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Abstract

RNA-sequencing (RNA-seq) technology has emerged as the preferred method for quantification of 

gene and isoform expression. Numerous RNA-seq quantification tools have been proposed and 

developed, bringing us closer to developing expression-based diagnostic tests based on this 

technology. However, because of the rapidly evolving technologies and algorithms, it is essential 

to establish a systematic method for evaluating the quality of RNA-seq quantification. We 

investigate how different RNA-seq experimental designs (i.e., variations in sequencing depth and 

read length) affect various quantification algorithms (i.e., HTSeq, Cufflinks, and MISO). Using 

simulated data, we evaluate the quantification tools based on four metrics, namely: (1) total 

number of usable fragments for quantification, (2) detection of genes and isoforms, (3) correlation, 

and (4) accuracy of expression quantification with respect to the ground truth. Results show that 

Cufflinks is able to use the largest number of fragments for quantification, leading to better 

detection of genes and isoforms. However, HTSeq produces more accurate expression estimates. 

Moreover, each quantification algorithm is affected differently by varying sequencing depth and 

read length, suggesting that the selection of quantification algorithms should be application-

dependent.
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1. INTRODUCTION

RNA-sequencing (RNA-seq), one of the most promising technologies in the current -omics 

era, uses deep sequencing to characterize and quantify complex transcriptomes [1]. Since its 

inception, RNA-seq technology has quickly progressed because of its potential benefits to 

human health care via gene and isoform expression profiling, allele specific expression, 

single nucleotide variation discovery, fusion gene detection, RNA-editing, novel transcript 

identification, and differential expression analysis [2–6]. Moreover, RNA-seq is gradually 

overshadowing microarrays in some applications and continues to overcome microarray-

related challenges. Features that make RNA-seq an attractive technology compared to 

microarrays include (1) ability to detect alternative splice sites and novel isoforms, (2) de 

novo analysis of samples without a reference, (3) minimal cross-hybridization errors, and (4) 

single nucleotide resolution [2].

An important application of RNA-seq is gene and isoform expression profiling. Accurate 

gene or isoform expression profiling is critical for developing reliable clinical or biological 

applications such as identification of differentially expressed genes or gene expression-based 

prediction. However, RNA-seq expression profiling is challenging, and numerous expression 

quantification tools have attempted to overcome these challenges to produce accurate 

expression estimates.

One of the challenges is a result of repetitive sequences, especially in the human genome. 

RNA-seq technology is currently limited in terms of read length relative to RNA molecule 

length. Thus, if not handled correctly, short reads from repetitive regions may be erroneously 

aligned, leading to decreased performance of simple quantification tools. However, recent 

quantification tools are able to handle reads that align to multiple locations. These tools can 

use multiple alignment information to quantify expression values [7].

Another challenge for quantification is the ability to distinguish between reads from 

common exonic regions of a gene. As a gene is composed of multiple isoforms and each 

isoform consists of multiple exons of a gene, there are a number of exons that coexist in 

multiple isoforms. Hence, when quantifying two isoforms of a gene with common exonic 

regions, it is difficult to infer the origin of reads with respect to the isoforms.

Because of the rapidly evolving sequencing technology, researchers are continuously 

developing new library preparation protocols and downstream software tools to enhance 

quality of sequencing data and accuracy and efficiency of data analysis, respectively. With 

advances in technology and decreases in cost, the future trend will be to design application-

specific experimental designs and computational data analysis pipelines. Thus, there is a 

need to evaluate the effect of different RNA-seq experimental designs on downstream 

expression quantification in order to answer the following questions. For a specific 

experimental design, which quantification tool will produce more accurate results? For a 

specific quantification tool, what is the ideal read length and sequencing depth? To address 

these questions, we simulate different read conditions and assess the behavior of three 

quantification tools using four metrics: (1) number of usable fragments, (2) ability to detect 
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genes and isoforms, (3) correlation of expression with true expression, and (4) accuracy of 

expression.

2. METHODS

We use simulated data to remove unexplained variability and because the ground-truth 

expression values are necessary to evaluate quantification performance. The experimental 

procedure includes four stages (Figure 1): (1) Read Simulation, (2) Sequence Alignment, (3) 

Quantification, and (4) Evaluation.

2.1 Simulation of RNA-seq Data

We apply the RNASeqReadSimulator (update 2012.04.30) to generate synthetic RNA-seq 

data because it allows users full flexibility in controlling the read generation process. It also 

provides information about the transcript of origin for each read. RNASeqReadSimulator 

uses a number of Python scripts to generate reads based on parameters such as the 

distribution of the expression profiles, number of reads to be generated, read length, 

positional bias profile, average insert-length and standard deviation for paired-end reads, 

strand-specific protocol flag, and positional error profile.

We use a BED-formatted Ensembl annotation with a fixed set of randomly assigned weights 

(corresponding to expression magnitude) to generate paired-end reads with uniform per base 

positional error and bias profiles [8]. Reads are simulated for the following library 

preparation conditions: (1) Constant read length at 2×100bp paired-end with various 

sequencing depths (3 million fragments, 15 million fragments, 50 million fragments, or 100 

million fragments) and (2) Constant sequencing depth at 50 million fragments and with read 

length of 2×50bp, 2×75bp, or 2×100bp paired-end. All conditions are generated using an 

average fragment length of 225bp with a 25bp standard deviation.

We adopt Ensembl GRCh37 version 67 as the genome annotation source for this study. The 

raw annotation file is processed to include annotations on chromosomes 1–22, chromosome 

X, chromosome Y, and mitochondrion only. The corresponding reference FASTA file is also 

downloaded from Ensembl and used for data simulation.

2.2 Sequence Alignment

After simulating RNA-seq data, the second step in our workflow is sequence alignment. We 

apply TopHat [4], a spliced alignment tool, to align the simulated reads to the reference 

genome. We use TopHat (version 2.0.6) with two different parameter settings: (1) the 

annotation file is ignored and the reads are directly mapped to the genome and (2) the 

annotation file is provided and the reads are forced to align to the transcriptome only. 

TopHat performs gapped alignment using Bowtie2, followed by spliced alignment. The 

mapped reads are reported in terms of genomic coordinates and sorted by mapping 

coordinates in a BAM file format.
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2.3 Expression Quantification

In our workflow, we use three alignment scenarios leading to expression quantification: (1) 

basic counts of the origin of reads (i.e., true expression counts), (2) reads mapped to the 

genome using TopHat, and (3) reads mapped to the transcriptome using TopHat. Henceforth, 

the true expression counts serve as the reference for evaluating quantification tools. After 

preprocessing steps, the TopHat alignment files are quantified with HTSeq, Cufflinks, and 

MISO [7,9,10]. For the purpose of comparing directly against the true expression counts and 

keeping the quantification independent from normalization, the fragment counts reported by 

each quantification tool are used for evaluation.

2.3.1 Quantification Using TopHat-Mapped Reads

HTSeq (version 0.5.4p1) employs a naive count-based approach for quantification. It is 

limited to quantifying expression only at the gene level. The BAM file generated by TopHat 

is converted to SAM format and sorted by read name using SAMtools. We apply HTSeq in 

the intersection-nonempty and non-strand-specific mode. The reads quantified by HTSeq 

must originate from one location only, i.e., the origin of a read must be unique.

Cufflinks (version 2.0.2) uses a maximum likelihood-based approach to quantify expression 

at the gene and isoform levels. Using the Cuffdiff program, part of the Cufflinks package, it 

is possible to retrieve the raw read counts used by Cufflinks for quantification. Preprocessing 

of the TopHat alignment data is not required for using Cufflinks as it is already sorted by 

read- coordinates and is in BAM format. The read counts are reported for isoforms and 

genes separately.

MISO (Mixture of Isoforms, version 0.4.6) is a quantification tool based on Bayesian 

inference. It is said to perform well in the case of low-expressing genes as it provides a 

confidence estimate with the quantification [11]. MISO requires an index file of the 

coordinate sorted BAM file for its quantification. Before the quantification step, MISO 

indexes the annotation file. As part of the default settings, MISO requires at least 20 reads to 

originate from a gene for quantification. We keep this default setting to observe any resulting 

increases in quantification accuracy. MISO reports the number of reads it assigns to each 

isoform to produce isoform expression counts. Summing the count data of the isoforms of a 

gene will result in the gene count.

2.3.2 True Expression Counts

The read name assigned by RNASeqReadSimulator contains the transcript-id from which it 

originated. Using this feature of the simulated data, we calculate the true expression count 

for every transcript. We then identify genes related to isoforms and sum isoform read counts 

belonging to a particular gene to obtain the true expression count for the gene.

2.4 Data Analysis

The last step in the RNA-seq workflow is the evaluation of quantification tools. In this 

section, we evaluate the performance of each quantification tool for each simulated read 

condition. We use four metrics to evaluate quantification performance: (1) number of usable 
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fragments for quantification, (2) detection of genes and isoforms, (3) correlation, and (4) 

accuracy of expression with respect to the true expression count.

2.4.1 Usable Fragments for Quantification—To compare the total number of reads, or 

fragments, that are usable by a quantification tool, we total the number of reads assigned to 

each transcript. Reads are counted for each tool under every scenario of varying sequencing 

depth, read length, and mapping strategy. Generally, more usable fragments correlate with 

higher gene and isoform detection.

2.4.2 Detection of Genes and Isoforms—An important aspect of expression 

quantification is its ability to detect low expressing genes or isoforms. More importantly, it 

is crucial for the quantification tool to be specific in detecting only genes or isoforms present 

in the sample under study.

We use three metrics to evaluate the detection of genes or isoforms. The first metric is the 

raw detection ability, which is measured by counting the number of expression values 

greater than zero, i.e., given by where Ii represents the presence or absence of the ith gene or 

isoform (1 denotes presence and 0 denotes absence), n is the total number of genes or 

isoforms in the annotation.

The second metric is the false positive detection. This occurs when a particular transcript is 

predicted to be present by a quantification tool but should not be present in the sequenced 

sample. We consider the quantification of a gene/isoform to be a false positive when the tool 

assigns an expression value greater than zero when the true expression count for the 

corresponding gene/isoform is zero.

The third metric is false negative detection. This occurs when the quantification tool reports 

a zero expression value for a transcript that should be present in the sequencing sample. We 

consider the quantification of a gene/isoform to be a false negative when the tool assigns an 

expression value of zero when the true expression count for that corresponding gene/isoform 

is greater than zero.

2.4.3 Correlation of Expression—Bivariate analysis is a measure commonly used to 

study the relation between two variables. We use this concept to study the relation between 

the true expression count and the expression counts reported by each quantification tool. We 

plot the expression count reported by each quantification tool against the true expression 

count to analyze this relationship.

To assess the quantification at low, medium, and high levels of expression, we transform the 

fragment count to the log scale using log2 (xi+1), where xi is the expression count of the ith 

gene or isoform. We calculate Pearson’s correlation coefficient (r) for each case.

2.4.4 Accuracy of Expression—Correlation enables us to compare the similarity of two 

sets of quantities. But to use these quantification tools for application- oriented studies, we 

need to know to what extent a user can trust these estimated expression values. Ideally the 

true expression count and the expression count estimated by a quantification tool should be 

similar and within an application-specific error tolerance. For each quantification tool and 
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each simulated read condition, we count the number of genes or isoforms correctly 

quantified within 10% of the true expression count.

2.5 Quantification of Real RNA-Seq Data

For evaluating the performance of quantification tools using real RNA-seq, data we 

download the dataset SRP008482 from sequencing read archive (SRA). This dataset was 

used to study the human pulmonary microvascular endothelial cells when they are subject to 

thrombin for 6 hours [12]. The results from the study have validated the fold-changes of 

three genes using a TaqMan RT-qPCR assay. Here we study the effect of each quantification 

tool on variations in the fold-change of these genes compared to the current standard 

technique used for expression quantification (RT-qPCR).

3. RESULTS AND DISCUSSION

3.1 Mapping Statistics

We evaluate the mapping accuracy of the simulated reads.

Regardless of alignment to the genome or to the transcriptome, approximately 90% of the 

100bp reads map accurately to the reference. A read is mapped accurately if its start 

coordinate, which is known from the simulation, matches with the mapping location or the 

mapping location plus the read length. The 75bp reads and the 50bp reads are less accurately 

mapped with accuracies of 87% and 81% when mapped to the genome and accuracies of 

88% and 85% when mapped to the transcriptome. Shorter reads also have a higher 

percentage of reads that map to multiple locations (multihit). Transcriptomic mapping have a 

smaller percentage of multihits compared to genomic mapping.

When counting the percentage of reads that do not map to the correct location, the “error” 

introduced by single hit mapping is approximately 3% for all cases in the study, but the 

“error” introduced by multihit mapping ranges from 7% for 100bp reads to 15% for 50bp 

reads.

3.2 Usable Fragments for Quantification

For all quantifiers, the quantification of TopHat alignment with transcriptomic mappings 

generally utilizes more reads compared to the quantification of TopHat alignment with 

genomic mappings (Figure 2). In the case of genomic alignment, we suspect that a small 

portion of the reads are mapped incorrectly to the non- transcriptomic region (i.e., intronic or 

intergenic region), resulting in reduced availability of reads for quantification. HTSeq, 

Cufflinks, and MISO consistently use most of the reads for quantification regardless of the 

variations of read length or sequencing depth. Cufflinks always utilizes the largest number of 

reads among all tools compared.

We also observe that, regardless of read length, the quantification tools use a similar number 

of reads, i.e. there is no major difference in the number of reads used between tools. In terms 

of the percentage of true fragment count, HTSeq continues to discard more reads as the 

sequencing depth increases, while Cufflinks scales up even with increase in sequencing 

depth.
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3.3 Detection of Genes and Isoforms

When a quantification tool reports a fragment count of greater than zero we consider the 

gene or isoform to be detected. From Figure 3 we find that more genes are detected in 

TopHat transcriptomic alignment compared to the TopHat genomic alignment (the difference 

is minimal in HTSeq). MISO consistently reports less than half the number of True Gene 

Count since it only detects genes with at least 20 mapped reads. We observe in Figure 3 that, 

regardless of the read length, at a sequencing depth of 50 million paired-end reads the 

number of genes quantified or detected is comparable. With extensive sampling we have a 

better chance of getting even low expressed or less abundant transcripts. Hence, with 

increase in sequencing depth, more non-zero expression values are observed. The Venn 

diagrams (Figure 4) summarizes the commonly detected genes and compares the results 

between the genomic mapping conditions versus the transcriptomic mapping. We see that in 

the case of genomic mapping MISO has the largest number of unique detections and 

Cufflinks has the largest number of unique detections in the case of transcriptomic mapping.

We would expect the same trend in isoform detection as we observed in gene detection. 

However, we observe in Figure 5 that both Cufflinks and MISO detect more isoforms than 

the actual number present in the sample. This leads us to check for the number of false 

positive genes and isoforms detected by the quantification tools. HTSeq cannot detect or 

quantify isoforms and hence is not represented in Figure 5.

Considering false positive gene detections we observe from Figure 6 that variations in read 

length result in large changes in the number of false positive gene detections. We can clearly 

see that, with a decrease in read length, the number of false positives increases. This could 

be a result of higher mapping uncertainty due to the decreased read length as suggested by 

our mapping evaluation (shorter read length had higher percentage of multihit mapping). 

Similarly, we can explain the higher number of false positives in the case of quantification 

from genomic mapping compared to that of transcriptomic mapping, with the exception of 

the 100bp paired-end read set with a depth of 100 million fragments. Among the tools 

compared, Cufflinks produces the largest number of false positive genes. Figure 7 illustrates 

the common false positive genes detected by the three quantification algorithms. The 

maximum unique contribution of false positive gene detection is given by Cufflinks and 

MISO, leading us to believe that the majority the unique entries in Figure 4 were not 

accurate gene detections.

We then move on to counting the number of false positive isoforms detected by each 

quantification tool. As expected from Figure 5, we see in Figure 6 that MISO produces the 

largest number of false positive isoform calls.

When calculating the number of false negative genes (i.e., genes that are actually present in 

the read set but are not detected or quantified by the quantification tools), we observe that 

HTSeq and Cufflinks have very low false negative gene detection compared to that of MISO 

as seen in Figure 9. For the case of false negative isoforms we see in Figure 11 that it 

follows the same trend as that of false positive gene detection. However, in this case false 

negative isoforms tend to occur more frequently when mapping to the genome instead of the 

transcriptome.
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3.4 Correlation of Expression

We then perform bivariate analysis on each read set and observe a trend for every 

quantification tool. We use Pearson’s coefficient to calculate the relation between the true 

expression count of every gene against the count data produced by the quantification tools. 

Table 1 summarizes the trend of the correlation for each case in the study. For HTSeq and 

MISO, Pearson’s correlation coefficient does not change with changes in sequencing depth 

while keeping the read length constant. We also see that the correlation coefficient increases 

with increase in read length from 50bp to 100bp paired-end reads. In contrast, we observe 

that, when quantifying with MISO, increases in sequencing depth increases correlation. 

When quantifying with HTSeq and Cufflinks, there is an increase in correlation coefficient 

when the read length increases.

Figure 12 and Figure 13 are representative scatter plots of the important observations. In 

Figure 13, we observe that, for HTSeq and Cufflinks, when read length is constant and 

sequencing depth increases, the scatter plot becomes more dispersed near the low expressing 

region. Support for this observation is provided by RMSE, i.e., RMSE increases with 

sequencing depth. With respect to genomic mapping, Cufflinks has the highest correlation 

coefficient. We infer from the scatter plot that there is one highly expressed gene that is not 

detected in any simulated read condition. On closer examination, we observe that this was a 

gene of very short sequence length (i.e., less than 250 base pairs). All combinations of the 

reads originating from this gene also aligned to a different site. Hence, HTSeq declares these 

mappings as ambiguous and does not quantify the gene. Cufflinks, which is less stringent 

than the other tools used in the study quantifies this short high expressed gene while HTSeq 

and MISO do not quantify unless they are sure that the read originates from a particular 

transcript. MISO follows a different trend compared to HTSeq and Cufflinks. Though it has 

a very narrow central cluster, MISO reports quantification of genes at much higher levels 

than the true expression. The scatter plot also confirms our earlier observation of MISO 

having more false negatives compared to other quantification tools.

In Figure 12, we examine correlation while fixing sequencing depth and varying read length. 

We find that, regardless of the genomic or transcriptomic alignment used, the dispersion in 

the scatter plot decreases when read length increases.

3.5 Accuracy of Expression

As much as it is important to detect the presence or absence of a transcript, the 

quantification tool must also be able to accurately quantify expression levels. We measure 

accuracy by counting the number of genes or isoforms that are quantified within 10% of the 

true expression level.

In Figure 14 we observe that HTSeq with transcriptomic mapping accurately quantifies the 

largest number of genes. More generally, we see that quantification with transcriptomic 

mapping has a higher number of accurately quantified genes. We also observe that MISO 

accurately quantifies the fewest genes among the tools used in the study. This is in 

agreement with our previous observation that MISO detects the fewest number of genes due 

to its requirement of 20 minimum reads per gene for quantification. However, comparing the 
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percentage of accurately quantified genes among those detected by respective tools, we 

found that there was no significant advantage to requiring a minimum of 20 reads per gene 

for quantification. The most accurate combination of quantification tool and simulated read 

condition is HTSeq with 100bp paired-end reads mapped to the transcriptome. We observe 

that, with this combination, approximately 90% of the genes detected are accurately 

quantified. The percentage of accurately quantified genes among those detected decreases 

with decrease in read length.

In Figure 15 we observe that Cufflinks has a higher number of accurately quantified 

isoforms compared to MISO. Cufflinks with 100bp paired-end reads mapped to the 

transcriptome has the highest percentage of accurately quantified isoforms among the 

isoforms detected. We also observe that alignment to the transcriptome improves isoform 

quantification accuracy.

3.6 Evaluation on real RNA-seq data

Here we compared the fold change value resulting from the three quantification algorithms 

against the standard RT-qPCR readings. The three genes quantified using RT-qPCR in the 

thrombin study [12] were CELF1, FANCD2, and TRAF1 whose ensemble gene IDs are 

ENSG00000149187, ENSG00000144554, and ENSG00000056558, respectively. The table 

below summarizes the fold change as calculated from the results of different quantification 

tools. Unregulated genes are represented by positive fold change and the down regulated 

genes are represented by negative fold change.

We observe that the fold change values in this experiment are only marginally different 

between RNA-seq quantification tools when the fold change is small, as in the case of the 

FANCD2 gene. But the variation in fold change is larger when the fold change is higher, as 

in the case of the TRAF1 gene.

In this evaluation we observe mean square errors for HTSeq, Cufflinks, and MISO of 0.48, 

0.49, and 0.39, respectively. From this experiment we see that when measuring relative gene 

expression, MISO performs better than Cufflinks and HTSeq. But, because of the small 

number of genes studied here, we cannot conclusively say that MISO is better than Cufflinks 

and HTSeq for measuring relative gene expression.

4. CONCLUSION

We have analyzed three quantification tools, namely HTSeq, Cufflinks, and MISO, using 

synthetically prepared RNA-seq data. In these simulated datasets, we varied read length and 

sequencing depth. We used four metrics, (1) number of usable fragments, (2) detection of 

genes and isoforms, (3) correlation of expression, and (4) accuracy of expression, to evaluate 

the performance of HTSeq, Cufflinks, and MISO.

We observed that Cufflinks makes use of almost all reads present in the sample for 

quantification compared to other tools used in the study. This might explain why Cufflinks is 

able to detect the largest number of genes.
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Results from MISO were surprising. Though MISO uses a majority of the reads for 

quantification, it fails to detect around half of the genes present in the sample. This is 

primarily because of MISO’s restriction on detection by requiring that isoforms contain at 

least 20 reads to be quantified. MISO also detects more isoforms than are actually present in 

the sample, i.e., it has a high false positive rate. When we evaluated the different 

quantification algorithms on real RNA-sea data, we did observe that MISO performed better 

in estimating the relative expression values in terms of fold change. But, a robust RNA-seq 

quantification tool should also produce accurate absolute expression estimates.

HTSeq detects a few hundred genes less than Cufflinks, but detects more than 90% of the 

genes present in each case. HTSeq has the smallest number of false positive genes while 

Cufflinks has the smallest number of false negative genes quantified.

From the correlation study we can conclude that Cufflinks has the highest correlation in 

almost all cases. HTSeq provides higher correlation when using transcriptome mapped reads 

compared to the genome mapped reads. When mapping to the transcriptome, HTSeq 

correlation is equal to that of Cufflinks. We also infer from the scatter plots that HTSeq fails 

to quantify small genes.

When we consider the accuracy of quantification, we consistently observe that HTSeq 

produces more accurate gene quantification measurements compared to all other 

quantification tools used in the study.

Results indicate that performance of the quantification tool does not change considerably 

with varying sequencing depth. But, there is evidence that longer read lengths produce more 

accurate quantification and fewer false positives. Hence, regardless of the depth of mRNA 

quantification, we recommend to use longer read lengths.

This experiment can be further extended to study each metric we have discussed more 

closely. One possibility is to closely examine the genes that were not detected by any 

quantification tool, or those that were identified as false positives by all three tools. For the 

genes that were uniquely detected by a quantification tool, the answer may lie in the tool’s 

algorithm. We could also study the extremes of read length and read depth to clearly identify 

the limits of each quantification approach.

Regardless of how well a simulator mimics RNA-seq data, sequencing data from a real 

biological experiment with known ground-truths would be a more ideal input to validate 

RNA-seq quantification tools. In the future, the RNA-seq quantification benchmarks 

described in this experiment can be applied to real biological data.
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Figure 1. 
Experimental procedure and data analysis workflow.
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Figure 2. 
Number of usable fragments for quantification.
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Figure 3. 
Number of genes detected.
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Figure 4. 
Number of commonly detected genes among different quantification tools. Venn diagrams 

represent the 2×100bp 100 million reads condition when mapped against the genome (left) 

and when mapped against the transcriptome (right). The proportions were similar in all cases 

of simulated reads.
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Figure 5. 
Number of isoforms detected.
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Figure 6. 
Number of false positive genes.
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Figure 7. 
Number of common false positive genes among different quantification tools. Venn 

diagrams represent the 2×100bp 100 million reads condition when mapped against the 

genome (left) and when mapped against the transcriptome (right). The proportions were 

similar in all cases of simulated reads.
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Figure 8. 
Number of false positive isoforms.
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Figure 9. 
Number of false negative genes.
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Figure 10. 
Number of common false negative genes among different quantification tools. Venn 

diagrams represent the 2×100bp 100 million reads condition when mapping was done 

against the genome (left) and when the mapping was done against the transcriptome (right). 

The proportions were similar in all cases of simulated reads.
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Figure 11. 
Number of false negative isoforms.
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Figure 12. 
Correlation of quantification and true expression with constant sequencing depth and 

increasing read length.
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Figure 13. 
Correlation of quantification and true expression with constant read length and increasing 

sequencing depth.
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Figure 14. 
Number of genes accurately detected and quantified within 10% error.
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Figure 15. 
Number of isoforms accurately detected and quantified within 10% error.
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Table 3

Difference between RNA-seq and RT-qPCR fold changes

RT-qPCR HTSeq Cufflinks MISO

CELF1 −1.15 −1.14 −1.13 −1.15

FANCD2 −2.07 −1.65 −1.63 −1.60

TRAF1 7.27 8.03 8.013 7.88
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