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Abstract

The discrete element method (DEM) is providing a new modeling approach for
describing sea ice dynamics. It exploits particle-based methods to characterize the
physical quantities of each sea ice floe along its trajectory under Lagrangian coordi-
nates. One major challenge in applying the DEM models is the heavy computational
cost when the number of floes becomes large. In this paper, an efficient Lagrangian
parameterization algorithm is developed, which aims at reducing the computational
cost of simulating the DEM models while preserving the key features of the sea
ice. The new parameterization takes advantage of a small number of artificial ice
floes, named the superfloes, to effectively approximate a considerable number of the
floes, where the parameterization scheme satisfies several important physics con-
straints. The physics constraints guarantee the superfloe parameterized system will
have similar short-term dynamical behavior as the full system. These constraints
also allow the superfloe parameterized system to accurately quantify the long-range
uncertainty, especially the non-Gaussian statistical features, of the full system. In
addition, the superfloe parameterization facilitates a systematic noise inflation strat-
egy that significantly advances an ensemble-based data assimilation algorithm for
recovering the unobserved ocean field underneath the sea ice. Such a new noise
inflation method avoids ad hoc tunings as in many traditional algorithms and is
computationally extremely efficient. Numerical experiments based on an idealized
DEM model with multiscale features illustrate the success of the superfloe parame-
terization in quantifying the uncertainty and assimilating both the sea ice and the
associated ocean field. Mathematics Subjects Classification: 65P99, 65M99,
76M28
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1 Introduction

Sea ice forms when seawater freezes. It has a profound influence on the polar environ-
ment, such as weather, climate, and ocean circulation. It also interacts with many other
climate phenomena across different time scales and therefore influences the entire earth
system [9, 13, 33, 34]. A sea ice floe is defined as a large pack of floating ice [42], which
is widely observed in the marginal ice zone. See Figure 1 for an example of sea ice floes
in the Arctic.

Figure 1: Arctic sea ice floes. NASA credits, figure from the Global Land Cover Facility.

Sea ice is widely modeled as a continuum for its viscous-plastic rheology [18, 21],
which is reasonable for describing the large-scale features of sea ice. However, at scales
of the order of 10 km and smaller, sea ice exhibits brittle behavior with individual frag-
ments clearly visible from satellite observations. To better characterize such granular
media, discrete element method (DEM) models have become important in modeling sea
ice, as an alternative to the continuum models. The DEM models exploit particle-based
approaches to describe the physical quantities of each sea ice floe along its trajectory
under the Lagrangian coordinates [14, 19, 5, 41, 17, 15]. The DEM models have several
advantages over the traditional continuum models [26, 37]. First, the continuum models,
which are based on Eulerian coordinates, often require a simulation domain that contains
floe-free (open seawater) regions. This leads to a waste of computational resources. In
contrast, the DEM models track the floes in the relevant regions, which significantly im-
proves the computational efficiency and accuracy. Second, the Lagrangian DEM models
have a large flexibility in varying the spatial resolution, while the Eulerian models re-
quire adaptive meshes for this purpose, which often introduce additional computational
costs [43]. In addition, the observed trajectories of the floes can be directly incorporated
into Lagrangian data assimilation (DA) to recover the underlying ocean flow field, which
typically lacks direct observations in the polar regions.
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Despite many computational merits over the traditional continuum models, com-
putational efficiency remains a challenging issue of applying the DEM models when the
number of the floes becomes large [17]. In addition to increased computational storage,
frequent collisions between floes require a short numerical integration time step. The
demanding computational cost also makes it extremely difficult to carry out efficient
DA, which often requires running an ensemble of model forecasts. Therefore, developing
effective parameterizations has become an important topic to facilitate computational
efficiency and accuracy in applying DEM models.

In this paper, we develop an efficient physics-constrained superfloe parameteriza-
tion scheme for the Lagrangian DEM models. It aims at utilizing a small number of
artificial ice floes, named superfloes, to effectively approximate a considerable number of
small-scale floes. Notably, the new parameterization scheme satisfies several important
physics constraints. The dimension of the resulting parameterized system is much lower
than the full system and therefore the computational cost is significantly reduced. The
physics constraints guarantee the superfloe parameterized system to have similar short-
term dynamical behavior as the full system. These constraints also allow the superfloe
parameterized system to accurately quantify the long-range uncertainty, especially the
non-Gaussian statistical features, of the full system. The basic idea of such an efficient
physics-constrained superfloe parameterization scheme is to iteratively group together
the neighbouring small floes to create a superfloe that characterizes the key physics
and statistics of the floe clusters. The superfloe parameterization shares some common
features as the coarsening procedures in the smoothed particle hydrodynamics (SPH)
method [30, 31, 32] in which reductions in computational cost can be obtained by merg-
ing the nearest small particles [20, 39, 4, 38]. Nevertheless, there are quite a few unique
features of the superfloe parameterization and its application here. First, the superfloes
have clear physical meanings. Similar to the real floes, these superfloes are equipped
with all the physical quantities, including the floe radius, thickness, center of mass, ve-
locity, and angular velocity. Second, the superfloes are designed to satisfy several key
physics constraints. For example, the total mass and the sea ice concentration in the
superfloe parameterized model are the same as those in the full model. The momentum
and the angular momentum of each superfloe are also constrained to have the same
value as those associated with the floe clusters. In addition, the statistics of all the
kinematic quantities, as well as those of the floe-floe contact forces, are by design to be
retained in the superfloe parameterized system. Third, the superfloe parameterization
facilitates systematic noise inflation in Lagrangian DA [3, 22, 12], which advances using
the ensemble-based DA algorithm for recovering the ocean field underneath the sea ice.
Such a new noise inflation method avoids ad hoc tunings as in the traditional approaches
and is necessary for the ensemble-based DA algorithm to work effectively. Finally, the
superfloe parameterization algorithm is simple to implement and is amenable to different
DEM systems.

The rest of the paper is organized as follows. Section 2 summarizes a recently devel-
oped idealized DEM floe model of sea ice. Section 3 develops the superfloe parameteri-
zation algorithm. Section 4 studies the short- and long-range uncertainty quantification
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of the superfloe parameterization. Section 5 aims at showing the advantage of applying
superfloe parameterization to facilitate the Lagrangian DA. The concluding remarks are
included in Section 6.

2 An Idealized DEM Model for Sea-Ice Floe Dynamics

2.1 Overview

This section aims at summarizing a recently developed idealized DEM model for sea-ice
floe dynamics [10], which will be utilized as a test model for the uncertainty quantification
(UQ) and DA of the superfloe parameterization.

The sea ice floes move in a two-dimensional square domain with double periodic
boundary conditions for the ocean. Although the atmospheric forcing is the dominant
contribution to the sea ice velocity, it often lies on the large scale. In other words, the
main role of the atmospheric forcing is to provide a homogeneous background velocity
for the floes at each fixed time instant, which from a mathematical point of view can
be eliminated by applying a Galilean transformation. This means the large-scale atmo-
spheric forcing has little impact on the superfloe parameterization. The atmospheric
forcing is therefore omitted in the study here. Furthermore, in order to develop a simple
and mathematically tractable DEM model for testing the superfloe parametrization skill,
only the most fundamental dynamical features are included in the model. In particular,
the model emphasizes the impact of sea ice motion from the ocean drag force as well as
the collisions between the ice floes. The latter is a unique property that distinguishes
sea ice floes from free tracers. On the other hand, some other sea ice characteristics,
such as melting and ridging, are omitted in the current study for simplicity since they
play a relatively less important role in affecting the superfloe parameterization.

2.2 The geometry of the floes

Assume there are in total L floes in the system. For simplicity in the mathematical
description, all the floes are assumed to be cylinders. Therefore, the geometry of the
l-th ice floe is determined by the thickness hl and the horizontal radius rl. The mass is
ml = ρiceπ(rl)2hl, where ρice is the density of sea ice floes. Assuming the floes all being
cylinders is crude but is reasonable, as is illustrated in Figure 2.

The size and the thickness vary for different floes. Nevertheless, they satisfy certain
statistical laws, according to observational data. The floe size distribution satisfies a
power law [35]

p(r) = a κa

ra+1
, (2.1)

where r is the diameter of the floe, and α and κ are parameters. The floe thickness
distribution follows a Gamma distribution, whose density function is [7, 36]

p(h) = 1

Γ(k)θk h
k−1e−

h
θ (2.2)

4



Figure 2: Sea ice floe characterization using cylinders.

with k and θ being the shape and scale parameters.. These are both common choices in
practice.

2.3 The equations of motion

Let superscript ⋅l denote a state variable of the l-th floe with l = 1, . . . , L. The model
dynamics contains three sets of state variables:

1). the position xl = (xl, yl)T and the angular location Ωl of each floe,

2). the velocity vl = (ul, vl)T and the angular velocity ωl = ωlẑ of each floe, where ẑ
is the unit vector along the z-axis (perpendicular to the (x, y) plane), and

3). the ocean surface velocity uo.

For each floe, Newton’s law gives the equations of motion

dxl

dt
= vl , ml dvl

dt
= f lo + f lc , (2.3)

where the total force involves contributions f lo and f lc induced by ocean drag forces and
floe contact forces, respectively. The ocean drag force obeys the quadratic law [17, 15],

f lo = α̃l(uo − vl)∣uo − vl∣, (2.4)

where α̃l = doρoπ(rl)2 with the constant do being the ocean drag coefficient and ρo being
the density of ocean water. The floe contact force can be further partitioned as

f lc =∑
j

(f ljn + f ljt ) ∶=∑
j

(f ljn ⋅ nlj + f ljt ⋅ tlj), (2.5)
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where the contact force consists of the normal and tangential components, f ljn and f ljt
with n and t being the unit vectors along the normal and the tangential directions,
respectively. The superscript ⋅lj specifies the force from the j-the floe to the l-th one.
The contact force is nonzero when two floes are in contact with each other, i.e., δljn ≡
dlj − (rl + rj) < 0, where dlj = ∣xl − xj ∣ represents the distance between xl and xj . The
normal force f ljn is a resistive force to axial compressive stress between two cylindrical
ice floes. This force satisfies Hooke’s linear elasticity law, i.e., f ljn = cljEljδljn nlj , where
Elj is Young’s modulus and clj is the chord length in the transverse direction of the
cross-sectional area. The tangential force represents the resistance against slip between
floes by limiting relative tangential movement [14]. That is, f ljt = cljGljvljt tlj , where

Glj is the shear modulus and vljt = [(vj + ωj × rj) − (vl + ωl × rl)] ⋅ tlj with rj and rl

being the radius multiplied by the associated normal vector. The normal direction of
rj is defined by pointing towards the center of the l-th floe while rl goes the opposite
direction. It is important to note that the Coulomb friction law is also used, and it plays
an important role in limiting the tangential force relative to the magnitude of the normal
force [19]. That is, ∣f ljt ∣ ≤ µlj ∣f ljn ∣, where µlj is the coefficient of friction that characterizes
the condition of the surfaces of the two floes in contact.

On the other hand, the angular velocity ωl is given by the rate of change of the
angular position Ωl in time,

dΩl

dt
= ωl. (2.6)

The governing equation of the angular velocity is

I l
dωlẑ

dt
=∑

j

(rlnlj × f ljt ) + tloẑ, (2.7)

where I l = ml(rl)2 is the moment of inertia. The first term on the right hand side of
(2.7) comes from the torque induced by the contact forces while the second part is the
torque from ocean drag. The torque is given by

tloẑ = β̃l (
∇× uo

2
− ωlẑ) ∣∇× uo

2
− ωlẑ∣ , (2.8)

where β̃l = doρoπ(rl)4.
In reality, ocean and sea ice are two-way coupled. Some of the main feedback of

sea ice to the ocean comes from the change of the sea surface temperature and the
salinity due to the melting and freezing of the sea ice floes. Vice versa, the surface
temperature and salinity also affect the melting and freezing of the sea ice floes. They
are usually modeled as time-dependent diffusion-advection equations, which bring high
computational costs to solve. Since the two-way coupling involves many more compli-
cated modeling procedures and is not directly related to the superfloe parameterization,
only a one-way coupling from ocean to sea ice floes is adopted here for simplicity. Such
a one-way coupling still allows studying the DA skill as the ocean drag force is one of
the dominant contributors to the sea ice motion. Another advantage of adopting the
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simplified coupling is that it facilitates the use of a general spectrum representation for
describing the ocean dynamics. A set of linear stochastic models is utilized to model
each Fourier mode ûk,ζ of the ocean current, where the index k = (k1, k2) represents
the two-dimensional Fourier wavenumber and the index ζ is an indicator for different
types of the modes (such as the geophysically balanced and the unbalanced ones) as-
sociated with the same wavenumber that characterize the ocean flow field. Note that
it is well understood that if the underlying ocean model of uo is nonlinear, then the
time evolution of each Fourier coefficient ûk,ζ is driven by a nonlinear deterministic pro-
cess. Nevertheless, a linear model with additional stochastic noise is a widely used and
reasonable representation to approximate the nonlinear deterministic time evolution of
ûk,ζ , especially as a forecast model of DA [28, 16, 6, 8, 29, 24, 25]. The fundamental
mechanism of such an approximation is to stochastically parameterize the effect of the
nonlinearity by random noise, which allows an effective quantification of the uncertainty
for the underlying ocean dynamics that is required in DA. The governing equation of
ûk,ζ is given by

dûk,ζ

dt
= ((−dk,ζ + iφk,ζ)ûk,ζ + fk,ζ) + σk,ζ dẆk,ζ , (2.9)

where dk,ζ , φk,ζ and σk,ζ are real numbers, representing the damping coefficient, the
phase speed of the associated waves and the strength of the stochastic forcing, respec-
tively. On the other hand, Ẇk,ζ is a complex-valued white noise while fk,ζ(t) stands
for the large-scale deterministic forcing, which is also complex-valued. In practice, the
stochastic model is calibrated from the output of the original nonlinear physical model to
guarantee the skill of capturing the statistical and basic dynamical behavior. In partic-
ular, the parameters of the stochastic model are determined from several key statistics,
including the mean, variance and decorrelation time, that are computed from the orig-
inal nonlinear physical model. Define a vector ûo that collects all ûk,ζ for different k
and ζ, the spectrum representation of the ocean dynamics can be written into a concise
form as

dûo = (Luûo +Fu)dt +Σu dWu. (2.10)

Applying an inverse Fourier transform, the ocean velocity in the physical space can be
reconstructed as

uo = G(x)ûo, (2.11)

where G(x) is the inverse Fourier transformation matrix.
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2.4 Summary

Summarizing the above governing equations, the coupled ocean-sea ice system is

dxl

dt
= vl, (2.12a)

dΩl

dt
= ωl, (2.12b)

ml dvl

dt
=

L

∑
j=1

(f ljn + f ljt ) + α̃l (G(xl)ûo − vl) ∣G(xl)ûo − vl∣ , (2.12c)

I l
dωl

dt
=

L

∑
j=1

(rlnlj × f ljt ) ⋅ ẑ + β̃l (∇× uo/2 − ωlẑ) ∣∇× uo/2 − ωlẑ∣ , (2.12d)

dûo
dt

= (Luûo +Fu) +ΣuẆu(t), (2.12e)

where l = 1,2,⋯, L.
Despite being simplified compared with the operational models of the sea ice, the

coupled system captures many key features of the sea ice floe dynamics. Note that (2.12)
is highly nonlinear due to the quadratic terms in the linear and angular momentum
equations as well as the nonlinear operator G(xl), which is an exponential function of
xl. The coupled system is also a high-dimensional system. The total dimension of the
system is 6L +Do, where Do is the number of degrees of freedom of the ocean.

3 An efficient physics-constrained superfloe parameteriza-
tion

One of the most computationally challenging aspects of DEM sea ice simulations is the
high dimensionality of the system. In fact, a typical operational DEM model consists
of at least a few tens of thousands of floes. Therefore, effective parameterizations for
these Lagrangian DEM models are crucial for improving computational efficiency while
retaining the key dynamical features. Suitable parameterizations also facilitate efficient
DA. It is important to note that the reduced-order system by simply removing the small-
scale floes, as an analog to the bare truncation in typical turbulent systems, often brings
about a large error since the interactions from small-scale floes to the large-scale ones
via contact forces have a significant contribution to the overall dynamics [37].

3.1 Key features of the superfloe parameterization

The new parameterization developed here exploits artificial sea ice floes, which are named
as “superfloes”, to act as a substitute for the small-scale floes in the reduced-order sys-
tem. Each superfloe aims at approximating a cluster of the small-scale floes. Therefore,
only a small number of superfloes is sufficient to effectively parameterize all the small-
scale floes, which significantly reduces the dimension of the resulting system. See Fig-
ure 3 for an illustration. Different from many parameterizations that involve empirical
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tunings, physics constraints are systematically incorporated into the new superfloe pa-
rameterization. Specifically, the superfloe parameterized system is designed to preserve
the following physical quantities in the original system. These quantities are:

1). the mass,

2). the concentration,

3). the linear momentum, and

4). the angular momentum.

Including the mass constraint is natural, which is also the basis for retaining many
other quantities, such as the concentration. On the other hand, the momentum is a
more robust quantity to utilize than the energy as a physics constraint. In fact, the
energy transfer between floes is very complicated especially in the presence of collisions,
where part of the energy is dissipated. In contrast, the total momentum is conserved
instantaneously when the collision occurs and the momentum is simply interchanged
between different floes.
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Figure 3: An example of superfloe parameterization. There are in total 200 floes in the
original system. Red: L0 = 30 largest floes; Green: L−L0 = 170 small floes; Blue: Ls = 30
superfloes.

Assume that there are L floes, which are sorted in ascending order according to
their floe size (i.e., the radius here). The first L0 large-scale floes are retained in the
parameterized system, where L0 ≪ L, while the remaining L − L0 relatively small floes
are parameterized by Ls superfloes, where Ls ≪ L − L0. Therefore, there are only in
total Lr = L0 +Ls floes in the parameterized system. Then the constraints of the mass,
the linear momentum, and the angular momentum are given by
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Mass: mtotal =
L0

∑
j=1

mj +
L

∑
j=L0+1

mj =
L0

∑
j=1

mj +
Lr

∑
k=L0+1

m̃k,

Concentration: ctotal =
L0

∑
j=1

(rj)2 +
L

∑
j=L0+1

(rj)2 =
L0

∑
j=1

(rj)2 +
Lr

∑
k=L0+1

(r̃k)2,

Linear momentum: ptotal =
L0

∑
j=1

mjvj +
L

∑
j=L0+1

mjvj =
L0

∑
j=1

mjvj +
Lr

∑
k=L0+1

m̃kṽk,

Angular momentum: Ltotal =
L0

∑
j=1

Ijωj +
L

∑
j=L0+1

Ijωj =
L0

∑
j=1

Ijωj +
Lr

∑
k=L0+1

Ĩkω̃k,

(3.1)
where ⋅̃ denotes the quantities associated with the superfloe parameterization, and the
constants in the expression of the concentration have been ignored.

3.2 A superfloe parameterization algorithm

The k-th superfloe combines a cluster of J nearby small-scale floes into one superfloe.
The mass constraint of the superfloe leads to

m̃k =
J

∑
j=1

mj . (3.2)

Similarly, the area of the superfloe equals the sum of the areas of the J small-scale floes,
which guarantees the constraint of the sea ice concentration. For a cylinder floe, the
area is determined by its radius, i.e., πr2. Thus, the radius of the k-th superfloe is

r̃k =

¿
ÁÁÁÀ

J

∑
j=1

(rj)2. (3.3)

Now with the expressions of the mass and the area in hand, the thickness of the k-th
superfloe can be calculated

h̃k = m̃k

ρiceπ2(r̃k)2
. (3.4)

On the other hand, the position of the superfloe is given by the center of the mass of
the J small-scale floes,

x̃k = 1

m̃k

J

∑
j=1

mjxj . (3.5)

Next, the velocity of the k-th superfloe is calculated from the constraint of the linear
momentum,

ṽk = 1

m̃k

J

∑
j=1

mjvj . (3.6)
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Similarly, the angular velocity of the k-th superfloe is given by the constraint of the
angular momentum as

ω̃ = 1

Ĩk

J

∑
j=1

Ijωj , (3.7)

where the moment of inertia of the superfloe is Ĩk = m̃k(r̃k)2.
The superfloe parameterization is summarized in Algorithm 1.

Initialize the system of L total floes and set floe number target L0, Ls, Lr = L0 +Ls.
Keep the L0 largest floes.
while Lr > L0 +Ls do

Sort all the small floes and superfloes in descending order with respect to their
radii.
Start from the smallest floe to seek a group of neighboring floes.
if the distance between the smallest floe and nearby floes is large then

Delete the smallest floe as it is well-isolated.
Update the number of floes Lr.

else
Create a superfloe with quantities evaluated by equations (3.2)–(3.7).
Update the number of floes Lr.

end if
end while
Return a new set of floes.

Algorithm 1: Superfloe parameterization

In general, a small floe has a small contact force and hence a small impact on its
neighbouring floes. If a small floe is far away from all other nearby floes, it has no contact
force to its nearby floes, at least for a short period of time when it is not interacting
with other floes. We hence delete those floes as in Algorithm 3.1. In our numerical
experiments, we set this distance threshold as

√
2(rsmallest + rnearby) where rsmallest is

the current smallest floe and rnearby is the floe closest to this smallest floe. This leads
to a parameterized system that satisfies the mass conservation law in an approximate
way. Alternatively, one can keep it in the system to retain exact mass conservation. If
keeping it, then we slightly modify the algorithm and search the nearby floes of the next
smallest floes. In real applications, such isolated and small floes are very rare due to the
collision, melting, and welding features of sea ice. Thus, we simply remove them as in
Algorithm 3.1 for simplicity. Lastly, to identify groups of neighboring floes, while other
algorithms are possible, in our numerical experiments, we propose to group gradually
two nearby floes where one of the floes is the smallest floe in the current floe setting
state. This technique has the advantage of a lower computational cost in the sense that
there is no need to determine the size (floe number) of a group of neighboring floes and
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to determine the group a floe belongs to. Another advantage is that it avoids a superfloe
becoming too large compared to other floes as a DEM system with larger floe size ranges
requires smaller time-marching step sizes.

For the dynamical equations of motion, the superfloe parameterization has another
advantageous feature: the same dynamical equations from (2.12) can be used for super-
floes and for ordinary floes. As a result, no additional specifications are needed for the
interactions between superfloes and ordinary floes, nor for the interactions between one
superfloe and another superfloe, since they all interact in the same way that ordinary
floes interact with each other. As one possible modification, one might suspect that
a superfloe should have a reduced value of the Young’s modulus in comparison to an
ordinary floe, since a superfloe is less like solid ice than an ordinary floe, and a super-
floe should perhaps have a weaker response upon a collision. It would be interesting to
consider such possibilities in the future. Here, for simplicity, we investigate the use of
the same Young’s modulus in what follows, and we find that it yields satisfying results.

3.3 Example of superfloes and computational savings

Figure 3 compares one snapshot of the full floe field and the one with superfloe parame-
terization. The full floe field contains 200 floes, while the one with superfloe parameteri-
zation retains the largest 30 floes and parameterizes the other 170 floes by 30 superfloes.
It is clear that the groups of the neighbouring floes are reasonably well represented by
the superfloes. For instance, the small floes with numbers 55, 77, 113, 165, and 178
are neighbouring small-floes, which are parameterized as a superfloe with number 38
(see the top-left corner of plots in Figure 3). We also observe some small overlapping
of the floes in the right panel of the Figure 3. This is mainly due to the initialization
that the floes are dense and the assumption that the floes are cylinders. The overlapped
areas can be reduced with a different initialization or floe geometry. Nevertheless, it
is worthwhile to point out that such overlaps are also part of the modeling process in
many more realistic DEM models. The overlaps are utilized to effectively characterize
the elastic deformation due to tension or compression of the sea ice floes, which are often
assumed to be a rigid body.

Table 1 compares the floe statistics in the full system and those in the reduced-order
system with superfloe parameterization. Different rows show the cases with different
numbers of the floes L in the full system. It is clear that the reduced-order system with
the superfloe parameterization results in the same concentration and the minimum and
maximum of the thickness as those in the full system. The minimum radius rmin in the
superfloe parameterized system is larger than that in the full system since the small-scale
floes have been substituted by the superfloes. The maximal radius rmax can be larger
when a large floe is grouped with its neighbouring floes. These results also indicate the
robustness of the superfloe parameterization.

As a brief, first look at evolutionary simulations, Figure 4 compares the computa-
tional cost of the evolution of the full system (2.12) and that of the reduced-order system
with the superfloe parameterization. The final time of the simulation is about T = 120
days. The parameterization significantly reduces the simulation time costs. Moreover,
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Full system Superfloe parameterized system

L Ls Lr c rmin rmax hmin hmax c rmin rmax hmin hmax

40 20 40 0.34 1.51 4.22 0.19 2.54 0.34 1.51 4.22 0.19 2.54

60 20 40 0.50 1.51 4.38 0.18 2.54 0.48 2.15 4.38 0.20 2.54

80 20 40 0.58 1.51 3.98 0.18 2.54 0.56 2.71 4.06 0.20 2.54

100 20 40 0.75 1.51 4.06 0.17 2.54 0.74 2.34 5.25 0.20 2.54

100 30 60 0.75 1.51 4.06 0.17 2.54 0.75 2.31 4.46 0.19 2.54

200 30 60 0.78 0.80 3.82 0.17 3.33 0.78 2.47 4.46 0.19 2.54

Table 1: Comparisons of the floe statistics in the full system and those in the reduced-
order system with superfloe parameterization. The statistics include the sea ice concen-
tration c, the minimum and maximum of the radius rmin and rmax, and the minimum
and maximum of the thickness hmin and hmax. Recall that L is the total number of the
floes in the full system, Ls is the number of superfloes, and Lr is the total number of
the floes in the reduced-order system with the superfloe parameterization. Radius unit:
km; thickness unit: m.

since there are fewer floes in the parameterized system, the computational storage costs
are also reduced.
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Figure 4: Computational time cost comparison of the original (200 floes) and superfloe
parameterized (30 large floes and 30 superfloes) systems.
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4 Uncertainty quantification (UQ) with superfloe param-
eterization

Now we consider, in more detail, the superfloe parameterization and its incorporation
into the floe model (2.12) to form a reduced-order system, the simulation of which will
be compared with the full system (2.12). The primary goal here is to understand the un-
certainty quantification skill of the reduced system with the superfloe parameterization.
The uncertainty quantification is two-fold. On one hand, we expect the reduced system
with the superfloe parameterization captures the time evolution of the uncertainty as
the full system for a short-term forecast. On the other hand, it is important to see if the
reduced system is able to recover the long-term statistics especially the non-Gaussian
distribution with fat tails. Throughout this paper, the parameters in the floe size dis-
tribution (2.1) are α = 1 and κ = 1.5 while those in the thickness distribution (2.2) are
k = 2 and θ = 1.3. A square domain of scale 50km×50km is used here, mimicking the
marginal ice zone. The ocean field is generated from a truncated linear shallow water
system [27, 40]. It contains 26 Fourier modes, with 8 geophysically balanced (GB) modes
and 18 gravity modes. The GB modes are incompressible and they are slowly varying in
time. On the other hand, the gravity modes are compressible and have fast oscillations.
The Rossby number is Ro= 0.1 such that the gravity modes lie in a much faster time scale
than the GB modes. The damping coefficients for all the Fourier modes in (2.12e) are
0.5. The noise coefficients of the GB modes are all 0.1 while those of the gravity modes
are all 0.05. There is no deterministic forcing in the ocean equation. These parameters
allow the energy in the GB part of the flow to be roughly twice as much as that in the
unbalanced gravity modes. The ocean velocity is of order 0.1m/s, which is consistent
with observations. The numerical integration time step is ∆t = 25 seconds to resolve the
gravity modes. The other parameters as well as their physical units are listed in Table
2.

4.1 Short-term behavior of the reduced-order system with the super-
floe parameterization

We start with studying the short-term dynamics of the superpfloe parameterized system.
Figure 5 shows the time evolution of the momentum. In the experiment here, there are
in total 18 floes in the full system. Only the 6 largest floes are retained in the bare
truncation system. On the other hand, the superfloe parameterized system contains the
6 largest floes and 6 superfloes. The momentum variables are collected component-wise
as sums over all floes in each system. All three systems start with the same initial
condition. An ensemble forecast with 1000 ensemble members is used for the short-term
forecast here. The initial values of the ensembles are all assigned to be the same, which
equals the exact value from the full model. The uncertainty increases as the systems run
forward in time due to the random forcing in the systems. The goal here is to compare
the time evolution of the uncertainty in the ensemble forecast using the three systems.

Panel (A) shows the total momentum of all the floes in each system. It is clear
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that the time evolution of the momentum, as well as the associated uncertainty in the
original system, are well captured by the use of superfloes due to the physics constraints
in the superfloe parameterization. In contrast, the uncertainty in the bare truncation
model is severely underestimated, which indicates the necessity of parameterizing the
effects from the small-scale floes using the superfloe parameterization. In fact, Panel
(B) illustrates the total momentum after removing the 6 large floes in the original and
parameterized system, where Panel (d) shows the total momentums of the 12 small floes
in the original system while Panel (e) shows the total momentum of the 6 superfloes in
the parameterized system. Such a comparison implies that the superfloes indeed recover
the uncertainty propagation in the small-scale floes.

Figure 5: Comparison of the short-term behavior of the momentums. All three systems
start with the same initial condition. The uncertainty increases as the systems run
forward in time due to the random forcing in the systems. The dark and light shading
areas show the ensemble spread corresponding to 1 and 2 standard deviations of the
ensembles, respectively.

4.2 Long-term statistics of the reduced-order system with the super-
floe parameterization

The focus of this subsection is on comparing the long-term statistical behavior of the
reduced-order system with the superfloe parameterization versus the full system.

(a). Statistics of several key physical quantities.
Figure 6 compares the probability density functions (PDFs) of the velocities, angular
velocities, linear momentum, and angular momentum associated with the large-scale
floes in three different systems:

1). the full system, which contains in total L = 200 floes;

2). the superfloe parameterized system, where the L0 = 30 large-scale floes from the
full system are retained and the remaining 170 floes are parameterized by Ls = 30
superfloes; and
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3). the bare truncation system, where only the L0 = 30 large-scale floes are retained
while the other 170 floes are completely ignored.

The PDFs are based on the simulations over the time interval from T = 30 (days) to
T = 120 (days).
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Figure 6: Comparison of the probability density functions (PDFs) of various floe physical
quantities. There are 30 large floes and 30 superfloes in the parameterized system.

It is clear that the statistics associated with the superfloe parameterized system re-
semble those of the full system. In contrast, the barely truncated system has completely
different statistical behavior. The main difference between these two approximations
is that the superfloes mimic the small-scale floes to provide statistically accurate con-
tact forces to the large-scale floes. These contact forces are important to recover the
statistics of all the quantities. Note that despite the PDFs of the velocity and the angu-
lar velocity being nearly Gaussian, the momentum and angular momentum have highly
non-Gaussian statistics. The superfloe parameterized system succeeds in recovering these
fat-tailed PDFs.
(b). Statistics of the contact forces.
Now, we take a detailed look at the skill of the superfloe approximations in recovering
the contract forces. We define the contact force from all the small-scale floes or the
superfloes to the k-th large floe in (2.12c) and (2.12d) as

fkc =
Lf

∑
j=L0+1

(fkjn + fkjt ) and fkω =
Lf

∑
j=L0+1

(rknkj × fkjt ) ⋅ ẑ, (4.1)
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where Lf = L for the original system and Lf = Lr for the parameterized system, and fkc
has two components along x or y directions, respectively. The statistics are computed
based on a long simulation time.

The first row of Figure 7 shows the PDFs of the contact forces to the largest floe
#1 while the second row shows those to all the 30 large-scale floes. Despite a significant
dimension reduction of the system, the superfloes succeeds in recovering the highly non-
Gaussian statistics of the contact forces. The results here indicate that the superfloe
parameterized system is statistically accurate for describing the features of the large-scale
floes with a much reduced computational cost.
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Figure 7: Comparisons of the PDFs of floe contact forces. There are 18 floes in total.
The 12 smaller floes are parameterized as 6 superfloes. Top row: statistics of the largest
floe; bottom row: statistics of all the 6 floes. The normal fit is a fit for the contact forces
of the original system.

5 Lagrangian data assimilation (DA) with superfloe-based
inflation

In addition to approximating the statistical behavior of the large-scale floes in the full
system, the superfloe parameterization can also be used to facilitate the Lagrangian DA
that recovers the unobserved ocean field by observing the floe trajectories.

In practice, only the large-scale floes are easily identified from the satellite images,
which are the observations in the Lagrangian DA. This means the contact force in the
equation (2.12) due to the small-scale floes cannot be fully resolved in the forecast
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model. Simply ignoring the contributions from the small-scale floes (e.g., using the bare
truncation system) is expected to have large biases. Noise inflation [1, 23] is a typical
technique that improves the DA skill in the presence of such a model error. However,
noise inflation often relies on many ad hoc tunings, which makes it very difficult to apply
in practice.

In the following, a systematic noise inflation strategy based on the superfloe param-
eterization is developed to determine the noise inflation coefficients that significantly
advance the DA skill. The ensemble adjustment Kalman filter (EAKF) [2] will be uti-
lized as the DA algorithm throughout this section.

5.1 A superfloe-based noise inflation algorithm

Let ∆tobs be the observational time step and ∆t be the numerical integration time step.
Define M = ⌊∆tobs/∆t⌋ where ⌊⋅⌋ is a floor function. The superfloe-based noise inflation
algorithm is given as follows.

Develop a superfloe model using Algorithm 1 with L0 large floes and Ls superfloes.
Run the superfloe model up to T = N∆t and let tj = j∆t, j = 0,1,⋯,N,.
Store the contact forces of the l-th large floe that are from collisions with the Ls
superfloes, i.e., f lc(tj) and f lω(tj) in (4.1) for l = 1,2,⋯, L0.
for l = 1,2,⋯, L0 do

Set fj = f lω(tj), j = 1,2,⋯,N .
Form a vector F = (f1, f2,⋯, fN)T .
Set F2 = (fM+1, fM+2,⋯, fN)T and F1 = (f1, f2,⋯, fN−M)T .
Calculate the standard deviation of F2 −F1 and store it as σ̃lω.
Do the same for f lc(tj) to obtain standard deviation σ̃lc.

end for
Use σ̃lc as the noise inflation coefficient in (2.12c) for each large floe l, l = 1,2,⋯, L0.
Use σ̃lω as the noise inflation coefficient in (2.12d) for each large floe l, l = 1,2,⋯, L0.

Algorithm 2: Superfloe-based noise inflation

In Algorithm 2, the noise inflation is applied to the forward modeling equation by
adding σ̃lc dWl

v(t) to the right-hand side of (2.12c) and σ̃lω dW l
ω(t) to the right-hand side

of (2.12d), respectively. In the DA setting, we assume that we observe the trajectories
of the large floes (partial observation) and our goal is to estimate the velocities and
the Fourier modes of the underlying ocean currents. To set up the EAKF for the sea
ice floe simulation, we let the state variable s be a vector containing the displacements
(locations) and velocities of all the floes as well as the ocean current Fourier modes.
With this in mind, the state variable is

s = (x1
1,⋯, xLt1 , x1

2,⋯, xLt2 ,Ω1,⋯,ΩLt , v1
1,⋯, vLt1 , v1

2,⋯, vLt2 , ω1,⋯, ωLt , ûo)T ,
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where Lt is the total number of floes in the (original or superfloe-parameterized) system.
The Algorithm 2 is then implemented as the core of the forecast model for the EAKF
which is based on [2]. The observational noise is set to be σx =80m, σΩ =0.01rad. A
summary of the parameters is listed in Table 2.

The idea here is to compute the averaged strength of the contact force variability
over one forecast cycle ∆tobs, utilizing it as the noise inflation coefficient. Admittedly,
the noise inflation coefficient can be computed based on the full model (2.12). However,
while running the idealized model (2.12) is computationally affordable, running a full
operational DEM model for a long time is not practical. Since it has been shown in Figure
7 that the superfloe model succeeds in capturing the highly non-Gaussian statistics of
the contact force, the much cheaper superfloe model is more appropriate for determining
the noise inflation coefficients in the DA forecast model.

5.2 Numerical experiments

The root-mean-square error (RMSE) and the pattern correlation coefficient (PCC) will
be utilized as the skill scores to quantify the performance of DA. Denote by ξj and ξ̃j ,
j = 1, . . . , n, the true signal and the assimilated state. The RMSE and PCC are defined
as

RMSE =

¿
ÁÁÀ∑nj=1(ξ̃j − ξj)2

n
,

PCC =
∑nj=1(ξ̂j − ξ̂j)(ξj − ξj)√

∑nj=1(ξ̂j − ξ̂j)2
√
∑nj=1(ξj − ξj)2

.

(5.1)

5.2.1 A simple illustrative test experiment

We start with a simple situation that contains in total L = 18 floes in the full model
with L0 = 6 large-scale floes and 12 small-scale floes. The small floes are parameterized
as Ls = 6 superfloes using Algorithm 1. The ocean contains only 8 GB modes. Other
setups are the same as those at the beginning of Section 4. The size of the ensemble in
the EAKF is 1000, which is sufficient for assimilating such a relatively simple problem
without utilizing localization or covariance inflation. The observational time step is
every 1.4 hours. Three different forecast models are used in the DA:

1). the full model that contains all the 18 floes and all these 18 floes are observed;

2). the bare truncation model which contains only the 6 large-scale floes and only
these 6 floes are observed; and

3). the same truncated model and observations as (2) but including the superfloe-
based noise inflation.

Figure 8 shows the comparison of the trajectories of a velocity component v1
x and an

ocean mode (−1,−1). The other variables have qualitatively similar behavior. It is clear
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Figure 8: The comparison of the trajectories of the assimilated velocities of the largest
floe and ocean mode (−1,−1). The black lines refer to the true trajectories; the blue,
green, and red lines refer to assimilated trajectories when using the perfect model, bare
truncation, and the superfloe-based inflation model.

that the truncated model with noise inflation is more skillful than the one without infla-
tion in recovering the unobserved state variables. The reason is that both the momentum
and the angular momentum in (2.12) are driven by two things: the contact forces and the
ocean drag forces. Since the bare truncation model (green curve) completely ignores the
contact forces from small-scale floes, the EAKF has to treat such missing information as
part of the contribution from the ocean forces. There are indeed some small fluctuations
in the assimilated time series using the superfloe parameterization, which is possibly due
to the noises and the inaccurate contact forces arising from the large overlaps of floes.
Nevertheless, the recovered time series captures the overall time evolution of truth in an
accurate fashion. Therefore, the recovered Fourier coefficients of the ocean field contain
large errors. This is also clearly indicated in the reconstructed ocean field in physical
space. See Figure 9.

Figure 10 shows the skill scores using the bare truncation model and the one with
the superfloe-based noise inflation, where different numbers of large-scale floes are used
in the truncated models. Here, the number of large floes varies as L0 = 4,5,⋯,18.
Correspondingly, the number of small floes is 18 − L0. The number of superfloes is
chosen to be ⌊(18 − L0)/2⌋. The results in Figure 10 indicate that the model with the
superfloe-based noise inflation consistently improves the skill scores compared with the
bare truncation model. In particular, if there is only a small number of the floes retaining
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Figure 9: Snapshots of true and assimilated ocean currents when using bare truncation
and superfloe-based inflation.

in the system, then the model with the superfloe-based noise inflation is significantly
more skillful than the bare truncation model.

Figure 11 shows the skill scores with respect to the ocean uncertainty, where the
noise coefficients in each ocean GB mode vary from 0.1 to 1. The number of the large-
scale floes and that of the superfloes are both 6. Again, the model with the superfloe-
based noise inflation outweighs the barely truncated model as a forecast model for the
DA. Note that, the skill scores improve with the increase of the uncertainty of the
ocean. This is because as the ocean forces increase, they dominate the contact forces,
and therefore the role of the latter is weakened.

To study the computational cost, which mainly depends on the number of floes in
the system, we vary the number of floes as L = 6,12,18,24,30,36 in the full model. The
numbers of large-scale floes and the superfloes are fixed as Ll = Ls = L/3. Other choices
of the floe numbers are possible. Herein, we choose these numbers such that the total
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Figure 10: Comparison of the average RMSEs and PCCs of the floe velocities and ocean
velocities with respect to the number of large floes.
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Figure 11: Comparison of the average RMSEs and PCCs of the floe velocities and ocean
velocities with respect to the ocean uncertainty (noise strength).

number of small floes are parameterized to be half number of superfloes which equals to
the number of large floes in the system. Figure 12 shows the corresponding comparison on
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the computational time. The model with the superfloe-based noise inflation significantly
reduces the computational time of DA. Notably, since the curves of the RMSEs and PCCs
in Figure 10 are roughly flat when the number of large floes grows, it is natural to further
reduce the computational cost by keeping even fewer large-scale floes in the DA with
the superfloe-based noise inflation.
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Figure 12: Comparison of computational time cost for the case with respect to number
of floes.

5.2.2 A more realistic test experiment

Finally, a more realistic situation is considered. It includes more floes and a more
complicated ocean field. In addition, DA with model error is taken into account here.

In this test experiment, the ocean field contains 242 Fourier modes with 80 GB
modes and 162 gravity modes. The noise coefficient in each GB mode is 0.1 while
that in each gravity mode is 0.02. The values for gravity modes are smaller than those
in the previous section for each Fourier mode in order to maintain the same order of
the amplitude of the velocity field in the physical space. The Rossby number is still
Ro= 0.1, representing a multiscale ocean field. Since the energy of the gravity modes is
relatively weak compared with that of the GB modes and the gravity modes occur in
a much faster time scale, they can be treated as random perturbations on the slowly-
varying GB modes. The goal here is to assimilate only the GB part of the flow, which is
the typical situation in practice. Therefore, the forecast model for the Lagrangian DA
excludes the gravity modes, which introduces an extra model error but accelerates the
computations [11]. The total number of the floes in the full system is L = 72 with a
concentration of c = 0.57.

Figure 13 compares the truth and the assimilated time series in terms of the velocity
of the largest floe in x-component and the ocean mode (−4,−4). Figure 14 shows the
comparison of the truth and the reconstructed ocean flow fields. In both figures, the
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largest 24 floes are retained in the reduced-order forecast model. The superfloe model,
which exploits 24 superfloes to parameterize the remaining 48 small floes, is utilized to
determine the noise inflation coefficients. Similar to the results in Section 5.2.1, the bare
truncation model without noise inflation leads to large errors in recovering the ocean
field while the superfloe-based noise inflation significantly improves the DA skill.

Figure 15 shows the skill scores as a function of the number of large-scale floes in
the reduced-order system. The number of the superfloes is set to be half as many as the
number of the small-scale floes that are unresolved in the reduced-order model. The error
associated with the bare truncation model without noise inflation increases dramatically
when the number of the large-scale floes decreases while the error associated with the
model using the superfloe-based noise inflation remains at a low level. One interesting
finding is that applying the reduced-order model with superfloe-based noise inflation
using only a small number of the large-scale floes even outweighs the one that includes
all the 72 floes. In fact, the forecast model here does not include the gravity modes.
Nevertheless, the superfloe-based noise inflation automatically takes into account such an
effect. Thus, the noise inflation compensates both the contact forces from the small-scale
floes and the model error due to the ignorance of the gravity modes.
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Figure 13: The comparison of the trajectories of the assimilated velocities of the largest
floe and ocean mode (−4,−4). The black lines refer to the true trajectories; the blue and
red lines refer to assimilated trajectories when using bare truncation and the superfloe-
based inflation model.
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Figure 14: Snapshots of true and assimilated ocean currents when using bare truncation
and superfloe-based inflation.

6 Concluding remarks

In this paper, an efficient physics-constrained superfloe parameterization is developed
that significantly reduces the computational cost of the DEM model for sea ice. The su-
perfloe parameterized system captures the main features of sea ice floe dynamics as well
as the long-term non-Gaussian statistical features. It also facilitates a systematic noise
inflation scheme that advances the ensemble-based DA algorithms. Yet, there remain a
few simplifications in the current setups of the superfloe paramterization. One assump-
tion is that the groups of small floes would remain bundled together indefinitely. The
associated validity can potentially depend on the initial distribution of floes and distribu-
tion of surrounding sea forces. One natural direction of improving the framework here is
to systematically develop a criterion for breaking large pieces of the superfloes into small
ones. This should also be incorporated with the melting and the fracture features, which
are currently not included in the DEM utilized here. Other future work includes applying
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Figure 15: Comparison of the average RMSEs and PCCs of the floe velocities and ocean
modes with respect to the number of large floes.

the superfloe parameterization to more realistic sea ice models with more features and
their associated DA problems. To capture more physics of the Arctic sea ice dynamics,
a sophisticated model would include more features such as fracturing and the impact
of the salinity, temperature, and atmosphere. For these more complicated setups, the
EAKF should be combined with the localization and covariance inflation for effectively
assimilating the coupled system. These techniques can be naturally incorporated into
the current framework. Finally, although it has been shown the results of the superfloe
parameterization with different numbers of large-scale floes and superfloes, developing
systematic strategies to determine these numbers with certain theoretic guidelines for
UQ and DA remains as future work.
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H. M. Christensen, M. Colangeli, D. R. Coleman, D. Crommelin, S. I.
Dolaptchiev, et al., Stochastic parameterization: Toward a new view of weather
and climate models, Bulletin of the American Meteorological Society, 98 (2017),
pp. 565–588.

[7] R. H. Bourke and R. P. Garrett, Sea ice thickness distribution in the arctic
ocean, Cold Regions Science and Technology, 13 (1987), pp. 259–280.

[8] M. Branicki, A. J. Majda, and K. J. Law, Accuracy of some approximate gaus-
sian filters for the navier–stokes equation in the presence of model error, Multiscale
Modeling & Simulation, 16 (2018), pp. 1756–1794.

[9] D. J. Cavalieri and C. L. Parkinson, Arctic sea ice variability and trends,
1979-2010, The Cryosphere, 6 (2012), p. 881.

[10] N. Chen, S. Fu, and G. Manucharyan, Lagrangian data assimilation and pa-
rameter estimation of a simple sea ice discrete element model, Journal of Advances
in Modeling Earth Systems, (2020). (Under Revision).

[11] N. Chen and A. J. Majda, Model error in filtering random compressible flows
utilizing noisy lagrangian tracers, Monthly Weather Review, 144 (2016), pp. 4037–
4061.

[12] N. Chen, A. J. Majda, and X. T. Tong, Information barriers for noisy la-
grangian tracers in filtering random incompressible flows, Nonlinearity, 27 (2014),
p. 2133.

[13] J. C. Comiso, C. L. Parkinson, R. Gersten, and L. Stock, Accelerated
decline in the arctic sea ice cover, Geophysical research letters, 35 (2008).

[14] P. A. Cundall and O. D. Strack, A discrete numerical model for granular
assemblies, geotechnique, 29 (1979), pp. 47–65.

27



[15] A. Damsgaard, A. Adcroft, and O. Sergienko, Application of discrete ele-
ment methods to approximate sea ice dynamics, Journal of Advances in Modeling
Earth Systems, 10 (2018), pp. 2228–2244.

[16] B. F. Farrell and P. J. Ioannou, Stochastic forcing of the linearized navier–
stokes equations, Physics of Fluids A: Fluid Dynamics, 5 (1993), pp. 2600–2609.

[17] A. Herman, Discrete-element bonded-particle sea ice model design, version 1.3 a–
model description and implementation, Geoscientific Model Development, 9 (2016),
pp. 1219–1241.

[18] W. Hibler III, A dynamic thermodynamic sea ice model, Journal of physical
oceanography, 9 (1979), pp. 815–846.

[19] M. A. Hopkins, A discrete element lagrangian sea ice model, Engineering Compu-
tations, (2004).

[20] W. Hu, W. Pan, M. Rakhsha, Q. Tian, H. Hu, and D. Negrut, A consistent
multi-resolution smoothed particle hydrodynamics method, Computer Methods in
Applied Mechanics and Engineering, 324 (2017), pp. 278–299.

[21] E. Hunke and J. Dukowicz, An elastic–viscous–plastic model for sea ice dynam-
ics, Journal of Physical Oceanography, 27 (1997), pp. 1849–1867.

[22] K. Ide, L. Kuznetsov, and C. K. Jones, Lagrangian data assimilation for point
vortex systems, Journal of Turbulence, 3 (2002), pp. 053–053.

[23] H. Li, E. Kalnay, and T. Miyoshi, Simultaneous estimation of covariance in-
flation and observation errors within an ensemble kalman filter, Quarterly Journal
of the Royal Meteorological Society: A journal of the atmospheric sciences, applied
meteorology and physical oceanography, 135 (2009), pp. 523–533.

[24] Y. Li and S. N. Stechmann, Spatial and temporal averaging windows and their
impact on forecasting: exactly solvable examples, Mathematics of Climate and
Weather Forecasting, 4 (2018), pp. 23–49.

[25] , Predictability of tropical rainfall and waves: Estimates from observational
data, Quarterly Journal of the Royal Meteorological Society, 146 (2020), pp. 1668–
1684.

[26] R. Lindsay and H. Stern, A new lagrangian model of arctic sea ice, Journal of
physical oceanography, 34 (2004), pp. 272–283.

[27] A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, vol. 9,
American Mathematical Soc., 2003.

[28] A. J. Majda, Introduction to turbulent dynamical systems in complex systems,
Springer, 2016.

28



[29] A. J. Majda and N. Chen, Model error, information barriers, state estimation
and prediction in complex multiscale systems, Entropy, 20 (2018), p. 644.

[30] J. J. Monaghan, Smoothed particle hydrodynamics, Annual review of astronomy
and astrophysics, 30 (1992), pp. 543–574.

[31] , Smoothed particle hydrodynamics, Reports on progress in physics, 68 (2005),
p. 1703.

[32] J. J. Monaghan, Smoothed particle hydrodynamics and its diverse applications,
Annual Review of Fluid Mechanics, 44 (2012), pp. 323–346.

[33] C. L. Parkinson, Global sea ice coverage from satellite data: Annual cycle and
35-yr trends, Journal of Climate, 27 (2014), pp. 9377–9382.

[34] M. C. Serreze, M. M. Holland, and J. Stroeve, Perspectives on the arctic’s
shrinking sea-ice cover, science, 315 (2007), pp. 1533–1536.

[35] H. L. Stern, A. J. Schweiger, M. Stark, J. Zhang, M. Steele, B. Hwang,
and T. Maksym, Seasonal evolution of the sea-ice floe size distribution in the
beaufort and chukchi seas, Elementa: Science of the Anthropocene, 6 (2018).

[36] S. Toppaladoddi and J. S. Wettlaufer, Theory of the sea ice thickness dis-
tribution, Physical review letters, 115 (2015), p. 148501.

[37] J. Tuhkuri and A. Polojärvi, A review of discrete element simulation of ice–
structure interaction, Philosophical Transactions of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences, 376 (2018), p. 20170335.

[38] R. Vacondio, B. Rogers, P. K. Stansby, and P. Mignosa, Variable resolution
for sph in three dimensions: Towards optimal splitting and coalescing for dynamic
adaptivity, Computer Methods in Applied Mechanics and Engineering, 300 (2016),
pp. 442–460.

[39] R. Vacondio, B. Rogers, P. K. Stansby, P. Mignosa, and J. Feldman,
Variable resolution for sph: a dynamic particle coalescing and splitting scheme,
Computer Methods in Applied Mechanics and Engineering, 256 (2013), pp. 132–
148.

[40] G. K. Vallis, Atmospheric and oceanic fluid dynamics, Cambridge University
Press, 2017.

[41] Z. Xu, A. M. Tartakovsky, and W. Pan, Discrete-element model for the inter-
action between ocean waves and sea ice, Physical Review E, 85 (2012), p. 016703.

[42] Q. Zhang and R. Skjetne, Sea Ice Image Processing with MATLAB®, CRC
Press, 2018.

[43] O. Zienkiewicz and J. Zhu, Adaptivity and mesh generation, International Jour-
nal for Numerical Methods in Engineering, 32 (1991), pp. 783–810.

29



A Model parameters

Table 2 includes the parameters and their physical units of the idealized DEM model
(2.12). These parameters correspond to the physical variability in the marginal ice zone
in the Arctic ocean.

Simulation domain periodic, 50 km×50 km
Numerical scheme Euler-Maruyama

Time-marching step size ∆t = 25 seconds
Simulation Simulation final time T ∼ 120 days

Number of DA ensembles 1000
Observation variables x,Ω

Observation noise strength σx =80m, σΩ =0.01rad
Observational time-step size 100∆t ≈ 1.4 hours

Sea ice density ρo = 900kg/m3

Size (radius r) distribution p(r) = 1.5
r2

Thickness (h) distribution p(h) = 0.59he−0.77h m
Size typical range r ∈ [1km,10km]

Floe Thickness typical range h ∈ [0.1m,3.5m]
Concentration typical range [0.1,0.8]
Shear and Young’s modulus Elj = Glj = 1.25 × 108 Pa

Coulomb friction µlj = 0.2
Velocity scale ∼ 0.1m/s

Angular velocity scale ∼ 10−5rad/s

Seawater density ρo = 103kg/m3

Velocity scale Uo ∼ 0.1m/s
Ocean drag coefficient do = 3 × 10−3

Ocean Rossby number Ro= 0.1
Damping coefficients for the ocean modes dk,ζ = φk,ζ = 0.5
Long-term mean forcing for the GB modes fk,ζ = 0.1 exp(i2π/14t)

Long-term mean forcing for the gravity modes fk,ζ = 0
Ocean GB mode uncertainty strength σk,ζ = 0.1

Ocean gravity mode uncertainty strength σk,ζ = 0.05

Table 2: Parameters and their physical units of the idealized DEM model (2.12).
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