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In this paper, two learning automata based adaptive limited fractional guard channel
algorithms for cellular mobile networks are proposed. These algorithms try to minimize

the blocking probability of new calls subject to the constraint on the dropping prob-
ability of the handoff calls. To evaluate the proposed algorithms, computer simulation
are conducted. The simulation results show that the performance of the proposed algo-

rithms are close to the performance of the limited fractional guard channel algorithm for
which prior knowledge about traffic parameters are needed. The simulation results also

show that the proposed algorithms outperforms the recently introduced dynamic guard
channel algorithms.

1. Introduction

The service area of a cellular network is partitioned into regions, called cells. Each

cell has a base station that manages allocation of channels to mobile stations reside

in the cell. When a mobile station moves across the cell boundary and enters to

a new cell, handoff is required, which must be transparent to users. If an idle

channel is available in the destination cell, the handoff is resumed and a channel

is assigned to it; otherwise the call is dropped. Two commonly used performance

measures for cellular networks are : dropping probability of handoff calls (Bh) and

blocking probability of new calls (Bn). The dropping probability of handoff calls

represents the probability that a handoff call being dropped during handovers. This

probability is defined as the ratio between the number of handoff calls dropped by

the system and the total number of handoff calls. The blocking probability of new

calls represents the probability that a new call being denied access to the network.
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and Mathematics (IPM), Tehran, Iran.
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This probability is defined as the percentage of new calls that are denied access to

the network.

In order to have control on dropping probability of handoff calls and blocking

probability of new calls call admission control algorithms are used, which determine

whether a call should be either accepted or rejected at the base station. Both the

blocking probability of new calls and the dropping probability of handoff calls are

affected by the used call admission algorithm. Blocking more new calls generally

decreases the dropping probability of handoff calls and admitting more new calls

generally decreases the blocking probability of new calls and increases the dropping

probability of handoff calls. Since the dropping of a handoff call is usually more

objectionable than blocking of a new call, it widely believed that the call admission

algorithms must give a higher priority to the handoff calls as compared to the

new calls. These call admission algorithms are called priority based call admission

algorithms. Various priority based call admission algorithms have been reported

in the literatures; they can be classified into three broad categories: equal access

sharing with priority, reservation based, and queueing priority schemes 1.

(1) Equal access sharing with priority schemes: In equal access sharing with priority

schemes, all calls have access to all channels but handoff calls have a higher

priority than new calls. These schemes can be classified into two main classes:

call thinning and new call thinning schemes. The call thinning schemes accept

new calls with a certain probability that depends on the number of ongoing

calls in the cell 2,3; while new call thinning schemes accept new calls with a

probability that depends on the number of ongoing new calls in the cell 4. Both

schemes accept the handoff calls when the cell has free channels. Equal access

sharing with priority schemes can be static 4 or dynamic 5. In static schemes,

the probability of acceptance of new calls is fixed; while in dynamic schemes

the probability of acceptance of new calls is varied when traffic vary.

(2) Reservation based schemes: In these schemes, a subset of channels is reserved for

sole use of handoff calls. These schemes can be divided into two main groups:

equal access sharing with reservation and complete partitioning schemes. In

equal access sharing with reservation schemes, a portion of channels is reserved

for sole use of handoff calls. Whenever the number of calls (new calls) exceeds

a certain threshold, these schemes reject new calls until the number of calls

(new calls) goes below the threshold. These schemes accept handoff calls as

long as the cell has free channels. When the number of calls is compared with

the given threshold, this scheme is called call bounding 2,6,7,8,9,10,11,12 and when

the number of new calls is compared with the given threshold, it is called new

call bounding 4. Equal access sharing with reservation schemes can reserve an

integral number 6,7,8,9,10,11 or a fractional number 2,12 of channels for sole use

of handoff calls. Schemes with fractional number of guard channels have more

control on the blocking probability of the new calls and the dropping probabil-

ity of the handoff calls than schemes with integral number of guard channels.
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These schemes can also be static 2,7,8,9 or dynamic 10,11,12, where in the former

schemes, the threshold is fixed while in the later schemes the threshold varies

as traffic vary. Complete partitioning schemes partition the channels between

handoff and new calls by dedicating a certain number of channels to each type

of calls 13.

(3) Queueing priority schemes: In queuing priority schemes, new or handoff calls

are accepted whenever there are free channels for that type of calls. When there

is no free channel for a type of call, calls may be queued and calls of other types

are blocked and cleared from the system. Queueing priority schemes can be

divided into three groups: new call queuing schemes 14, handoff call queuing

schemes 15,16,17, and all call queuing schemes 15,18.

In the current literatures, two approaches are commonly proposed for designing

call admission algorithms. The first approach, called static call admission, consid-

ers system parameters such as new and handoff calls as stationary and pursues the

design of a static call admission algorithm for the worst case scenario 2,4,6,8. The

second approach, called adaptive/dynamic call admission, considers system param-

eters as nonstationary and pursues the design of a call admission algorithm that

adjusts its parameter during the operation of the network 5,10,11,19,20. In design of

adaptive call admission algorithms for cellular networks, two approaches can be used

for gathering information regarding traffic in the network. The first approach, called

nonautonomous schemes, assumes that each base station has some knowledge about

the traffic condition in neighboring cells. Such conditions are expressed in terms of

the number of new and handoff calls present in each base station, new and handoff

arrival rates and/or channel holding time for each class of traffic. The actual imple-

mentation of these algorithms will introduce a large communication and processing

overhead. The second approach, called autonomous schemes, assumes that state in-

formation about neighboring cells that is necessary for call admission decision may

be deduced from the local information available at the base station.

The optimality of static call admission algorithms has been studied under sta-

tionary traffic conditions 2,7. In real systems the arrival rate is a time varying param-

eter, resulting in periods of overload and underload, which may degrade the quality

of service. In such situations, adaptive schemes have superiority over static schemes.

Recently, several adaptive learning automata based call admission algorithms are

proposed in the literature for cellular networks. Beigy and Meybodi proposed a

learning automata based algorithm that adjusts the probability of acceptance of

new calls (π) for uniform fractional channel policy 5. In 12, a learning automata

based algorithm is given which adjusts parameters of limited fractional guard chan-

nel policy. It was shown that the learning automaton finds the optimal values of

parameters of limited fractional guard channel algorithm. In 21, two learning au-

tomata based algorithms are given which adjust the threshold for guard channel

policy and their steady state behavior studied. A cellular learning automata based

algorithm is given which adjusts the threshold for guard channel policy 22. This
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algorithm use some status information of neighboring cells to adjust the threshold

for guard channel policy.

In this paper, we propose two learning automata based adaptive and autonomous

call admission control algorithms based on limited fractional guard channel algo-

rithm. These algorithms use only the current channel occupancy of the given cell

and dynamically adjust the number of channels to be reserved for handoff calls.

In these algorithms, each base station, independently of other base stations in the

network, reserves a number of channels for handoff calls in order to guarantee that

the dropping probability of handoff calls does not exceed a predetermined thresh-

old. The proposed algorithms adapt the number of guard channels in a such a way

that the blocking probability of new calls is minimized subject to the constraint on

the dropping probability of handoff calls. Since the learning automaton starts its

learning without any priori knowledge about its environment, the proposed algo-

rithms do not need any prior information about the input traffic. One of the most

important advantages of the proposed algorithms is that no status information will

be exchanged between neighboring cells. However, the exchange of such status in-

formation may increase the performance of the proposed algorithm at the expense

of communication and computation overheads. The simulation results show that the

performance of these algorithms is near to the performance of the limited fractional

guard channel scheme that needs to know all the traffic parameters and better than

the dynamic guard channel algorithm 21.

The rest of the paper is organized as follows. The limited fractional guard channel

algorithm is given in section 2 and the learning automata are briefly described in

section 3. The proposed algorithms are presented in section 4. The simulation results

are given in section 5 and section 6 concludes the paper.

2. Limited Fractional Guard Channel Policy

In the limited fractional guard channel algorithm (LFG), a fractional number of

channels is reserved in each cell exclusively for the handoff calls 2. Suppose that the

given cell has C full duplex channels. The LFG algorithm uses two parameters T

and π. In LFG, when the number of occupied channels is below the threshold T , new

calls are accepted. When T channels are occupied in the cell, new calls are accepted

with probability π and new calls are rejected in other cases. When more than T

channels are occupied in the cell, the LFG scheme rejects new calls until the number

of occupied channels goes below the threshold T . This scheme accepts handoff calls

as long as the cell has free channels. π is in fact the probability that a new channel

to be served or not. Therefore T + π is the average number of reserved channels.

Since in the LFG algorithm, both T and π control the acceptance of the new calls,

we consider T + π as a control parameter. For studying the blocking performance

of the LFG algorithm, we consider a homogenous wireless network where all cells

have the same number of channels, C, and experience the same new and handoff

calls arrival rates. In each cell, the arrival of the new calls and the handoff calls
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are Poisson distributed with rates λn and λh, respectively and the channel holding

time of new and handoff calls are exponentially distributed with the same mean µ−1.

Note that the same service rate for both types of calls implies that the base station

of a cell does not need to discriminate between new and handoff calls, once they are

connected. These assumptions have been found reasonable as long as the number of

mobile users in a cell is much greater than the number of channels allocated to that

cell. Define the state of a cell at time t by the total number of occupied channels,

c(t). Thus, the channel occupancy of the cell can be modeled by a continuous time

Markov chain with states 0, 1, . . . , C. Figure 1 shows the state transition diagram

of a system with C channels for the LFG algorithm.

Fig. 1. Markov chain model of cell using LFG algorithm

Define the steady state probability Pn = limt→∞ Prob[c(t) = n] as the prob-

ability of n channels being occupied. Given this, it is straightforward to derive

probability Pn (for n = 0, 1, . . . , C). These state probabilities are given as follows:

Pn =

{

ρn

n! if n ≤ T

γa−(T+1) (ρa)n

n! if T < n ≤ C,
(1)

where

P0 =

[

T
∑

n=0

ρn

n!
+ γa−(T+1)

C
∑

n=T+1

(ρa)n

n!

]−1

, (2)

and a = λh/λ,ρ = λ/µ, γ = [a + (1 − a)π], and λ = λn + λh. Given these state

probabilities, we can find the dropping probability of the handoff calls, Bh(C, T, π),

and the blocking probability of the new calls, Bn(C, T, π), as

Bh(C, T, π) = γa−(T+1) (ρa)C

C!
P0, (3)

Bn(C, T, π) = (1− π)
ρT

T !
P0 + γa−(T+1)P0

C
∑

n=T+1

(ρa)n

n!
. (4)

In the rest of this section, we state two important properties of Bn(C, T, π) and

Bh(C, T, π), which will be used later in the paper. These properties are proved in

appendix A.

Property 1. Bh(C, T, π) is a monotonically increasing function of both T and π.

Corollary 1. Bn(C, T, π) is a monotonically increasing function of T + π.
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Proof. Since Bn(C, T, π) is a monotonically increasing function of both T and π,

it is a monotonically increasing function of T + π.

Property 2. Bn(C, T, π) is a monotonically decreasing function of both T and π

provided that ρ < (T + 1) and λn/λ < min{ 1
T+1 , 1

C−T }.

Corollary 2. Bn(C, T, π) is a monotonically decreasing function of T +π provided

that ρ < (T + 1) and λn/λ < min{ 1
T+1 , 1

C−T }.

Proof. Since Bn(C, T, π) is a monotonically decreasing function of both T and π,

it is a monotonically decreasing function of T + π.

3. Stochastic Learning Automata

Learning automata (LA) are adaptive decision making units that can learn to choose

the optimal action from a set of actions by interaction with an unknown environ-

ment. At each instant, the automaton chooses an action from its action probability

distribution and applies it to an environment. The environment provides a stochas-

tic response called reinforcement signal, to the automaton, which is used to update

the action probability distribution. LAs can be classified into two main groups:

finite action-set learning automata (FALA) and continuous action-set learning au-

tomata (CALA) 23. When the FALA is used for solving optimization problems, we

need to discretize the parameter space, so that actions of the automaton can be

possible values of the corresponding parameter. The accuracy of the solution can

be increased by choosing a finer discretization and hence increasing the number of

actions of automaton, which leads to slow convergence of the learning algorithm. In

order to provide a higher rate of convergence for FALA, hierarchical structure LA 24,

discretized LA 25, estimator algorithms 26,27,28, and pursuit algorithms 29,30,31,32

have been introduced. A more satisfying solution is to use CALA in which the

action-set of the automaton is a continuous variable. A CALA uses a probability

distribution function to choose its actions and a learning algorithm to update this

function based on the reinforcement signal. Since the action-set is continuous, in-

stead of penalty probabilities for actions, we now have a penalty probability function

M(α) = E[β(α)|αn = α]. CALA has no knowledge about M(.) and its objective is

find an action α that minimizes M(α).

A CALA, whose action probability distribution at instant n is Gaussian with

mean µn and standard deviation σn, is introduced in 33. At instance n, the action

chosen by CALA can be represented by a pair (αn, µn), where αn is chosen from

distribution N(µn, σn) and µn is the mean of the Gaussian distribution. Then the

environment, in response to the chosen action, emits two reinforcement signals β(α)

and β(µ) for actions αn and µn, respectively. Finally, CALA uses the rule given

below to update its action probability distribution by updating µn and σn.

µn+1 = µn + af1[µn, σn, αn, β(α), β(µ)]
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σn+1 = σn + af2[µn, σn, αn, β(α), β(µ)]−Ka[σn − σL], (5)

where f1, f2, and φ are

f1(µ, σ, α, β(α), β(µ)) =

[

β(α)− β(µ)

φ(σ)

] [

α− µ

φ(σ)

]

f2(µ, σ, α, β(α), β(µ)) =

[

β(α)− β(µ)

φ(σ)

]

[

(

α− µ

φ(σ)

)2

− 1

]

(6)

φ(σ) = (σ − σL)I{σ > σL}+ σL,

σL is the minimum value of standard deviation for Gaussian distribution, I is in-

dicator function, K > 0, and a ∈ (0, 1) are parameters of the algorithm and φ[σn]

is to guarantee σn+1 ≥ σn. The objective of the above rule is the convergence of

N(µn, σn) to N(α∗, 0), where M(α) attains its minimum at α = α∗. For this algo-

rithm it is shown that with arbitrary large probability, µn will converge close to α∗

and σn will converge close to σL, if we choose µ and σL sufficiently small and K

sufficiently large 33. Beigy and Meybodi proposed a CALA whose action probability

distribution at instant n is Gaussian with mean µn and standard deviation σn
34.

At instant n, this automaton chooses αn from distribution N(µn, σn) and applies

it to the random environment, which emits the reinforcement signal βn ∈ [0, 1].

Then, the following rule was used to update the parameters µn and σn of Gaussian

distribution:

µn+1 = µn − aβ(αn)σn(αn − µn), (7)

σn+1 = f(σn),

where a is learning rate and f is a function that produces a sequence of σn such that

σn ≥ 0,
∑

∞

n=1 σ3
n =∞, and

∑

∞

n=1 σ4
n <∞. It was shown that this algorithm finds

the optimal action with a probability as close to unity as desired, i.e. µn will converge

close to α∗ 34. In these two automata 33,34, it is assumed that no information about

the optimal action is available and at the beginning, the actions are chosen from

a near uniform distribution. So the initial distribution is considered as a Gaussian

distribution with a random mean and a large value of standard deviation.

In continuous action reinforcement learning automata, it is assumed that the

actions-set is a bounded continuous random variable over interval [αmin, αmax] ∈ ℜ
35. This automaton selects its action αn at instant n from a continuous probability

density function, f , and applies it to a random environment that emits a response

βn ∈ [0, 1]. It is assumed that no information about the actions is available initially

and therefore the probabilities of choosing actions are equal, that is, the initial

distribution is uniform. Based on βn, f(n) is updated according to the following

rule:

f(n + 1) =

{

a[f(n) + (1− βn)H(α, αn)] if αn ∈ [αmax, αmin]

0 otherwise,
(8)



September 8, 2009 8:36 WSPC/INSTRUCTION FILE IJUFKS-V7

8 Hamid Beigy and M. R. Meybodi

where a is a normalization factor and H(α, r) is a symmetric Gaussian neighborhood

function centered on αn and has the effect of spreading the reinforcement signals

for neighboring actions of the selected action.

Learning automata have been used successfully in many applications such as

computer networks 36,37,38, solving NP-Complete problems 39,40,41, capacity as-

signment 42,43, neural network engineering 44,45,46,47, and cellular networks 5,10 to

mention a few.

4. Adaptive Limited Fractional Guard Channel Algorithms

The LFG algorithm assumes that traffic is a stationary process with known param-

eters, but in reality, traffic is a nonstationary process. Even if we assume that traffic

is stationary, its parameters may not be known a priori or may vary with time. In

either case, the optimal value for the parameters of the LFG algorithm is not known

a priori and may vary with time. In nonstationary traffic, adaptive LFG algorithms

which adapt the parameters of the LFG as the network operates have superiority

over the LFG algorithm. In this section, we consider the call admission problem for

two classes of calls: new and handoff calls and present two learning automata based

adaptive LFG algorithms to adapt value of T + π for the LFG algorithm. These

algorithms can be used particularly when λn, λh and µ are unknown and possi-

bly time varying. The objective of these algorithms is to adapt parameter T + π

in such a way that the blocking probability of new calls is minimized subject to

the constraint that the dropping probability of handoff calls be at most ph. Since

T +π is a continuous parameter, each of the proposed algorithms uses a continuous

action-set learning automaton (CALA) for adaptation of the value of parameter

T +π. Let x(n) = T (n)+π(n) be the parameter of the LFG algorithm at instant n,

and x(n) takes values in the interval [xmin, xmax], where 0 ≤ xmin < xmax ≤ C. The

CALA chooses its actions using a Gaussian distribution, N(µ;σ). This Gaussian

distribution is updated using the reinforcement signal, β, which is emitted from the

environment. Initially, the CALA chooses one of its actions with equal probability

using a Gaussian distribution with a large variance.

Since x(n) and µ(n) must be in the interval [xmin, xmax], the above men-

tioned CALA cannot be used directly to adapt the value of T + π, and hence

a projected version must be used. In the projected version, a constraint set

H = {y |xmin ≤ y ≤ xmax } is used for updating µ as well as choosing actions of

CALA. In the projected version, when the updated value of µ goes outside of the

constraint set H, then µ is pushed into H and also when the action, x, chosen by

the CALA does not belong to H, then x is pushed into H.

The proposed algorithms can be described as follows. Each base station is

equipped with a CALA for adapting T + π. When a new call arrives at a given

cell, the learning automaton associated to that cell chooses one of its actions, say

x(n). Let T (n) = ⌊x(n)⌋ and π(n) = x(n)−⌊x(n)⌋. If the number of busy channels

of a cell is less than T (n), then the incoming call will be accepted; when the cell
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has T (n) busy channels, then the call will be accepted with probability π(n); other-

wise the incoming call will be blocked. Then the base station computes the current

estimate of the dropping probability of the handoff calls and based on the result of

the comparison of this quantity with the specified level of QoS, ph, a reinforcement

signal will be produced. Finally the automaton uses the received reinforcement sig-

nal to update the Gaussian distribution by updating µn and σn. The handoff calls

will be accepted as long as the cell has free channels.

Depending on the learning algorithm used by the CALA and the way that the

reinforcement signal is computed, a variety of algorithms may be obtained, two of

which are described in the following sections. The differences between the proposed

algorithms are the way that they compute the reinforcement signal and the learning

algorithm used to update action probability vector. The first algorithm, which we

call ALFG I, uses the short time response while the second algorithm, which we call

ALFG II, uses both short time and long time responses to update the mean and

the variance of the Gaussian distribution.

4.1. Adaptive Limited Fractional Guard Channel Algorithm I

(ALFG I)

In this section, we first propose a new CALA and then use it for adaptation of

T +π parameter for LFG algorithm. The proposed CALA chooses its actions using

Gaussian distribution. The action chosen by the CALA is then applied to the en-

vironment, which emits a reinforcement signal from set {−1,+1}. When the value

of the reinforcement signal is −1 (+1), then the CALA decreases (increases) µ by

a(n), that is

µ(n + 1) = µ(n) + β(n)a(n), (9)

where a(n) ≥ 0 is the learning parameter and is a decreasing function of n such

that

lim
n→∞

a(n)→ 0.

Decreasing a(n) gives an implicit averaging and ensures the asymptotic stability

of this algorithm at equilibrium point. The variance is updated independent of the

reinforcement signal in such a manner that σ(n) is a decreasing function of n. In

order to increase the probability of escaping from nonoptimal points, we don’t allow

σ(n) converging to zero. Therefore, another sufficiently small parameter σL > 0

is considered and keep the objective of our algorithm as σ(n) to σL and µ(n)

converging to α∗. Since the updating algorithm for σ(n) does not automatically

guarantee that σ(n + 1) ≥ σL (σL > 0), a projected version of σ(n), denoted by

φ(σ(n)) and given below is used:

φ(σ) = (σ − σL)I{σ > σL}+ σL,
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where I{.} is the indicator function. It is assumed that no information about actions

is available and therefore actions are chosen from a near uniform distribution by

setting variance of the Gaussian distribution to a large value.

In what follows, we describe the proposed call admission algorithm, which uses

the above learning automaton. In this algorithm, the base station of each cell exe-

cutes the CallAdmission shown in Procedure 1 and can be described as : initially

σ is set to a large value and µ is set to a random value in the interval [0, C], where

C is the number of channels allocated to the cell. When a new call arrives at a given

cell, the learning automaton associated to that cell chooses one of its actions, say

x(n). Let T (n) = ⌊x(n)⌋ and π(n) = x(n)−⌊x(n)⌋. If the number of busy channels

of a cell is less than T (n), then the incoming call will be accepted; when the cell

has T (n) busy channels, then a call will be accepted with probability π(n); other-

wise the incoming call will be blocked. Then the base station computes the current

estimate of the dropping probability of the handoff calls and based on this quantity

and the prespecified level of QoS (ph), the reinforcement signal is produced using

according to the following rule:

β(n) = sign
[

B̂h − ph

]

, (10)

where B̂h is the current estimate of the dropping probability of handoff calls. It

is evident that when B̂h is less (greater) than ph, then β becomes −1 (+1) and

hence, µ must be decreased (increased). Finally the automaton updates the µn and

σn, accordingly. The base station accepts handoff calls as long as the cell has free

channels.

4.2. Adaptive Limited Fractional Guard Channel Algorithm II

(ALFG II)

The algorithm proposed in this section uses a new CALA which not only updates

µ but it also updates σ according to the reinforcement signal, which enables the

algorithm to adapt itself to time varying environments. The proposed CALA rather

than using the current reinforcement signal of the environment for updating σ and

µ, uses previous reinforcement signals as well as the current reinforcement signal.

It seems that if the proposed algorithms, in addition to the current reinforcement

signal, also uses previous reinforcement signals for updating µ and σ, it is possible

for the algorithms to have a higher speed of convergence.

The CALA used in this algorithm chooses its actions from a Gaussian distribu-

tion N(µ, σ). The action chosen by the automaton is applied to the environment

emits a reinforcement signal, β(n), from interval [−1,+1]. When β(n) is negative

(positive), then µ(n) will be increased (decreased) by a(n)S(n), that is

µ(n + 1) = µ(n)− a(n)β(n)S(n), (11)

where S(n) is the average value of |β(n)| taken over the previous steps from step 1
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Procedure 1 Learning automata based adaptive limited fractional guard channel

algorithm I (ALFG I)

procedure CallAdmission

if (a new call is arrived at the cell) then

choose an action of CALA from N(µ(n), σ(n)) and call it x

if (x < 0) then

x← 0

else if (x > C) then

x← C

end if

T ← ⌊x⌋

π ← x− ⌊x⌋

if (c(n) < T ) then

accept the incoming call

else if ((c(n) = T ) and (rand(0, 1) ≤ π)) then

accept the incoming call

else

reject the incoming call

end if

compute an estimate of the dropping probability of handoff calls (B̂h)

β(n)← sign
[

B̂h − ph

]

σ(n + 1)← φ(f(σ(n)))

µ(n + 1)← µ(n) + β(n)a(n)

if (µ(n) < 0) then

µ(n)← 0

else if (µ(n) > C) then

µ(n)← C

end if

else if (a handoff call is arrived at the cell) then

if c(n) < C then

accept the incoming call

else

reject the incoming call

end if

end if

end procedure

up to and including step n and given by the following equation:

S(n) = S(n− 1) +
1

n
[|β(n)| − S(n− 1)] . (12)

It should be noted that when the automaton approaches its optimal value, S

approaches zero. According to the updating algorithm, σ(n) will be changed slowly
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when the selected action is far from its optimal value and will be decreasing fast as

the selected action is near to its optimal value. The σ(n) is update according to the

following rule:

σ(n + 1) = φ(σ(n)− a(n) [1− bS(n)]), (13)

where φ(.) is a projection function described later. In this algorithm, 0 < a(n) < 1

is the learning rate and b ≥ 1 is a constant. In order to have a stable equilibrium

point, the proposed algorithm uses a monotonically decreasing learning parameter

a(n), that is

lim
n→∞

a(n)→ 0.

In this CALA, we want N(µ(n), σ(n)) converging to N(α∗, 0) where the conditional

expected value of |β| (absolute value of β) given α attains its minimum value. Since

σ(n) cannot converge to zero, another parameter, σL > 0, is used in which the

objective of learning is converging σ(n) to σL with µ(n) converging to α∗. Since the

updating algorithm for σ(n) does not automatically guarantee that σ(n + 1) ≥ σL

(σL > 0), a projected version of σ(n), denoted by φ(σ(n)) and given below is used:

φ(σ) = (σ − σL)I{σ > σL}+ σL,

where I{.} is the indicator function. In what follows, we describe the proposed call

admission algorithm, which uses the above learning automaton. In the proposed

call admission algorithm, the base station of each cell executes the CallAdmission

shown in Procedure 2 and can be described as: initially σ is set to a large value and

µ is set to a random value in the interval [0, C], where C is the number of channels

allocated to the cell. When a new call arrives at a given cell, the learning automaton

associated to that cell chooses one of its actions, say x(n). Let T (n) = ⌊x(n)⌋ and

π(n) = x(n)−⌊x(n)⌋. If the number of busy channels of a cell is less than T (n), then

the incoming call will be accepted; when the cell has T (n) busy channels, then a call

will be accepted with probability π(n); otherwise the incoming call will be blocked.

Then the base station computes the current estimate of the dropping probability of

the handoff calls and based on this quantity and the prespecified level of QoS (ph),

the reinforcement signal is produced using according to the following rule:

β(n) = B̂h − ph, (14)

where B̂h is the current estimate of the dropping probability of handoff calls. It is

evident that when B̂h is less than ph, then β becomes negative and hence, µ must

be increased. When B̂h is greater than ph, then β becomes positive and hence, µ

must be decreased. The produced reinforcement signal (β(n)) shows the relative

distance of the selected action (α(n)) from the optimal action. Finally, the CALA

updates µ(n), σ(n), and the long term reinforcement signal accordingly. The base

station accepts the handoff calls as long as the cell has free channels.



September 8, 2009 8:36 WSPC/INSTRUCTION FILE IJUFKS-V7

Adaptive Limited Fractional Guard Channel Algorithms: A Learning Automata Approach 13

Procedure 2 Learning automata based adaptive LFG algorithm II (ALFG II)

procedure CallAdmission

if (a new call is arrived at the cell) then

choose an action of CALA from N(µ(n), σ(n)) and call it x

if (x < 0) then

x← 0

else if (x > C) then

x← C

end if

T ← ⌊x⌋

π ← x− ⌊x⌋

if (c(n) < T ) then

accept the incoming call

else if ((c(n) = T ) and (rand(0, 1) ≤ π)) then

accept the incoming call

else

reject the incoming call

end if

compute an estimate of the dropping probability of handoff calls (B̂h)

β(n)← B̂h − ph

S(n)← S(n− 1) + 1
n [|β(n)| − S(n− 1)]

µ(n + 1)← µ(n)− a(n)β(n)S(n)

σ(n + 1) = φ(σ(n)− a(n) [1− bS(n)])

if (µ(n) < 0) then

µ(n)← 0

else if (µ(n) > C) then

µ(n)← C

end if

else if (a handoff call is arrived at the cell) then

if c(n) < C then

accept the incoming call

else

reject the incoming call

end if

end if

end procedure

5. Simulation Results

The objective of this section is to study the performance of the proposed call admis-

sion algorithms and compare their performance with the performance of some of the

existing call admission algorithms. In order to evaluate the proposed algorithms,
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two network configurations are considered. In the first network configuration, a ho-

mogenous wireless network where all cells have the same number of channels and

experience the same new and handoff calls arrival rates is used. For a homoge-

nous cellular network the performance of the system can be studied by focusing

on a single cell, under the assumption that the neighboring cells show independent

random behavior. In the second network configuration, we study the performance

of the proposed algorithms for one dimensional cellular network. The simulation

results presented in this section measure the performance of the different schemes

with respect to mainly two criteria, namely dropping probability of handoff calls and

blocking probability of new calls.

5.1. Homogenous Network Configuration

The first set of simulations is based on the single cell of homogenous cellular network

system. Each cell has 8 full duplex channels (C = 8). We use the following function

to update the variance of ALFG I algorithm:

σ(n) =
1

⌊ n
10⌋

1/3
, (15)

where ⌊⌋ denotes the floor function. The role of floor function, division by 10, and

exponent of 1/3 is to slow down the rate of decay for σ(n). The sequence of real

numbers {σ(n)} is such that σ(n) ≥ 0,
∑

∞

n=1 σ3(n) = ∞a,
∑

∞

n=1 σ4(n) < ∞.
∑

∞

n=1 σ3(n) =∞ ensures that the sum of increments to the initial mean, µ(0), can

be arbitrary large, so that any finite initial value of µ(0) can be transformed into

the optimal value. At the same time,
∑

∞

n=1 σ4(n) <∞ ensures that the variance in

µ(n) is finite and the mean cannot diverge to infinity. Equation (15) implies that

σ(n) → 0 as n → ∞ and in limit, σ(n) tends to zero and the action of learning

automaton becomes equal to the mean. In order to study the proposed algorithms,

six experiments are conducted whose results are given later in this section. In all

experiments, we assume that the arrival of new calls is Poisson process with rate λn

fixed at 30 calls and the arrival of handoff calls is Poisson process with rate λh varied

between 2 and 20 calls. We also assume that the duration of calls is exponentially

distributed with mean 6. We conducted experiments for ph = 0.01 and σL = 0.001.

5.1.1. Experiment 1:

This experiment is conducted to study the behavior of the proposed call admis-

sion control algorithms in a homogenous network. This is done by observing the

behavior of the algorithm during a single run. Each run takes 2, 000, 000 simulation

cycles. In these simulations, algorithm ALFG I is ran with parameter a = 0.025 and

a
∑∞

n=1

(

1

⌊ n
10

⌋1/3

)

3

=
∑∞

n=1

1

⌊ n
10

⌋
≥

∑∞
n=1

10

n
= ∞. The last equality is because of the diver-

gence of harmonic series
∑

1

n
.
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algorithm ALFG II is ran with parameters a = 0.025 and b = 1. Figures 2 through

6 show the behavior of the proposed algorithms for a typical run. Figures 2 and

3 show that the blocking probability of new calls converges to a stationary point

and oscillates around it while the constraint on the dropping probability of handoff

calls are satisfied. Figures 5 and 6, which show channel usage in the cell, indicate

that algorithm ALFG II has higher channel utilization in comparison to algorithm

ALFG I. This fact also observable by looking at figures 2 and 3.

Fig. 2. Blocking probability of new calls for a typical run for λn = 10.

Fig. 3. Dropping probability of handoff calls for a typical run for λn = 10.
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Fig. 4. The mean value of Gaussian distribution for a typical run for λn = 10.

Fig. 5. The number of busy channels of ALFG I for a typical run for λn = 10.

5.1.2. Experiment 2:

In this experiment, the performance of the proposed call admission control algo-

rithms are measured by averaging over 30 different runs.The results of experiments

are summarized in figures 7 through 12. Each run takes 2, 000, 000 simulation cy-

cles. In these simulations, algorithm ALFG I is ran with parameter a = 0.025 and

algorithm ALFG II is ran with parameters a = 0.025 and b = 1. The results re-

ported in figures 7 through 11 confirm the results reported for experiment 1. Figure

12 indicate that the standard deviation is approaching σL, that is the algorithm

satisfies the constraint on the dropping probability of handoff calls.
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Fig. 6. The number of busy channels of ALFG II for a typical run for λn = 10.

Fig. 7. Blocking probability of new calls for λn = 10.

5.1.3. Experiment 3:

This experiment is conducted to study the effect of learning rate on the performance

of the proposed call admission control algorithms. The results of experiments are

summarized in figures 13 through 18 are obtained by averaging over 30 runs. Each

run takes 2, 000, 000 simulation cycles. In these simulations, algorithm ALFG I is

ran with parameter a = 0.025 and algorithm ALFG II is ran with parameters

a = 0.025 and b = 1. Figures 13 and 14 shows that the behavior of algorithm

ALFG I is not very sensitive to the learning parameter. Figures 15 indicate that the

blocking probability of new calls improves as learning parameter a increases. The
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Fig. 8. Dropping probability of handoff calls for λn = 10.

Fig. 9. The mean value of Gaussian distribution for λn = 10.

best results are obtained for a = 0.05 when b is taken to be 1. Figure 16 shows that

the blocking probability of new calls of algorithm ALFG II is not very sensitive to

the learning parameter b when a is set to be 0.025. Figures 17 and 18 show that the

dropping probability of handoff calls of algorithm ALFG II is not very sensitive to

the learning parameters a and b.

5.1.4. Experiment 4:

This experiment is conducted to compare the number of guard channels found by the

proposed call admission control algorithms and the algorithm given in 2. The results
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Fig. 10. The number of busy channels of ALFG I for λn = 10.

Fig. 11. The number of busy channels of ALFG II for λn = 10.

of experiments, which are summarized in table 5.1.4, are obtained by averaging

over 30 runs. Each run takes 2, 000, 000 simulation cycles. In these simulations,

algorithm ALFG I is ran with parameter a = 0.025 and algorithm ALFG II is ran

with parameters a = 0.025 and b = 1. The number of guard channels computed by

both algorithms ALFG I and ALFG II are very near to the one computed by LFG

for handoff rates (λh) in table 5.1.4. Table 5.1.4 indicates that ALFG II performs

better than ALFG I for all cases except for case 7 for which the algorithm ALFG I

performs better.



September 8, 2009 8:36 WSPC/INSTRUCTION FILE IJUFKS-V7

20 Hamid Beigy and M. R. Meybodi

Fig. 12. The value of standard deviation of Gaussian distribution for ALFG II for λn = 10.

Fig. 13. Effect of learning rate on the blocking probability of new calls of ALFG I for λn = 10.

5.1.5. Experiment 5:

This experiment is conducted to study the performance of the proposed call admis-

sion control algorithms and compare with some related algorithms. The results of

experiments are summarized in figures 19 and 20 are obtained by averaging over 30

runs. Each run takes 2, 000, 000 simulation cycles. In these simulations, algorithm

ALFG I is ran with parameter a = 0.025 and algorithm ALFG II is ran with param-

eters a = 0.025 and b = 1. The optimal number of guard channels for guard channel

and limited fractional guard algorithms are obtained by the algorithms given in 8

and 2, respectively and the optimal parameters of uniform fractional channel algo-
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Fig. 14. Effect of learning rate on the dropping probability of handoff calls of ALFG I for λn = 10.

Fig. 15. Effect of learning rate on the blocking probability of new calls of ALFG II for λn = 10.

rithm is obtained by algorithm given in 3. The results obtained for the proposed

algorithms are compared with the results obtained for uniform fractional channel

(UFC) 3, guard channel (GC) 6, limited fractional guard channel (LFG) 2, adaptive

uniform fractional channel (AUFC) 5, and dynamic guard channel algorithm (DGC)
10.

By inspecting figures 19 and 20, it is evident that a) the constraint on the

dropping probability of handoff calls is maintained by all the adaptive algorithms,

except AUFC, b) the blocking probability of new calls for the adaptive algorithms,

which don’t need to know the traffic parameters, are close to the blocking probability
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Fig. 16. Effect of learning rate on the blocking probability of new calls of ALFG II for λn = 10.

Fig. 17. Effect of learning rate on the dropping probability of handoff calls of ALFG II for λn = 10.

of new calls for the static algorithms, which need to know the traffic parameters, c)

the proposed algorithms have the same performance in homogenous networks.

5.1.6. Experiment 6:

This experiment is conducted to study the performance of the proposed algorithms

for different number of channels allocated to each cell. Each point in these figures is

obtained by averaging over 30 runs. Each run takes 2, 000, 000 simulation cycles. In

these simulations, algorithm ALFG I is ran with parameter a = 0.025 and algorithm

ALFG II is ran with parameters a = 0.025 and b = 1. Figures 21 and 22 show the
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Fig. 18. Effect of learning rate on the dropping probability of handoff calls of ALFG II for λn = 10.

Table 1. The number of guard channels found by
different algorithms

case λh LFG ALFG I ALFG II

1 2 7.886353 7.6032828 7.7675834

2 4 7.623169 7.4371406 7.5296238

3 6 7.414429 7.2343069 7.3934577

4 8 7.242554 7.1537274 7.1726112

5 10 7.095825 6.6538288 7.0222077

6 12 6.869019 6.6139195 6.8826819

7 14 6.502563 6.4868276 6.3727648

8 16 6.231812 6.3589895 6.3222743

9 18 6.020142 6.2538798 6.0542565

10 20 5.515015 5.4076487 5.7346833

blocking probability of new calls and the dropping probability of handoff calls for

different number of channels allocated to the cell. These figures show that algorithm

ALFG II has better performance when the number of channels allocated to the cell

is less than 10 but both algorithms have the same performance when the number

of channels allocated to the cell is greater than 10 for the given traffic condition.

5.2. Linear Network Configuration

The second set of simulations is conducted on a one dimensional cellular network

with 18 cells, which for example can model a street or a highway. Each cell has 8

full duplex channels (C = 8). We assume that the arrival of calls is Poisson process

with rate λn, the duration of calls and dwell timeb are exponentially distributed

bThe average time that a mobile user resides in each cell.
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Fig. 19. Blocking probability of new calls for λn = 30.

Fig. 20. Dropping probability of handoff calls for λn = 30.

with mean 18 and 3, respectively. We further assume that the mobile users in the

network move with constant speed in random direction. We conducted simulations

for ph = 0.01, σL = 0.01, and different values of λn. Each point in these figures is

obtained by averaging over 30 runs. Each run takes 2, 000, 000 simulation cycles. In

these simulations, algorithm ALFG I is ran with parameter a = 0.025 and algorithm

ALFG II is ran with parameters a = 0.025 and b = 1. Figures 23 through 26 show

the blocking probability of new calls for different arrival rates of new calls. These

figures show that ALFG II has lower blocking probability of new calls than ALFG I

and DGC algorithms. Experiments have shown that a decreasing sequence for {σn}

is not suitable for nonstationary environments. Figure 30 clarifies this point.
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Fig. 21. Blocking probability of new calls for λn = 30 and λh = 10.

Fig. 22. Dropping probability of handoff calls for λn = 30 and λh = 10.

Figures 27 through 29 show the dropping probability of handoff calls for different

cells and different arrival rates of new calls. Figures 27 and 28 show that ALFG II

has lower dropping probability of handoff calls than ALFG I. By comparing these

figures with figures 23 and 24, it can be concluded that ALFG II in low and medium

traffic conditions has higher channel utilization than ALFG I and figure 29 shows

that in high traffic conditions, ALFG II cannot maintain the constraint on the

dropping probability of handoff calls.

Figures 30 and 31 show the blocking probability of new calls and the dropping

probability of handoff calls in cell 8 for different values of arrival rates of new calls,

respectively. From figures 30 and 31, we can conclude that ALFG II has lower
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Fig. 23. Blocking probability of new calls for λn = 10.

Fig. 24. Blocking probability of new calls for λn = 15.

dropping probability of handoff calls and blocking probability of new calls in low

and medium traffic conditions. Figure 31 shows that both ALFG I and DGC meet

the objective, which is maintaining the upper bound on the dropping probability

of handoff calls. Figure 30 shows that ALFG II performs better than ALFG I and

DGC.
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Fig. 25. Blocking probability of new calls for λn = 20.

Fig. 26. Blocking probability of new calls for λn = 25.

6. Conclusions

In this paper, two learning automata based autonomous adaptive call admission

control algorithms for cellular networks were presented. The objective of these al-

gorithms is to minimize the blocking probability of the new calls subject to the

constraint on the dropping probability of the handoff calls. These algorithms have

the advantages of a) being able to adaptively set the number of guard channels in

environments with unknown and/or changing input traffic, b) possible autonomous

operation. Computer simulations are conducted to evaluate the proposed call ad-

mission algorithms. The simulation results reveal performance improvement over
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Fig. 27. Dropping probability of handoff calls for for λn = 10.

Fig. 28. Dropping probability of handoff calls for for λn = 15.

existing schemes, which may require full knowledge of traffic parameters or assume

static traffic parameters known a priori, assumptions that are probably not very

realistic.

A. Appendix

Proof of property 1 : In order to show that Bh(C, T, π) is a monotonically

increasing function of T , we need to show that Bh(C, T, π) < Bh(C, T +1, π). Using
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Fig. 29. Dropping probability of handoff calls for for λn = 20.

Fig. 30. Blocking probability of new calls for different arrival rates of new calls.

equation (3) and some algebraic simplifications, we obtain

Bh(C, T, π)−Bh(C, T + 1, π) = γa−(T+1) (ρα)C

C!





π (ρα)T+1

(T+1)! +
∑T

n=0
ρn

n!

D(C, T + 1, π)D(C, T, π)



 (1− a−1),

< 0,

where D(C, T, π) =
∑T

n=0
ρn

n! + γa−(T+1)
∑C

n=T+1
(ρa)n

n! .

In order to show that Bh(C, T, π) is a monotonically increasing function of π,

we need to show that ∂Bh(C,T,π)
∂π > 0. Differentiating Bh(C, T, π) with respect to π,
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Fig. 31. Dropping probability of handoff calls for different arrival rates of new calls.

we obtain

∂Bh(C, T, π)

∂π
=

ρC

C!

[

∑T
n=0

ρn

n!

D2(C, T, π)

]

(1− a),

> 0.

Proof of property 2 : In the first part of the proof, we show that Bh(C, T, π)

is a monotonically decreasing function of T . The blocking probability of new calls

can be written as

Bn(C, T, π) =
(1− π)ZT + γD2(C, T, π)

D1(C, T, π) + γD2(C, T, π)
,

where D(C, T, π) =
∑T

n=0
ρn

n! + γa−(T+1)
∑C

n=T+1
(ρa)n

n! , D2(C, T, π) =

a−(T+1)
∑C

n=T+1
(ρa)n

n! , ZT = a−T (ρa)T

T ! , and D1(C, T, π) =
∑T

n=0
ρn

n! . In order to

show that Bh(C, T, π) is a monotonically decreasing function of T , we need to show

that Bn(C, T, π) > Bn(C, T + 1, π). Using equation (4) and some algebraic simpli-

fications, we obtain

Bn(C, T + 1, π)−Bn(C, T, π) =
(1− π)ZT+1 + γD2(C, T + 1, π)

D(C, T + 1, π)
−

(1− π)ZT + γD2(C, T, π)

D(C, T, π)
,

= (1− π)ZT

[

ρ

(T + 1)D(C, T + 1, π)
−

1

D(C, T, π)

]

+ a−1γ
D2(C, T, π)− ZT

D(C, T + 1, π)
− γ

D2(C, T, π)

D(C, T, π)
,

< (1− π)
ZT

D(C, T + 1, π)

[

ρ

T + 1
− 1

]

+ γ
a−1D2(C, T, π)− a−1ZT −D2(C, T, π)

D(C, T, π)
. (A.1)
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Since ρ < (T + 1), the first term in the above inequality is negative and therefore

we have

Bn(C, T + 1, π)−Bn(C, T, π) < γ
a−1D2(C, T, π)− a−1ZT −D2(C, T, π)

D(C, T, π)

< γ
D2(C, T, π)(a−1 − 1)− a−1ZT

D(C, T, π)
. (A.2)

Since λn/λ < 1/(T + 1), we have

(α−1 − 1) =
λn

λh
<

1

T + 1

<
1

1 + . . . +
(

ρα
T+1

)C−T−1
.

Since ρ < (T + 1), the above inequality becomes

α−1 − 1 <
1

1 + . . . + (ρα)T+1

(T+1)×...×C

,

=
(ρα)T

T !
∑C

n=T+1
(ρα)n

n!

,

<
α−(T+1) (ρα)T

T !

α−(T+1)
∑C

n=T+1
(ρα)n

n!

< α−1 ZT

D2(C, T, π)
.

Using the above inequality and inequality (A.1), we conclude that Bn(C, T +1, π)−

Bn(C, T, π) < 0 and hence Bn(C, T, π) is a decreasing function of T .

In the second part of the proof, we show that Bn(C, T, π) is a monotonically

decreasing function of π. Differentiating Bn(C, T, π) with respect to π, we obtain

∂Bn(C, T, π)

∂π
=

D1(C, T, π) [D2(C, T, π)− ZT ]−D2(C, T, π) [aD1(C, T, π) + ZT ]

[D1(C, T, π) + γD2(C, T, π)]
2 ,

<
D1(C, T, π)

[D1(C, T, π) + γD2(C, T, π)]
2 [(1− a)D2(C, T, π)− ZT ] . (A.3)

Since a−1 − 1 < 1/(C − T ) and ρα < T + 1, we have

a−1 − 1 =
λn

λ
<

1

C − T
(A.4)

<
1

ρα
T+1 + . . . +

(

ρα
T+1

)C−T
,

<
1

ρα
T+1 + . . . + (ρα)C−T

(T+1)×...C

,
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<
(ρα)T

T !

α−T
∑C

n=T+1
(ρα)n

n!

,

1− a

a
<

(ρα)T

T !

α−T
∑C

n=T+1
(ρα)n

n!

,

1− a <
ZT

D2(C, T, π)
. (A.5)

Hence D2(C, T, π)(1 − a) < ZT . Using (A.3) and (A.5), we can conclude that

Bn(C, T, π) is a monotonically decreasing function of π.
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