
Combing signals from spontaneous reports and
electronic health records for detection of adverse
drug reactions
Rave Harpaz,1,2 Santiago Vilar,1 William DuMouchel,3 Hojjat Salmasian,1

Krystl Haerian,1 Nigam H Shah,2 Herbert S Chase,1 Carol Friedman1

▸ Additional supplementary
files are published online only.
To view these files please visit
the journal online (http://dx.
doi.org/10.1136/amiajnl-2012-
000930).
1Department of Biomedical
Informatics, Columbia
University Medical Center,
New York, New York, USA
2Stanford Center for
Biomedical Informatics
Research, Stanford University,
Stanford, California, USA
3Oracle Health Sciences,
Burlington, Massachusetts,
USA

Correspondence to
Dr Rave Harpaz, Stanford
Center for Biomedical
Informatics Research, Stanford
University, Medical School
Office Building 1265 Welch
Road Stanford, CA 94305-
5479, USA;
rharpaz@stanford.edu

Received 3 March 2012
Accepted 24 September 2012
Published Online First
31 October 2012

To cite: Harpaz R, Vilar S,
DuMouchel W, et al. J Am
Med Inform Assoc
2013;20:413–419.

ABSTRACT
Objective Data-mining algorithms that can produce
accurate signals of potentially novel adverse drug
reactions (ADRs) are a central component of
pharmacovigilance. We propose a signal-detection
strategy that combines the adverse event reporting
system (AERS) of the Food and Drug Administration and
electronic health records (EHRs) by requiring signaling in
both sources. We claim that this approach leads to
improved accuracy of signal detection when the goal is
to produce a highly selective ranked set of candidate
ADRs.
Materials and methods Our investigation was based
on over 4 million AERS reports and information extracted
from 1.2 million EHR narratives. Well-established
methodologies were used to generate signals from each
source. The study focused on ADRs related to three
high-profile serious adverse reactions. A reference
standard of over 600 established and plausible ADRs
was created and used to evaluate the proposed
approach against a comparator.
Results The combined signaling system achieved a
statistically significant large improvement over AERS
(baseline) in the precision of top ranked signals. The
average improvement ranged from 31% to almost
threefold for different evaluation categories. Using this
system, we identified a new association between the
agent, rasburicase, and the adverse event, acute
pancreatitis, which was supported by clinical review.
Conclusions The results provide promising initial
evidence that combining AERS with EHRs via the
framework of replicated signaling can improve the
accuracy of signal detection for certain operating
scenarios. The use of additional EHR data is required to
further evaluate the capacity and limits of this system
and to extend the generalizability of these results.

INTRODUCTION
During the post-marketing period when drugs are
used on larger populations and for more varied
periods of time, unanticipated adverse drug reac-
tions (ADRs) may occur, which alter the risk–
benefit ratio enough to require regulatory action.
Post-marketing ADRs have been shown to incur a
significant burden for healthcare and result in
unnecessary, often fatal, harm to patients.1–3

Therefore the discovery of ADRs in the post-
marketing period is an urgent goal of the health
system.
Computational methods commonly referred to

as ‘signal-detection’ or ‘screening’ algorithms,
which allow drug safety evaluators to peruse large

volumes of data to identify risk signals of potential
ADRs, have proven to be a critical component in
pharmacovigilance. The Food and Drug
Administration (FDA) routinely uses a signal-
detection engine to compute signal scores (statis-
tical reporting associations) for all of the millions
of drug–event combinations in its adverse event
reporting system (AERS).4–6 Notwithstanding,
these signals by themselves do not establish a causal
ADR relationship, but are rather considered initial
warnings that require further assessment by domain
experts to establish causality. This further evalu-
ation typically consists of an intricate process
whereby drug safety evaluators look for supporting
information such as temporal relationships, pub-
lished case reports, biological and clinical plausibil-
ity, clinical trials data, and epidemiological studies
in several large healthcare databases.7 8

Dedicating resources to the further evaluation of
each of the multitude of signals typically generated
by signal-detection algorithms is not possible, and
resources diverted to futile leads may render phar-
macovigilance systems impractical.9 Therefore auto-
mated strategies to reduce the amount of false
alerts and to prioritize signals so as to allow only
the most promising candidates to be evaluated are
imperative. In the absence of prior knowledge, and
in the ‘hypothesis-free’ mode of operation, the
standard strategy to prioritize ADR signals is to
rank them according to their corresponding signal
scores (statistical association strength), whereupon a
subset of signals from the top of the ranked list are
selected for further evaluation.10

In the spirit of the work by Vilar et al11 and
Shetty and Dalal,12 whereby information from an
external data source (chemical and literature,
respectively) is proposed to prioritize, enrich, and
enhance the accuracy of signal detection in AERS,
we propose and evaluate a signal-detection strategy
that uses external information (signals) from elec-
tronic health records (EHRs) to meet the same
objective. Specifically, given an initial set of signals
generated from AERS with the goal of selecting a
subset of the K most promising signals for further
evaluation, we claim that: selecting the top K
ranked signals from the intersection of signals in
AERS and EHRs is more predictive of true signals
than selecting the top K ranked signals from AERS
in itself (the standard approach). This type of com-
parison is analogous to the evaluation of the top
results generated by two competing web search
engines (eg, the relevance of links returned in the
first page or two). We emphasize that the objective
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here is to obtain more true signals that are ranked higher. Our
work is motivated by the common belief that signals replicated
in multiple data sources or in independent studies represent
increased confidence in the findings, and thus are more likely to
be true. Figure 1 provides a pictorial illustration of the claim
evaluated and the strategy being proposed.

BACKGROUND
The current mainstay in post-marketing drug safety surveillance
is spontaneous reporting systems (SRSs) such as the FDA’s
AERS, which is a database of over 4 million reports of suspected
ADRs submitted to the FDA by healthcare professionals, consu-
mers, and pharmaceutical companies. The AERS reports are
reviewed by FDA drug safety evaluators and analyzed using
quantitative signal-detection algorithms to identify signals of
potentially new ADRs that warrant further investigation.10 13

AERS communicates genuine health concerns, covers large
populations, and is accessible for analysis. Since its inception,
AERS has supported regulatory decisions for ∼6000 marketed
drugs.14 Notwithstanding, AERS suffers from a set of limitations
that may hinder its effective use15 16: notably, under-reporting,
where only ∼10% of serious ADRs are reported,17 and over-
reporting, where drugs with known, and publicized, ADRs are
more likely to be reported than other drugs. Other limiting
factors include misattributed drug–event combinations, missing
and incomplete data, duplicated reporting, unspecified causal
links, and lack of exposure information.15 16

Recent drug safety events, such as the Vioxx case causing an
estimated 88 000 episodes of myocardial infarction,18 have
highlighted the need to identify new data sources and improved
analytic methods to create a more effective pharmacovigilance
system.7 19–21 Some of these new developments rely on the
expanded secondary use of electronic healthcare data such as
EHRs and administrative claims. Unlike spontaneous reports,
electronic healthcare data represent routine clinical care
recorded over long periods of time. As such, they contain a
more complete record of the patient’s medical history,

treatments, conditions, and potential risk factors. They are also
not restricted to patients who experience ADRs. Consequently,
they offer several advantages that may be used to complement
SRS-based surveillance, from the perspective of both unbiased
reporting and signal strengthening or confirmation. Importantly,
they also offer the potential for active surveillance,20 22 and
several retrospective studies have already demonstrated that the
Vioxx case could have been identified earlier using this type of
data.23–26 That said, research into the use of electronic health-
care data in drug safety is in its early stages and has not yet been
integrated into routine pharmacovigilance.7 20 22 To date, elec-
tronic healthcare data have been used in pharmacovigilance pre-
dominantly to confirm signals originating from SRSs on an ad
hoc basis.27 28

Traditionally, ADR signal-detection methodologies have
focused on data from a single source. An emerging belief in
pharmacovigilance research is that combining information across
data sources can lead to more effective and accurate ADR dis-
covery. Depending on the data sources used, the manner in
which they are combined, and the scientific function they are
designed to perform, it is generally believed that the resulting
system would either lead to increased evidence or statistical
power of findings, or would facilitate new discoveries not pos-
sible with either source separately. In recent studies, Cami
et al29 combined information about known ADRs with chemical
and ontological information to create a predictive system of
novel ADRs. Matthews et al30 combined AERS and literature
findings to build quantitative structure–activity relationship
(QSAR) models for several serious ADRs. Vilar et al11 proposed
an approach to prioritize/enrich ADR signals generated from
AERS based on chemical similarity, whereas Shetty and Dalal12

proposed an approach to achieve the same objective by relating
AERS signals to ADR signals generated by mining the literature.

To our knowledge, the study presented herein is the first that
aimed to leverage EHRs and explicitly combine them with spon-
taneous reports to facilitate uninformed, hypothesis-free signal
detection. Our study was based on over 4 million AERS reports

Figure 1 A comparison of two signal-detection strategies: the proposed system, AERS∩HER, which includes signals common to both AERS and
EHRs, and its comparator, AERS. The claim being made is that the top set of K ranked signals retrieved from the AERS∩EHR system contain more
true positives (true ADRs) than the set of top K signals retrieved from AERS when used by itself (currently the standard approach in signal
detection). During evaluation, the two sets of K signals will be compared with respect to a gold standard. The pattern of circle overlaps displayed
reflects typical outcomes, where, for most values of K, the signals produced by AERS∩EHR will be richer with true ADRs. ADR, adverse drug
reaction; AERS, adverse event reporting system; EHR, electronic health record.
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and 1.2 million EHR narratives processed using natural lan-
guage processing (NLP) and linked with structured EHR data.
Well-established ADR signal-detection methodologies were used
to generate hundreds of signals from each data source, related
to three serious adverse reactions: rhabdomyolysis, acute pan-
creatitis, and QT prolongation. A reference standard consisting
of over 600 well-established and plausible ADRs was created to
evaluate the proposed approach against a comparator. Figure 2
provides an outline of the process.

MATERIALS AND METHODS
AERS
The full set of AERS reports was made available by Oracle’s
Health Sciences division, a supplier of database and statistical
software for ADR analysis. The data were preprocessed to
remove duplicate reports and correct terminological errors, and
consisted of over 4 million reports submitted to the FDA in the
years 1968–2010Q3.

EHRs
Both unstructured EHR data—clinical narratives processed
using NLP and structured data - laboratory tests from New York
Presbyterian Hospital (NYPH), were used after institutional

review board approval. The clinical narratives—corresponding
to discharge summaries, admission notes, and outpatient office
visits—were processed using the NLP system, MedLEE,31 to
extract medications, diseases, and signs and symptoms, and were
mapped to UMLS (2011AA) concept unique identifiers (CUIs).
Temporal information corresponding to admission, discharge,
and visit dates was also extracted. Laboratory test data directly
available in structured form and based on internal NYPH codes
were linked to each of the narratives, and, together with the
data dimensions extracted from the narratives, formed the set of
clinical variables used for signal detection. The full dataset avail-
able for analysis consisted of 7 years (2004–2010) of data, ∼1.2
million narratives, and 178 000 patients.

Events investigated
We concentrated on signals corresponding to the adverse reac-
tions, rhabdomyolysis, acute pancreatitis, and QT prolongation,
which are part of a set of serious adverse reactions determined
to be important and currently under active surveillance.26 32–34

In the AERS portion of the study, the adverse events studied
(and report populations) were identified on the basis of
MedDRA (V.13.1) terms at the ‘preferred term’ level.35 In the
EHR portion of the investigation, outcomes (and patient

Figure 2 Processing pipeline for
generating and evaluating signals
produced by adverse event reporting
system (AERS), electronic health
records (EHRs), and the combined
system. Disproportionality analysis
refers to a class of methods used to
generate adverse drug reaction signals.
Unstructured EHR data in this context
refers to EHR narratives, which are
processed using the natural language
processing system MedLEE. Structured
EHR data in this context refers to
laboratory test results, which are linked
to each narrative.
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cohorts) for the events rhabdomyolysis and acute pancreatitis
were identified using diagnostic standards based on laboratory
test values.36 37 QT prolongation outcomes were identified on
the basis of terms appearing in the EHR narratives, and mapped
to any of a predetermined set of UMLS CUIs related to QT pro-
longation (descendants of these CUIs were not considered).
Table 1 specifies the exact event/outcome definitions used.

Drug names
To reduce naming variability and facilitate comparability, drug
names were standardized according to their generic names at
the ‘main ingredient’ level of specificity. In the EHR case, trade
names were resolved using the ‘tradename_of ’ relation defined
in RxNorm. The main ingredient was resolved on the basis of a
manually created ‘main component/ingredient’ table. In the
AERS case, the required naming format was made available by
Oracle as part of the data.

Signal generation
A family of methods commonly referred to as disproportionality
analysis (DPA)10 38 are currently the most widely used approach
for automated ADR signal detection in pharmacovigi-
lance.5 6 10 13 39 DPA is based on frequency analysis of 2×2
contingency tables to estimate surrogate measures of statistical
association between specific drug–event (outcome) combina-
tions.15 DPA methodologies differ by the exact measures that
are used and the statistical adjustments they may apply to
account for low counts. They are all based on the entries of
online supplementary table S1 to derive association/dispropor-
tionality measures, which is computed for each drug–event pair
under consideration.

Conforming to standard practice in AERS-based analysis,5 40

we used the MGPS41 DPA algorithm (via Oracle’s Empirica
Signal V.7.342) to generate ADR signals in the AERS portion of
this study. MGPS is based on a Bayesian framework which
accounts for the uncertainty in a disproportionality measure
associated with small counts by ‘shrinking’ the measure towards
the baseline case of no association, through an amount that is
proportional to the variability of the disproportionality statistic.
In MGPS, a statistical association is quantified by a measure
called EBGM (empirical Bayes geometric mean), corresponding
to a Bayesian version of the relative reporting ratio (RR)10

measure (see online supplementary table S1). Typically, the
EB05 measure, which corresponds to the lower 5th percentile
of the posterior RR distribution, is used instead for extra conser-
vatism. To qualify a signal, EBGM or EB05 must be larger than
a prespecified cut-off.

Prior to the application of DPA to the EHR data, we excluded
all drug–outcome pairs mentioned in the EHRs for which the
outcome under study was recorded prior to drug administration
and pairs where the drug is a known indication for the outcome
(filtering step in figure 2). This was done to remove drug–
outcome pairs that cannot be causally related as ADRs.
Although theoretically possible, the application of MGPS to the
EHR data was not feasible, as it would have entailed identifying
and analyzing a substantially larger amount of adverse events to
calibrate MGPS’ model (shrinkage) parameters. Identification
and definition of adverse events based on EHR data is not as
simple as with AERS (events are directly specified).43

Consequently, for the EHR portion of this work, we adopted a
different DPA approach based on computing OR scores (see
supplementary online table S1). To qualify signals in this frame-
work, an association had to meet two criteria: (1) OR equal to
or greater than the prespecified cut-off; (2) using a one-sided
Fisher exact test with a Bonferroni correction, the null hypoth-
esis of no association had to be rejected at the 5% significance
level. The Bonferroni correction was used to reduce the prob-
ability of identifying significant associations by chance while
performing tests for multiple associations based on the same
data.

Reference standard
A well-accepted database of all currently known ADRs does not
exist at this time. As a result, we compiled a ‘reference standard’
of drugs associated with each of the targeted ADRs. The refer-
ence standard was manually curated by a pharmacological
expert and reviewed by three physicians. It was divided into
two classes, with the following inclusion criteria:

1. Established—drugs confirmed to be causally related to the
ADR.

Criteria: drug label warning, a Micromedex44 listing (a
trusted medical ADR reference), literature reviews of well-
established ADRs, and other published reports having conclusive
evidence such as laboratory data, clinical data, or a rechallenge/
dechallenge study.

2. Plausible—drugs that have a high likelihood of being
causative.

Criteria: analysis of one or more case reports mentioning the
drug as a potential cause for a certain adverse event.

Although not confirmed, the second class represents poten-
tially emerging or novel ADRs, which is the more interesting
class for real-world pharmacovigilance.13 Online supplementary
table S2 provides a representative sample of drugs and totals
included in the reference standard.

Evaluation
Given that association scores have been computed for all drug–
event pairs under study for both AERS and EHR data, the pro-
posed system was evaluated using performance metrics based on
‘precision at K’, which is commonly used in the area of informa-
tion retrieval for systems that return ranked sequences of results,
with preference given to relevant results that are ranked
higher.45 46

1. An initial set of signals for analysis was created from
AERS and the EHRs using EB05 and OR cut-offs, respect-
ively. The requirement that the evaluation starts with an
initial set of meaningful signals is essential. Low associa-
tions scores are typically meaningless and discarded in
signal detection. Associations whose score is <1 capture
negative correlations (potentially beneficial drug effects)
and thus should also be discarded in ADR analysis.

Table 1 AERS and EHR—event and outcome definitions

Event
AERS
MedDRA PT event definitions

EHR
Outcome definitions

Pancreatitis Pancreatitis acute Lab tests: amylase
>300 U/l or lipase >120 U/
l

Rhabdomyolysis Rhabdomyolysis, blood creatine
phosphokinase MM increased

Lab test: 5× normal levels
of creatine kinase

QT Long QT syndrome, ECG QT
prolonged, Torsade de pointes,
ECG QT interval abnormal,
ventricular tachycardia

UMLS codes: C0023976,
C0151878, C0743431,
C0855333, C1560305

AERS, adverse event reporting system; EHR, electronic health record; PT, preferred
term.
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2. The initial set of AERS signals was intersected with the
initial set of EHR signals to create the set of combined
signals ‘AERS∩EHR’.

3. The AERS and AERS∩EHR signals were ranked according
to the EB05 and OR association scores, respectively.
Ranking AERS∩EHR according to OR (and not EB05)
was required because the OR score implicitly determines
the intersection size of AERS∩EHR and subsequently the
amount of signals K evaluated at each comparison point.

4. For a given value of K, the top K ranked signals from
AERS and AERS∩EHR were selected. K was varied within
a certain range to create multiple comparison points, and
bounded by the number of intersected signals computed
in step 2.

5. On the basis of the reference standard, the number of true
positives (TPs) detected among the K signals selected in
step 4 was determined for AERS and AERS∩EHR
separately.

This five-step evaluation process was repeated for each of the
three events investigated, and aggregated statistics were com-
puted to produce ‘total system’ performance metrics. Precision
at K, denoted ‘prec(K)’, is defined as the precision (proportion
of TPs) of the top K signals. A metric that combines both preci-
sion and recall for ranked sets of results is the ‘average preci-
sion’, defined as:

Average Precision ¼
P

K precðKÞ
R

where R is the total number of known true cases (signals).46 It is
easy to see that when precA(K)>precB(K) for all values of K,
then algorithm A is unambiguously superior to algorithm B. In
a recent study, Zorych et al38 used similar metrics to evaluate
several ADR signal-detection algorithms.

RESULTS
Quantitative results
Figure 3 displays a comparison of the two systems based on the
prec(K) statistic, which is varied along a range of different K
values. The reference standard underlying this comparison con-
sisted of the union of the established and plausible classes of
ADRs. The figure clearly demonstrates that the combined
AERS∩EHR system outperforms the AERS system for all values
of K examined, and often by a large margin. The error bars
attached to every point reflect 95% CIs for precision, and dem-
onstrate by not overlapping each other across systems that the
differences in favor of the combined system are statistically sig-
nificant (0.05 or less level) at each comparison point K.

Table 2 provides a comparison of averaged performance statis-
tics based on precision at K, recall at K, and the F-measure (har-
monic mean of the two), as well as the averaged relative
performance improvement for each of the reference standard
classes. The table demonstrates that the combined system out-
performs AERS across all categories evaluated. The relative
improvement gained over AERS ranged from 31% to almost
threefold for the class of plausible ADRs. Online supplementary
figure S1 provides an illustration of the output (signals) pro-
duced by the AERS and AERS∩EHR systems for one of the
studied ADRs.

The cut-off values used to produce the initial sets of signals
(step 1) were set to EB05≥2 and OR≥1. EB05≥2 is a cut-off
value that has been recommended by the FDA and other
researchers based on several studies.5 47 In the absence of sup-
porting empirical data as in the AERS case, we used OR≥1 (the

smallest possible OR value) to create our initial set of EHR
signals. These two cut-offs resulted in initial sets of 250 AERS
signals and 70 AERS∩EHR signals. Online supplementary
figures S2 and S3 and tables S3 and S4 provide result summaries
pertaining to repeated evaluations based on two additional
AERS initial cut-offs EB05≥1.5 and EB05≥2.5. These resulted
in similar performance patterns and equivalent conclusions.

Qualitative results
Based on a set of configuration parameters, the combined
system highlighted an association between rasburicase and ele-
vated pancreatic enzymes. Rasburicase is a relatively new sub-
stance (approved in 2002), which is used to manage uric acid
levels in adults and children receiving cancer treatment for leu-
kemia, lymphoma, and certain tumors. A causal association
between rasburicase and pancreatitis is currently unknown.
Consequently, the association was flagged as a false positive
according to our reference standard.

A single case report has recently been published reporting on
complications associated with the administration of rasburicase,
in which the authors mentioned an episode of pancreatitis as
one of the side effects.48 AERS included three reports in which
rasburicase was listed as either the primary or secondary suspect
for the adverse event, acute pancreatitis. Owing to the small
number of AERS reports, this association would likely be over-
looked by drug safety evaluators (typically a minimum number
of reports are necessary to warrant further investigation by the
FDA), underscoring one of the main motivations to augment
AERS with EHRs. The corresponding EHR cases were clinically
reviewed by two experts from the Department of Pediatric
Oncology at NYPH to rule out alternate explanations and con-
founding factors. Three patients were identified whose records
indicated a potential association between rasburicase and ele-
vated pancreatic enzymes. In one particular case, rasburicase

Figure 3 Performance comparison based on the precision at K
statistic for different values of K (amount of signals selected). Error bars
reflect 95% CIs for precision at each point evaluated. Non-overlapping
CIs across the two systems are an indicator of statistically significant
(0.05 level or less) performance differences across the two systems. The
underlying reference standard consisted of the union of the established
and plausible classes of adverse drug reactions. PPV, positive predictive
value.
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was re-administered on several occasions, and further elevation
in the levels of amylase and lipase were observed. The nature of
evidence found (signals in two data sources, published case
report, expert evaluation, and a rechallenge) is suggestive of a
potentially new ADR. A detailed case series discussing this
finding is in preparation.

DISCUSSION
A widely acknowledged belief, albeit currently not validated, is
that ADR signals replicated in multiple data sources or in inde-
pendent studies are more likely to be true. In this article, we
transformed this belief into a formal system and presented its
preliminary evaluation. To our knowledge, this is the first study
that aimed to do so, as well as leverage EHRs and explicitly
combine them with spontaneous reports to facilitate unin-
formed, hypothesis-free signal detection. Our results provide
promising initial evidence that combining AERS with EHR
information by requiring signaling in both sources leads to
improved accuracy of signal detection under certain operating
scenarios. This approach, however, is not meant to replace, but
rather augment, the portfolio of existing approaches. The prac-
tical utility of this system has demonstrated value by signaling
the as yet unrecognized rasburicase–pancreatitis association.
Implementing such a system is not complicated from a technical
standpoint, assuming the stakeholders have access to sufficiently
large EHR data (AERS is publically available) and have prepro-
cessed the data accordingly (the most laborious step).

Data and methods
The study was based on a specific set of signal-detection meth-
odologies, a specific set of adverse events, and a reference stand-
ard that may be subject to change. It is expected that the use of
different screening methodologies and a modified reference
standard may lead to different results. The use of the full set of
preprocessed AERS reports and an undisputed methodology
(MGPS) minimizes concerns about the AERS portion of the
study. Despite the use of a standard and generally well-accepted
methodology to screen the EHR data for signals, it is possible
that other methodologies, such as those based on epidemio-
logical study designs, would have improved the results. The
latter, however, do not scale as well and require many design
choices to be made, for which there are no established stan-
dards.49 The use of EHR narratives rather than structured EHR
data based on billing codes (ICD9) was founded on the
common assumption that the information contained in narra-
tives is richer and more granular than billing codes, and also is
not as biased towards reimbursement as billing codes are. This
in turn may improve the recall of patients experiencing certain
outcomes, better analysis of confounding, and therefore more
accurate ADR discovery.

Evaluation
Our study focused on the ‘precision at K’ performance measure,
which is commonly used to evaluate systems that return ranked
sequences of results. Granted, the AERS in itself would have
larger recall if we were to consider all the signals it generates
and not only the top ranked ones. But this was not our claim,
nor is it the manner in which signals are typically examined
(because of resource constraints imposed by having to further
evaluate many signals). The analysis of EHRs as an independent
system was beyond the scope of this article. That said, the pre-
dictive capacity of observational data for the application of drug
safety is an open question, with the Observational Medical
Outcomes Partnership (OMOP)50 leading the efforts to address
this question.22

Significance
The findings suggest that the combined system is more effective
(larger performance margin over AERS) for scenarios that call
for highly selective signaling (K<30, figure 3). Similarly, table 2
suggests that the combined system is more effective for the class
of plausible (emerging or as yet unconfirmed) ADRs, which is
the class that would be targeted in realistic use of such a system.
The relatively smaller improvement on the class of established
ADRs is to be expected because of the strong correlation
between AERS reporting and well-known ADRs listed on labels
or reported in the literature (one feeds the other often in a cir-
cular relationship). It should be emphasized that drugs that were
not verified by our reference standard, and were counted as
false positives for the purpose of our evaluation, could in fact
be legitimate and novel ADRs that are currently unknown.
These supposedly false positive agents, similar to the agents that
were verified as plausible ADRs, supply the more interesting
candidates for discovery and merit a further manual review, as
evidenced by our findings of the rasburicase–pancreatitis
association.

Limitations
The main limiting factor of our study was lack of additional
EHRs. Although a large enough EHR sample was used, the
inclusion of additional EHR data, preferably from multiple
sites, is required to further evaluate the predictive capacity,
gains, limits, and generalizability of our results (including other
events). In future work, we plan to extend this study using data
corresponding to over a million patients from the Stanford
Clinical Data Warehouse (STRIDE).

CONCLUSIONS
We proposed and evaluated an approach to support signal
detection, which is based on combining EHRs with AERS by
requiring signaling in both sources. To our knowledge, this is
the first study that aimed to leverage EHRs and explicitly

Table 2 Averaged performance statistics comparison of the AERS and AERS∩EHR systems across reference standard classes

Precision at K Recall at K F-measure

Reference standard class AERS∩EHR (%) AERS (%) AERS∩EHR (%) AERS (%) AERS∩EHR (%) AERS (%) Relative improvement (%)

Established + plausible 85 57 20 15 30 22 70
Established 58 50 24 23 31 29 31
Plausible 27 7 15 5 17 8 267

The performance statistics were averaged across the full range of K (signals selected) using the arithmetic average. The relative improvement is defined as the performance difference
between the AERS∩EHR and AERS systems divided by the AERS performance for each performance statistic, and was averaged in the same manner as the other performance statistics.
AERS, adverse event reporting system; EHR, electronic health record.
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combine them with spontaneous reports in a systematic manner
for drug safety purposes. Our findings provide initial promising
evidence that replicated signaling in AERS and EHRs can
enhance signal detection under certain operating scenarios and
objectives. Such a system is not intended to replace, but rather
augment, the portfolio of existing approaches. Its practical value
has been demonstrated by the discovery of a promising new
ADR candidate. Additional EHR data would be required to
further evaluate the predictive capacity and limits of this system.
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