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ABSTRACT
State-of-charge (SOC) measures energy left in a battery, and it is

critical for modeling and managing batteries. Developing efficient yet

accurate SOC algorithms remains a challenging task. Most existing

work uses regression based on a time-variant circuit model, which

may be hard to converge and often does not apply to different types

of batteries. Knowing open-circuit voltage (OCV) leads to SOC due

to the well known mapping between OCV and SOC. In this paper, we

propose an efficient yet accurate OCV algorithm that applies to all

types of batteries. Using linear system analysis but without a circuit

model, we calculate OCV based on the sampled terminal voltage and

discharge current of the battery. Experiments show that our algo-

rithm is numerically stable, robust to history dependent error, and

obtains SOC with less than 4% error compared to a detailed battery

simulation for a variety of batteries. Our OCV algorithm is also effi-

cient, and can be used as a real-time electro-analytical tool revealing

what is going on inside the battery.

Categories and Subject Descriptors: B.8.2 [Hardware]:
-Performance and Reliability - Performance Analysis and
Design Aids
General Terms: Algorithms, Modeling
Keywords: Battery, State of Charge, Circuit Analysis

1. INTRODUCTION
Renewable energy has become a national goal for the United
States. It has been anticipated that by 2015 10% of the
total energy consumption in the nation will come from re-
newable sources, and the number will increase to 25% by
2025. One bottleneck is energy storage, as the peak time
of energy harvesting is not necessarily the same as that of
energy consuming. The battery is probably the most widely
used energy storage device [1,2]. Despite its ever-increasing
importance, many challenges remain unsolved to character-
ize and manage the battery. Among them, one fundamental
issue is the estimation of state-of-charge (SOC).

SOC, represented in percentage, indicates the amount of
energy available in a battery. It is needed for controlling
battery-powered systems. For example, the battery of a
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hybrid car should be charged with 20% ≤ SOC ≤ 95%
[3]. It is also used in dynamic power management [4], bat-
tery scheduling [5,6], battery-efficient communication traffic
shaping and routing [7] for circuits and IT systems.

There have been many attempts in literature to estimate
SOC by synthesizing circuit models based on measured volt-
age and current at battery terminals. For example, [8] uses
an extended Kalman filter, [9] employs a circuit model con-
taining resistances, capacitors and diodes, and [10] com-
bines voltage translation via a first-order RC network and
Coulomb counting by integrating current over time. The
circuit models have to be time variant as battery SOC has
a strong history and temperature dependency.

However, these circuit models that mimic the behavior of
the battery (see Fig. 2(a)-2(b)) face the following problems:
First, the simplified models cannot exactly match the perfor-
mance of the battery. The estimation error gets increasingly
larger until the algorithm breaks down. Second, to perform
real-time estimation, initial model parameters must be set
properly to ensure the convergence of the algorithm. These
parameters are quite sensitive to battery types and discharge
current profiles, and can affect the algorithm robustness sig-
nificantly. Researchers have been well aware of these prob-
lems for decades. To avoid using circuit models, a recent
work [11] applied a radial basis function (RBF) neural net-
work. However, the parameters in the network still need to
be properly chosen to guarantee the convergence, and there
is no guarantee of accuracy, stability or robustness.

In contrast, we develop in this paper a universal yet ef-
ficient SOC algorithm by system analysis in the frequency
domain without using any circuit models for batteries. We
directly extract the battery open-circuit voltage from the
voltage and current at the battery terminals. Then SOC
can be inferred from OCV, a well-established practice in the
field. The only assumption we make is that the SOC is con-
stant within a time window of certain width and the battery
is a linear or weakly non-linear system. The advantages of
our OCV calculation are obvious:

1. It does not require any off-line training or initial setup,
and can be applied to any battery type with any dis-
charger current profile.

2. Even if a large estimation error has occurred at certain
time due to unexpected environmental change, our al-
gorithm can quickly converge to the correct SOC.

3. The complexity of the algorithm is low and it can be
used as a real-time electro-analysis tool for battery di-
agnosis.

Experimental results show that the SOC can be extracted
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on-line with less than 4% error for different battery types
and discharge current.

The remainder of the paper is organized as follows. We
introduce the background about OCV and SOC in Section 2,
and propose our algorithm in Section 3. Section 4 presents
the implementation details and analyzes the proposed algo-
rithm. We present experiments in Section 5 and conclude in
Section 6.

2. BACKGROUND
[10] is a good example of the general framework for SOC

estimation by combining two types of estimation methods,
i.e.,

SOC = αSOCc + (1 − α)SOCv, (1)

where SOCc is the Coulomb-counting based SOC and SOCv

is the voltage-based SOC. α (∈ [0, 1]) is the weight factor.
SOCc is estimated based on the amount of charge that has
been extracted from the battery, and can be simply calcu-
lated as

SOCc(t) = SOCc(0) − 1

Q

Z t

0

I(t)dt, (2)

where Q is some constant to relate the current with charges.
SOCv is an estimation based on the open-circuit voltage

(OCV) of the battery, which is defined as the voltage be-
tween the anode and cathode of the battery when there is
no external load connected and no external current between
the terminals, even though there may be current internally
(e.g., self-discharge current). It has been shown in many
studies that there is a time-independent bijection between
OCV and SOC. For example, in [8,12], the relationship be-
tween OCV and SOC is given as

OCV(t) = aSOC(t) + b, (3)

where a and b are some constants determined by the mea-
surement. A more accurate description, as shown in Fig. 1,
is discussed in [13].

Figure 1: Dependency of OCV on SOC for a Lithium
Ion Battery. [13]

Clearly, SOCc has a strong dependency on history, and
SOCv is less dependent and is therefore needed to avoid
error accumulation over time and to correct major upsets
in SOCc. However, it may not be feasible to disconnect the
battery from the load and measure its OCV from time to
time. Therefore, it is necessary to find out some alternative
approaches that can obtain the OCV directly from measured
voltage and current data. Towards this end, many different
approaches have been proposed, all of which are based on
certain types of simplified battery models.

For example, [10] uses a simplified RC pair as shown in
Fig. 2(a) in connection with a resistor and a voltage source
to model the battery. R is the battery resistance and Rct

in series with Co approximate mass-transfer impedance. All
the elements are time-variant according to SOC, and are ob-
tained by online regression from the measured voltage and
current. Note that the voltage source value is exactly the
OCV. Unfortunately, the model ignores many effects such as
the Warburg potential which models the diffusion [14], and
it only works well for certain cases. Similarly, [13] and [9]
use the models in Fig. 2(b) and Fig. 2(c) respectively. In
Fig. 2(b), C models the chemical diffusion of the electrolyte
within the battery (i.e., it is not a purely electrical capac-
itance); The resistances Rb, Rc and Rd model all forms of
energy loss in the battery (i.e., electrical and nonelectrical
losses); The diodes allow for Rc to be the value of resistance
for charging and Rd the value of resistance for discharg-
ing and have no physical significance in the battery except
for modeling purposes only. In Fig. 2(c), Rs represents the
ohmic resistance of the battery, including the electrolyte,
electronic contacts, particle-to-particle contact resistance,
etc.; Rn and Cn describe the slow migration of Li+ through
the surface films; Rct and Cdl represent the Faradaic charge
transfer resistance and double-layer capacitance of the elec-
trodes, respectively; The diffusion impedance ZW of the an-
ode and cathode models Warburg diffusive behavior. Both
models are too complicated and yet cannot guarantee the
convergence. In general, their models are developed for spe-
cific types of batteries, and parameters need to be tuned for
individual battery due to process variation.

(a) RC pair model. (b) Nonlinear model.

(c) RC network model.

Figure 2: Examples of battery models used in liter-
ature.

In the remainder of the paper, we will propose a universal
approach to extract OCV and also demonstrate its accuracy,
efficiency, robustness and universal applicability.

3. ALGORITHM
Batteries are in general considered as a slowly time-varying
nonlinear system with voltage source [9, 10, 13]. Within a
short time window, we can assume that it can be treated
as a time-invariant linear system, and the SOC and accord-
ingly the OCV can be treated as a constant. As such, we
propose to use a window based OCV extraction technique.
For the simplicity of presentation, although all functions to
be discussed in this section are time-discrete, we will loosely
use time-continuous notations (e.g. v(t)) and explicitly ex-
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press them as discrete samples (e.g. v(t1), v(t2), ...) only
when necessary. To avoid confusion, we use ∗ to denote
convolution and × to denote multiplication.

From the superposition theorem, in each time window the
terminal voltage v(t) of a battery can be decomposed as

v(t) = vzi(t) + vzs(t) (4)

= vzi(t) + h(t) ∗ i(t) (5)

where vzi(t) is the zero-input response corresponding to the
terminal voltage with no discharge current, and vzs(t) is the
zero-state response corresponding to the terminal voltage
with discharge current i(t) as input and the voltage source
shorted. h(t) is the impulse response of the linear system
modeling the battery. Note that the validity of the convo-
lution in (5) is based on the assumption of linearity. All
existing works try to explicitly express h(t) as some analyt-
ical functions obtained from the detailed battery model. In
this paper, we will directly extract OCV without using any
model.

At this moment, we assume that we are extracting the
SOC in the time window 0 ≤ t ≤ tw, and at t < 0 the
discharge current is always zero. This assumes that before
t = 0 the battery is disconnected from the load. We will
remove this assumption later as the window is shifted. With
this assumption and ignoring the self-discharge effect, the
zero-input response is actually the open-circuit voltage, i.e.,

vzi(t) = OCV × u(t), 0 ≤ t ≤ tw, (6)

where u(t) is a unit step function

u(t) =

j
1, t ≥ 0
0, t < 0

. (7)

The multiplication of u(t) indicates that we are only inter-
ested in t ≥ 0 region. It will facilitate the algorithm later.

To see how this can be done, we first search for an f(t)
which satisfies

f(t) ∗ i(t) = δ(t) 0 ≤ t ≤ tw, (8)

where δ(t) is the Dirac delta function, i.e.,

δ(t) =

j
1, t = 0
0, t �= 0

. (9)

Note that we require f(t) to satisfy (8) only in the window,
and the equality does not need to hold outside it.

The time-discrete algorithm to solve for f(t) is illustrated
in Alg. 1, where n is the total number of sampling points in
the window and t1, t2, · · · , tn are the sampling time points.
The key idea is to “inverse-convolute” the samples. The
process is similar to that of solving the inverse of a matrix
using elementary transformation. Again, we require the con-
voluted result to be equal to the delta function only in the
window.

With f(t), we can compute vf (t) = f(t)∗v(t) from (4)-(7)
as

vf (t) = f(t) ∗ v(t) (10)

= f(t) ∗ [OCV × u(t) + vzs(t)] (11)

= OCV × uf (t) + f(t) ∗ vzs(t) (12)

= OCV × uf (t) + f(t) ∗ i(t) ∗ h(t) (13)

= OCV × uf (t) + δ(t) ∗ h(t) (14)

= OCV × uf (t) + h(t) 0 ≤ t ≤ tw, (15)

where uf (t) is marked as

uf (t) = f(t) ∗ u(t). (16)

Algorithm 1 The algorithm to calculate f(t).

1: INPUT: Sampled i(ti), 0 ≤ t1 < · · · < tn ≤ tw

2: OUTPUT: f(ti), 0 ≤ t1 < · · · < tn ≤ tw

3: for j = 1 to n do
4: fnorm(tj) = f(tj) = δ(tj)/i(t1)
5: inorm(tj) = if (tj) = i(tj)/i(t1)

6: end for
7: for i = 2 to n do
8: for j = n to i do
9: f(tj) = f(tj) − fnorm(tj−i+1)if (ti)

10: if (tj) = if (tj) − inorm(tj−i+1)if (ti)

11: end for
12: end for

The frequency-domain response of the battery can be con-
sidered as finite as reported by measured response spec-
trum [13]. Then according to the final value theorem [15],
we have

lim
t→∞

h(t) = lim
s→0

sH(s) = 0. (17)

Accordingly,

lim
t→∞

vf (t)

uf (t)
= OCV. (18)

This means that when we use a large t, h(t) approaches zero

and
vf (t)

uf (t)
gives a good approximation of OCV in the current

time window. In practice, we choose a time point where
uf (t) reaches its maximum (so that the error introduced by
non-zero h(t) is minimized) in the window to evaluate OCV.

After the extraction of OCV, we can acquire the impulse
response of the system in the current time window

h(t) = vf (t) − OCV × uf (t). (19)

Note that h(t) obtained from the above equation can only
be accurate when t is small (|h(t)| is large). Since we cannot
really calculate OCV at t = ∞, the error in obtained OCV
can become significant at large t when h(t) gets close to zero.
In practice, we simply set h(t) to zero when |h(t)| ≤ ε where
ε is a small positive value.

After finishing the OCV extraction in the current win-
dow, we can repeat the same process to extract the OCV
in the next window. However, it is necessary to remove the
assumption that the discharge current is always zero before
the window. The history discharge current will impact the
zero-input response in the current window, as the battery
cannot return to steady state immediately. Accordingly, we
need to remove from the samples the voltage response caused
by the history current in the previous window. Since we al-
ready have the impulse response in the previous window (19)
as well as the discharge current in the current window, the
removal can be conducted as follows:

v′(t) = v(t) −
Z tw

t−te

i(τ )h(t − τ )dτ (20)

where te is the end time of the previous window. After this
process, the system can be modeled again as a system with
zero-input before the current time window. We can repeat
the OCV algorithm described above by using i(t) and v′(t)
instead of v(t) to extract the OCV as well as to update the
impulse response.

Obviously, the only situation where the above algorithm
will fail in is that uf (t) also converges to zero as t approaches
infinity. If uf (t) is always zero for t ≥ t0 with some t0,
or to be more specific, if uf (ti), the time-discrete samples
of uf (t), are zeros for i ≥ 2, then the proposed algorithm
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breaks down. However in this case the corresponding dis-
charge current is actually constant and has component only
at s = 0 in the frequency domain. It becomes impossible
to extract OCV for any voltage-based extraction methods.
Fortunately, the battery model becomes almost a resistance
network when the discharge current is approximately con-
stant. And OCV can be simply calculated as

OCV = V (t) − I(t)Reff , (21)

where Reff is the effective terminal resistance. There is an
unique mapping between the Reff and the SOC. Accord-
ingly, from the previous extracted SOC and assuming that
SOC and Reff vary slowly with time, we can obtain the
Reff in the current window from table-look-up. Then from
(21) the new OCV can be obtained.

4. IMPLEMENTATION AND ANALYSIS

4.1 Further Speedup
In the algorithm proposed above, the bottleneck of runtime
is mainly in the step to solve f(t) ∗ i(t) = δ(t) for f(t)
and the following step to calculate vf (t) = f(t) ∗ v(t) and
uf (t) = f(t)∗u(t). Actually these two steps can be combined
into one and there is no need to explicitly calculate f(t).
The overall algorithm is shown in Alg. 2, where n is the
total number of sampling points in one window. For the
simplicity of presentation, we still use the first time window
0 ≤ t ≤ tw as an example.

Algorithm 2 The algorithm to combine the steps of decon-
volution and convolution.
1: INPUT: Sampled i(ti), v(ti), 0 ≤ t1 < · · · < tn ≤ tw

2: OUTPUT: vf (ti), uf (ti), 0 ≤ t1 < · · · < tn ≤ tw

3: for j = 1 to n do
4: vnorm(tj) = vf (tj) = v(tj)/i(t1)

5: unorm(ti) = uf (ti) = u(ti)/i(t1)

6: inorm(tj) = if (tj) = i(tj)/i(t1)

7: end for
8: for i = 2 to n do
9: for j = n to i do
10: vf (tj) = vf (tj) − vnorm(tj−i+1)if (ti)

11: uf (tj) = uf (tj) − unorm(tj−i+1)if (ti)

12: if (tj) = if (tj) − inorm(tj−i+1)if (ti)

13: end for
14: end for

Furthermore, the time complexity of the algorithm is O(n2),
where n is the number of samples. Note that both of the
two for-loops with the variable j can be computed in parallel
and thus it is possible to reduce the complexity further to
O(n) with parallel computating platform.

4.2 Numerical Stability
The numerical stability of the algorithm depends mainly on
whether i(t1) is too small to keep the division in Algo. 2
accurate. However we can always select the starting point
of the window where i(t1) is not so small. The worst case is
that the current keeps close to zero so that we cannot find
a proper starting point. In this case the state of the system
is close to open circuit and we can approximate the OCV
with the terminal voltage and therefore the problem is not
a concern.

4.3 Robustness
Suppose there occurs an error ε at the kth extraction of
OCV. We denote OCVerr = OCVorg + ε. ε spreads to the
(k + 1)th extraction via the kth impulse response herr(t) =

horg(t)−εuf (t). If all of the n samples in herr(t) are used to
remove the impact of the discharge current in the previous
window, then combining (16) and (8), it is easy to see that
the error in (20) accumulated via v′(t) is also bounded by ε.
Accordingly, the error will never accumulate as the window
shifts.

In addition, as claimed previously, we directly set h(t) to
zero at large t, so the error spread on large t is removed and
only that on small t is spread to the (k + 1)th extraction.
This mechanism further speeds up the convergence of the
algorithm. Supposing we keep the samples of h(t) at a ratio
of η and also assuming that the error is uniformly distributed
on each sample which is an ideal case, the convergence time
would be tcov = tw logη−1

εinit
εend

, where εinit is the initial

error and εend is the tolerance bound.

4.4 Applicability to Different Battery Types
Clearly, no specific circuit models are assumed by our al-
gorithm. When the algorithm is applied to a battery with
new materials, there is no need to adjust any part of our al-
gorithm. This will be further verified by experiments later.
Note that a measurement of a complete discharge process is
needed to characterize the mapping between SOC and OCV
for the new battery.

4.5 Inhibition on Non-Ideal Factors
Though we assumed previously that the system should be
time-invariant within a window, the algorithm actually has
a natural inhibition on the error introduced by this assump-
tion. To illustrate it clearly, we rewrite the equation used to
calculate vf (t) in a matrix form as0
BBB@

i(t1) i(t2) · · · i(tn)
0 i(t1) · · · i(tn−1)
...

...
. . .

...
0 0 · · · i(t1)

1
CCCA

0
BBB@

vf (tn)
vf (tn−1)

...
vf (t1)

1
CCCA =

0
BBB@

v(tn)
v(tn−1)

...
v(t1)

1
CCCA

(22)
Since the inverse of an upper-triangular matrix is still upper-
triangular, it is easy to infer that the deviation of the voltage
response at ti due to non-ideal factors, δv(ti), will only im-
pact vf (ti), vf (ti+1), . . ., and all the samples before ti are
still accurate. Accordingly, the samples at small t play more
critical role than samples at large t for OCV estimation.
And the deviation of v(t) at small t due to non-ideal factors
is also small. This concludes that our algorithm can still
be accurate even though the system is slowly varying in the
time.

5. EXPERIMENTAL RESULT
Extensive experiments are conducted to demonstrate the
promising performance of the proposed algorithm. We verify
our algorithm via dualfoil5 [16], a popular battery simulator
whose simulation result is very close to measurement data.
The input of the simulator can be either detailed current
waveform, load or power at the terminal of a battery. The
material of the battery used in simulation can be chosen
from a library. The output of the simulator includes SOC
and OCV of the battery as well as the current and voltage
waveform at the terminal of a battery. The working platform
of the experiment is MATLAB 7.01 running at a 1.73GHz
clock frequency.

5.1 Accuracy Verification
The accuracy of our algorithm is verified with four com-
mon discharge profiles of a battery, i.e., periodical discharge
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current similar to the one used in [13], piecewise constant
discharge current similar to the one reported in [10], con-
stant load of 0.2Ω/m2, and constant power of 100W/m2.
In the experiment we choose MCMB 2528 graphite as the
negative active material, LiPF6 in EC:DMC (liquid) as the
electrolyte and CoO2 (Cobalt dioxide) as the positive active
material. Before extraction of this type of battery, the look-
up tables to map OCV and the effective terminal resistance
Reff to SOC are built based on simulation data offered by
dualfoil5 through a discharge process from fully-charged to
15% SOC with a discharge current of 20A/m2. We set the
length of the window as 6s and the sampling interval as 0.06s
(the smallest time step the battery simulator dualfoil5 can
reach). The battery is first fully charged before conduct-
ing each experiment. The results of SOC extraction via our
algorithm are shown in Fig. 3. The figure shows that the
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Figure 3: Comparison between our algorithm and
simulation for different discharge profiles.

extracted SOC fits well in all the four situations. Our algo-
rithm can, therefore, be used in most operation situations
without any manual adjustment which was a big concern in
most existing SOC estimation methods as pointed out by [9].

5.2 Robustness
We further study the robustness of our algorithm against a
sudden burst of error. In Fig. 4, we set the the initial OCV
for the algorithm to 3.584V (corresponds to 15% SOC) while
the actual SOC at that time point is 100%. All the other
experimental settings remain the same as Fig. 3(d). The
result is depicted in Fig. 4. From the figure we can see that
the algorithm converges quickly to the correct SOC. It shows
that voltage-based algorithm is more robust, which is also
mentioned in [10].

5.3 Runtime
The estimation time of the extraction mainly depends the
number of points in the observation window. Given the
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Figure 4: Robustness test. Error of extracted SOC
and OCV quickly decreases to nearly zero after sev-
eral extraction steps.

width of the window, the runtime is then decided by the
sampling rate. The sampling rate is often set as high as
possible to acquire more data points for more accurate ex-
traction. However the runtime also increases with the in-
creasing sampling rate. The upper limit of the sampling
rate can be decided by the condition when the estimation
time exceeds the sampling interval such that the extraction
process cannot keep in pace with the sampling process. In
this experiment, the width of the observation window is set
to be 6s and the sampling interval is swept from 0.06s to
0.36s with a step of 0.06s. All the other experimental set-
tings remain the same as Fig. 3(d). The result is shown in
Fig. 5. The upper limit of sampling rate is approximately 69
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Figure 5: Runtime in logarithm scale. The relation-
ship between runtime and sampling rate is fitted and
the upper limit of sampling rate is extrapolated.

pts/s, which means that SOC can be updated every 14ms.
It provides a promising prospect of the realization of online
extraction of SOC, e.g. every 2ms, when further speedup
can be achieved after the transplantation of the algorithm
from MATLAB to C or hardware implementation.

5.4 Window Width and Sampling Rate
The selection of a proper window width is critical. It mainly
determines the number of samples in a window and the cor-
responding accuracy within the window. There is a tradeoff
between the window width and the accuracy. In this experi-
ment, the sampling rate is set at 0.06s and the window width
is tested at 0.12s, 1.2s and 12s, i.e. the number of samples
in one window is 2, 20 and 200 respectively. All the other
experimental settings remain the same as Fig. 3(d). The
result is shown in Fig. 6(a). It shows that the extraction re-
sult of SOC becomes inaccurate when the window width is
too small. Therefore a proper window width can be decided
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Figure 6: The relationship between window width
and accuracy. tw is the window width and tint is the
sampling interval.

such that there are at least tens of samples in the window to
guarantee the accuracy. For example, in Fig. 6(b), the win-
dow width with 200 samples always obtains good accuracy
for different sampling rates and can be processed in time
concerning the result in section 5.3.

5.5 Applicability to Different Battery Types
Finally, we study the applicability of our algorithm to differ-
ent battery types. Three kinds of combinations of battery
materials are selected to act as the active positive material,
the electrolyte and the negative positive material of a bat-
tery. The three combinations are Graphite / LiPF6 / CoO2,
which is used in the previous experiment, Tungsten oxide /
Perchlorate / CoO2 and Graphite / 30% KOH in H2O /
V2O5. For each type of battery, a measurement of a dis-
charge process from fully charged to 15% SOC is conducted
and a new look-up table containing SOC, OCV and Reff is
built. No adjustment to cater manually the OCV algorithm
to new battery types is used. All the other experimental
settings remain the same as Fig. 3(d). The result is shown
in Fig. 7. It can be seen that the error is always within
an acceptable range of 4% for three different battery types,
which proves that our algorithm is universally applicable to
different battery types.

6. CONCLUSIONS
In this paper, we have proposed a simple yet accurate al-
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Figure 7: Applicability test of our algorithm to dif-
ferent battery types.

gorithm to calculate open-circuit voltage (OCV) based on
terminal voltage and current of the battery. We use fre-
quency domain linear system analysis but not any detailed
circuit model. Accordingly, the method can be applied to
any kind of discharge current profile and any battery types
without modification. Experiments show that SOC can be
obtained efficiently based on the well-established mapping
between SOC and OCV, with less than 4% SOC error com-
pared to the detailed battery simulation.

7. REFERENCES
[1] L. J. Fu, H. Liu, Y. P. Wu, E. Rahm, R. Holze, and H. Q. Wu,

“Surface modifications on electrode materials for lithium ion
batteries,” Solid State Sci., 2006.

[2] Y. F. Chen and J. W. Evans, “Three-dimensional thermal
modeling of lithium-polymer batteries under galvanostatic
discharge and dynamic power profile,” Journal of The
Electrochemical Society, 1994.

[3] J. R. Pillai and B. Bak-Jensen, “Electric vehicle based battery
storages for future power system regulation services,” in Nordic
Wind Power Conference, 2009.

[4] L. Benini, G. Castelli, A. Macii, and R. Scarsi, “Battery-driven
dynamic power management,” in IEEE Design & Test of
Computers, pp. 53–61, 2001.

[5] L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, and
R. Scarsi, “Extending lifetime of portable systems by battery
scheduling,” in Proc. European Design and Test Conf.
(DATE), pp. 197–203, 2001.

[6] C. F. Chiasserini and R. R. Rao, “Energy efficient battery
management,” IEEE J. on Selected Areas in Communications,
pp. 1235–1245, 2001.

[7] C. F. Chiasserini and R. R. Rao, “Routing protocols to
maximize battery efficiency,” in Proc. of Milcom, pp. 496–500,
2000.

[8] S. Pang, J. Farrell, J. Du, and M. Barth”, “Battery
state-of-charge estimation,” in Proc. Amer. Control Conf,
pp. 25–27, 2001.

[9] J. Chiasson and B. Vairamohan, “Estimating the state of
charge of a battery,” IEEE Transactions on Control Systems
Technology, pp. 465–470, 2004.

[10] M. Verbrugge and E. Tate, “Adaptive state of charge algorithm
for nickel metal hydride batteries including hysteresis
phenomena,” Journal of Power Sources, pp. 236–249, 2004.

[11] H. Guo and J. J. Z. Wang, “Estimating the state of charge for
ni-mh battery in hev by rbf neural network,” in International
Workshop on Intelligent Systems and Applications, pp. 1–4,
2009.

[12] Genesis Application Manual,5th ed. H. E. P. Inc., 2000.
[13] P. Moss, G. Au, E. Plichta, and J. P. Zheng, “An electrical

circuit for modeling the dynamic response of li-ion polymer
batteries,” Journal of The Electrochemical Society,
pp. A986–A994, 2008.

[14] B. E. Conway, Electrochemical Supercapacitor: Scientific
Fundamental and Technology Applications. Kluwer
Academic/Plenum Publisher, 1999.

[15] R. H. Cannon, Dynamics of Physical Systems. Courier Dover
Publications, 2003.

[16] “FORTRAN Programs for the Simulation of Electrochemical
Systems,” in
http://www.cchem.berkeley.edu/jsngrp/fortran.html.

692

41.1


