and σ2

k, but not on the clock parameters c.
To illustrate the spatial dependence of Λk on x, for d = 2,

we plot the Cramér-Rao bound (CRB) of φu as a function of

x 1 [m ]

x
2
[m

]
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Fig. 7. Resolution limit of φu in [ns], using the square-root of the CRB,
as a function of x. The noise level σk is fixed to 5 [ns] and 250 epochs are
observed. The master and transceiver locations are denoted by an asterisk and
by crosses, respectively.

x in Fig. 7. We set the known positions of the master and
transceivers as

xm =

[
1
1

]
,x1 =

[
11
11

]
,x2 =

[
1
11

]
,x3 =

[
11
1

]
. (15)

The noise standard deviation σk is fixed to 5 [ns] and the
fraction arising from the timing device is set to α = 0.1, which
are reasonable figures for existing hardware technologies.
Using 250 epochs we see that the resolution limit of SWINS is
on the order of sub-nanoseconds across space. We note in the
passing that the spatial configuration of the transmitting nodes
{m, 1, 2, 3} and their transmission order result in a slightly
lower limit in the bottom right quadrant.

B. Hybrid Cramér-Rao bound
When an informative prior for x exists, the unknown posi-

tion can be modeled as a random variable x ∼ N (x̄,Λ−1x ).
Then the MSE matrix of any unbiased estimator ĉ, when
averaged over all possible values of x, is bounded via the
Hybrid Cramér-Rao inequality [36]:

Ey,x[(c− ĉ)(c− ĉ)>] � (Λ̄c,k − Λ̄
>
xc,kΛ̄

−1
x,kΛ̄xc,k)−1, (16)

where the right-hand side is obtained from the expected
information matrix

Λ̄k = Ex[Λk] +

[
0 0
0 Λx

]
=

[
Λ̄c,k Λ̄

>
xc,k

Λ̄xc,k Λ̄x,k

]
.

The expectation is approximated numerically using Monte
Carlo simulations.

To illustrate the spatial variation of (16) for d = 2, we drop
the transceiving nodes and plot in Fig. 8 the Hybrid Cramér-
Rao Bound (HCRB) of φu as a function of the prior mean x̄.
The master position and the precision matrix of the prior of
x are given by:

xm =

[
1
1

]
, Λx =

[
0.12 0

0 0.012

]−1
.
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250 epochs are observed. The master location xm is denoted by an asterisk.

This corresponds to an position error ellipse whose axis
correspond to standard deviations of 0.1 and 0.01 meters,
respectively. There is greater uncertainty along the x̄2-axis
than the x̄1-axis. Consequently the bound on the clock error,
which depends on the range to the master, is greater when x̄
is on positions along one axis than the other. This variation in
the resolution limit is clearly visible in Fig. 8. Observe that
the prior precision of x is sufficient to enable sub-nanosecond
accuracy.

IV. ONLINE ESTIMATOR

In this section, we derive an online estimator for the clock
parameters c and position x. The method refines the estimate
at each epoch k. Its overall memory requirement is constant
and computational complexity scales linearly with k.

A. Linear combiner

Our interest here is to process the data from each epoch
yk sequentially and then form a linear combination of the
so-obtained estimates. This combined estimate is recursively
computed and, as we will see, attains the Cramér-Rao bounds
of the system asymptotically.

The prior knowledge about the position can be equivalently
expressed as x̄ ∼ N (x,Λ−1x ). Then for epoch k, we can
formulate the maximum likelihood estimate

θ̌k = arg max
θ

[
max
σ2
k

p(yk, x̄|θ, σ2
k)

]
, (17)

where p(yk, x̄|θ, σ2
k) = p(yk|θ, σ2

k)p(x̄|x).
The data obtained up to epoch k produce via (17) a sequence

of estimates θ̌1, θ̌2, . . . , θ̌k. The MSE-optimal combination of
the estimates is formed using weights based on the inverse
covariance matrix for each estimate [37]. For epoch k, the
latter is well approximated by the Fisher information matrix in

(12), or by an estimate of it which we denote Ĵk. For notational
simplicity let

θ̌0 =

[
0
x̄

]
and Ĵ0 =

[
0 0
0 Λx

]
(18)

denote the prior estimate and the corresponding information
matrix, respectively. Then we can compute the following linear
combination recursively:

θ̂k =

(
k∑
i=0

Ĵi

)−1( k∑
i=0

Ĵiθ̌i

)
= Λ̂

−1
k sk (19)

where{
Λ̂k = Λ̂k−1 + Ĵk

sk = sk−1 + Ĵkθ̌k
and

{
Λ̂0 = Ĵ0

s0 = Ĵ0θ̌0.

Remark: If a constant noise level σ2
0 is used in (12), i.e.,

Ĵk = Jk(x̌k, σ
2
0), then one can verify that (19) is invariant to

the nominal value σ2
0 > 0. To make (19) robust with respect

to noise outliers the corresponding estimate of Jk � 0 should
decrease when there are outlying observations in epoch k.
This can be achieved using the estimated noise variance from
(17) for each epoch, which we denote σ̌2

k. More concretely,
we use σ̂2

k = max(σ̌2
k, σ

2
0). In this way, the estimator adapts

to noise outliers that exceed a nominal σ2
0 and at the same

time occasional overestimation of the information matrix is
prevented when σ̌2

k is small.

B. Minimization method

We propose a computationally efficient gradient-based
method to solve (17). First we note that the negative log-
likelihood can be expressed as

− ln p(yk, x̄|θ, σ2
k) =

σ−2k
2
‖yk − µk −Hkc−

1

c
Gkρ(x)‖2

Q−1
k

+
nk
2

lnσ2
k +

1

2
‖x− x̄‖2Λx

+K,

(20)

where K is a constant. We will subsequently drop the subindex
k for notational convenience. The minimizing c and σ2 can
be expressed as

č(x) =
(
H>Q−1H

)†
H>Q−1

(
y − µ− c−1Gρ(x)

)
σ̌2(x) =

1

n

∥∥∥Π⊥H (y − µ− c−1Gρ(x)
)∥∥∥2

Q−1

(21)

where

Π⊥H , I−H(H>Q−1H)†H>Q−1

is a projector matrix. After inserting (21) into (20), the
maximum likelihood estimate of x can be obtained by solving

x̌ = arg min
x

lnV0(x) + V1(x)︸ ︷︷ ︸
,V (x)

, (22)

where

V0(x) = σ̌2(x) and V1(x) =
1

n
‖x− x̄‖2Λx

. (23)
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The gradient of V (x) can be written as

∂V (x) =
1

V0(x)
∂V0(x) + ∂V1(x),

where compact expressions of the gradients ∂V0(x) and
∂V1(x) are given in Appendix A. Starting from an initial point
x̌0, we formulate a gradient descent method

x̌i+1 = x̌i + αipi, (24)

where

pi , −
∂V0(x) + V0(x)∂V1(x)

‖∂V0(x) + V0(x)∂V1(x)‖
∝ −∂V (x) (25)

and the step size αi is chosen by a line search

min
αi∈I

V (x̌i + αipi) (26)

in the interval I =
[
0, η‖x̌i − x̌i−1‖

]
where η is a user

parameter which determines the upper limit on the step size.
When prior information is available the initial point can be
taken as x̌0 = x̄. If it is unavailable the centroid of the
known transmitting node coordinates, i.e. x̌0 = 1

4

∑
i xi, or

the estimate from a previous epoch can be used.
In summary, for each epoch, (17) is solved by iterating

(24) until convergence, followed by insertion of the position
estimate into (21). Then a optimal estimate of θ is formed via
(19). A summarizing pseudo-code is given in Algorithm 1.

Algorithm 1 Online estimator at a generic epoch

1: Input: y, s and Λ̂
2: Initialize i = 0 and x̌i

3: repeat
4: Compute pi via (25)
5: Set αi using (26)
6: x̌i+1 = x̌i + αipi
7: i := i+ 1
8: until αi < ε
9: Compute č and σ̌ via (21)

10: Compute Ĵ via (12)
11: Λ := Λ + Ĵ
12: s := s + Ĵθ̌

13: θ̂ = Λ̂
−1

s
14: Output: θ̂, s and Λ̂

V. NUMERICAL EXPERIMENTS

We perform a numerical evaluation of SWINS, comparing
the accuracy of the online estimator with the Cramér-Rao
bounds. The root mean-square error (RMSE) of the parameter
estimates was computed using 103 Monte Carlo simulations.

In the following examples we set the unknown clock pa-
rameters to Tm = 50 × 10−9 and Tu = 50 × 10−9 [s]. The
unknown φu contains the time of flight and the offset ∆1

that we set to 5 × 10−9 [s]. Note however that the bounds
are invariant to these parameter values. The numbers of clock

cycles were set to M = 100 and to N = 101. In all examples
the master is located at the following coordinates

xm =

[
1
1

]
.

In the first scenario we consider a situation in which
we have prior information about the position, modeled by
the distribution N (x̄,Λ−1x ), and no additional transceivers
are present. In the second scenario, we consider no prior
information (i.e. Λx = 0) but add transceivers located at

x1 =

[
11
11

]
,x2 =

[
1
11

]
and x3 =

[
11
1

]
,

cf. the configuration in Fig. 7.
For the online estimator we set the nominal σ0 to 10 [ns]

and let the estimator adapt to noise outliers that exceed σ2
0 .

The upper limit on the relative step size, η, is set to 1.2. We
set the tolerance ε to 10−7.

A. Master node and no transceivers

In the first scenario, the prior information is given by

x̄ =

[
9
8

]
and Λx = σ−2x I2,

where σx parameterizes the precision of x̄ in meters. The un-
known position of the node is randomized as x ∼ N (x̄,Λ−1x ).

The resolution limits of SWINS, given by the HCRB (16),
are shown in Fig. 9. When σx is 20 [cm] and the measurement
noise level σk is 2 [ns], we note that the HCRB of φu reaches
sub-nanosecond levels as the number of epochs k increases.
The bound of Tm eventually collapses to that of Tu, whose
accuracy is fundamentally limited by the errors of the timing
device, cf. (7). In this scenario the online estimator achieves
the HCRB for all parameters.

Fig. 9 illustrates also how the accuracy of the initial position
estimate x̄, namely σx, limits the accuracy of φu. For 500
epochs, a position accuracy about ±50 cm (σx = 0.25) results
in sub-nanosecond resolution limit for φu. The bounds for Tm
and Tu are left virtually unaffected by σx.

B. Master node with three transceivers

The unknown position of the node is fixed at x = [9 8]>.
The resolution limits of SWINS, given by the CRB in (14), are
shown in Fig. 10. For a noise level of σk = 2 [ns], the CRB
of φu reaches sub-nanosecond levels already at 10 epochs.
Similar to the previous scenario the online estimator attains
the bounds, which now decrease steadily with the number of
epochs.

Fig. 10 illustrates also how the measurement noise level
limits the accuracy of φu. The estimation errors decrease as
the unknown noise decreases σk → 0. A small gap to the CRB
for φu is visible when the noise level increases to 5 [ns].
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Fig. 9. Master without transceivers: System resolution limits (HCRB as lines) and estimator performance (crosses and circles) as a function of epochs (left)
and precision of prior (right), respectively. The noise variance is σk is fixed to 2 [ns]. (Left) σx is 0.20 [m]. (Right) Number of epochs is 500.
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VI. CONCLUSION

We have designed a scalable system, denoted SWINS, in
which an indefinite number of receiving wireless units can
synchronize to a single master clock. The synchronization is
performed at the level of discrete clock ticks and the mech-
anism can be implemented with passive receivers, thereby
obviating the need for two-way communication and time-
stamp exchanges.

By deriving Cramer-Rao bounds for the data model we can
conclude that SWINS advances the limits wireless synchroniza-
tion towards sub-nanoseconds levels based on state-of-the art
hardware components. An online estimator based on the maxi-
mum likelihood approach was also developed that can operate
with prior position information or, when such information
is absent, with the proposed positioning infrastructure. The
numerical experiments show that the estimator is statistically
efficient.

In future work we will consider applications which can ben-
efit from precise timing information and, furthermore, study
the impact on performance of the geometric configuration of
the transmitting nodes.

APPENDIX A
DERIVATION OF GRADIENT

The gradient of V1 is readily obtained as

∂V1 =
2

n
Λx(x− x̄). (27)

Due to the logarithm lnV0, we can equivalently redefine V0
as V0 = nσ̌2. Then to obtain the gradient of V0(x) we first
re-write the function as

V0 = ρ>Wρ− 2w>ρ + (y − µ)>Q−1Π⊥H(y − µ), (28)
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where

W = c−2G>Q−1Π⊥HG

w = c−1G>Q−1Π⊥H(y − µ).

Because (28) equals

V0 =
∑
i

∑
j

[W]ijρiρj − 2
∑
i

wiρi +K,

where K is a constant, the gradient can be expressed as

∂V0 =
∑
i

∑
j

[W]ij
(
γiρj + ρiγj

)
− 2

∑
i

wiγi, (29)

where

γi , ∂xρi = ∂x(‖x− xi‖2)1/2 =
x− xi
‖x− xi‖

.

The gradients in (29) and (27) are used in (25).
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