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Abstract

The Office of Disability Adjudication and Review (ODAR) is responsible for holding hearings, 

issuing decisions, and reviewing appeals as part of the Social Security Administration’s disability 

determining process. In order to control and process cases, the ODAR has established a Case 

Processing and Management System (CPMS) to record management information since December 

2003. The CPMS provides a detailed case status history for each case. Due to the large number of 

appeal requests and limited resources, the number of pending claims at ODAR was over one 

million cases by March 31, 2015. Our National Institutes of Health (NIH) team collaborated with 

SSA and developed a Case Status Change Model (CSCM) project to meet the ODAR’s urgent 

need of reducing backlogs and improve hearings and appeals process. One of the key issues in our 

CSCM project is to estimate the expected service time and its variation for each case status code. 

The challenge is that the systems recorded job departure times may not be the true job finished 

times. As the CPMS timestamps data of case status codes showed apparent batch patterns, we 

proposed a batch model and applied the constrained least squares method to estimate the mean 

service times and the variances. We also proposed a batch search algorithm to determine the 

optimal batch partition, as no batch partition was given in the real data. Simulation studies were 

conducted to evaluate the performance of the proposed methods. Finally, we applied the method to 

analyze a real CPMS data from ODAR/SSA.
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1. INTRODUCTION

The United States Social Security Administration (SSA) administers two of the largest 

federal programs that provide assistance to people with disabilities: the Social Security 

disability insurance (SSDI) program and the supplemental security income (SSI) program. 

SSA’s disability determination services (DDS) process is complex and involves five levels. 

The first level is to make the initial disability determination by state DDS staff after a 

claimant meets all non-medical eligibility criteria at a SSA field office. There are four levels 

of appeals, namely reconsideration, hearing, appeals council, and federal court, from one 

level to the next. A claimant may request a next level appeal if she or he disagrees with the 

decision of the current level. The Office of Disability Adjudication and Review (ODAR) is 

responsible for hearing and appeals council. Due to the large number of appeal requests and 

limited resources, SSA is facing many challenges now. As the Office of Inspector General 

(OIG) report [20] pointed out, one of the biggest challenges is “While SSA continues 

focusing on the quality and consistency of hearing decisions, it is facing worsening average 

processing times and increasing pending hearings”. In order to control and process cases, the 

ODAR has established a Case Processing and Management System (CPMS) to record 

management information since December 2003. The CPMS provides a detailed case status 

history for each hearing case, from establishing a case to final decision or dismissal.

Our NIH team collaborated with SSA and developed a Case Status Change Model (CSCM) 

project to meet the ODAR’s urgent need of reducing backlogs and improving hearings 

process. One of the key issues in our CSCM project is to estimate the expected service time 

and its variation for each case status code. The major information we extracted from CPMS 

are case status code (job type), staff ID, staff type, arrival timestamps, and departure 

timestamps of each status for each case. This is a problem of statistical parameter estimation 

in queueing model [2], [8], [15], [19], [25]. The work flow recorded by CPMS can be 

considered as a complex queueing network with multi-stage, multi-task, multi-type, and 

multi-server [14].

This is a challenging problem, as the complex hearing process system may not follow the 

typical assumptions used in classical queueing models, such as Poisson arrival processes, 

exponential service time, and first-come-first-served (FCFS) policy. This is because staff 

members in the CPMS may freely choose their own service policy; may work on multiple 

jobs ”simultaneously”; they may also switch among multiple unfinished jobs, instead of 

starting a new job after finished the previous one. However, the CPMS does not record how 

and when each staff member switches her/ his jobs. We only observe the arrival and the 

departure timestamps of each job (case status in our system). Note that the arrival time does 

not necessarily mean the time the staff member starts working on the corresponding job. 

Since there might be other jobs on the staff member’s desk, she/he may continue to work on 

the unfinished job after the new job arrives. Similarly, the staff member may also hold a 

finished job for a while and submit it later together with other finished jobs so the departure 

times may not be the true job finished times.

In this paper, we propose a batch model to make this ill-posed problem tractable. For all the 

jobs assigned to the same staff, we sort all the departure timestamps of the jobs and cluster 
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the consecutive ones into groups. Then the jobs whose departure timestamps fall into the 

same group form a batch. For each batch, we build an equality between the batch time 

interval, i.e., the time between the latest departure timestamps of the previous batch and of 

the current batch, and the total service time for all jobs within this batch. Then we can 

estimate the means and the variances of the service time for each case status code once we 

have enough equalities. However, due to the complexity of the real data, direct estimation 

using the least square estimate (LSE) often result in large bias and variance. Our method is 

based the constrained LSE ([7], [22], [23],[26], [27],), with some special features 

incorporated, the resulting estimates are accurate and robust as demonstrated by our 

simulation studies.

The major assumption we use in our batch model is that the staff member approximately 

spends the whole batch time interval to finish the corresponding batch jobs. The batch 

service policy can be considered as a batched FCFS in the sense that after the jobs in a batch 

are processed and recorded, the jobs in the next batch will immediately be processed. We 

assume that the staff member prefers to finish one batch of jobs before moving to the next 

batch and have the flexibility to apply arbitrary service policy within a batch. We expect that 

our assumption may be violated by timestamps recording noise and imperfect batch partition 

where some jobs may not be completely processed within one batch. We do not require that 

the batch assumption should be strictly satisfied. Instead, we assume that the time the staff 

spend on the current batch in past batch time intervals and the time the staff spend on future 

submitted jobs within the current batch interval follow the same distribution. Then these left-

hand and right-hand time truncation error effects may cancel out each other statistically. Our 

batch model idea has been motivated by mainly two facts. One is the timestamps batch 

pattern, which is due to some batch processing in the system ([1], [5]); the other is the staff 

service policy pattern although we cannot observe the ground truth service policy. The 

departure timestamps for each staff member present apparent clustered pattern. In addition, 

there are several reasons batches may occur: supervisor may allocate more than one job to a 

staff member at a time; the staff member may also choose to save finished jobs to be 

reported jointly to meet periodical job quotas.

To the best of our knowledge, this is the first study on estimating service time of batched 

timestamps data with unknown service policy, which allow switching among unfinished 

jobs. Our problem is related to the transactional queue inferences, which deals with the 

instances when only the service times are observed but not the waiting times [8], [15]. 

However, transactional queues assume FCFS, and it puts distributional assumptions to the 

arrival and service times. All of these are unknown in our model. For more details, interested 

readers in this area may consult the comprehensive list composed by Nazarathy and Pollet 

[19]. This problem is also similar to the blind source separations [6], notably to the 

applications on independent component analysis (ICA) [6], principal component analysis 

[6], and non-negative matrix factorizations (NMF) [16], [17]. The objective for blind source 

separations is to recover unobserved random processes based on partial observation. For 

instance, when unobserved sources are linearly combined to form observable outputs, ICA 

can distinguish both the sources and the combination matrix based on the outputs. In order 

to obtain the estimates, it is required that the outputs to be repeatedly recorded by the same 

combination mechanics over variable sources. The similarity between blind source 
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separations and our problem is that we also observe a partial output (service time + waiting 

time) and attempt to estimate the unobservable sources (service time). The difference is that 

our batch model does not have repeated measurements based on the same combination of 

sources. The combination of different status codes within a batch is always varying. If we 

model our problem as separating service times and waiting times from the arrival/departure 

time interval, we only have one setup for all paired arrival and departure timestamps. Extra 

assumptions are still needed to make this problem tractable.

The rest of the paper is organized as follows. In Section 2 we describe our method for 

estimating the means and variances of the service times for all the job types; In Section 3 we 

present results from our simulation studies; Application of the method to a real data is 

demonstrated in Section 4; In the final Section 5, we summarize the results and discuss some 

of the possible further researches.

2. THE METHODS

As mentioned in the introduction, the data from a batch processing system may not provide 

all within batch information such as the true job starting/finished time for each job. In the 

following subsections we will use the inherited batch pattern due to the batch process to 

extract the batch level information to overcome the challenge.

2.1 The Batch Information Matrix

As some of the terms in this paper are generally used in both social service (eg. US Social 

Security Administration and Immigration services) and academic research (eg. Queueing 

Theory and Computer System) environments, we first clarify these terms by a series of 

definitions so that they can be consistently understood without confusion for the general 

readers.

Definition 1—A case processing and management system (CPMS) is a (generally 

computer and human) system which allows its components to control and process cases and 

to produce management information, including the arrival times, departure times and 

possible types of jobs (statuses of the cases) in the system. For a CPMS system, the 

processing time for a status (job) is the time difference between the departure time and the 

arrival time of the job; the service time for a job is the time actually spent to serve and finish 

the job; the waiting time for a job is the time difference of the processing time and the 

service time for the job; the system idle time (after all jobs are finished) is the time the 

system is waiting for the next job to arrive; the system service time on a time interval I is the 

sum of the total service times for all the jobs on I; the system resting time on a time interval 
I is the total time on I when the system is not available; and the system idle time on a time 
interval I is the sum of all the system idle times (after those jobs that finished in I). If the 

CPMS system allows batch processing where the jobs are grouped in processing through 

some way, the data from such a system will be called batched timestamps data

The system idle time is the time when the system is available to process jobs but there is no 

job to process; while the system resting time is the time when the system is not available to 

process jobs no matter if there are jobs to process or not. For example, a law firm processes 
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its cases and records the processing information in a computer system. If this law firm 

finished all its cases on May 1, 2015 and did not receive new cases until May 7, 2015, then 

the time period between May 1, 2015 and May 7, 2015 will be the system idle time for this 

law firm. If this law firm does not work on weekends, then the weekends will be the system 

resting time. Noticing that the system idle time and the system resting time may have 

overlap periods as in the above law firm example, where the seven days’ idle time period at 

least has one day overlap with the weekends’ days, the system resting time, we need to take 

care of the overlap time when we calculate the system’s non-service time.

Remark 1—By Definition 1, we have the following relationships:

The total time on a time interval I (which is the interval length of I) = the system service 

time on I+ the system resting time on I+ the system idle time on I − the overlap time of the 

system resting on I and the system idle time on I.

Now we introduce some terms related to batched timestamps data, in particular the 

timestamps batch patterns inherited from the batch processing which partitions the jobs into 

batches so that each batch of jobs may be processed or recorded by a special pattern. For 

example, in an education system where each teacher grades students’ homeworks and 

records the scores in the system, if the homeworks are collected and graded weekly, then the 

homeworks for each week can be viewed as a batch of homeworks which will be likely 

graded and recorded based on the teacher’s own schedule before the next class. If we check 

for the timestamps for the students’ homework scores in this education system, we would 

find that the timestamps might have some patterns due to the weekly batch (of homeworks) 

processing in the system. In the following, we will focus on the timestamps pattern due to 

the job batches in a batch processing system. For simplicity, we only consider the batched 

timestamps data with three columns: arrival time, departure time and job type, and we only 

use the departure time to analyze the batch pattern.

Definition 2—Let X := {(al, dl, gl)|l = 1, 2, …, L} be a batched timestamps dataset from a 

batch processing CPMS system with the departure timestamps column D = {dl|l = 1, 2, …, 

L}, let J := {Ji, i = 1, 2, …, n} be the job batches in the CPMS system which is a partition of 

all the jobs whose timestamps records form the dataset X. A batch partition B for the 

departure timestamps D is a partition of , where Bi is the departure timestamps 

in the job batch Ji, i = 1, …, n; the  are also called the batches of the batch partition B; 

the largest timestamps ti in Bi, ti = max{Bi}, is called the departure time of Bi; the number of 

timestamps in the batch Bi is called the size of batch Bi (i = 1, …, n); and n the number of 
the batches of B.

The jobs whose departure timestamps are in each Bi are usually processed together in one 

batch in the CPMS system. For example, if a CPMS system consists of human servers (e.g. 

reviewers) with computer recording and scheduling program and it allows weekly job 
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submissions by servers, then the weekly finished jobs can be viewed as the weekly job 

batches and their submission timestamps will have a weekly batch partition, which will be 

most likely clustered around the ends of the weeks.

Definition 3—For a given batched timestamps dataset, a batch partition B := {Bi, i = 1, 2, 

…, n} for the departure timestamps is in order if max{Bi−1}<min{Bi}, for i = 2, …, n.

Remark 2—By Definitions 2 and 3, that a batch partition B := {Bi, i = 1, 2, …, n} for the 

departure timestamps is in order is exactly what we mean to say that the corresponding job 

batches J := {Ji, i = 1, 2, …, n} are batched FCFS as we mentioned in the introduction. In 

the following, we always assume the batched FCFS policy and the batched timestamps data 

is always sorted by the departure timestamps.

Often a batch contains some departure time(s) of jobs partially finished in the previous 

batch, and there maybe some jobs unfinished with their departure time(s) moved to the next 

batch. For many batches, the amount of departure times “inherited” from the previous batch 

and those moved to the next batch are not equal, while in some other batches, these the 

“inherited” and moved out departure times are of the same amount, and so their effects are 

canceled out. This leads to the following two definitions.

Definition 4—For a given batched timestamps dataset, a batch partition B := {Bi, i = 1, 2, 

…, n} for the departure timestamps is called balanced if the unfinished jobs in each batch Bi, 

i = 1, 2, …, n, are the same in terms of the consumed service time.

Definition 5—For a given batched timestamps dataset, a batch partition B := {Bi, i = 1, 2, 

…, n} for the departure timestamps is called complete if there is no unfinished jobs in each 

batch Bi, i = 1, 2, …, n.

For a batched timestamps dataset, we find that a particular batch partition will be associated 

with such a dataset, which is inherited from the batch processing in the corresponding 

CPMS system. As the timestamps within each batch in the batch partition may not be the 

true job finished timestamps and tend to clustered at the ends of the batches, batch level 

information may be more reliable for batched timestamps data. Since a batched timestamps 

dataset often associates a batch partition which can be viewed as a grouping variable to 

extract the batch level information as in the following two definitions.

Definition 6—Let X := {(al, dl, gl)|l = 1, 2, …, L} be a batched timestamps dataset with 

sample size L, where al, dl, and gl are the arrival time, departure time and the type of the l-th 

job. Let B := {Bi, i = 1, 2, …, n} be a batch partition for the departure timestamps T := {dl|l 
= 1, 2, …, L}, and m be the number of types in the type column {gl|l = 1, 2, …, L} of X and 

G1, …, Gm be the m job types. Then the batch counting matrix, C := (cij)n×m is defined by cij 

= the number of elements in {(al, dl, gl)|dl ∈ Bi, gl = Gj, l = 1, 2, …, L} i.e. cij is the number 

of all the j-th type Gj jobs whose departure times are in the i-th batch Bi for i = 1, 2, …, n 
and j = 1, 2, …, m.
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Definition 7—Let B := {Bi, i = 1, 2, …, n} be a batch partition for the departure 

timestamps {dl|l = 1, 2, …, L}, ti = max{t|t ∈ Bi}, for i = 1, 2, …, n are the batch departure 

times, the interval (ti−1, ti] is called the interval of Bi for i = 1, 2, …, n; the batch service 

time b := (b1, …, bn) is defined to be the system service times on each of the batch intervals 

(ti−1, ti] of B, where t0 = min{t|t ∈ B1}.

By Definition 7 and Remark 1, the batch service time b := (b1, …, bn) can be expressed as bi 

= ti − ti−1 − the system idle time on (ti−1, ti] − the system resting time on (ti−1, ti], for i = 1, 2, 

…, n, where t0 is the initial time to start the service for the first case in the dataset, or t0 = 

min {t|t ∈ B1} if the service initial true starting time is not given.

Proposition 1—Let X := {(al, dl, gl)|l = 1, 2, …, L} be a batched timestamps dataset from 

a CPMS system. If the CPMS system has the policy that when the system is in idle state (i.e. 

there is no case to process), it will follow the FCFS policy to serve the first coming case, 

then the system idle time after the case (al−1, dl−1, gl−1) can be calculated by

Definition 8—Let X := {(al, dl, gl)|l = 1, 2, …, L} be a batched timestamps dataset with a 

batch partition B :={Bi, i = 1, 2, …, n}, C := (cij)n×m be the batch counting matrix 

corresponding to B, and b := (b1, b2, …, bn)′ be the batch service time vector. We call the 

combined n× (m + 1) matrix [C, b] the batch information matrix of X corresponding to the 

batch partition B.

Proposition 2—Let X := {(al, dl, gl)|l = 1, 2, …, L} be a batched timestamps dataset from 

a CPMS system which has no system resting time on any time intervals between min{al|l = 

1, 2, …, L} and max{dl|l = 1, 2, …, L}. Let B := {Bi, i = 1, 2, …, n} be a batch partition 

with initial service arrival time. If the CPMS system has the policy that is FCFS when it is in 

idle state, then the batch information matrix [C, b] of X with the batch partition B can be 

obtained, where C is the batch counting matrix and the batch service time vector b := (b1, b2, 

…, bn)′ is calculated by  with ti = max{t|t ∈ Bi} as in 

Definition 6, 7 and Proposition 1.

In the following, we will use the batch information matrix for further analysis.

2.2 The Batch Model

We will continue to use the aforementioned notations. Let [C, b] be the batch information 

matrix for a given batched timestamps dataset with a given batch partition B. Let Sijk be the 

random variables representing the k-th service time in the i-th batch for the j-th job type, (k 
= 1, 2, …, cij), then one can model the batch service times, viewed as random variables, to 

be the sum of the individual job service times within the batches, i.e.
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(1)

where εi is the total error including the net time spent for all the partially finished jobs in the 

i-th batch Bi.

If the batch B := {Bi, i = 1, 2, …, n} is complete, then there will be no unfinished job and 

the error terms εi’s can be dropped. If B := {Bi, i = 1, 2, …, n} is balanced then the net time 

on all the unfinished jobs can be canceled out and the error terms εi’s also can be dropped. 

In general, we may assume that the εi’s are zero-mean independent random noises. To 

further simplify model (1), we assume that the service time random variables Sijk’s are 

independent and stationary across (i, k) for the 1st and 2nd moments, i.e.

For all (i, k)’s, i = 1, 2, …, n; j = 1, 2, …,m; k = 1, 2, …, cij.

In the next subsection, we will use batch model (1) to construct two linear models whose 

parameters are the means and variances of the service times for each job type.

2.3 The Mean and Variance Estimations by the Least Square Estimator (LSE)

With the above batch model assumptions, we take the expectations and variances 

respectively on both sides of equation (1) to obtain the following two linear system of 

equations:

(2)

(3)

In matrix forms, (2) and (3) can be rewritten as

(4)

where C := (cij)n×m is the batch counting matrix, μ = (μ1, …, μm)′ is the vector of the mean 

service times for the m job types,  is the vector of the corresponding 

variances, E[b] = (E[b1], …, E[bn])′, and Var[b] = (Var[b1], …, Var[bn])′, Var[ε] = (Var[ε1], 

…, Var[εn])′, are the vectors of the means and the variances for the service times of the n 
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batches. From the systems of equations (4), we can use the Least Square method to obtain 

the solutions as follows:

(5)

The mean and variance of the batch service time E[b] and Var[b] as well as the variance of 

the batch error Var[ε] are unknown. We use the batch service time b = (b1, …, bn)′ as an 

approximation to E[b] in (4) so that μ can be estimated by

(6)

Similarly we can obtain an estimation for σ2 as follows. From (4), E[b] can be estimated by

Now we use

as an approximation to Var[b]−Var[ε] in (5) so that σ2 can be estimated by

(7)

where In is the n × n identity matrix.

With the above assumptions and notations, we obtain the estimated mean service times 

(for the job types) and the estimated variances  from (6) and (7), which depend on the 

given batch partition B. The following proposition shows that for a special batch partition, 

the estimation formulas will be reduced into the sample mean and variance formulas.

Proposition 3—If the given batch partition has the Batch Counting Matrix C of an n by 1 

matrix of 1’s, then the mean and variance estimation formulas (6) and (7) become

Now we consider the quality of the batch based mean and variance estimators (6) and (7). 

Since our estimators are based on a two-step procedure: the batch service time modeling (1) 

and the linear regression batch service time model b = Cμ + η, the quality of estimator (6) 

depends on modeling (1) assumptions, the Batch Counting Matrix C and the variance of the 
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zero-mean error η. Under certain regularity conditions, estimator (6) can be proved to be 

consistent.

As all samples are finite, the standard errors of the estimators  and  for a given sample 

may provide actual information about the quality of the estimators. From the theory of 

generalized LSE, the estimated standard errors of the estimators  and  are approximated 

as below.

Proposition 4—The standard errors of  and  are approximated by

where  and 

 with the diag(M) being the 

vector of diagonal elements of the matrix M, DiagV being the diagonal matrix obtained form 

the vector V, and for a non-negative vector a = (a1, …, am), .

Corollary 1—If the diagonal matrices ) and ) in the above Proposition are 

replaced by the scaler matrices k1In and k2In respectively, where

and k2 = ‖[(In − C(C′C)−1C′)[(In − C(C′C)−1C′)b]2]2‖2/(n − m) with ‖V ‖2 being the L2 

norm, then the above approximations are reduced to

which are the estimation formulas for the corresponding Ordinary Least Square Estimators 

(OLEs).

2.4 The Mean and Variance Estimations by the LSE with Constraints

In section 2.3, we formulated the mean and variance as the coefficient parameters in linear 

models and use the LSE to estimate them as in (6) and (7). In real data, there are some 

natural constraints the parameters have to follow. Since our estimated parameters are the 

mean service times, so their variances should satisfy the constraint of non-negativity. As the 

mean service time is part of the processing time, it is an upper bound for the parameters. 

Another natural constraint is based on the global service time decomposition that the total 

service time (for all the jobs in the dataset) is the sum of the sub-total service time for each 

of the job types. If the Batch Information Matrix [C, b] is given, then the total service time 
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in the dataset, and that of the jobs for all the job types can be easily obtained by the sums of 

the columns of [C, b], from which the total service time for each type of job can be 

calculated if the mean service time for each job is given. With those constraints, the mean 

estimation formula (6) can be improved by the following constrained LSE:

(9)

where η = b − E[b],  is the sum of the j-th column of the batch counting 

matrix; πj is the mean processing time for the type j jobs, j = 1, 2…, m, which can be easily 

calculated as the processing time (defined as departure time − arrival time) are observable 

for each data record. Let  be the least squares estimate of μ under model (5) with 

constraints (9), and  be its estimated variance, which can be solved by the R package 

limSolve [23].

2.5 A Batch Searching Algorithm for 1-dimensional batched timestamps data

In previous subsections, we obtained the mean (service time) and variance estimation 

formulas for batched timestamps data with a given batch partition. However, in real 

timestamps data from a CPMS system the batch partition is not given and needs to be found. 

Even though we know that the timestamps data are batch submitted, due to various reasons 

(flexible scheduling, individual variabilities, job complexities, etc.) the batch patterns can be 

complicated and difficult to detect. From our Definition 1, a batch partition is just a special 

clustering on 1-dimensional data, and in theory any clustering algorithm can be applied for a 

batch searching. Also, the change detection analysis can be used to find the boundaries of 

the batches as the change-points. However, as our batch based estimators use the LSE in the 

second step modeling, and the consistency of the LSE requires that the number of batches 

should be able to go to infinity in order for the estimators to approach the true parameter 

values. Therefore, the number of batches should be large in general, as in weekly or daily 

batch patterns, and the sizes of the batches can be as small as 1, which are not the features 

that the existing clustering or change detection methods ([3], [4], [9], [10], [11], [12], [13], 

[18], [21], [24]) are designed for. In the following, we propose a simple batch searching 

algorithm for 1-dimensional data. From Remark 2, we know that the pattern for a batch 

partition that is in order should consists of a series of ordered between-batch “jumps” that 

separate the batches so that the between-batch “jumps” are significantly larger than all those 

of the within batch “jumps”. The key point is to find the most significant minimum between-

batch “jumps” so that we have maximum number of significant batches. The main idea is to 

use the data’s natural order to define a kind of “z-value” for each “jump” between two 

successive numbers in the sorted data. Using those “z-values”, we can select the minimum 

“jump” that is the most significant or by any given significant level, which determine a 

unique batch partition so that the between batch “jumps” are greater or equal to the 

minimum “jump”. To define the “ z-value”, we sort all the jumps in decreasing order and 

compare each jump with all the other smaller jumps, which can be viewed as all the within 
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batch jumps. The first level “z-value” for each jump can be defined as the normalized z-

value by the within batch jumps. As we try to find as many as possible number of batches, it 

is important to determine the last significant z-value like a waterfall for a mountain stream. 

We use two way to find this “waterfall location” by using the differences of successive first 

level z-values to define the final “z-value” for each original jump. This final “z-value” will 

be used to select the minimum between batch jump.

Let X := {xi|i = 1, 2, …, L} be a numeric vector of length L and α(< 1) be a given 

significance level, or a range of K is given instead of α. The batch searching algorithm is as 

follows:

Step 1: Sort X in increasing order X := {x(i)|i = 1, 2, …, L}.

Step 2: Form the “jumps” as a new numeric vector of length L − 1, Y := {yi = 

x(i+1) − x(i)|i = 1, 2, …, L − 1}, where yi ≥ 0, i =1, 2, …, L − 1.

Step 3: Choose the unique numbers in Y and sort the resulting vector in 

decreasing order to get U := {uk|k = 1, 2, …, K}, where uk > uk+1, for k = 1, 2, 

…, K − 1, and uK ≥ 0.

Step 4: Define V :={νk|k = 1, 2, …, K − 1} by

where , nk is the length 

of {yi|yi< uk, i = 1, 2, …, L − 1}, which is viewed as a vector, and the mean(·) 
and Var(·) are the sample mean and variance estimators.

Step 5: Define  by , 

, , for k = 2, …, K − 3,

Step 5′: Define  by , for k = 1, 2, 

…, K − 3.

Step 6: Normalize the  to get the “z-values”, Z := 

{zk|k = 1, 2 …, K − 2}, where

Step 7: Let kα = max{k|zk > Zα}, where Zα is the one-sided cut-off z-value of 

the standard normal corresponding to the significant level α with default value 

of 0.05, or kα = arg max{zk|k ∈ Rk} if a range of k, Rk, is given instead of a 

significant level α, and let 

 then the batch partition 

with the given significant level α can be defined by
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and the corresponding Nα + 1 batches are given by

Remark 3—The above algorithm provides an alternative Step (5′) to Step (5) while the rest 

of Steps being the same to search the most significant batch partition, which we will call 

kBatch1 and kBatch2 in the simulation section below.

In this section, we established the theoretical basis and practical procedures for the analysis 

of the batched timestamps data from a CPMS system. Using our batch searching algorithm, 

we can find a batch partition B if it is not provided. With reasonable conditions (Proposition 

2), we can calculate the corresponding Batch Information Matrix [C, b]. Using our batch 

model (1) (see Section 2.1), we formulate the mean service time  as the coefficient 

parameter in the linear regression model b = Cμ + η. Similar formulas are also provided for 

the service time variance . With some assumptions, the LSE (6) or the constrained LSE (9) 

will be a consistent estimator  for μ. The quality of the estimator  depends on the degree 

of how well the assumptions are met.

3. SIMULATION STUDY

The simulations consist of the following four parts of evaluations: 1) the performance of the 

LSE estimators  and  in (6) and (7); 2) the performance using the constrained LSE 

estimators  and  in (9) when the true batch partitions are given; 3) the performance of our 

batch searching algorithms by comparing with other existing clustering methods; and 4) the 

performance of the estimators  and  when the batch partitions are not given and are 

determined by our batch searching algorithms.

3.1 The Performance of  and  with Given True Batch Partitions

In the simulations, we used the ideal service policy, FCFS, to generate the batched 

timestamps data with different parameters using two service time distributions, Exponential 

(for Poisson process) and Normal, with the Uniform distribution for arrival times.

We ran 100 replications to report the average estimation results ( , ) for the estimations of 

the mean and the variance respectively. The parameters in the simulated data for the 

replications are as follows: the samples size is 2110 with four job types with frequencies 

980, 910, 170, 50, the true means are 6, 8, 10, 11 respectively for the four job type in both 

the Poisson and Normal data, and the variances of 4, 9, 16, 9 for the Normal. The number of 

batches in the data are 250. The parameters are chosen based on a yearly workload with 

daily batches. The 250 batches are determined by equal length intervals so that each batch 

consists of all the jobs whose departure timestamps fall into each of the equal interval. As 

the within batch timestamps can only provide information for the job types and batch 
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departure time, we only use the batch information by Eq. (6) and Eq. (7) to estimate the 

means and variances for the four job types. We use all the true simulated timestamps to get 

the sample mean and variance (μ1 and ) as the “Ground truth” for comparisons. The true 

mean and variance parameters (μ0 and ) as well as the frequency parameters (Frq) for each 

type (Typ) in the simulation are also listed in Table 1.

The mean and variance estimations have the following estimated standard errors as listed in 

Table 2, where se(μ1) and , which serve as the “Ground truth” for error estimation 

comparison, are the standard deviations of the 100 mean and variance estimations used in 

Table 1,  and  are the means of the estimated standard errors from Corollary 1, 

 and  are the means of the 100 estimated standard errors by Proposition 4.

Similar results for Normal distribution are listed in Tables 3 and 4.

Note. The frequencies in the tables are close to a real dataset while the true mean and 

variance parameters are hypothetical. As the number of batches (n = 250 as in the above 

Tables) is the actual sample size in the LSE (6) based on the linear model b = Cμ + η, the 

accuracy of the estimations will depend on the number of batches.

3.2 The Improvements of the Constrained LSE (Eq. 9)

The constrained LSE (Eq. 9) is more appropriate due to the meanings of the linear 

coefficient parameters in our batch model. With the same mean and variance parameters as 

in Tables 1–4, we calculated the mean and variance estimations by using the constrained 

LSE (  and ) as well as , , μ1 and  as in Tables 1 and 3 for each one of the 100 

simulated datasets. Tables 5 and 6 list their mean values for Poisson and Normal 

distributions respectively.

From these Tables, we see that the simulations show improvements of the (unconstrained) 

LSE over the Constrained LSE (Tables 5–6, column 3 and 4 respectively), in particular for 

the Poisson distribution (Table 5). Especially, the Constrained LSE method overcomes the 

weakness of the LSE method in variance estimation for the Poisson distributed data as we 

noticed from the last subsection. Thus, we improved the method so that the estimations will 

not be affected too much due to the known data distributions.

3.3 The Performance of the Batch Searching Algorithm

With each of the given mean number of centers, we simulated 100 batched datasets whose 

true number of batches are generated by a Poisson sampling with the given mean number of 

centers as the parameter. The first part of the simulation is to see if our new methods 

(kBatch1 and kBatch2) can find the true number of batches. Table 7 lists the results based on 

the 100 datasets in each of the five mean centers(MC) for five different methods [3], [9], 

[10], [11], [12], [13], where the square root of Mean Square Error (MSE) is reported, which 

can be viewed as the (number of center) estimation standard error.
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The speed for a searching algorithm is also an important issue. During the above 

simulations, we recorded the times for each methods and each mean centers on our machine, 

as in the following Table 8.

The second part of the simulation is to see the accuracy of the batch (cluster) classification 

when the true number of batches is given. With the same simulated datasets as above, we 

compare the classification errors of our methods with two commonly used methods, the 

Mclust and kmeans. Table 9 lists the mean classification error rates for the four methods.

Based on the simulated results in this subsection, we see that our batch searching methods 

(kBatch1 and kBatch2) perform better than the commonly used existing methods. Table 1 

shows that our methods are more accurate in finding the true numbers of clusters (batches); 

Table 2 shows that our methods are quicker to find the numbers of centers; and Table 3 

shows that when the true number of clusters are given, our methods have smaller 

classification errors.

4. REAL DATA APPLICATION

As the methodology is motivated from the data from the SSAs CPMS system, we apply the 

method to one dataset from the system. The dataset consists of all the jobs from one 

reviewer within a specified period. It has three columns: arrival time (or receiving time), 

departure time (or submission time) and types of the jobs. Each job type represents a sub-

job, which we call the status of a case, for the job of processing the whole case. Figure 1 

below plots about 100 samples in the data, where each horizontal segment represents the 

arrival and departure times and its color and line style represent the job type (or status). The 

submission times (departure times) in the data show an approximately daily batch pattern. 

The vertical dotted blue lines are drawn at the ends of the batches, which are determined by 

our batch searching algorithm (see section 2.4) and labeled by the submission dates.

From the Figure, we see that the jobs within each of the batches were submitted at almost 

the same time, and the submitted time for each individual job in each batch might not be the 

true finished time of the job. Therefore, the sample mean and variance calculations cannot be 

directly applied to the data.

For illustration, a monthly batch (combining the batches whose departure times are in the 

same month) is constructed and the estimated and observed batch times are plotted in the 

following Figure 2.

In the Figure, the estimated batch times, the blue triangles, are calculated as , 

where  is the Batch Counting Matrix (data not shown here), 

is the vector of the estimated mean service times for the 6 job types. The estimated batch 

times would reflect the equivalent working time for the jobs in the batches if the true mean 

working time were the estimated mean, and the observed batch times, the red circles, are the 

calendar times of the batches. So the interpretation of the Figure is that if a blue triangle (the 

estimated batch time) is above the corresponding red circle (the observed batch time), the 

reviewer worked more than his/her own yearly average on that batch (month). For example, 
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in Figure 2, it seems that this reviewer worked more on most of the months except on the 

two Novembers (29Nov12, 21NOV13), further information is needed to fully understand the 

monthly variations for the reviewer.

Based on the simulation in the last section, our Batch method can be used to estimate the 

means and variances (of the service time in the process system) for all the major job types in 

the batched timestamps data. The following results are based on our Batch method applied 

on this real dataset. In brackets are the estimated standard errors.

In the table, the column names (Type1, Type2, Type3, Type4, Type5, Type6) are the job 

types (the true status codes are not used), where Type6 is the combined other job types in the 

dataset with small frequencies. The time unit in the table is Calendar day. For example, in 

average this reviewer can finish “Type3” about 8 (≈ 1/0.12352) “Type3” jobs per Calendar 

day while the same reviewer could finish about 80 “Type2” jobs per Calendar day if s/he 

would have worked on a single job type. For this reviewer, the flexible working schedule 

(Type5 = 0.32 day) seems more efficient than the regular schedule (Type4 = 0.38 day), 

where Type4 and Type5 are the same type of job with different working schedules. From the 

standard errors of the mean estimations, one can see the estimations for Type1,Type4 and 

Type5 are more accurate than those for Type2, Type3, and Type6, which may reflect the 

nature of the job types. The estimations for the variances and their standard errors have 

similar pattern but with less accuracy than that for the mean estimation as we observed in the 

simulations of the method. Since we used the non-negative constraints in our parameter 

estimation, the estimation of 0 for the variance of Type2 is likely due to the small mean 

estimation of Type2, the non-negative constraints and some possible outlier batches where 

the reviewer might take leaves. As we do not have further information about the reviewers 

working time over all the periods covered in the data, we can not give any further 

explanations. The batch information matrix, including the number of jobs for each type, the 

batch time and the batch departure time, is not shown here and can be obtained by request. 

Using the estimated mean service times as in Table 5 and the numbers of jobs for each job 

types, we can estimate batch time for each batch.

5. DISCUSSION

We introduced a batch model for batched timestamps data analysis using the batch 

information matrix to overcome the challenge due to the unreliable information within each 

batch. In particular, when the batched timestamps data comes from a case processing system 

with three columns (arrival time, departure time, and job type), our method can be used to 

estimate the means and variances of the service time for each of the major job types. When 

each data record is a true observation (the arrival time and departure time are the true arrival 

and departure time of the job), one can use the single timestamps batch partition and our 

method becomes the sample mean and variance formula. Our simulations shown the method 

gives reasonable estimations under various typical situations. As the batch partition is not 

given in real data, we developed a batch searching algorithm, which fully take the advantage 

of the 1-dimensional batched timestamps data to make the algorithm more accurate and 

computationally more efficient than some existing clustering algorithms. The results from 

the real data application will be further verified. As our batch method just uses the LSE for 
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linear model with the batch information matrix extracted from batched timestamps data, 

there are certainly a lot of different ways to further improve the method. We suggest two 

directions for further developments. The first is to find ways to improve the quality of the 

batch information matrix. The more accurate the time spent on the jobs within a batch 

represents the time of the batch, the higher the quality is. The second is to find more 

effective ways for the analysis of the batch information matrix extracted from some batched 

timestamps data. While we choose the generalized LSE method due to the fact that in the 

batch information matrix, the numbers of the jobs for the types are linearly related to the 

total times of the batches, there are certainly many other ways, parametric or non-

parametric, to explore for the improvements of the method. After the method is fully 

developed, it can be applied to analyze the large scale batched timestamps data like the one 

we currently have as well as to other Federal Agency’s data.
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Figure 1. 
The plot for job arrival and departure times
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Figure 2. 
Monthly batch times (Estimated vs. Observed)
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Table 9

Mean classification error rates for 4 methods

MC Mclust kmeans kBatch1 kBatch2

5 0 0.37 0 0

20 0.09 0.37 0 0

50 0.14 0.37 0 0

100 0.16 0.36 0 0

200 0.17 0.35 0 0
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