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ABSTRACT 

New challenges demand that manufacturing companies adopt sustainable approaches and succeed in this 
adoption. Energy efficiency plays a key role in achieving sustainability goals, and performance indicators 
are necessary beyond measurement of data to evaluate energy efficiency. In this landscape, scalable and 
easy-to-understand metrics providing an energy competitiveness degree of manufacturing resources are 
currently missing. The study aims to test through simulation applicability and potential offered by a novel 
Energy Overall Equipment Effectiveness - Energy OEE - indicator for discrete manufacturing firms. A 
simulation of a discrete manufacturing CNC machine case is used to evaluate the applicability of using 
Energy OEE assessment for management decision support. As a result, this study paves the way to a 
better exploitation of data that energy monitoring and sensor technology aim to offer in the future.  

1 INTRODUCTION 

Key Performance Indicators (KPIs) turn measurement of a performance into meaningful information for 
stakeholders, who can visualize and further analyze for potential improvements. In this sense, current 
industrial competitive landscape and resulting needs require measurement of energy consumption 
supported by properly defined KPIs to track progress in achieving defined targets to foster 
competitiveness by improving energy performances. 

This study aims at highlighting how to measure energy performances of discrete manufacturing 
factories through OEE-based-energy-related KPIs serving as a decision support tool for managing 
operations in a manufacturing plant to achieve competitiveness, and to illustrate and validate potential 
use of such KPIs using them within a virtual manufacturing facility modeled by Discrete Event Simulation 
(DES). 

A methodology to design and implement novel energy performance indicators for discrete 
manufacturing firms developed in a previous research of the authors (Barletta, May, and Taisch 2012) 
represents the methodological background of this study.  

A good example of an already-existing KPI to foster competitiveness by improving efficiency 
performances arising in the background study is the Overall Equipment Effectiveness (OEE) indicator. 
Thereby, proposing an “energy version” of the OEE, able to assess impacts of energy consumption losses 
rather than time losses, by testing its potential benefits through simulation, meets the needs previously 
illustrated, with the advantage of proposing an energy indicator for which structure and functioning are 
similar to an already well-known indicator used for tracking efficiency in the manufacturing industry. 
Henceforward, this energy alter ego of OEE will be called Energy OEE.  

1096978-1-4799-7486-3/14/$31.00 ©2014 IEEE
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The contents of this paper are outlined as follow: State of the art (Section 2), Research methodology 

(Section 3), Theoretical approach (Section 4), Practical approach (Section 5), Case implementation 
(Section 6), Discussion (Section 7), and Summary and Conclusions (Section 8).  

2 STATE OF THE ART 

Use of the OEE indicator can be considered almost an evergreen within industries’ practices. First 
presented inside the Total Productive Maintenance (TPM) philosophy by Nakajima (1988), the OEE is 
generally measured in terms of the well-known six big losses (see the boxes underneath “Effectiveness 
Loss” in Figure 1). These are functions of availability rate, performance rate and quality rate of the 
machine, or production line or factory that constitute the three sub-indicators (“OEE Factors” in Figure 
1), into which the OEE can be decomposed.  

 

Figure 1: Overall Equipment Effectiveness calculation and losses (Nakajima 1989). 

Modeling and simulation tools based on complex systems modeling are now standard in 
manufacturing. Heilala et al. (2008) considered and used Discrete Event Simulation (DES) as a tool for 
identification of production waste (e.g. waiting, work in process, inventories, transportation). 
Ingemansson and Bolmsjö (2004) showed different case studies prove DES potential to increase 
efficiency in a manufacturing system by studying production disturbances, later counted as losses 
pertaining to OEE calculations (Ingemansson and Oscarsson 2005).Finally, DES was used by Badiger and 
Gandhinathan (2008) to assist in recognizing the most convenient strategy for calculating OEE and 
defining optimum values for a manufacturing resource. 

Muchiri and Pintelon (2008) showed that since no standard exists for calculating OEE, several 
versions of indicators hailing from OEE have been developed to accomplish several sectors and several 
scales. In the previous decade, several studies envisaged energy efficiency and energy consumption as 
some of the most critical drivers to foster sustainability in Manufacturing (Bunse et al. 2011; Morvay and 
Gvozdenac 2008). However, by consulting studies pertaining OEE-related indicators (Dal, Tugwell, and 
Greatbanks 2000; De Ron and Rooda 2005; Muchiri and Pintelon 2008), review papers on sustainability 
measurements (Dahl 2012; Joung et al. 2013) and specific reviews on energy-related indicators (Barletta, 
May, and Taisch 2012; Bunse et al. 2011), it was established that so far no attempt to develop an energy-
version of the OEE indicator has been published in literature.  

3 RESEARCH APPROACH 

The Research Objective (RO) has been defined as testing the potential in using an Energy OEE indicator 
to track and assess the energy competitiveness degree of a manufacturing resource in discrete production 
by simulation, with the final aim of providing feedback on how to improve production management 
practices from a sustainability perspective. 

1097



Barletta, Andersson, Johansson, May, and Taisch 
 
Research methodology involves the two pillars of the case study methodology and DES. Their use 

and role is described below:  
 case study methodology has been used to build the methodology to develop energy-related 

indicators in the discrete manufacturing sector proposed in a previous study of the authors 
(Barletta, May, and Taisch 2012). This methodology is addressed in Section 4. 

 DES is used to validate the applicability of proposed Energy OEE indicators addressing the 
previously identified gap. Figure 2 illustrates the research approach from a double perspective: a 
simulated environment and a real environment, depicting actors and objects involved and 
considering information flows among them.  
 

 

Modeled factory

Researcher

SIMULATED ENVIRONMENT‐ AS USED IN THE PAPER

Decision‐making

Energy OEE

Energy OEE

Real factory

Decision‐making

Production engineers
Energy Managers
Operators

PROPOSAL FOR FUTURE REAL IMPLEMENTATIONS

Energy OEE*

DES

Simulation

 

Figure 2: Research approach. 

In Figure 2, a rational model of a real discrete manufacturing factory is created: assumptions, 
hypotheses and the description of the use case are presented in Section 6. Over simulation runs, statistics 
on time losses through production time and consequent energy consumptions of CNC machines are 
collected and matched to finally calculate Energy OEE and its sub-indicators. Researchers discuss Energy 
OEE value, compare other values of its sub-indicators and thus seek to improve energy performances of 
the systems’ design, then implementing within the simulation model a future “to-be scenario” or possible 
alternatives a team of production engineers, energy managements and operators could have chosen in the 
same circumstances. To foster system energy competitiveness, a single, most preferable scenario or a 
limited set of alternatives will be tested, and the Energy OEE value -with its sub-indicators- analyzed and 
used as presented here. The research process, in Figure 2’s red circle, strives to emulate what takes place 
in a real manufacturing environment, as in the grey circle. First, DES is used to calculate Energy OEE of 
a manufacturing resource according to system function and parameters. Subsequently, discussions of the 
simulation’s results among all actors involved in operation management and energy performances take 
place within the decision-making process, and alternatives are generated considering not only the goal of 
improving Energy OEE value, but also other goals (e.g. KPIs tracked in the company’s dashboard) and 
constraints (e.g. budget constraints, regulations). Thus, in the real world, combining Energy OEE and 
DES will serve as a decision support tool for using the proposed indicator, and to evaluate different 
manufacturing processes with main stakeholders, avoiding tests performed directly in the factory. 
Preferred alternatives to be tested through DES and resulting Energy OEE values are discussed as shown. 
Theoretical and practical findings arising from use case implementation will be discussed in Section 7, in 
order to assess whether and how the proposed indicator satisfies the needs and objectives of the study. 
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4 THEORETICAL APPROACH 

Figure 3 demonstrates the six steps of the cross-view methodology for developing novel energy-related 
indicators (Barletta, May, and Taisch, 2012). In the study just quoted, the development of the Energy 
OEE as an implementation of this methodology is shown in its entirety.  

Features and scope of:
• MANUFACTURING RESOURCE 
to be assessed;
• MANUFACTURING SYSTEM 
within discrete manufacturing factory

MANUFACTURING STATES [s] ENERGY [kW]

Step 1

Step 2 Step 3
Step 4

CAUSE-EFFECT 
RELATIONSHIPS

DESIGN 
PHASE

Energy Diagram
Energy KPIs formulas [kWh]

IMPLEMENTATION
PHASE • Energy KPIs in Company KPI 

Dashboards/Scorecards.
• Attributes of KPIs: Frequency of 
monitoring, People in charge
• As is values VS. To be values.

Step   5

Step     6

 

Figure 3: Definition steps to design and use the Energy OEE indicator (adapted from Barletta, May, and 
Taisch 2012). 

Step 1 is to define the resource to be monitored through the Energy OEE and the manufacturing 
system boundaries in which it operates, for instance in terms of layout configuration, transformation 
processes and so forth.  

Step 2 defines “manufacturing states”, that is to say events causing time inefficiencies (measured in 
[s]) in the manufacturing system acting as energy consumption drivers for the manufacturing resource 
identified in step 1, and within the scope identified in step 1.  

Step 3 defines energy states, that is to say electrical power requirements [kW] of a manufacturing 
resource, whose time length (and consequently, related energy consumption) can be potentially affected 
by events defined in step 2.  

Step 4 is the core step of the methodology: the cross-view methodology connects manufacturing 
states to energy states by shared investigation and identification of cause-effect relationships, to thus 
highlight the energy consumption connected to each state. 

In step 5 energy losses obtained through the connections explained above are calculated and 
represented in different categories of energy consumption inside an “energy diagram” bar chart, like so 
time loss categories are grouped in Figure 1 (e.g. Operating Time, Net Operating Time). The energy 
diagram bar chart is structured as the energy alter-ego of Nakajima’s bar chart diagram, (see the bar chart 
in Figure 1 underneath “Equipment” box). Therefore, definition and calculation of Energy KPIs can be 
finalized. The Energy KPIs are defined as indicators made up of energy consumption and production data 
gathered from the shop floor in discrete or continuous time and directed to highlight efficiency levels of 
different operations and manufacturing system management in energy consumption of productive energy-
consuming resources. Step 5 closes the design phase of the cross-view methodology. 

In the implementation phase (step 6), indicators developed are placed in KPI dashboards or KPI 
scorecards. In the study, we investigate how to effectively implement one of these indicators in 
manufacturing facilities through simulation, in order to fully serve as a decision support tool in operation 
management from a sustainable-and-energy-efficiency perspective.  
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5 PRACTICAL APPROACH 

This section shows how methodological design steps described in the previous section have been applied 
to develop the Energy OEE indicator. Testing the proposed Energy OEE in a modeled use case 
manufacturing line through DES will be described in Section 6. Application of steps follow the sequence 
in Figure 3 and is based on Barletta, May, and Taisch (2012).  

Referring to the mapping of discrete manufacturing processes done in the report produced by A.D. 
Little (2000), step 1 focuses on CNC machines operating final shaping (material removing) processes, in 
particular cutting and machining, since this type of operation is widely discussed in the literature and 
industrial practices. Thereby, robust sources of information for validating the next steps of the study exist. 
Since this work aims to validate and discuss the implementation of a novel KPI, work scope has been kept 
as simple as possible: according to the ISA-95 standard (ANSI/ISA-95 2010), step 1 embraces a Work-
Unit-level or Work-Centre-level, defined here as a CNC machine-level of measurement. Other features 
and elements of the scope deserving to be considered in step 1 have already been explored in Section 1. 

With regard to events affecting formula of indicators and thereby considered in the implemented 
DES, the study takes into account events affecting energy consumption of the CNC machine solely in 
charge of the operation management of the factory: events peculiarly stemmed from upstream supply 
chain or downstream supply chain will not be considered. This way to narrow the research scope does not 
limit the study: as discussed in Section 8, even future broader-scale applications can be originated and 
tested through DES.  

In applying step 2, the manufacturing states considered in the use case correspond to the six big losses 
(“effectiveness losses”) previously depicted in Figure 1.  

In applying step 3, in this study, we assumed constant power requirements within each operational 
mode, although the actual power consumption fluctuates over time. The improvement of the energy 
performance of resources through monitoring and analysis is enabled exclusively by managerial levers 
(e.g. by improving line balancing or production scheduling). Figure 4 provides a generic example of 
discrete energy states of the productive resource modeled through a state diagram, depicting a possible 
energy behavior of a general CNC machine in a large set of situations (the energy state of maintenance 
has not been graphically represented in Figure 4 in order to keep it much easier to understand, since we 
have assumed that a failure can always take place when the machine is not in “Off” state).  

 

Figure 4: A sample energy state diagram for a CNC machine (Barletta, May, and Taisch 2012). 

Within step 4, Ishikawa diagrams for investigating and mapping cause-effect relationships between 
manufacturing states and energy states are drawn. The resulting outcome is summed-up in a “cross-view” 
as in Figure 5 below, to illustrate both a “manufacturing view” and an “energy view” of a CNC machine. 
Figure 5 represents manufacturing states that affect energy states of production processes. It shows an 
application example of a CNC machine in a manufacturing line. The cause-effect relationships drawn 
within the application of the methodology strongly depend on understanding of system behavior (what 
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variables impact on energy consumptions), on the hypotheses made to simplify the application of 
methodology and on energy data availability and process data availability.  

  

 

Figure 5: Cross-view methodology applied to Energy OEE: time losses affecting power requirements. 

Within step 5, Figure 6 represents the energy diagram, as defined in Section 4, for the Energy OEE 
indicator. Energy inefficiencies caused by breakdown losses, subsequent speed and quality losses, are 
deducted from the total amount of energy consumed over the monitored time, using the OEE-approach to 
calculate sub-indicators expressed by Availability rate, Performance rate and Quality rate of the 
equipment. Taking into account only “unscheduled downtime”, only Energy in Quality Losses, Energy in 
Speed Losses and Energy in Downtime Losses (marked in red) are considered, as in the OEE index. By 
adding energy spent in planned downtime, i.e. in planned maintenance, all losses in Figure 6 have to be 
considered, as Total Effective Equipment Performance (TEEP) does. Thus, a novel Energy TEEP, that is 
an energy-based TEEP, can be further calculated and assessed. 

 

Figure 6: Energy OEE Diagram. 

Valuable Energy (E0) represents energy spent for processing non-defective parts Qnd . Processing is 
the power required for active processing of material removal Ppr 	only, a sort of marketable and valuable 
energy. Energy in Quality Losses represents that spent for processing defective parts Qd. Net Operating 
Energy (E1) is energy spent in processing the whole production Q , where Q = Qnd  +Qd 

: in fact, E1 

represents production of Q according to the ideal cycle time or ideal throughput of the machine. 
Operating Energy (E2) is the result of Net Operating Energy added to energy spent over idle times and 
time in reduced speed (Energy in Speed Losses). Breakdown losses in Figure 5 have been split into 
“blocks” of Energy in Downtime Losses and Energy in Planned Downtime, depending on when energy is 
spent for maintenance activities; if spent over unscheduled (corrective) time or scheduled maintenance 
time (preventive). As considered in OEE index and in Figure 5, Energy in Downtime Losses includes set 
ups and adjustments, i.e. the tool changing. Energy in Planned Downtime includes energy spent for 
machine starts, according to the shift scheduling and the day-offs in calendar time. In the energy diagram, 
Loading Energy (E3) is equal to the sum of Operating Energy and Energy in Downtime Losses, while 
Energy in Calendar Time (E4) adds Loading Energy to Energy in Planned Downtime. Finally, Energy 
OEE is formulated as: 
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																																		Energy OEE= Eavailability×Eperformance×Equality																																																											ሺ1ሻ.                   

At high level, Energy OEE sub-indicators formulas are respectively calculated as shown in Eq. 2:  

																																		Energy OEE=
Operating Energy

Loading Energy
 ×

Theoretical	Energy consumption for Q

Operating Energy 
×

Qnd 

Q
																	ሺ2ሻ 

Eperformance deserves particular focus. It represents how much the Operating Energy, as defined in this 
study, is far from ideal energy consumption when the machine is running at the same pace as its ideal 
cycle time, and subsequently no energy losses for time speed reduction occur. In the case of energy, the 
corresponding measure of the cycle time is represented by the Specific Energy Consumption (SEC) 
indicator, presented for the first time by Phylipsen, Blok, and Worrell (1997). Accordingly, the standard 
(or ideal) value for representing Theoretical Energy consumption per part is constituted by the lower 
energy consumption per part (thus, an Ideal SEC), or alternatively, by the largest number of parts 
produced by a certain amount of energy (Ideal Energy Efficiency, defined as the inverse ratio of the Ideal 
SEC). An Ideal SEC may be equal to energy spent for exclusively processing one part, at most plus 
energy for changing tool operations to shape the features of the part. For simplicity, we consider the Ideal 
SEC as Ideal SEC= Epr=Tpr ×Ppr, or the energy for processing one part at a time Tpr (where Tpr is the 
processing time of the part) requiring power Ppr. Thus, Eperformance is presented again below:  

																																																																					Eperformance=
Ideal	SEC×Q

Operating Energy 
																																																																					ሺ3ሻ 

Finally, simplifying (2), the aggregated formula of Energy OEE is: 

																																																																			Energy OEE= 
Ideal SECൈ	Qnd 

Loading Energy 
																																																																					ሺ4ሻ 

Considering the contribution of planned downtime, the Energy TEEP is calculated as follows: 
 

																																																						Energy TEEP= 
Valuable Energy

Energy Consumption in Calendar	Time 
																																							ሺ5ሻ 

 
It represents a sort of “lean energy indicator”, since it assesses how much valuable energy has been 

used in relation to total energy consumption. 
One of the most crucial points pertaining to the application of Energy OEE within a certain use case 

is that the consideration of parameters and variables constituting formulas of every sub-indicators 
strongly depends on the characteristics of the system defined within step 1, as well as data availabilities 
and relevance of the event affecting total energy consumption. For instance, if the system produces a 
product mix that requires set-ups, then the number of tool changing within the production sequence and 
the energy spent for each set up must be included in the calculation of the Loading Energy.  

6 CASE IMPLEMENTATION 

This chapter illustrates the descriptive use case designed and modeled through DES to show how the 
Energy OEE indicator can act as decision support for manufacturing in a DES environment. The purpose 
of the simulation test is to exemplify how this can be used and to test the potential.  

6.1 Description of Use Case 

The modeled system is a simple manufacturing line machining casted steel for the car industry. It consists 
of two CNC stations and one assembly station run by two operators. The system processes only one 
product variant and no set up is required. Table 1 provides numerical and qualitative data about the most 
relevant model input information for the three system stations. Distribution of cycle times, Mean Time To 
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Failure (MTTF), Mean Time To Repair (MTTR) and percentage of Qd among Q define the manufacturing 
states and how they impact on Energy OEE as selected in this use case. Cycle times depend on the exact 
variant of product and are modeled as a triangular distribution. Breakdowns cause shutdown of Stations 1 
and 2. MTTF is modeled according to an exponential distribution, whilst MTTR is modeled according to 
a triangular distribution. Mean values of each distribution are shown in Table 1 below. From the seventh 
to the last line of the table, station power requirements have been provided. In particular, Pd  is the power 
required when the station is in failure state, waiting to be repaired, Pm  is the power required when the 
station is being repaired using measures that require power, and Pi  is the power required when the station 
is on and not processing, that is power that keeps components standing by to process parts. 

Table 1: A set of inputs to the model: manufacturing and energy states of system stations. 

INPUT Station 1 - Drilling Station 2 – Fine turning  Station 3 - Assembly 
Function To drill several holes for casting 

metal plate. 
To shape the part and make it fit the 
dimension and surface criteria. 

To assemble additional parts and 
pack the product unto pallets.  

# entities 1 machine 2 machines 1 station, 2 operators 
Cycle time [s] Triangular min 32, max 38.4 Triangular min 43, max 51.6 Triangular min 21, max 45 
MTTF[h] Exp mean 14 Exp mean 16 - (always available) 
MTTR[h] Exp mean 0.17 Exp mean 1.5 - (always available) 
Qd % 1% 1% 3% 
Ppr [kW] 10 13.84 25 
Pd [kW] 1 1 - 
Pm [kW] 4.64 7.56 - 
Pi [kW] 4.64 7.56 - 

Parts are moved from Station 1 to Station 2 by conveyor containing at most 3 parts. Figure 7 shows 
the modeled system: the red circle indicates Station 1 as the station for which Energy OEE and other 
indicators will be calculated and discussed. The conveyor takes 10 seconds to transfer parts to the next 
station. 

Loading station
S2 (Fine turning)

S1 Drilling

Tool box

Part 1

buffer b
uffer

Part 1 Part 1

...From another area/
department of the plant

Part 2

Assembly

Storage

 

Figure 7: A graphical representation of the modeled manufacturing line. 

The implemented DES can provide data about system and component efficiency performances from 
both time and energy perspectives. Figure 8 highlights selected output metrics of the simulation model for 
supporting the discussion of results of Status Quo scenario compared with results from the three scenarios 
that will be later generated. The values reported in Figure 8 stem from the design of experiments applied 
to all the scenarios evaluated in the DES, that are going to be described in the next section. 

6.2 Result Run Scenarios and Discussion 

Looking at the results of Status Quo, Eperformance indicator’s value is recognizable as the major responsible 
for the overall efficiency loss. Therefore, scenarios designed and presented here focus on improving the 
Energy OEE by reducing unnecessary energy spent by small stoppages and speed losses. The three 
experiments tested in the simulation model, named Scenario 1, Scenario 2 and Scenario 3, aim to improve 

Energy OEE 
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the Energy OEE by looking at different aspects of the production performances from an operations-
management perspective. In particular:  
 

 

Figure 8: A set of outputs from the model: Energy performance indicators selected for discussions. 

 Scenario 1 focuses on balancing other entities of the system but Station 1: the cycle time of 
Station 2 has actually been improved by 12%, moving from 43 s to 38 s. However, we assumed 
that the total value-added energy to process the product is still the same of the original scenario. 
Thereby, this is equivalent to optimize time and procedures pertaining non-valuable (that is, non-
processing) activities of Station 2’s CNC machine; 

 Scenario 2 focuses on Station 1, in an attempt to stabilize its variability: the triangular distribution 
parameters have been modified from a triangular distribution with max 38.6 to a triangular 
distribution with max 35.2, by keeping the same min (32) of triangular distribution of Status Quo 
scenario. This is equivalent to reduce by half speed losses affecting	Eperformance indicator; 

 Scenario 3 acts from a different perspective to the others. It chooses to focus on Station 1 and 
improve Eperformance  by deliberately “neglecting” careful maintenance of the station, but by 
maintaining the Quality rate. Very high availability of Station 1 is not a paramount priority, and a 
“softer” maintenance policy could reduce maintenance costs. Station MTTF has been diminished 
from 50200 s to 49000 s, the Maintenance Mean has been diminished from 7200 s to 7000 s and 
Total time dedicated to Maintenance has been diminished from 86400 s to 86000 s. 

The DES model is changed according to the scenario and the results are compared. Each experiment 
embodies 20 runs, and each run stopped by the model when 10000 parts had been produced. Mean and 
standard deviations of statistics of energy consumptions and defective parts Qd  have been collected and 
presented in Table 2. Each scenario has been tested by analyzing the Energy OEE indicator differences 
from Status Quo. The comparison tests if there is any significant change to the Energy OEE values. The 
use of a one-tailed t-test is to see whether there is any statistical difference between the results. A 
comparison of these scenarios and the Status Quo scenario is summed-up in Table 3 below. The columns 
contain proper metrics selected for comparison in the previous section (see Figure 8). The highest 
performance increase was gained from Scenario 1. 

Table 2: Mean, and Standard deviations in brackets, of output data from the experiments. Bold is 
statistically significant from Status Quo using one-tailed t-test. 

Σ Energy Consumption [kWh] Status quo Scenario 1 Scenario 2 Scenario 3 
Valuable Energy 879 (0.973)  880 (0.887) 879 (1.02) 879 (0.902) 

Net Operating Energy 888 (0) 889 (0) 888 (0) 888 (0) 

Operating Energy 1218 (92.1) 1128 (32.3) 1176 (48.6) 1208 (55.7) 

Loading Energy 1221 (92.5) 1130 (32.3) 1178 (49.3) 1210 (56.2) 

Energy Consumption in Calendar Time 1274 (101) 1181 (36.3) 1237 (52.1) 1270 (64.5) 

Defective parts 103 (10.9) 101 (9.98) 101 (11.5) 103 (10.1) 
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Table 3: Comparison of results among the three scenarios. 

OUTPUT [%] Eavailability Eperformance Quality Energy 
OEE  

Energy 
TEEP 

Status quo 99.82 72.92 99 72.04 69.00 

Scenario 1 99.79 78.81 99 77.85 74.52 

Scenario 2 99.79 75.58 99 74.66 71.08 

Scenario 3 99.81 73.56 99 72.66 69.26 

 
According to Table 2, Scenario 1 was the only scenario that was observed to have a significant lower 

energy consumption on the total time. Scenario 1 will give the company a 7% higher Energy OEE, 
whereas the other scenarios did not have a significant overall effect. Values of the single indicators 
forming the Energy OEE give the analyst a hint of what are the performances to improve from an 
operation-management perspective. As a matter of fact, from the results of Status Quo’s Energy OEE, the 
analyst knows where to focus the attention upon to improve the total energy performance. However, the 
analyst still needs to investigate, as done by generating and testing alternative simulation scenarios, what 
exactly is the problem negatively affecting the Energy OEE. Besides, the proposed approach enables the 
simulation of more complex scenarios where different system parameters can be modified simultaneously 
(i.e. acting on maintenance and quality in parallel).  

7 DISCUSSION 

By analyzing the three sub-indicators of the Energy OEE, detecting the source of the major energy 
consumption impact on the overall energy equipment effectiveness becomes extremely immediate. In 
generating alternatives to improve the level of energy competitiveness, decision-makers can simulate 
these via DES and evaluate each scenario fully, considering results from simulation and existing 
constraints, trade-off objectives, costs and consequences involved in implementing the alternatives. 
 The need for significant measurements calls for adequate monitoring periods, capable of reducing the 
impact of short-term special events that play a negligible role in sizing production resources. Industries 
that are better candidates for such a proposal are those running with a level of automation able to justify 
investment of a high-granularity monitoring that Energy OEE requires. Other well-strengthened 
simulation approaches in manufacturing, apart from DES, might be used to test the Energy OEE within a 
certain scenario and scope of analysis. For instance, Jahangirian et al. (2010) pointed out how Petri-net 
simulation, Monte Carlo simulation or Agent Based Simulation (ABS) lend themselves better in 
supporting decision-making processes on scheduling and resource allocation, whereas System Dynamics 
(SD) well satisfies decision making processes on strategy and supply chain management.  
 Finally, the simulation model used here along with the flexible structure of designed indicators, 
allows upper-scale analyses of the manufacturing resource (e.g., equipment, process, department, factory), 
but is not necessarily circumscribed by a single station. The aggregation of data taken from model 
statistics (and from a “real” shop floor) and following calculations in the Energy OEE, enable broader 
scopes of investigation.  

8 SUMMARY AND CONCLUSIONS 

The ability to measure and track competitiveness in reaching energy efficiency and sustainability goals 
can now count as a competitive advantage in itself for manufacturing firms. So far, in the state of the art, 
no energy indicators adding value in the form of energy competitiveness information exist. 
 To compensate, this study proposes a novel OEE-based-energy-related KPI that, combined with DES, 
serves as a decision support tool to track and achieve energy competitiveness. According to results in 
Section 6, the use of the Energy OEE combined with DES allows production engineers and other 
stakeholders in the manufacturing system to visualize, track, claim and benchmark a quick and easy-to-
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understand measure of the level of energy competitiveness achieved by the system. The combined use of 
Energy OEE with DES allows improvement to both energy efficiency and system productivity. This 
proposal enables a proper diagnosis regarding operation management activities, policies and practices that 
significantly affect the system energy consumption scope. Activities might stem from decisions taken 
about production shifts, preventive maintenance, or production scheduling rules. 
 Finally, this study paves the way to a full adoption of the Energy OEE indicator as one of the metrics 
put into the multi-objective functions to be optimized in production management problem-solving, with 
the purpose of helping stakeholders to select the best alternative for a specific case. 
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