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Abstract—The Radio Environment Map (REM) provides an ef-
fective approach to Dynamic Spectrum Access (DSA) in Cognitive
Radio Networks (CRNs). Previous results on REM construction
show that there exists a tradeoff between the number of measure-
ments (sensors) and REM accuracy. In this paper, we analyze
this tradeoff and determine that the REM error is a decreasing
and convex function of the number of measurements (sensors).
The concept of geographic entropy is introduced to quantifythis
relationship. And the influence of sensor deployment on REM
accuracy is examined using information theory techniques.The
results obtained in this paper are applicable not only for the
REM, but also for wireless sensor network deployment.

Index Terms—Geographic Entropy, Spatial Radio Resource,
Sensor Deployment, Radio Environment Map

I. I NTRODUCTION

Increases in the number of wireless communication systems
has created a heterogeneous radio environment where multiple
Radio Access Technologies (RATs) coexist in the same time
and space. As a result, User Equipment (UE) with cognitive
capabilities is crucial for flexible radio resource usage. Mitola
first proposed Cognitive Radio (CR) in 1998 as a context-
aware radio technology that can be reconfigured to adapt to
the environment [1]. The Radio Environment Map (REM) has
been proposed as a database for dynamic spectrum access
based on UE location and spectrum usage. It contains multi-
dimensional cognitive information such as geographic features,
spectral regulations, equipment locations, radio activity logs,
user policies, and service providers [2].

To build a REM, sensors (or UE) must be deployed to
detect the radio environment. The measurement data from the
sensors is reported to an REM manager. Several approaches
have been employed for REM construction. In [3], Grimoud
et al. used an iterative process to obtain the REM based on
Kriging interpolation to reduce the measurement data required.
Riihijärvi et al. [4] developed a probabilistic model for the
REM which exploits the correlation in the measured data to
reduce the complexity. And Atanasovskiet al. [5] produced
an REM prototype using heterogeneous spectrum sensors.
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Research Program (973 Program) of China (No. 2009CB320400), the National
Natural Science Foundation of China (61227801, 61201152, 61121001), the
National Key Technology R&D Program of China (2012ZX03003006), the
Program for New Century Excellent Talents in University (NCET-01-0259).

The goal of previous work on REM construction was to
reduce the number of measurements required and improve
REM accuracy. There is a tradeoff between the number
of measurements (or number of sensors), and the accuracy.
Faint et al. [6] examined this relationship using computer
simulation, and showed that increasing the sensor density
can increase REM accuracy. However, when the sensors are
sufficiently dense, the improvement is not significant. In this
paper, we examine this tradeoff theoretically and determine
that the relationship between the radio parameter error (REM
accuracy), ispe = Θ( 1√

M
), whereM is the number of sensors.

Besides, we obtain a closed form expression forpe as a
function of M , which is a decreasing and convex function.
This verifies the simulation results in [6]. Converse to previous
approaches, we build the REM by considering the coverage of
all networks, which is inspired by the Cognitive Pilot Channel
(CPC) technology in [7]. Our results are not only applicableto
REM construction, but also to deployment in wireless sensor
networks (WSN).

The rest of this paper is organized as follows. Sensor de-
ployment and its relationship to REM construction is presented
in Section II. The analysis of this relationship is providedin
Section III. In Section IV, we examine the tradeoff between
the number of sensors and REM accuracy. Section V presents
some numerical results, and finally some concluding remarks
are given in Section VI.

II. SENSORDEPLOYMENT

The region is divided into small meshes, which are shown
as small squares in Fig. 1. Sensors are deployed over the entire
region, and can be network detectors, spectrum sensing entities
or just UE. Two sensor deployment schemes are considered,
one-mesh-one-sensor and random sensor deployment. In the
one-mesh-one-sensor scheme, a sensor is deployed in each
mesh randomly. Thus the number of sensors is equal to the
number of meshes. A sensor measurement is considered to be
the radio environment for the entire mesh. Thus after gath-
ering all sensor measurements, the REM can be constructed
(an example is shown in Fig. 7(a1)). With random sensor
deployment, the sensors are randomly deployed in the region
without regard for mesh boundaries. In this case, the majority
of the sensor measurements in a mesh determines the radio
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Fig. 1. The heterogeneous radio network distribution and sensor deployment
for REM construction.

environment, and these values are used to construct the REM
for the region (examples are given in Fig. 7(b1) and (c1)).

III. REM CONSTRUCTION

A. REM parameters

Define the binary representation of networkk at location
(x, y) as

R(k, x, y) =

{

1 if network k is detected at(x, y)
0 otherwise

(1)

Radio parameter at a location is characterized by the following
sum of the binary representations for all networks [7]

I(x, y) =

T
∑

k=1

R(k, x, y)× 2k−1 (2)

whereT is the number of networks. The radio parameter of
meshi is then

P = argmax pij
j

(3)

where pij is the fraction of the area in meshi with radio
parameterj, and

∑N

j=1 pij = 1. N = 2T is the number of
radio parameters. In Fig. 1, there are8 radio parameters and
the radio parameter of mesh 2 is 0.

The radio parameter error (RPE) of meshi is defined as

pe,i = 1−max pij
j

, (4)

and the RPE of the entire region is defined as

pe =

M
∑

i=1

αipe,i (5)

whereM is the number of meshes. The RPE is not a continu-
ous and smooth function ofpij , thus we define the geographic
entropy (GE) for convenience. The geographic entropy of a
mesh is defined as the corresponding uncertainty of the radio
environment in this mesh. In Fig. 1, we are more certain about
the radio environment in mesh #1 than that in mesh #2, since
the radio environment in mesh #2 is more composite. Similar
to the Shannon entropy [11], the geographic entropy of mesh
i is defined as

Hi = −
N
∑

j=1

pij log pij , (6)

The boundary of 

networks

A mesh with pure 

radio environment

A mesh with impure 

radio environment

Fig. 2. The boundary used to determine an upper bound onK.

and the geographic entropy of the entire region is defined as

H =

M
∑

i=1

αiHi = −
M
∑

i=1

αi

N
∑

n=1

pij log pij (7)

whereαi is the area fraction of meshi compared to the area
of the entire region. For a regular mesh division, such as Fig.
1, αi =

1
M

and

H =
1

M

M
∑

i=1

Hi. (8)

B. RPE and GE properties

In this section, we investigate the geographic entropy and
radio parameter error, and the relationship between them.

Theorem 1. The geographic entropy of the entire region is
O( 1√

M
) → 0, whereM is the number of meshes.

Proof: The meshes with an impure radio environment are
distributed along the network boundaries (shown as a solid
curve in Fig. 2). Denote the length of all these boundaries
as ξ, the length of a mesh edge asε, and the length of the
region edge asL. Then we haveM = (L

ε
)2, and the number

of meshes with impure radio environment is upper bounded
by

K ≤ 2ξ
√
2ε

ε2
=

2
√
2ξ

ε
. (9)

This result is obtained by considering the corresponding
packing problem along the boundary, which is shown as a
solid curve in Fig. 2. Moving each point on this line in the
two normal directions a distance

√
2ε gives the two dotted

lines. The area between these lines is2ξ
√
2ε. All the meshes

with an impure radio environment are located between these
dotted lines, so an upper bound onK is 2ξ

√
2ε divided by the

area of a mesh. An upper bound on the geographic entropy is
then

H ≤ 1

M
K logN ≤ 1

M

2
√
2ξ

ε
logN =

1√
M

2
√
2ξ logN√
S

,

(10)
so thatO

(

1√
M

)

→ 0 is an upper bound onH .

Theorem 2. The RPE of the entire region isO
(

1√
M

)

→ 0,
whereM is the number of meshes.



Proof: From 1− pe,i = max pij
j

≥ 1
N

, we have that

pe,i ≤ 1− 1

N
. (11)

The RPE of the entire region is then upper bounded by

pe ≤
1

M
K

(

1− 1

N

)

≤ 1√
M

2
√
2ξL

S

(

1− 1

N

)

(12)

which gives the required result.
Theorems 1 and 2 show the scaling of the GE and RPE as

a function ofM . The relationship between these parameters
is given in the following theorem.

Theorem 3. The geographic entropy as a function of the radio
parameter error is upper bounded by

H ≤ H(pe) + pe log |N − 1| ∆
= ψ(pe) (13)

Proof: According to Fano’s inequality, we have

Hi ≤ H(pe,i) + pe,i log |N − 1| ∆
= ψ(pe,i) (14)

whereHi is the entropy of meshi. Taking the sum gives

H =
1

M

M
∑

i=1

Hi ≤
1

M

M
∑

i=1

ψ(pe,i)
(a)

≤ ψ

(

1

M

M
∑

i=1

pe,i

)

,

(15)
where(a) is due to Jensen’s inequality from the concavity of

ψ(x). Usingpe = 1
M

M
∑

i=1

pe,i, the proof is complete.

The following information theoretic lower bound on the
entropy as a function of the error probability was given by
Feder and Merhav [10].

Lemma 1 ([10]). A lower bound on the entropyh as a function
of the error probabilityπ is given byh ≥ φ(π) where

φ(π)

=







































a1π + b1 0 ≤ π ≤ 1
2

a2(π − 1
2 ) + b2

1
2 ≤ π ≤ 2

3
...

...
ai(π − i−1

i
) + bi

i−1
i

≤ π ≤ i
i+1

...
...

aN−1(π − N−2
N−1 ) + bN−1

N−2
N−1 ≤ π ≤ N−1

N
(16)

with ai = i(i+ 1) log
(

i+1
i

)

and bi = log i.

From [10], φ(π) is an monotone increasing and convex
function of π (see Fig. 1 in [10], whereφ∗ corresponds to
φ in this paper). Based on Lemma 1, we have the following
theorem.

Theorem 4. A lower bound on the geographic entropy of the
entire region as a function of the radio parameter errorpe is
given by

H ≥ φ(pe). (17)

Proof: In Lemma 1, leth = Hi andπ = pe,i so that

Hi ≥ φ(pe,i). (18)

The geographic entropy is then

H =
1

M

M
∑

i=1

Hi ≥
1

M

M
∑

i=1

φ(pe,i). (19)

Sinceφ(pe,i) is a convex function ofpe,i, a lower bound on
H is given by

H ≥ 1

M

M
∑

i=1

φ(pe,i)
(b)

≥ φ(
1

M

M
∑

i=1

pe.i) = φ(pe) (20)

where(b) is due to Jensen’s inequality.
Combining Theorems 3 and 4, we have

φ (pe) ≤ H ≤ ψ (pe)
ψ−1 (H) ≤ pe ≤ φ−1 (H)

(21)

Thus the geographic entropy is related to the radio parameter
error, andan increase of (a reduction of) the geographic
entropy may increase (reduce) the radio parameter error.

The mesh configuration will also affect geographic entropy
and the RPE, as shown in the following theorem.

Theorem 5. If any two meshes are fused, the entropy of the
entire region will not decrease.

Proof: Assume meshes 1 and 2 are fused. The radio
parameter distribution of meshi is pi1, pi2, . . . , piN , and the
area of meshi is si. The radio parameter distribution of the
fused mesh is

{p′1, p′2, · · · , p′N} =
{

s1p11 + s2p21

s1 + s2
,
s1p12 + s2p22

s1 + s2
, · · · , s1p1N + s2p2N

s1 + s2

}

(22)
As the entropy is concave [11], we have

s1

s1 + s2
H(p11, p12, . . . , p1N ) +

s2

s1 + s2
H(p21, p22, . . . , p2N )

≤ H

(

s1p11 + s2p21

s1 + s2
,
s1p12 + s2p22

s1 + s2
, . . . ,

s1p1N + s2p2N

s1 + s2

)

,

(23)
so that

s1H1 + s2H2 ≤ (s1 + s2)H(p′1, p
′
2, . . . , p

′
N ). (24)

Before fusion, the entropy of the entire region is

H =
s1H1 + s2H2

S
+

M
∑

i=3

Hi

S
(25)

whereS is the region area. After fusion, this entropy is

H ′ =
(s1 + s2)H(p′1, p

′
2, . . . , p

′
N )

S
+

M
∑

i=3

Hi

S
. (26)

From (24),H ≤ H ′, so the entropy of the region is not
decreased after fusion.

Duality provides the following theorem.

Theorem 6. Any mesh division operation will not increase the
entropy or the radio parameter error of the region.



Theorem 6 shows that if some meshes are divided into
smaller meshes (such as the meshes with composite ra-
dio propagation environment), and the one-mesh-one-sensor
scheme is adopted, then the geographic entropy as well as the
RPE can be reduced. We next examine the tradeoff between
the number of sensors and the REM accuracy.

IV. REM CONSTRUCTIONTRADEOFFS

In section III, we show that the number of meshes (measure-
ments, sensors) impact the geographic entropy as will as the
RPE. In this section, we investigate the tradeoff between the
number of sensors and the REM accuracy with a near precise
result.

A. One-mesh-one-sensor

If each mesh contains one sensor, the number of sensors
equals the number of meshes. From Theorem 3, we have

pe ≥ ψ−1(H), (29)

which implies thatpe is lower bounded by a function of
entropy ψ−1(H). If ψ−1(H) 6= 0, then the sensing error
can never be reduced to0. To reduce the probability of error
requires thatpe ≤ β. From Theorem 2, we have

1√
M

2
√
2ξL

S
(1 − 1

N
) ≤ β ⇒M ≥ (

2
√
2ξ(N − 1)

LNβ
)2

∆
=M1

(30)
However, because the upper bounds onpe,i andK in Theorem
2 are loose, the bound in (30) is also loose. Therefore, we use
a probability model to obtain near accurate estimates ofK

andpe,i as follow

Theorem 7. The radio parameter error as a function ofM is

pe = κ
1√
M

(31)

where

κ =
π + ln 64

12π

πξ

−4
√
2tanh−1(1−

√
2)L

(32)

which is a constant determined by the length of the boundaries
of all networksξ and the length of entire area’s edgeL.

Proof: Fig. 3 illustrates the boundary of network in a
unit meshi with an impure radio environment. This boundary
can be approximated by a line whenM is large. We ignore
the situation where the boundaries of multiple networks cross
the mesh, as the probability of this occurring is low whenM
is large. The parametersx and θ determine a line in Fig. 3,
wherex is the distance between vertexA and the boundary,
andθ is the angle between this line and horizontal line. Bothx

andθ are random variables with probability density functions
(PDFs)

fΘ(θ) =
4

π
, 0 ≤ θ ≤ π

4
(33)

and

fX(x) =
2√

2L sin
(

θ + π
4

) , 0 ≤ x ≤
√
2L sin

(

θ + π
4

)

2
(34)

θ

1x

2x

3x

x The boundary of 

a network

A mesh, unit square 

A

i
ξ

,e ip

Fig. 3. A boundary of network cut a mesh.

The length of the boundary of network in the mesh is

ξi =

{

x tan θ + x cot θ x ≤ x1
1

cos θ x1 < x < x1 +
x2

2

(35)

The radio parameter error is

pe,i =

{

x2

sin 2θ x ≤ x1
x

cos θ − tan θ
2 x1 < x < x1 +

x2

2

(36)

wherex1, x2 andx3 are as shown in Fig. 3, with values

x1 = x3 = sin θ (37)

x2 =
[√

2 sin
(

θ +
π

4

)

− 2 sin θ
]+

(38)

with [∗]+ = max{0, ∗}. The expected values ofξi and pe,i
are shown in (27) and (28) at the top of the next page, and
the corresponding closed form expressions are

E[ξi] = −4
√
2tanh−1(1 −

√
2)

π
∼= 0.7935 (39)

and

E[pe,i] =
π + ln(64)

12π
∼= 0.1937 (40)

wheretanh−1(z) is the inverse hyperbolic function defined as
tanh−1(z) = 1

2 ln
1+z
1−z

. We determine the value ofK, i.e., the
number of meshes with an impure radio environment, using
(39). If the firstK meshes have an impure radio environment,
then

E[ξi]
(a)
=

1

K

K
∑

i=1

ξi
(b)
=

1

K
ξ (41)

where(a) is due to the weak Law of Large Numbers (LLN),
and(b) is from the fact that the meshes with an impure radio
environment cover all the boundaries of networks. The value
of K can be estimated as

K =
ξ

E[ξi]
=

πξ

−4
√
2tanh−1(1 −

√
2)ε

(42)

If the first K meshes have an impure radio environment,
then the RPE of the entire region is

pe =
1

M

K
∑

i=1

pe,i
(c)
=
K

M
E[pe,i] (43)



E[ξi] =

∫ π

4

0







∫ sin θ

0

(x tan θ + x cot θ) fX(x)dx +

∫

√

2L sin(θ+ π

4 )
2

sin θ

1

cos θ
fX(x)dx






fΘ(θ)dθ (27)

E[pe,i] =

∫ π

4

0







∫ sin θ

0

1

2

x2

sin θ cos θ
fX(x)dx +

∫

√

2L sin(θ+ π

4 )
2

sin θ

(

x

cos θ
− tan θ

2

)

fX(x)dx






fΘ(θ)dθ (28)

where(c) is due to the LLN. Substituting the value ofK from
(42) and the value ofE[pe,i] from (40) in (44) gives

pe =
1√
M

π + ln 64

12π

πξ

−4
√
2tanh−1(1−

√
2)L

(44)

where ξ is the length of all the boundaries of networks,L
is the length of the edges of the entire region, andN is the
number of radio parameters. This is a near precise estimate.

Note that this confirms the resultpe = Θ
(

1√
M

)

. Similar to
the derivation of (30), the number of sensors can be obtained
using the more precise estimate ofpe in (44). From the bound
pe ≤ β, we have

M ≥
(

(π + ln 64)ξ

12
(

−4
√
2tanh−1(1−

√
2)
)

Lβ

)2

∆
=M2 (45)

B. Random sensor deployment

Randomly deploying sensors over the entire region is more
realistic than one sensor in each mesh. Suppose there areJ

sensors and the region is divided intoM meshes. With a
uniform deployment, the probability that a sensor falls into
meshi is 1

M
∀i. Thus the probability that there are no sensors

in meshi is

p0 =

(

1− 1

M

)J

. (46)

If J = kM , then lim
M→∞

p0 = e−k. Thus, the number of meshes

that have no sensors is

Mp0 =
M

ek
(47)

The radio parameters for meshes without a sensor are ran-
domly chosen, so the maximum error probability for an empty
mesh is still1− 1

N
. An upper bound on the radio parameter

error is then given by

p∗e =
1

M

M
∑

i=1

pe,i ≤ pe +
1

M
Mp0

(

1− 1

N

)

(48)

wherepe is obtained from (44). Sincep∗e ≤ β, we have

M ≥
(

(π + ln 64)ξ

12(−4
√
2tanh−1(1−

√
2))L(β − e−k(1− 1

N
))

)2

∆
=M3

(49)
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Fig. 4. The number of sensors vs. the RPE with five networks.
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Fig. 5. The number of sensors vs. the RPE with three networks.

Note thatM3 > M2, i.e., with random deployment the num-
ber of sensors required to achieve the same error probability
as the one-mesh-one-sensor scheme is larger.

Finally, we analyze the situation when a mesh contains
more than one sensor. In this case, the mesh is divided into
smaller meshes such that each smaller mesh contains one
sensor. From Theorem 6, any division operation will not
reduce the geographic entropy and therefore not reduce the
error probability. Thus (48) is still an upper bound on the
RPE and (49) is still a lower bound on the number of meshes
(sensors) with random deployment.

V. NUMERICAL RESULTS

The relationship between the number of meshes (sensors)
and the radio parameter error (RPE) in shown in Figs. 4 and 5
for five and three networks, respectively. This verifies (44)for
the one-mesh-one-sensor scheme. The RPE is related to the
number of sensorsM and the length of the network boundaries
ξ. AsM increases, the RPE decreases, and asξ increases, the
RPE increases. The value ofξ in Fig. 4 is larger than the
corresponding value in Fig. 5. Thus to achieve the same RPE
(for example, RPE = 0.04), the number of meshes for five
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Fig. 6. The relationship between the number of sensors and the radio
parameter error.

networks must be larger than the number with three networks.
Note that the RPE is a convex function ofM , thus whenM
is sufficiently large, the RPE improvement is not significant.

From (45) and (49), for the same error probability, the
number of sensors with the one-mesh-one-sensor scheme will
be smaller that with random sensor deployment. This is
verified by Fig. 6. Ask increases, the number of sensors
with random deployment approaches the number with the one-
mesh-one-sensor scheme. This results can be obtained from
(49) as lim

k→∞
M3 =M2.

Fig. 7 provides three examples of REM construction. In
Fig. 7(a1), the REM with the one-mesh-one-sensor scheme
has errors along the network boundaries. This is because
the radio environment of the meshes along the boundaries is
impure and may contain errors in the measurement results.
The radio parameter error of each mesh is illustrated in Fig.
7(a2). Figs. 7(b1) and (c1) illustrate the REM with random
sensor deployment andk = 1 and k = 2, respectively.
Note that the results in Fig. 7(c1) are more accurate than in
(b1). This is expected since (49) indicates that the RPE is a
decreasing function ofk. Figs. 7(b2) and (c2) show the radio
parameter error distribution for the REMs in Figs. 7(b1) and
(c1). respectively. A mesh without any sensors is shown in
red. Note that Fig. 7(c2) contains fewer red meshes than Fig.
7(b2). This confirms (47), which indicates that the number of
vacant meshes is a decreasing function ofk. In Figs. 7(a2),
(b2) and (c2), the meshes that are not red or dark blue denote
meshes that have an incorrect radio parameter. The number
of such meshes is lower in Figs. 7(b2) and (c2) than in Fig.
7(a2). This indicates that random sensor deployment results in
fewer measurement errors, but there are more meshes with no
sensors whenk > 1.

VI. CONCLUSION

In this paper, we have achieved the relationship between
the number of sensors and the radio environment map (REM)
accuracy. The concept of geographic entropy is introduced
to quantify this relationship. And the influence of sensor
deployment on REM accuracy is examined using information
theory techniques. The results obtained in this paper are

(a
1
)

(a
2
)

(b
1
)

(b
2
)

(c
1
)

(c
2
)

Fig. 7. REM construction results and the corresponding RPE values for the
networks in Fig. 4; (a1) corresponds to the one-mesh-one-sensor scheme with
16 × 16 meshes (sensors); (b1) corresponds to random sensor deployment
with 16 × 16 meshes andk = 1; and (c1) corresponds to random sensor
deployment scheme with16 × 16 meshes andk = 2. The RPE values for
(a1), (b1) and (c1) are given in (a2), (b2) and (c2), respectively.

applicable not only for the REM, but also for wireless sensor
network deployment.
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