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Abstract

For the minimization of a nonlinear cost functional j under convex con-
straints the relaxed projected gradient process

ϕk+1 = ϕk + αk(PH(ϕk − λk∇Hj(ϕk)) − ϕk)

as formulated e.g. in [12] is a well known method. The analysis is classically
performed in a Hilbert space H. We generalize this method to functionals
j which are differentiable in a Banach space. Thus it is possible to perform
e.g. an L2 gradient method if j is only differentiable in L∞. We show global
convergence using Armijo backtracking in αk and allow the inner product and
the scaling λk to change in every iteration. As application we present a struc-
tural topology optimization problem based on a phase field model, where the
reduced cost functional j is differentiable in H1∩L∞. The presented numerical
results using the H1 inner product and a pointwise chosen metric including
second order information show the expected mesh independency in the iter-
ation numbers. The latter yields an additional, drastic decrease in iteration
numbers as well as in computation time. Moreover we present numerical re-
sults using a BFGS update of the H1 inner product for further optimization
problems based on phase field models.

Key words: projected gradient method, variable metric method, convex con-
straints, shape and topology optimization, phase field approach.
AMS subject classification: 49M05, 49M15, 65K, 74P05, 90C.

1 Introduction
Let j be a functional on a Hilbert space H with inner product (., .)H and induced
norm ∥.∥H and let Φad ⊆ H be a non-empty, convex and closed subset. We consider
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the optimization problem

min j(ϕ) subject to ϕ ∈ Φad. (1)

If j is Fréchet differentiable with respect to ∥.∥H , the classical projected gradient
method introduced in Hilbert space in [18] and [23] can be applied, which moves in
the direction of the negative H-gradient −∇Hj ∈ H, which is characterized by the
equality (∇Hj(ϕ), η)H = ⟨j′(ϕ), η⟩H∗,H ∀η ∈ H and orthogonally projects the result
back on Φad to stay feasible, i.e.

ϕk+1 = PH(ϕk − λk∇Hj(ϕk)). (2)

To obtain global convergence λk has to be chosen according to some step length rule,
which results in a gradient path method, or one can perform a line search along the
descent direction vk = PH(ϕk−λk∇Hj(ϕk))−ϕk. A typical application is H = L2(Ω),
see e.g. [21].
In this paper we consider the case that j is differentiable with respect to a norm
which is not induced by a inner product. Hence no H-gradient ∇Hj exists. However,
in Section 2 we reformulate the method such that it is well defined under weaker
conditions. We show global convergence when Armijo backtracking is applied along
vk and allow the inner product and the scaling λk to change in every iteration. We
call this generalization ‘variable metric projection’ type (VMPT) method. In Section
3 we study the applicability of the method to a structural topology optimization
problem, namely the mean compliance minimization in linear elasticity based on a
phase field model. Then the reduced cost functional is differentiable only in H1∩L∞.
In the last section we show numerical results for this mean compliance problem. As
expected choosing the H1 metric leads to mesh independent iteration numbers in
contrast to the L2 metric. We also present the choice of a variable metric using
second order information and the choice of a BFGS update of the H1 metric. This
reduces the iteration numbers to less than a hundreth. Moreover, we give additional
numerical examples for the successful application of the VMPT method. These
include a problem of compliant mechanism, drag minimization of the Stokes flow
and an inverse problem.

2 Variable metric projection type (VMPT) method

2.1 Generalization of the projected gradient method

The orthogonal projection PH(ϕk −λk∇Hj(ϕk)) employed in (2) is the unique solu-
tion of

min
y∈Φad

1

2
∥(ϕk − λk∇Hj(ϕk)) − y∥2

H ,
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which is equivalent to the problem

min
y∈Φad

1

2
∥y − ϕk∥2

H + λkDj(ϕk, y − ϕk), (3)

since (∇Hj(ϕk), y − ϕk)H = j′(ϕk)(y − ϕk) = Dj(ϕk, y − ϕk) where the last denotes
the directional derivative of j at ϕk in direction y − ϕk. If e.g. Dj(ϕk, y) is linear
and continuous with respect to y ∈ H the cost functional of (3) is strictly convex,
continuous and coercive in H, and hence (3) has a unique solution ϕ̄k [10]. In the
formulation (3) the existence of the gradient ∇Hj is not required. Even Gâteaux
differentiability can be omitted.
In the following we formulate an extension of the projected gradient method where
PH(ϕk − λk∇Hj(ϕk)) is replaced by the solution ϕ̄k of (3).
First we drop the requirement of a gradient as mentioned above. We assume that
the admissible set Φad is a subset of an intersection of Banach spaces X ∩D, where
X and D have certain properties (see (A1)), which are e.g. fulfilled for X =H1(Ω)
or X = L2(Ω) and D = L∞(Ω). Furthermore assume that j is continuously Fréchet
differentiable on Φad with respect to the norm ∥.∥X∩D ∶= ∥.∥X + ∥.∥D. The Fréchet
derivative of j at ϕ is denoted by j′(ϕ) ∈ (X ∩D)∗ and we write ⟨., .⟩ for the dual
paring in the space X ∩D. Moreover, we use C as a positive universal constant
throughout the paper.
Secondly, we also allow the norm ∥.∥H in (3) to change in every iteration. Therefore,
we consider a sequence {ak}k≥0 of symmetric positive definite bilinear forms inducing
norms ∥.∥ak on X∩D . This approach falls into the class of variable metric methods
and includes the choice of Newton and Quasi-Newton based search directions (see for
example [2, 13] and [19] for the unconstrained case). In [2] these methods are called
scaled gradient projection methods and in the case of ak = j′′(ϕk) also constrained
Newton’s method. In finite dimension ak is given by ak(p, v) ∶= pTBkv where Bk can
be the Hessian at ϕk or an approximation of it.
Hence, in each step of the VMPT method the projection type subproblem

min
y∈Φad

1

2
∥y − ϕk∥2

ak
+ λk ⟨j′(ϕk), y − ϕk⟩ (4)

with some scaling parameter λk > 0 has to be solved. Problem (4) is formally
equivalent to the projection Pak(ϕk − λk∇akj(ϕk)). However, j is not necessarily
differentiable with respect to ∥.∥ak and X ∩D endowed with ak(., .) is only a pre-
Hilbert space. Hence ∇akj(ϕk) does not need to exist. For globalization of the
method we perform a line search based on the widely used Armijo back tracking,
which results in Algorithm 2.1. In the next section it is shown that the algorithm is
well defined under certain assumptions and in particular that a unique solution ϕ̄k
of (4) exists, together with the proof of convergence. We denote the solution of (4)
also by Pk(ϕk) due to the connection to a projection.
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Algorithm 2.1 (VMPT method).
1: Choose 0 < β < 1, 0 < σ < 1 and ϕ0 ∈ Φad.
2: k ∶= 0
3: while k ≤ kmax do
4: Choose λk and ak.
5: Calculate the minimum ϕk = Pk(ϕk) of the subproblem (4).
6: Set the search direction vk ∶= ϕk − ϕk
7: if ∥vk∥X ≤ tol then
8: return
9: end if

10: Determine the step length αk ∶= βmk with minimal mk ∈N0 such that
j(ϕk + αkvk) ≤ j(ϕk) + αkσ ⟨j′(ϕk), vk⟩.

11: Update ϕk+1 ∶= ϕk + αkvk
12: k ∶= k + 1
13: end while

The stopping criterion ∥vk∥X ≤ tol is motivated by the fact that ϕk is a stationary
point of j if and only if vk = 0 and vk → 0 in X, cf. Corollary 2.6 and Theorem 2.2.

We would like to mention, that this algorithm is not a line search along the gradient
path , which is widely used (e.g. in [2, 14, 15, 17, 18, 19, 20, 21, 25]) and which
requires to solve a projection type subproblem like (2) in each line search iteration.
This can be unwanted if calculating the projection is expensive compared to the
evaluation of j. To avoid this we perform a line search along the descent direction
vk, which is suggested e.g. in finite dimension or in Hilbert spaces in [2, 19, 24] and
is also used in [13]. To include the idea of the gradient path approach, we imbed
the possibility to vary the scaling factor {λk}k≥0 for the formal gradient in (4) in
each iteration. The parameter λk can be put into ak by dividing the cost in (4) by
λk. However, we treat it as a separate parameter since this reflects the case where
ak is fixed for all iterations. Note that under the assumptions used in this paper a
line search along the gradient path is not possible since not even the existence of a
positive step length can be shown, cf. Remark 2.8.

Moreover, there is a clear connection to sequential quadratic programming, consid-
ering that Pk(ϕk) is the solution of the quadratic approximation of minϕ∈Φad j(ϕ)
with

min
y∈Φad

j(ϕk) + ⟨j′(ϕk), y − ϕk⟩ +
1

2
ak(y − ϕk, y − ϕk).

However, the global convergence result is analysed by means of projected gradient
theory.
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2.2 Global convergence result

We perform the analysis of the method with respect to two norms in the spaces X
and D, which we assume to have the following properties:

(A1) X is a reflexive Banach space. D is isometrically isomorphic to B∗, where B
is a separable Banach space. Moreover, for any sequence {ϕi} in X ∩D with
ϕi → ϕ weakly in X and ϕi → ϕ̃ weakly-* in D, it holds ϕ = ϕ̃.

We identifyD andB∗ and say that a sequence converges weakly-* inD if it converges
weakly-* in B∗. The separability of B is used to get weak-* sequential compactness
in D. We would like to mention that the results hold also if D is a reflexive Banach
space, in particular if D is an Hilbert space. In this case weak-* convergence has to
be replaced by weak convergence throughout the paper. However, in the application
we are interested in D = L∞(Ω).

In case of the Sobolev space X =W k,p(Ω) and D = Lq(Ω) where Ω ⊆Rd is a bounded
domain, k ≥ 0, 1 < p <∞ and 1 < q ≤∞ the above assumption is fulfilled.
In addition to the above conditions on X and D let the following assumptions hold
for the problem (1):

(A2) Φad ⊆X ∩D is convex, closed in X and non-empty.

(A3) Φad is bounded in D.

(A4) j(ϕ) ≥ −C > −∞ for some C > 0 and all ϕ ∈ Φad.

(A5) j is continuously differentiable in a neighbourhood of Φad ⊆X ∩D.

(A6) For each ϕ ∈ Φad and for each sequence {ϕi} ⊆ X ∩D with ϕi → 0 weakly in
X and weakly-* in D it holds ⟨j′(ϕ), ϕi⟩→ 0 as i→∞.

Moreover, we request for the parameters ak and λk of the algorithm that:

(A7) {ak} is a sequence of symmetric positive definite bilinear forms on X ∩D.

(A8) It exists c1 > 0 such that c1∥p∥2
X
≤ ∥p∥2

ak
for all p ∈X ∩D and k ∈N0.

(A9) For all k ∈N0 it exists c2(k) such that ∥p∥2
ak
≤ c2∥p∥2

X∩D for all p ∈X ∩D.

(A10) For all k ∈ N0, p ∈ Φad and for each sequence {yi} ⊆ Φad where there exists
some y ∈X∩D with yi → y weakly in X and weakly-* in D it holds ak(p, yi)→
ak(p, y) as i→∞.

(A11) For each subsequence {ϕki}i of the iterates given by Algorithm 2.1 converg-
ing in X ∩ D, the corresponding subsequence {aki}i has the property that
aki(pi, yi) → 0 for any sequences {pi},{yi} ⊆ X ∩D with pi → 0 strongly in X
and weakly-* in D and {yi} converging in X ∩D.

(A12) It holds 0 < λmin ≤ λk ≤ λmax for all k ∈N0.
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(A1)-(A12) are assumed throughout this paper if not mentioned otherwise.
Assumption (A11) reflects the possibility of a point based choice of ak, e.g. de-
pendent on the Hessian D2j(ϕk) or on an approximation of the Hessian. Note that
(A9)-(A11) is weaker than the assumption ∥p∥2

ak
≤ c2∥p∥2

X
. In (21) an example of

ak is given, which only fulfills these weaker assumptions. Also (A8) is weaker than
c1∥u∥2

X∩D ≤ ∥u∥2
ak
. The main result of the paper is the following, which is proved in

Section 2.3.

Theorem 2.2. Let {ϕk} ⊆ Φad be the sequence generated by the VMPT method
(Algorithm 2.1) with tol = 0 and let the assumptions (A1)-(A12) hold, then:

1. limk→∞ j(ϕk) exists.

2. Every accumulation point of {ϕk} in X ∩D is a stationary point of j.

3. For all subsequences with ϕki → ϕ in X ∩D where ϕ is stationary, the subse-
quence {vki}i converges strongly in X to zero.

4. If additionally j ∈ C1,γ(Φad) with respect to ∥.∥X∩D for some 0 < γ ≤ 1 then the
whole sequence {vk}k converges to zero in X.

In the classical Hilbert space setting, i.e. D =X = H for some Hilbert space H, the
assumption (A3) can be dropped. Also assumption (A6) is trivial because of (A5).
Moreover, assumptions (A7)-(A11) are fulfilled for the choice ak(p, v) = (p,Akv)H
where Ak ∈ L(H) is a self-adjoint linear operator with m∥p∥2

H ≤ (p,Akp)h ≤M∥p∥2
H

and M ≥ m > 0 independent of k. This is e.g. assumed in the local convergence
theory in [15, 17] and in finite dimension for global convergence in [2, 24]. For the
special choice ak(p, v) = (p, v)H , global convergence is shown in [19] and for the case
of a line search along the gradient path in [14]. Result 4. of Theorem 2.2 is shown
in [20] in case of a line search along the gradient path under the same assumption
j ∈ C1,γ. Thus the presented method is a generalization of the classical method in
Hilbert space.

We would also like to mention the following:

Remark 2.3. If there exists C > 0 such that ∥p∥D ≤ C∥p∥X for all p ∈ X ∩ D,
assumption (A3) can be omitted.
If X is a Hilbert space, the choice ak(u, v) = (u, v)H fulfills all assumptions (A7)-
(A11).

2.3 Analysis and proof of the convergence result of the VMPT
method

We first show the existence and uniqueness of ϕk = Pk(ϕk) based on the direct
method in the calculus of variations using the following Lemma and assumptions
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(A2), (A3) and (A5)-(A10). Note that the standard proof cannot be applied,
since ak is indeed X-coercive, but ak and ⟨j′(ϕk), ⋅⟩ are not X-continuous. Another
difficulty is that X ∩D is not necessarily reflexive.

Lemma 2.4. Let {pk} ⊆ Φad with pk → p weakly in X for some p ∈ Φad. Then pk → p
weakly-* in D.

Proof. Since Φad is bounded in D and the closed unit ball of D is weakly-* sequen-
tially compact due to the separability of B, we can extract from any subsequence
of {pk} ⊆ Φad another subsequence {pki} with pki → p̃ weakly-* in D for some p̃ ∈D.
Due to the required unique limit in X and D we have p̃ = p. Since for any sub-
sequence we find a subsequence converging to the same p, we have that the whole
sequence converges to p.

Theorem 2.5. For any k ∈N0 and ϕ ∈ Φad, the problem

min
y∈Φad

1

2
∥y − ϕ∥2

ak
+ λk ⟨j′(ϕ), y − ϕ⟩ (5)

admits a unique solution ϕ̄ ∶= Pk(ϕ), which is given by the unique solution of the
variational inequality

ak(ϕ̄ − ϕ, η − ϕ̄) + λk ⟨j′(ϕ), η − ϕ̄⟩ ≥ 0 ∀η ∈ Φad. (6)

Proof. Let k ∈N0 and ϕ ∈ Φad arbitrary. Problem (5) is equivalent to

min
y∈Φad

gk(y) ∶= 1
2ak(y, y) + ⟨bk, y⟩ (7)

where ⟨bk, y⟩ ∶= λk ⟨j′(ϕ), y⟩−ak(ϕ, y) and bk ∈ (X∩D)∗ due to (A5) and (A9). By
(A3) and (A8) we get for any y ∈ Φad with some generic C > 0

gk(y) ≥
c1

2
∥y∥2

X
− ∥bk∥(X∩D)∗(∥y∥X + ∥y∥D

±
≤C

) ≥ −C. (8)

Thus gk is X-coercive and bounded from below on Φad. Hence we can choose an
infimizing sequence ϕi ∈ Φad, such that gk(ϕi)

i→∞ÐÐ→ infy∈Φad gk(y). From the estimate
(8) we conclude that {ϕi}i is bounded inX. Therefore, we can extract a subsequence
(still denoted by ϕi) which converges weakly in X to some ϕ̄ ∈X. Since Φad is convex
and closed inX, it is also weakly closed inX and thus ϕ̄ ∈ Φad. By Lemma 2.4 we also
get ϕi → ϕ̄ weakly-* inD. Finally we show gk(ϕ̄) = infy∈Φad gk(y). Using (A6), (A8)
and (A10) one can show that lim infi ak(ϕi, ϕi) ≥ ak(ϕ̄, ϕ̄) and limi ⟨bk, ϕi⟩ = ⟨bk, ϕ̄⟩,
thus lim infi gk(ϕi) ≥ gk(ϕ̄). We conclude

inf
y∈Φad

gk(y) ≤ gk(ϕ̄) ≤ lim inf
i

gk(ϕi) = inf
y∈Φad

gk(y),
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which shows the existence of a minimizer of (7). Using (A8), the uniqueness follows
from strict convexity of gk.
Due to (A5) and (A9), we have that gk is differentiable in X ∩D, where its direc-
tional derivative at ϕ̄ in direction η − ϕ̄ for arbitrary η ∈ Φad is given by

⟨g′k(ϕ̄), η − ϕ̄⟩ = ak(ϕ̄ − ϕ, η − ϕ̄) + λk ⟨j′(ϕ), η − ϕ̄⟩ .

Since the problem (5) is convex, it is equivalent to the first order optimality condi-
tion, which is given by the variational inequality (6), see [25].

We see that ϕ ∈ Φad is a stationary point of j, i.e. ⟨j′(ϕ), η − ϕ⟩ ≥ 0 ∀η ∈ Φad, if
and only if ϕ = ϕ is the solution of (6), i.e. the fixed point equation ϕ = Pk(ϕ) is
fulfilled. This leads to the classical view of the method as a fixed point iteration
ϕk+1 = Pk(ϕk) in the case that Pk is independent of k and αk = 1 is chosen.

Corollary 2.6. If there exists some k ∈ N0 with Pk(ϕ) = ϕ then ϕ is a stationary
point of j. On the other hand, if ϕ ∈ Φad is a stationary point of j then the fix point
equation Pk(ϕ) = ϕ holds for all k ∈N0. In particular, an iterate ϕk of the algorithm
is a stationary point of j if and only if vk = Pk(ϕk) − ϕk = 0.

The variational inequality (6) tested with η = ϕ ∈ Φad together with (A8) and (A12)
yields that Pk(ϕ) − ϕ is a descent direction for j:

Lemma 2.7. Let k ∈N0, ϕ ∈ Φad and v ∶= Pk(ϕ) − ϕ. Then it holds

⟨j′(ϕ), v⟩ ≤ − c1

λmax
∥v∥2

X
. (9)

Note that (9) does not hold in the X ∩D-norm.
Due to ⟨j′(ϕ), v⟩ < 0 for v ≠ 0 the step length selection by the Armijo rule (see step
10 in Algorithm 2.1) is well defined, which can be shown as in [2].

Remark 2.8. For the existence of a step length and for the global convergence proof
we exploit that the path α ↦ ϕk+αvk is continuous in X∩D. Thus, also the mapping
α ↦ j(ϕk+αvk) is continuous. On the other hand, this does not hold for the gradient
path. Backtracking along the gradient path or projection arc means that αk is set to
1, whereas λk = βmk is chosen with mk ∈N0 minimal such that the Armijo condition

j(ϕk(λk)) ≤ j(ϕk) + σ ⟨j′(ϕk), ϕk(λk) − ϕk⟩

is satisfied, see for instance [21]. By the notation ϕk(λk) we emphasize that the
solution of the subproblem (4) depends on λk. However, with the above assumptions
it cannot be shown that there exists such a λk. The reason is that due to (A8)
the gradient path λ↦ ϕk(λ) is continuous with respect to the X-norm, whereas j is
due to (A5) only differentiable with respect to the X ∩D-norm. Thus, j along the
gradient path, i.e. the mapping λ↦ j(ϕk(λ)), may be discontinuous.
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To prove statement 2. of Theorem 2.2 we use, as in [2] for finite dimensions, that
vk is gradient related. This is weaker than the common angle condition. Therefor
we need the following two lemmata:

Lemma 2.9. For {ϕk}k ⊆ Φad with ϕk → ϕ in X∩D and {pk}k ⊆X∩D with pk → p
weakly in X and weakly-* in D for some ϕ, p ∈X∩D it holds ⟨j′(ϕk), pk⟩→ ⟨j′(ϕ), p⟩.

Proof. We use (A5) and (A6) and obtain

∣ ⟨j′(ϕk), pk⟩ − ⟨j′(ϕ), p⟩ ∣ ≤ ∣ ⟨j′(ϕk) − j′(ϕ), pk⟩ ∣ + ∣ ⟨j′(ϕ), pk − p⟩ ∣ ≤
≤ ∥j′(ϕk) − j′(ϕ)∥(X∩D)∗
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

→0

∥pk∥X∩D
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤C

+ ∣ ⟨j′(ϕ), pk − p⟩ ∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

→0

→ 0.

The preceding lemma is also needed in the proof of Theorem 2.2.

Lemma 2.10. Let for a sequence {ϕi}i ⊆ Φad hold ϕi → ϕ in X ∩ D for some
ϕ ∈X ∩D. Then there exists C > 0 such that ∥Pk(ϕi)∥X∩D ≤ C for all i, k ∈N0.

Proof. Lemma 2.7 yields together with (A3) and (A5) the estimate

c1
λmax

∥Pk(ϕi) − ϕi∥2
X
≤ − ⟨j′(ϕi),Pk(ϕi) − ϕi⟩
≤ ∥j′(ϕi)∥(X∩D)∗(∥Pk(ϕi) − ϕi∥X + ∥Pk(ϕi) − ϕi∥D)
≤ C(∥Pk(ϕi) − ϕi∥X + 1),

thus ∥Pk(ϕi) − ϕi∥X ≤ C and hence ∥Pk(ϕi)∥X ≤ C. Due to (A3) we finally get
∥Pk(ϕi)∥X∩D ≤ C independent of i and k.

Lemma 2.11. Let {ϕk} be the sequence generated by Algorithm 2.1, then {vk}k is
gradient related, i.e.: for any subsequence {ϕki}i which converges in X ∩ D to a
nonstationary point ϕ ∈ Φad of j, the corresponding subsequence of search directions
{vki}i is bounded in X ∩D and lim supi ⟨j′(ϕki), vki⟩ < 0 is satisfied. Moreover, it
holds lim infi ∥vki∥X > 0.

Proof. Let ϕki → ϕ in X ∩D, where ϕ is nonstationary. Lemma 2.10 provides that
{vki}i is bounded in X∩D. With (9), the statement lim supi ⟨j′(ϕki), vki⟩ < 0 follows
from lim infi ∥vki∥X = C > 0, which we show by contradiction.
Assume lim infi ∥vki∥X = 0, thus there is a subsequence again denoted by {vki}i such
that vki → 0 in X. Using (6) for ϕ̄k ∶= Pk(ϕk), the positive definiteness of ak and
(A12), it follows for all η ∈ Φad

⟨j′(ϕk), η − ϕ̄k⟩ ≥ 1
λk

(ak(vk, vk) + ak(vk, ϕ̄k − vk − η))
≥ − 1

λmin
∣ak(vk, ϕ̄k − vk − η)∣ . (10)
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Moreover, ϕ̄ki = vki + ϕki → ϕ in X and also weakly-* in D according to Lemma
2.4. From Lemma 2.9 we get ⟨j′(ϕki), η − ϕ̄ki⟩→ ⟨j′(ϕ), η − ϕ⟩. From (A11) we get
aki(ϕ̄ki − ϕki , ϕki − η)→ 0 and we derive from (10) that

⟨j′(ϕ), η − ϕ⟩ ≥ 0 ∀η ∈ Φad,

which shows that ϕ is stationary, which is a contradiction.

Proof of Theorem 2.2.
Because of Corollary 2.6 we can assume vk ≠ 0 and αk > 0 for all k.
1.) From the Armijo rule and since vk is a descent direction we get

j(ϕk+1) − j(ϕk) ≤ αkσ ⟨j′(ϕk), vk⟩ < 0, (11)

thus j(ϕk) is monotonically decreasing. Since j is bounded from below we get
convergence j(ϕk)→ j∗ for some j∗ ∈R, which proves 1.

2.) The proof is similar to [2] in finite dimension by contradiction. Let ϕ be an
accumulation point, with a convergent subsequence ϕki → ϕ inX∩D. The continuity
of j on Φad yields then j∗ = j(ϕ) and (11) leads to αk ⟨j′(ϕk), vk⟩ → 0. Assuming
now that ϕ is nonstationary we have ∣⟨j′(ϕki), vki⟩∣ ≥ C > 0, since {vk} is gradient
related by Lemma 2.11, and thus αki → 0. So there exists some ī ∈ N such that
αki/β ≤ 1 for all i ≥ ī, and thus αki/β does not fulfill the Armijo rule due to the
minimality of mk. Applying the mean value theorem to the left hand side, we have
for some nonnegative α̃ki ≤

αki
β and all i ≥ ī that

αki
β ⟨j′ (ϕki + α̃kivki) , vki⟩ = j (ϕki +

αki
β vki) − j(ϕki) >

αki
β σ ⟨j′(ϕki), vki⟩ (12)

holds. Since, by Lemma 2.11, {vki}i is bounded in X∩D and α̃ki → 0, we have that
ϕki+α̃kivki → ϕ in X∩D. Also ϕ̄ki = ϕki+vki is uniformly bounded in X∩D and thus
there exists a subsequence, again denoted by {ϕ̄ki}, which converges to some y ∈ Φad

weakly in X and weakly-* in D. Hence we have that vki = ϕ̄ki − ϕki → v̄ ∶= y − ϕ
weakly in X and weakly-* in D. According to Lemma 2.9 we can take the limit of
both sides of the inequality (12), which leads to ⟨j′ (ϕ) , v̄⟩ ≥ σ ⟨j′ (ϕ) , v̄⟩ , and σ < 1
yields ⟨j′ (ϕ) , v̄⟩ ≥ 0 . This contradicts ⟨j′ (ϕ) , v̄⟩ = lim supi ⟨j′(ϕki), vki⟩ < 0, which
is a consequence of Lemma 2.11.

3.) By proving that out of any subsequence of ⟨j′(ϕki), vki⟩ we can extract another
subsequence, which converges to 0, we can conlude that ⟨j′(ϕki), vki⟩ → 0 which
yields ∥vki∥X → 0 by (9). With Lemma 2.10, we get by the same arguments as in
2. that vki → y − ϕ weakly in X and weakly-* in D for a subsequence and for some
y ∈ Φad, thus ⟨j′(ϕki), vki⟩ → ⟨j′(ϕ), y − ϕ⟩ due to Lemma 2.9. Since vki are descent
directions for j at ϕki and ϕ is stationary we have ⟨j′(ϕ), y − ϕ⟩ = 0.
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4.) As in 3.) we prove by a subsequence argument that ⟨j′(ϕk), vk⟩ → 0. For an
arbitrary subsequence, which we also denote by index k, (11) yields αk ⟨j′(ϕk), vk⟩→
0. If αk ≥ c > 0 for all k, the assertion follows immediately. Otherwise there exists
a subsequence (again denoted by index k) such that β ≥ αk → 0 and thus the step
length αk/β does not fulfill the Armijo condition. Since j′ is Hölder continuous with
exponent γ and modulus L we obtain

σαkβ ⟨j′(ϕk), vk⟩ < j(ϕk + αk
β vk) − j(ϕk) = ∫

1

0

d
dtj(ϕk + t

αk
β vk)dt

≤ αk
β ⟨j′(ϕk), vk⟩ + L

1+γ (αkβ )
1+γ

∥vk∥1+γ
X∩D.

It holds ∥vk∥D ≤ C due to (A3) and employing (9) we obtain

0 < (σ − 1) ⟨j′(ϕk), vk⟩ < C L
1+γ (

αk
β )γ(∥vk∥1+γ

X
+ 1) ≤ Cαγk(∣ ⟨j′(ϕk), vk⟩ ∣

1+γ
2 + 1).

We get xk ∶= ∣ ⟨j′(ϕk), vk⟩ ∣→ 0. Otherwise there exists a subsequence still denoted by

{xk} with xk → c̄ > 0. Rearranging the last inequality gives 1 < Cαγk(x
−1+γ

2

k +x−1
k )→ 0,

which is a contradiction.

Remark 2.12. Statements 1. and 2. of Theorem 2.2 require only that ϕk ∈ Φad

is chosen such that the search directions vk = ϕk − ϕk are gradient related descent
directions, as can be seen in the proof above. Hence ϕk does not have to be Pk(ϕk)
in Algorithm 2.1. In this case assumption (A3) is also not required.

3 An application in structural topology optimiza-
tion based on a phase field model

In this section we give an example of an optimization problem described in [4], which
is not differentiable in a Hilbert space, so the classical projected gradient method
cannot be applied, but the assumptions for the VMPT method are fulfilled.
We consider the problem of distributing N materials, each with different elastic
properties and fixed volume fraction, within a design domain Ω ⊆ Rd, d ∈ N, such
that the mean compliance ∫Γg g ⋅u is minimal under the external force g acting on
Γg ⊆ ∂Ω. The displacement field u ∶ Ω→Rd is given as the solution of the equations
of linear elasticity (14). To obtain a well posed problem a perimeter penalization
is typically used. Using phase fields in topology optimization was introduced by
Bourdin and Chambolle [8]. Here, the N materials are described by a vector valued
phase field ϕ ∶ Ω→RN with ϕ ≥ 0 and ∑iϕi = 1, which is able to handle topological
changes implicitly. The ith material is characterized by {ϕi = 1} and the different
materials are separated by a thin interface, whose thickness is controlled by the
phase field parameter ε > 0. In the phase field setting the perimeter is approximated
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by the Ginzburg Landau energy. In [5] it is shown that the given problem for N = 2
converges as ε → 0 in the sense of Γ-convergence. For further details about the
model we refer the reader to [4]. The resulting optimal control problem reads with
E(ϕ) ∶= ∫Ω { ε

2 ∣∇ϕ∣2 + 1
εψ0(ϕ)}

min J̃(ϕ,u) ∶=∫
Γg
g ⋅u + γE(ϕ) (13)

ϕ ∈H1(Ω)N , u ∈H1
D ∶= {H1(Ω)d ∣ ξ∣ΓD = 0}

subject to ∫
Ω
C(ϕ)E(u) ∶ E(ξ) = ∫

Γg
g ⋅ ξ ∀ξ ∈H1

D (14)

⨏
Ω
ϕ = m, ϕ ≥ 0,

N

∑
i=1

ϕi ≡ 1, (15)

where γ > 0 is a weighting factor, ⨏Ωϕ ∶= 1
∣Ω∣ ∫Ωϕ, ψ0 ∶ RN → R is the smooth

part of the potential forcing the values of ϕ to the standard basis ei ∈ RN , and
A ∶ B ∶= ∑di,j=1AijBij for A,B ∈ Rd×d. The materials are fixed on the Dirichlet
domain ΓD ⊆ ∂Ω. The tensor valued mapping C ∶ RN → Rd×d ⊗ (Rd×d)∗ is a
suitable interpolation of the stiffness tensors C(ei) of the different materials and
E(u) ∶= 1

2(∇u+∇uT ) is the linearized strain tensor. The prescribed volume fraction
of the ith material is given by mi. For examples of the functions ψ0 and C we refer to
[3, 4]. Existence of a minimizer of the problem (13) as well as the unique solvability
of the state equation (14) is shown in [4] under the following assumptions, which we
claim also in this paper.

(AP) Ω ⊆ Rd is a bounded Lipschitz domain; ΓD,Γg ⊆ ∂Ω with ΓD ∩ Γg = ∅ and
Hd−1(ΓD) > 0. Moreover, g ∈ L2(Γg)d and ψ0 ∈ C1,1(RN) as well as m ≥
0, ∑Ni=1 mi = 1. For the stiffness tensor we assume C = (Cijkl)di,j,k,l=1 with
Cijkl ∈ C1,1(RN) and Cijkl = Cjikl = Cklij and that there exist a0, a1,C > 0, s.t.
a0∣A∣2 ≤ C(ϕ)A ∶ A ≤ a1∣A∣2 as well as ∣C ′(ϕ)∣ ≤ C holds for all symmetric
matrices A ∈Rd×d and for all ϕ ∈RN .

The state u can be eliminated using the control-to-state operator S, resulting in
the reduced cost functional j̃(ϕ) ∶= J̃(ϕ, S(ϕ)). In [4] it is also shown that j̃ ∶
H1(Ω)N ∩L∞(Ω)N →R is everywhere Fréchet differentiable with derivative

j̃′(ϕ)v = γ ∫
Ω
{ε∇ϕ ∶ ∇v + 1

ε
ψ′0(ϕ)v} − ∫

Ω
C ′(ϕ)vE(u) ∶ E(u) (16)

for all ϕ,v ∈ H1(Ω)N ∩ L∞(Ω)N , where u = S(ϕ) and S ∶ L∞(Ω)N → H1(Ω)d
is Fréchet differentiable. By the techniques in [4] one can also show that S′ is
continuous.
In [4, 6] the problem is solved numerically by a pseudo time stepping method with
fixed time step, which results from an L2-gradient flow approach. An H−1 gradient
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flow approach is also considered in [6]. The drawbacks of these methods are that
no convergence results to a stationary point exist, and hence also no appropriate
stopping criteria are known. In addition, typically the methods are very slow, i.e.
many time steps are needed until the changes in the solution ϕ or in j are small.
Here we apply the VMPT method, which does not have these drawbacks and which
can additionally incorporate second order information.
Since H1(Ω)N ∩ L∞(Ω)N is not a Hilbert space the classical projected gradient
method cannot be applied. In the following we show that problem (13) fulfills the
assumptions on the VMPT method. Amongst others we use the inner product
ak(f ,g) = ∫Ω∇f ∶ ∇g. To guarantee positive definiteness of this ak we first have
to translate the problem by a constant to gain ∫Ωϕ = 0, which allows us to apply
a Poincaré inequality. Therefor we perform a change of coordinates in the form
ϕ̃ = ϕ −m and get the following problem for the transformed coordinates.

min j(ϕ) ∶= ∫
Γg
g ⋅ S(ϕ +m) + γE(ϕ +m) (17)

ϕ ∈ Φad ∶= {ϕ ∈H1(Ω)N ∣ ⨏
Ω
ϕ = 0, ϕ ≥ −m,

N

∑
i=1

ϕi ≡ 0} .

On the transformed problem (17) we apply the VMPT method in the spaces

X ∶= {ϕ ∈H1(Ω)N ∣ ⨏
Ω
ϕ = 0} , D ∶= L∞(Ω)N .

The space of mean value free functions X becomes a Hilbert space with the inner
product (f ,g)X ∶= (∇f ,∇g)L2 and ∥.∥X is equivalent to the H1-norm [1].

Theorem 3.1. The reduced cost functional j ∶ X ∩D → R is continuously Fréchet
differentiable and j′ is Lipschitz continuous on Φad.

Proof. The Fréchet differentiability of j on X∩D is shown in [4]. Let η,ϕi ∈X∩D
and ui = S(ϕi), i = 1,2. Then with (16), ψ0 ∈ C1,1(RN), Cijkl ∈ C1,1(RN) and
∣C ′(ϕ)∣ ≤ C ∀ϕ ∈RN we get

∣(j′(ϕ1) − j′(ϕ2))η∣ ≤ γε∥ϕ1 −ϕ2∥H1∥η∥H1 +Cγ
ε
∥ϕ1 −ϕ2∥L2∥η∥L2

+ ∣ ∫Ω(C
′(m +ϕ1) −C ′(m +ϕ2))(η)E(u1) ∶ E(u1)∣

+ ∣ ∫ΩC
′(m +ϕ2)(η)E(u1 −u2) ∶ E(u1)∣

+ ∣ ∫ΩC
′(m +ϕ2)(η)E(u2) ∶ E(u1 −u2)∣

≤ C∥ϕ1 −ϕ2∥H1∥η∥H1

+ ∥(C ′(m +ϕ1) −C ′(m +ϕ2))η∥L∞∥u1∥2
H1+

+C∥η∥L∞∥u1 −u2∥H1(∥u1∥H1 + ∥u2∥H1)
≤ C∥η∥H1∩L∞{∥ϕ1 −ϕ2∥H1 + ∥ϕ1 −ϕ2∥L∞∥u1∥2

H1

+ ∥u1 −u2∥H1(∥u1∥H1 + ∥u2∥H1)} (18)
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To show the continuity of j′, let ϕn,ϕ ∈ X ∩D for n ∈ N with ϕn → ϕ in X ∩D.
Using (18) yields

∥j′(ϕn) − j′(ϕ)∥(H1∩L∞)∗

≤ C(∥ϕn −ϕ∥H1∩L∞(1 + ∥un∥2
H1) + ∥un −u∥H1(∥un∥H1 + ∥u∥H1)),

where un = S(ϕn) and u = S(ϕ). From the continuity of S we get that ∥un∥H1 is
bounded and that ∥un −u∥H1 → 0 as n→∞. This implies

∥j′(ϕn) − j′(ϕ)∥(H1∩L∞)∗ → 0

and thus j ∈ C1(X ∩D).
For the Lipschitz continuity of j′ we employ estimate (18) with ϕi ∈ Φad, i = 1,2.
Since Φad is bounded in L∞, we get that S is Lipschitz continuous on Φad and that
∥S(ϕ)∥H1 ≤ C, independent of ϕ ∈ Φad, see [4]. This yields

∥j′(ϕ1) − j′(ϕ2)∥(H1∩L∞)∗ ≤ C∥ϕ1 −ϕ2∥H1∩L∞ ,

which proofs the Lipschitz continuity of j′ in Φad.

Corollary 3.2. The spaces X and D, together with j and Φad given in (17) fulfill
the assumptions (A1)-(A6) of the VMPT method.

Proof. Given the choices for X and D (A1) is fulfilled. For ϕ ∈ Φad we have

−1 ≤ −m ≤ ϕ ≤ 1 −m ≤ 1 ∀ϕ ∈ Φad

almost everywhere in Ω. Thus it holds (A3) and Φad ⊆ X ∩D. Moreover, 0 ∈ Φad,
Φad is convex, and since Φad is closed in L2(Ω)N , it is also closed in X ↪ L2(Ω)N .
Thus (A2) holds.
Assumption (A4) is shown in [4] and Theorem 3.1 provides (A5).
Given

⟨j′(ϕ),ϕi⟩ = ∫
Ω
{γε∇ϕ ∶ ∇ϕi + (γε∇ψ0(ϕ +m) −∇C(ϕ +m)E(u) ∶ E(u)) ⋅ϕi}

the first term converges to 0 if ϕi → 0 weakly in H1. With (AP) and u ∈ H1
D we

have that γ
ε∇ψ0(ϕ +m) − ∇C(ϕ +m)E(u) ∶ E(u) ∈ L1(Ω)N . Hence the remaining

term converges to 0 if ϕi → 0 weakly-* in L∞, which proves that (A6) is fulfilled.

Possible choices of the inner product ak for the VMPT method are the inner product
on X, i.e.

ak(p,y) = (p,y)X = ∫
Ω
∇p ∶ ∇y (19)
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and the scaled version ak(p,y) = γε(p,y)X. Both fulfill the assumptions (A7)-
(A11).We also give an example of a pointwise choice of an inner product, which
includes second order information. Since this choice is not continuous in X, it is not
obvious that it fulfills the assumptions. To motivate the choice of this inner product
we look at the second order derivative of j, which is formally given by

j′′(ϕk)[p,y] = ∫
Ω
{γε∇p ∶ ∇y − 2(C ′(m +ϕk)(y)E(S′(ϕk)p) ∶ E(uk))+

+ γ
ε
∇2ψ0(m +ϕk)p ⋅ y −C ′′(m +ϕk)[p,y]E(uk) ∶ E(uk)}.

In [4] it is shown that zp ∶= S′(ϕk)p ∈H1
D is the unique weak solution of the linearized

state equation

∫
Ω
C(m +ϕk)E(zp) ∶ E(η) = −∫

Ω
C ′(m +ϕk)pE(uk) ∶ E(η) ∀η ∈H1

D (20)

and that ∥zp∥H1 ≤ C∥p∥L∞ holds. Since the first two terms in j′′ define an inner
product (see proof of Theorem 3.3), we use

ak(p,y) = γε(p,y)X − 2∫
Ω
C ′(m +ϕk)(y)E(zp) ∶ E(uk) (21)

as an approximation of j′′(ϕk). Testing equation (20) for zy = S′(ϕk)y with zp we
can equivalently write

ak(p,y) = γε(p,y)X + 2∫
Ω
C(m +ϕk)E(zp) ∶ E(zy). (22)

We would like to mention that the C2-regularity of j is not necessary for this defi-
nition of ak.

Theorem 3.3. The bilinear form ak given in (21) fulfills the assumptions (A7)-
(A11).

Proof. Due to (AP) and (22) we have

ak(p,p) ≥ γε∥p∥2
X
.

Thus, (A7) and (A8) is fulfilled. Furthermore, (A9) holds due to

ak(p,y) ≤ γε∥p∥H1∥y∥H1 +C∥zp∥H1∥zy∥H1

≤ γε∥p∥H1∥y∥H1 +C∥p∥L∞∥y∥L∞ ≤ C∥p∥X∩D∥y∥X∩D.

(A10) is proved as in Corollary 3.2.
Finally we prove (A11). For yk → 0 and pk → p in X we have (yk,pk)X → 0
for k → ∞. With ϕk → ϕ, pk → p in D = L∞(Ω)N and S ∶ L∞(Ω)N → H1(Ω)N
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continuously Fréchet differentiable, we have uk = S(ϕk) → S(ϕ) =∶ u in H1
D and

zpk = S′(ϕk)pk → S′(ϕ)p =∶ zp in H1
D. In particular, the sequences are bounded in

the corresponding norms, including ∥yk∥L∞ ≤ C if yk → y weakly-* in L∞. Using the
Lipschitz continuity and boundedness of C ′ and ∇C(m +ϕ)E(zp) ∶ E(u) ∈ L1(Ω)N
we have

∣ ∫ΩC
′(m +ϕk)ykE(zpk) ∶ E(uk)∣

≤ ∣ ∫Ω(C
′(m +ϕk) −C ′(m +ϕ))ykE(zpk) ∶ E(uk)∣

+ ∣ ∫ΩC
′(m +ϕ)ykE(zpk − zp) ∶ E(uk)∣

+ ∣ ∫ΩC
′(m +ϕ)ykE(zp) ∶ E(uk −u)∣ + ∣ ∫ΩC

′(m +ϕ)ykE(zp) ∶ E(u)∣
≤ L∥ϕk −ϕ∥L∞∥yk∥L∞∥zpk∥H1∥uk∥H1

+ ∥C ′(m +ϕ)∥L∞∥yk∥L∞∥zpk − zp∥H1∥uk∥H1

+ ∥C ′(m +ϕ)∥L∞∥yk∥L∞∥zp∥H1∥uk −u∥H1

+ ∣ ∫Ω(∇C(m +ϕ)E(zp) ∶ E(u)) ⋅ yk∣→ 0,

which gives (A11).

Hence with 0 < λmin ≤ λk ≤ λmax, all assumptions of Theorem 2.2 are fulfilled and
we get global convergence in the space H1(Ω)N ∩L∞(Ω)N .

4 Numerical results
We discretize the structural topology optimization problem (13)-(15) using standard
piecewise linear finite elements for the control ϕ and the state variable u. The pro-
jection type subproblem (4) is solved by a primal dual active set (PDAS) method
similar to the method described in [7]. Many numerical examples for this problem
can be found in [3, 5], e.g. for cantilever beams with up to three materials in two
or three space dimensions and for an optimal material distribution within an airfoil.
In [3] the choice of the potential ψ as an obstacle potential and the choice of the
tensor interpolation C is discussed. Also the inner products (., .)X and γε(., .)X for
fixed scaling parameter λk = 1 are compared, where both give rise to a mesh inde-
pendent method and the latter leads to a large speed up. Note that the choice of
(., .)X with λk = (γε)−1 leads to the same iterates than choosing γε(., .)X and λk = 1.
Furthermore, it is discussed in [3] that the choice of γε(., .)X can be motivated using
j′′(ϕ) or by the fact that for the minimizers {ϕε}ε>0 the Ginzburg-Landau energy
converges to the perimeter as ε → 0 and hence γε∥ϕε∥2

X
≈ const independent of

ε≪ 1. However, since this holds only for the iterates ϕk when the phases are sepa-
rated and the interfaces are present with thickness proportional to ε, we suggest to
adopt λk in accordance to this. As updating strategy for λk the following method
is applied: Start with λ0 = 0.005(γε)−1, then if αk−1 = 1 set λ̃k = λk−1/0.75, else
λ̃k = 0.75λk−1 and λk = max{λmin,min{λmax, λ̃k}}. The last adjustment yields that
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(A12) is fulfilled. Numerical experiments in [3] show that this in fact produces for
the choice (., .)X a scaling with λk ≈ (γε)−1 for large k.
In [3, 5] the effect of obtaining various local minima of the nonconvex optimization
problem (13)-(15) by choosing different initial guesses ϕ0 can be seen. However also
the other parameters have an influence.
In this paper we concentrate on comparing different choices of the inner products
ak and use herefor the cantilever beam described in [3] with ψ0(ϕ) = 1

2(1 − ϕ ⋅ ϕ)
and a quadratic interpolation of the stiffness tensors C(ϕ). The computation are
performed on a personal computer with 3GHz and 4GB RAM. First we discuss
the choice of (., .)L2 versus (., .)X. The choice of the L2-inner product leads to
the commonly used projected L2-gradient method. However, (., .)L2 does not fulfill
the assumptions of the VMPT method, since j is not differentiable in L2(Ω)N or
L2(Ω)N ∩ L∞(Ω)N . Thus, global convergence is given for the discretized, finite di-
mensional problem but not in the continuous setting. This leads in contrast to the
choice of (., .)X to mesh dependent iteration numbers for the L2-gradient method,
which can be seen in Table 1. The values in Table 1 were computed for different
uniform mesh sizes h with the parameters ε = 0.04, γ = 0.5, ϕ0 ≡ m and tol = 10−5

for the stopping criterion √
γε∥∇ϕk∥L2 ≤ tol. The behaviour of iteration numbers is

in accordance to our analytical results in function spaces considering h → 0. Fur-
thermore, numerical results not listed here show that we obtain for (., .)X and large
k scalings λk ≈ (γε)−1 independent of the mesh parameter h, whereas the L2-inner
product produces λk scaled with h2. Since the algorithm using the L2-inner prod-
uct is equivalent to the explicit time discretization of the L2-gradient flow, i.e. of
the Allen-Cahn variational inequality coupled with elasticity, with time step size
∆t = λk, the scaling λk = O(h2) reflects the known stability condition ∆t = O(h2)
for explicit time discretizations of parabolic equations.

h 2−4 2−5 2−6 2−7 2−8

(., .)L2 323 5015 18200 57630 172621
(., .)X 111 407 320 275 269

Table 1: Comparison of iteration numbers for (., .)L2 and (., .)X.

Next we compare (., .)X with ak given in (21), which incorporates second order
information. As experiment we again use the cantilever beam in [3], now with
ε = 0.001, γ = 0.002, tol = 10−4 and random initial guess ϕ0 together with an adaptive
mesh, which is fine on the interface with hmax = 2−6 and hmin = 2−11. The parameter
λk is updated as described above. The computational costs of one iteration with
ak given in (21) is significantly higher, since the calculation of Pk(ϕk) requires the
solution of a quadratic optimization problem with ϕ ∈ Φad and in addition with
the linearized state equation (20) as constraints. However, in each PDAS iteration
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(a) (., .)X. (b) ak given in (21).

Figure 1: Local minima for the cantilever beam.

solving the subproblem for fixed k, only the right hand side of (20) changes, namely
only p. We factorize the matrix in the discrete equation once such that for each
p only a cheap forward and backward substitution has to be done. In Table 2 the
corresponding iteration numbers, the total CPU time, the values of the combined
cost functional j(ϕ∗) as well as of the parts, i.e. the mean compliance and the
Ginzburg-Landau energy are listed. One observes the drastic reduction in iteration
numbers using second order information. Due to the mentioned higher costs of
calculating the search directions the total CPU-time is only halved. Nevertheless,
this can be possibly improved using a more sophisticated solver for Pk(ϕk). It can
be also observed that the cost j(ϕ∗) and the probably more interesting value of the
mean compliance is lower. Hence, the different inner products result in different
local minima, which are shown in Figure 1. The inner product given in (21) yields
a finer structure. Also in other experiments we observed a local minima with lower
cost value for this choice of ak.

inner product iterations CPU time j(ϕ∗) ∫Γg g ⋅u∗ E(ϕ)
(., .)X 11189 42h 12min 15.07 15.03 20.79
ak in (21) 851 19h 14.99 14.93 30.12

Table 2: Comparison of two different inner products.

We successfully applied also an L-BFGS update in function spaces (see e.g. [19]
for the unconstrained case in Hilbert space) of the metric ak, i.e. starting with
a0(u,v) = γε(u,v)X we use the update

ak+1(u,v) = ak(u,v) − ak(pk,u)ak(pk,v)
ak(pk,pk) + ⟨yk,u⟩,⟨yk,v⟩⟨yk,pk⟩

in case that ⟨yk,pk⟩ > 0, where pk ∶= ϕk+1 − ϕk and yk ∶= j′(ϕk+1) − j′(ϕk), which
performs very good especially for small γ. Note that – as in the finite dimensional
case – assumption (A8) cannot be shown for this sequence of inner products, but
numerical experiments show that the discretized method is mesh independent, see
Table 3 for the above cantilever beam example, where the maximal recursion depth
is set to 10.
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h 2−5 2−6 2−7

H1-BFGS iterations 85 88 86

Table 3: Mesh independent iteration numbers for the H1-BFGS method.

The following compliant mechanism problem

min
1

2 ∫Ωobs
(1 − ϕN)∣u −uΩ∣2 + γE(ϕ),

where the elasticity equation (14) and the constraints (15) have to hold, is more
difficult. In our numerical analysis the solution process is more sensitive to the
choice of ak. Here the above H1-BFGS approach enables us to solve the problem
in an acceptable time. Until γε∥∇vk∥L2 ≤ tol = 10−4 the calculation of the material
distribution in Figure 2a took 22 hours. It aims to crunch a nut in the middle of
the left boundary when the force acts on the right hand side from above and below
and the mechanism is supplied on the left boundary.
Moreover, we also successfully applied the VMPT method on the following drag
minimization problem of the Stokes flow using a phase field approach, which is
analysed in [16]:

min∫
Ω

1

2
∣∇u∣2+1

2
αε(ϕ)∣u∣2 + γE(ϕ)

∫
Ω
αε(ϕ)uv + ∫

Ω
∇u ⋅ ∇v = 0 ∀v ∈H1

0,div(Ω)

u∣∂Ω ≡ (1,0)T , ⨏ ϕ = 0.75, −1 ≤ ϕ ≤ 1.

We applied a nested approach in h and ε as well as an adaptive grid. As inner
products we used the above H1-BFGS method and obtained the result in Figure 2b
with 188 iterations to obtain tol = 10−3, which took 17 minutes.
A different type of optimization problem is the inverse problem for a discontinuous
diffusion coefficient, where the discontinuous coefficient a is smoothed by a phase
field approach and no mass conservation is used [11]:

min
1

2 ∫Ω
∣u − uobs∣2 + γE(ϕ)

s.t. ∫
Ω
a(ϕ)∇u ⋅ ∇ξ = ∫

Γ
gξ ∀ξ ∈H1 and ∫

Ω
u = ∫

Ω
uobs, −1 ≤ ϕ ≤ 1.

We choose uobs as solution of the state equation for ϕ shown in the upper part of
Figure 2c with added noise of 5% and obtain the solution shown in the lower part
of Figure 2c.
The VMPT method can also be used for image inpainting using a phase field ap-
proach by considering

min 1
2∥ϕ − f∥2

H(Ω∖D) + γE(ϕ)
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(a) Crunching mechanism. (b) Obstacle minimizing drag. (c) Identified coefficient.

Figure 2: Successful applications of the VMPT method.

such that ϕ fulfills (15), where f is the given image and the inpainting is performed
in D [9]. The method can adjust to the chosen metric H(Ω∖D) and for this problem
a line search with exact step length can be applied [22].

The last four mentioned application examples are preliminary results and are under
further studies. To our knowledge the VMPT-method outperforms the existing
applied optimization algorithms in these cases.
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