
The Tale of Two Localization Technologies: Enabling Accurate
Low-Overhead WiFi-based Localization for Low-end Phones

Ahmed Shokry†, Moustafa Elhamshary†‡, Moustafa Youssef†
† Wireless Research Center, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt.

‡ Faculty of Engineering, Tanta University, Egypt.

ABSTRACT
WiFi fingerprinting is one of the mainstream technologies for in-
door localization. However, it requires an initial calibration phase
during which the fingerprint database is built manually by site
surveyors. This process is labour intensive, tedious, and needs to
be repeated with any change in the environment. While a number
of recent systems have been introduced to reduce the calibration
effort through RF propagation models and/or crowdsourcing, these
still

have some limitations. Other approaches use the recently de-
veloped iBeacon technology as an alternative to WiFi for indoor
localization. However, these beacon-based solutions are limited to
a small subset of high-end phones.

In this paper, we present HybridLoc: an accurate low-overhead
indoor localization system. The basic idea HybridLoc builds on is
to leverage the sensors of high-end phones to enable localization
of lower-end phones. Specifically, the WiFi fingerprint is crowd-
sourced by opportunistically collecting WiFi-scans labeled with
location data obtained from BLE-enabled high-end smart phones.
These scans are used to automatically construct theWiFi-fingerprint,
that is used later to localize any lower-end cell phone with the ubiq-
uitous WiFi technology. HybridLoc also has provisions for handling
the inherent error in the estimated BLE locations used in construct-
ing the fingerprint as well as to handle practical deployment issues
including the noisy wireless environment, heterogeneous devices,
among others.

Evaluation of HybridLoc using Android phones shows that it
can provide accurate localization in the same range as manual
fingerprinting techniques under the same deployment conditions.
Moreover, the localization accuracy on low-end phones supporting
only WiFi is comparable to that achieved with high-end phones
supporting BLE. This accuracy is achieved with no training over-
head, is robust to the different user devices, and is consistent under
environment changes.
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1 INTRODUCTION
Recent years have witnessed the advent of indoor localization sys-
tems harnessing the many untapped capabilities of the smartphones
[1, 2]. The development of wireless technology in smartphones and
the widespread availability of IEEE 802.11 have enabled the in-
troduction of many indoor localization solutions that can provide
meter-level accuracy. WiFi-based indoor localization techniques
leverage the Received Signal Strength (RSS) overheard from WiFi
access points as the metric for the location determinations, building
a WiFi fingerprint to combat the noisy wireless channel. Typical
fingerprint-based WiFi localization techniques work in two phases:
The first phase is initial training (i.e., calibration) during which RSS
measurements (i.e., fingerprints) received from the multiple access
points (APs) installed in the area of interest are recorded at known
locations. Then, in the tracking phase, RSS measurements from the
overheard APs at an unknown location are matched against the
fingerprint database to determine the best location match either
deterministically or probabilistically. Nonetheless, the deployment
cost is prohibitive as the WiFi calibration process is time consum-
ing, labour intensive and vulnerable to environmental dynamics.
To tackle this problem, a number of approaches for automating
the fingerprinting process have been proposed including using RF
propagation models [3, 4], combining RF localization with other
sensors [5], or crowdsourcing the fingerprint; where users perform
the required survey process in realtime either implicitly [5, 6] or
explicitly [7]. These techniques, however, suffer from lower accu-
racy; require explicit user intervention; or work only on high-end
phones.

To further address the issues of WiFi-based localization,
the iBeacon technology has been introduced. Beacons are cheap,

portable, and energy-efficient devices based on the BlueTooth Low
Energy (BLE) standard that can be installed at known locations in
the area of interest. iBeacons periodically broadcast their identifier
along with other location information which can be overheard by
nearby compatible smartphones. A number of commercial solutions
leverage iBeacons to provide proximity-based localization [8, 9] and,
more recently, researchers have started to use them to provide more
accurate continuous user tracking [10, 11]. Nonetheless, the BLE
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technology is currently limited to high-end smart phones, limiting
their ubiquitous deployment on typical commodity devices with
the majority of the users. In addition, the opportunity of using the
existing WiFi-infrastructure for localization is missed in this case.

In this paper, we combine the best of both localization technolo-
gies. Specifically, we present HybridLoc: an accurate, robust, low-
overhead, and ubiquitousWiFi-based indoor localization system.
HybridLoc targets enabling WiFi-based localization for low-end
phones in buildings with the iBeacon infrastructure while remov-
ing the traditional WiFi calibration overhead. The basic idea
is to automatically crowdsource the construction of the WiFi fin-
gerprint leveraging the high-end phones supporting the iBeacon
technology. In particular, building users with high-end smart phones
will scan for both BLE and WiFi APs concurrently in the area of in-
terest while using the system. BLE scans are used to get an estimate
of the user location. The user location is used with the scanned
WiFi signals to construct the WiFi fingerprint in an automatic man-
ner. This WiFi fingerprint database grows incrementally by users
with high-end phones visiting the area of interest. Later, users with
low-end phones, i.e. those that support only WiFi but not BLE,
can provide HybridLoc with the WiFi scans to get an estimate of
their location. Therefore, by leveraging the ground-truth location
information “donated” by users with high-end phones, HybridLoc
can provide ubiquitous localization to any WiFi-enabled phones in
areas with iBeacons deployment.

To achieve HybridLoc’s goals, a new set of challenges still need
to be addressed: First, the ground-truth location obtained from the
BLE localization has an inherent error in the order of few meters.
This error leads to a mis-assignment of WiFi scans to the wrong
fingerprint point. Second, to construct a probabilistic fingerprint
for localization; which is proven to provide better accuracy than
deterministic techniques [12–14]; traditionally a user has to stay at
each fingerprint point for a certain amount of time to construct the
signal strength histogram. This adds significantly to the overhead
of the fingerprint construction process, and cannot be performed
while the users are moving naturally in the building. Third, different
phones will measure the RSS differently at the same location due
to different WiFi chips, form factors, or chip placement inside the
phone. This device heterogeneity needs to be addressed to avoid
excessive localization error or per device-calibration. Finally, due
to the noisy wireless channel, there may be some missing APs in
successive scans that lead to a mismatch between the set of heard
APs at the same location. HybridLoc presents a number of modules
to address these challenges.

We have implemented HybridLoc on different Android phones
and evaluated it in a university building instrumented with the iBea-
con BLE technology and the already installed WiFi infrastructure.
Our results show that HybridLoc can achieve a consistent median
accuracy of 4.1m under different scenarios, which is comparable to
the accuracy of manual fingerprinting techniques under the same
conditions. In addition, the system accuracy on low-end phones
supporting only WiFi is comparable to that achieved with high-end
phones supporting BLE. This accuracy is achieved with no training
overhead and is robust to the different user devices, and wireless
channel noise.
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Fig. 1. HybridLoc system architecture.

The rest of the paper is organized as follows: Section 2 presents
an overview on how HybridLoc works and introduces the mathe-
matical model. Section 3 gives the details of HybridLoc and how it
handles different practical considerations. We evaluate the system
performance in Section 4 and compare it to the state-of-the-art.
Section 5 discusses related work. Finally, Section 6 concludes the
paper.

2 OVERVIEW AND MATHEMATICAL MODEL
In this section, we start by an overview of how HybridLoc works
to illustrate the high-level flow of information through the sys-
tem architecture. Then, we discuss the mathematical model of our
approach.

2.1 System Overview
Figure 1 shows HybridLoc architecture. HybridLoc is designed to be
deployed in areas where the iBeacon technology is already installed
for localization and WiFi is deployed for coverage. Therefore, by
default, it can provide BLE-based localization to users with high-
end phones that support the iBeacon technology. HybridLoc works
in two phases: an offline fingerprint construction phase and an
online tracking phase. During the offline phase, HybridLoc aims to
automatically build a probabilistic WiFi fingerprint, where the
RSS histogram for each AP at given locations in the area of interest
is estimated.

As users with high-end phones move naturally inside the build-
ing, the HybridLoc software installed on their phone continuously
scans the environment for both BLE and WiFi signals transmitted
from the installed beacons and WiFi APs respectively. These WiFi
and BLE scans are submitted to the Noisy Fingerprint Sampler
module. This module forwards the collected vector of BLE RSSs to
a BLE-based indoor localization technology to get an estimate of
the user with high-end phones location1. Without loss of gener-
ality, we use IncrVoronoi [10] as an example of a calibration-free
1Note that these users are incetivized to install HybridLoc software on their devices to
navigate using the BLE technology.
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BLE-based indoor localization system due to its high accuracy, ro-
bustness to heterogeneity in user devices, and adaption to dynamic
changes in the environment and APs transmit power. In addition,
IncVoronoi also provides a confidence measure of the estimated
location [11]. This location label is annotated with the collected
WiFi scan at that point and the pair is recorded a candidate WiFi
fingerprint in the database.

To build the WiFi histogram at the every location, traditionally
the user has to stay for a certain period of time in the same location,
which may be inconvenient for users. To reduce this overhead of the
histogram construction (i.e. allow building the histogram while the
user is continuously moving), HybridLoc uses a gridding approach,
where the area of interest is divided into square cells of arbitrary size
using the Grid Generator module. The RSS histograms are then
built using the collected fingerprint points inside each grid. This
not only removes the extra overhead of fingerprint construction but
also increases the scalability of system as the fingerprint size can be
arbitrarily reduced by increasing the cell size. However, as the cell
size increases, the accuracy and computational-efficiency decrease.
Thus, the cell size (density of the grid) should be configured by the
system designer to trade-off accuracy and computational overhead.

Given that the BLE-based estimated locations have inherent
noise, which may results into many mis-assignment of WiFi scans
to fingerprint points; to mitigate this effect; the Location Noise
Handlermodule incorporates different approaches to handle these
noisy location labels building on the estimated location confidence
provided by the IncVoronoi system.

The Missing RSS Handler module further handles the cases
where some RSSs are not heard in different scans from some APs
during the training and/or tracking phases, due to the wireless
channel noise, possibly limiting the localization accuracy.

The Device Heterogeneity Handler module provides a math-
ematical approach to make the system independent from the used
device, hence increasing the system robustness to different hetero-
geneous phones.

Finally, during the online phase, end users; even those with
phones that support WiFi only but not BLE; are tracked in realtime
by forwarding the scanned WiFi APs that can be heard at the cur-
rent unknown user location to the HybridLoc WiFi tracking service.
Specifically, the Discrete Location Estimator module consults
the constructed WiFi probabilistic fingerprint and the center of the
discrete grid that has the maximum probability is returned as the
estimated user location. To enable user tracking in the continu-
ous space, the Continuous Location Estimator module further
processes the estimated discrete grid locations to return a more
accurate estimate of the user location.

Note that since the system is crowdsensing-based, the finger-
print is continuously being updated in the background with the
data collected from system users with high-end phones, allowing
HybridLoc to counter environment changes.

2.2 Mathematical Model
Without loss of generality, we assume a 2D area where 𝑛 WiFi
APs and 𝑚 BLE beacons have been installed. A user carrying a
device at an unknown location 𝑙 scans for the nearby APs and
beacons. The scanned WiFi APs can be represented as a vector 𝑠 =

Symbol Description
𝑛 Total number of installed WiFi APs.
𝑚 Total number of installed BLE beacons.
𝑠 Vector of RSS from the heard APs in a scan.
𝑞 Number of WiFi APs in a given scan (𝑞 = |𝑠 |).
𝑏 Vector of RSS from the heard beacons in a scan.
𝑝 Number of BLE beacons in a given scan (𝑝 = |𝑏 |).
𝑙𝑏 Estimated ground-truth location by IncVoronoi (BLE-based).
𝑐 Degree of confidence in IncVoronoi estimated location.
G Universe of grid cells in the area of interest.
𝑔 A specific grid cell, 𝑔 ∈ G.
𝑔𝑙 Representative location of a grid cell.
𝜇𝑖 Average RSS from 𝐴𝑃𝑖 .
𝜎𝑖 Standard deviation of RSS from 𝐴𝑃𝑖 .
𝑘

History window size used to estimate the continuous user
location.

𝑁𝑠 Number of scans used in the training .
𝐺𝑆 The cell grid length (i.e., grid spacing).

𝜆
The common offset between RSSs collected by different
phones.

Table 1: Notation table

(𝑠1, ..., 𝑠𝑞), where 𝑞 ≤ 𝑛 is the number of heard APs and each 𝑠𝑖 is
the signal strength of the 𝑖𝑡ℎ heard AP. The scanned beacons can be
represented as a vector 𝑏 = (𝑏1, ..., 𝑏𝑝 )„ where 𝑝 ≤ 𝑚 is the number
of heard beacons and each 𝑝𝑖 is the signal strength of the 𝑖𝑡ℎ heard
beacon.

During the offline phase, where the fingerprint is constructed
using high-end phones, the BLE scan (𝑏) is forwarded to the In-
cVoronoi system to estimate the user location 𝑙𝑏 and its confidence 𝑐
(represented as a circle with radius 𝑐 around the estimated location
𝑙𝑏 ). A location-tagged WiFi scan (𝑙𝑏 , 𝑐, 𝑠) is assigned to a specific
grid cell 𝑔 out of the possible G grids in the area of interest. Each
grid cell 𝑔 is represented by a single location 𝑔𝑙 .

During the online tracking phase, our problem is that, given
some WiFi RSS vector 𝑠 , we want to find the grid cell 𝑔 ∈ G that
maximizes the probability 𝑃 (𝑔|𝑠). The estimated user location is 𝑔𝑙 ,
the representative location of the cell with the highest probability.

Table 1 summarizes the notations used in the paper.

3 THE HYBRIDLOC SYSTEM
In this section, we present the details of the HybridLoc system
architecture for indoor localization. We elaborate the following
main functionalities: WiFi Fingerprint construction (offline) phase
and tracking (online) phase. In addition, we discuss the different
practical challenges that need to be addressed by HybridLoc to
enable its realtime deployment.

3.1 Construction of the WiFi Fingerprint-
Offline Phase

This module aims to automatically construct the WiFi fingerprint.
It addresses a number of challenges including handling the error in
the ground-truth BLE locations, missing APs, and heterogeneous
devices.
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Fig. 2. Example showing the different techniques for assign-
ing a WiFi scan to a grid cell based on the estimated BLE
ground-truth location (center) and its estimated confidence
(circle). The numbers represent the heard RSS in each scan.

(a) ground-truth locations for all
scans. (b) Histogram.

Fig. 3. WiFi samples assignment to cells generated by the lo-
cation only approach. Subfigure a shows that the confidence
circles are ignored and the estimated location is deemed as
the ground-truth location. In this case, each WiFi sample is
assigned to the cell where the estimated location lies in as
shown in subfigure b.

The input to this module is the WiFi and BLE scans collected by
high-end smart phones. The module first queries the employed zero-
calibration BLE-based localization (i.e., IncVoronoi [10]) to retrieve
and estimate of the user location given the BLE beacon RSS vector.
IncVoronoi is based on the idea that the relative relation between
the received signal strength from two APs at a certain location re-
flects the relative distance from this location to the respective APs.
Building on this, it incrementally reduces the user ambiguity region
based on refining the Voronoi tessellation of the area of interest.
It also provides a confidence measure for the estimated location,
represented by the radius of the ambiguity circle [10, 11]. The re-
trieved location label, its confidence, along with collected WiFi scan
are stored at a temporary fingerprint database for later processing.
This process is continuously performed in the background of the
system operation through a crowdsensing manner, increasing the
system coverage and keeping the fingerprint up-to-date.

(a) ground-truth location and confi-
dence for the RSS=-50 scan. (b) Histogram.

Fig. 4. WiFi samples assignment to cells generated by the
unweighted confidence approach. Subfigure a shows that the
ground-truth location for RSS= -50 will be assumed to be in
the two cells intersecting with the confidence circle. In this
case, theWiFi sample is assigned with an equal weight to all
cells where the estimated location lies in as shown in subfig-
ure b.

(a) Ground-truth location and con-
fidence for the RSS=-50 scan. (b) Histogram.

Fig. 5. WiFi samples assignment to cells generated by the
weighted confidence approach. Subfigure a shows that the
probability that a ground-truth location lies in a given cell
depends on the intersection area of this cell and the confi-
dence circle of that location. In this case, the WiFi sample is
assigned to all cells where the estimated location lies inwith
different probability based on intersection area as shown in
subfigure b.

3.1.1 Handling ground-truth location noise. This module is re-
sponsible for handling the inherent noise in the ground-truth BLE
location. The input of this module is location-tagged WiFi scans
and the estimated confidence of the BLE location. The goal is to
determine the grid cell(s) to assign these scans to. We experimented
with three different techniques that either leverage the estimated
location only, fuse the location and the unweighted confidence, or
fuse the location and the weighted confidence.

Without loss of generality, and for ease of explanation of these
techniques and their differences, we present a simple deployment
scenario where only one AP is installed in the area of interest.
Figure 2 depicts a part of the area of interest divided into four grid
cells A,B,C and D. Assume that the phone hears three successive
WiFi scans with RSS -40, -40 and -50 from the installed single AP



The Tale of Two Localization Technologies: Enabling Accurate Low-Overhead WiFi-based Localization for Low-end PhonesConference’17, July 2017, Washington, DC, USA

with the estimated location labels and their confidence (the center
of each circle is the estimated location and the circle represents the
confidence in this location label). Now, we illustrate the difference
among the three techniques by highlighting how they assign those
three WiFi scans to the different grid cells:

(1) Using the estimated location only
This technique assumes that the estimated BLE location
is the true location. Therefore, it ignores the confidence
estimate and assigns the WiFi scan to the grid cell enclosing
the estimated BLE location. This is illustrated in Figure 3a,
where the centroids of the circles (estimated locations) are
deemed as the absolute locations of the collected samples.
The outcome of the assignment using this technique on the
example in Figure 2 is shown in the histogram in Figure 3b.

(2) Using the unweighted confidence
This technique assumes that the user should be located any-
where inside the confidence circle. Therefore, it assigns the
WiFi scan to all grid cells that intersect with the confidence
circle. Figure 4 shows the assignment results for the RSS=-50
scan, where the scan is assigned to cells A and C.

(3) Using weighted confidence
This technique extends the previous one by taking the in-
tersection area between the confidence circle and grid cell
into account. The larger this intersection area is, the higher
probability that the true location lies inside the cell. The
assumption here is that the user can be located equally prob-
able anyway inside the confidence circle.

More formally, assuming that the user true location label is
uniformly distributed inside the confidence circle, the grid cell
weights can be calculated as:

𝑤𝑖 =
1

𝜋𝑐2

∮
𝑑𝐴𝑖 =

𝐴𝑖

𝜋𝑐2 (1)

Where 𝑐 is the radius of the confidence circle and 𝐴𝑖 is the
intersection area between cell 𝑖 and the confidence circle. Note that
Monto Carlo Simulation can be used for more efficient estimate of
the intersection area if needed.

Figure 5 shows the assignment result of the collected WiFi scans
using this technique for the RSS=-50 sample. Note that the his-
togram is built using all the samples within each grid cell. Therefore,
it will be normalized to a proper density function.

3.1.2 Handling missing RSS. After handling the noisy ground-
truth location label problem, HybridLoc should construct a proba-
bilistic WiFi fingerprint for each grid cell. However, due to the noisy
wireless channel, the number of APs in different scans may be differ-
ent, especially for APs with a low RSS (Figure 6). In addition, some
RSS values may not be heard. To address these issues, we choose to
use a parametric distribution to estimate the signal-strength distri-
bution. This leads to smoothing the distribution shape and avoids
obtaining a zero probability for any signal strength value due to
noise (Figure 7). In addition, using a parametric distribution (i.e.,
Gaussian) is more memory-efficient than using a non-parametric
distribution.

More formally, HybridLoc approximates the AP RSS histograms
as a Gaussian distribution. Therefore, the probability density of
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obtaining RSS 𝑠𝑖 from 𝐴𝑃𝑖 at a specific grid cell (𝑔) is given by:

𝑃 (𝑠𝑖 |𝑔) =
1

𝜎𝑖
√

2𝜋
𝑒
−(𝑠𝑖−𝜇𝑖 )2

/
2𝜎2

𝑖 (2)

where 𝜇𝑖 is mean of all RSS values inside the grid cell 𝑔 and 𝜎𝑖 is
its standard deviation.

3.1.3 Handling devices heterogeneity. To handle the devices het-
erogeneity, one can build a fingerprint for each type of phones or a
mapping function can be used to map the RSS values between the
different types of cell phones [15, 16]. Nevertheless, the range of
available user devices in the market, which keeps growing each day,
makes this process not scalable and have a high overhead. Vaupel
et al. [17] proposed a pre-calibration process for different devices
to increase the performance of their localization system. However,
pre-calibration incurs an extra overhead.

To tackle the device heterogeneity problem in an automatic man-
ner without calibration, we observe that there is an offset in signal
strength collected by different phone models at the same location
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Fig. 8. An example of WiFi RSS’s collected by two different
phone models at the same location from one AP.

(Figure 8). This offset is almost constant across different APs and
can be attributed to the difference in chip type, phone form factor,
and/or antenna location and gain. Therefore, we estimate this offset
as the average difference between the heard RSS and those stored
in the fingerprint over all APs. More formally, the common offset 𝜆
is estimated as:

𝜆 =

∑𝑞

𝑖=1 (𝑠𝑖 − 𝜇𝑖 )
𝑞

(3)

where 𝑠𝑖 is the RSS heard from access point𝐴𝑃𝑖 by the device during
the online tracking phase, 𝜇𝑖 is the mean RSS of the𝐴𝑃𝑖 as recorded
in the fingerprint database during the offline phase, and 𝑞 is number
of heard APs in this scan.

Therefore, we replace the random variable 𝑠𝑖 by the random
variable 𝑠𝑖 −𝜆. This new variable still follow a Gaussian distribution
with mean 𝜇𝑖 − 𝜆 and variance 𝜎2

𝑖
+

∑𝑞

𝑖=1 𝜎
2
𝑖

𝑞2 .
Note that the same approach can be used to construct the signal

strength distribution using heterogeneous phones during the offline
phase.

3.2 Tracking Users- Online Phase
In this phase, HybridLoc works in two subsequent modules to en-
able continuous tracking of the user location as they move freely
in the area of interest. The first module, the Discrete Location
Estimatormodule, determines the fingerprint cell that has themax-
imum probability given the received signal strength vector from
the different access points. The second module, is the Continu-
ous Location Estimatormodule, processes the discrete estimated
user location returned by the previous module and returns a more
accurate estimate of the user location in the continuous space. The
rest of this section discusses the details of each module.

3.2.1 Discrete-Space EstimatorModule. During the online phase,
a user is stationed at an unknown grid cell 𝑔 ∈ G hearing a WiFi
scan with signal strength vector 𝑠 = (𝑠1, ..., 𝑠𝑞) from the nearby 𝑞
APs, where 𝑠𝑖 is the RSS measurement from 𝐴𝑃𝑖 . We want to find
the grid cell𝑔∗ that has the maximum probability given the received
signal strength vector 𝑠 . That is, we want to find:

𝑔∗ = arg max
𝑔

[𝑃 (𝑔|𝑠)] (4)

Using Bayes’ theorem this can be rewritten as:

𝑔∗ = arg max
𝑔

[𝑃 (𝑔|𝑠)] = arg max
𝑔

[𝑃 (𝑠 |𝑔)𝑃 (𝑔)
𝑃 (𝑠) ] (5)

Assuming all grid cells are equally probable2, this can be simplified
as:

𝑔∗ = arg max
𝑔

[𝑃 (𝑔|𝑠)] = arg max
𝑔

[𝑃 (𝑠 |𝑔)] (6)

The 𝑃 (𝑠 |𝑔) term can be calculated using the Gaussian densities that
have been constructed during the offline phase as:

𝑃 (𝑠 |𝑔) =
𝑞∏
𝑖=1

𝑃 (𝑠𝑖 |𝑔) (7)

A representative location (𝑔𝑙 ) for the most probable grid cell (𝑔∗)
is returned as the estimated location. This location can be simply
the grid geometric center. However, we found that representing
the cell by the center of mass of the points inside it gives a better
estimate as quantified in Section 4.

3.2.2 Continuous Location EstimatorModule. The previousmod-
ule returns the representative location of the most probable grid
cell as the estimated user location. However, if the user is moving
normally in space, using this module only will lead to having the es-
timated location jump from one cell location to the next. To reduce
this effect and enable tracking the user in the continuous space,
this module aims to smooth the estimated discrete user location.
To achieve that, it uses two complementary approaches:

(1) Center ofmass of the estimated discrete locations (Spa-
tial average): Since the “Discrete Space Estimator Module”
calculates the probability of each grid cell 𝑔 ∈ G, the first
approach is to estimate the user location as the center of
mass of all grid locations, taking the probability of the cell
as its weight. More formally, let 𝑃 (𝑔𝑙 ) be the probability of
the representative location of cell 𝑔 ∈ G, the center of mass
technique estimates the current user location 𝑙 as:

𝑙 =

∑
𝑔∈G

𝑝 (𝑔𝑙 )𝑔𝑙∑
𝑔∈G

𝑝 (𝑔𝑙 )
(8)

(2) Time averaging of location estimates (Temporal Aver-
age): This technique uses a time-average window to smooth
the resulting location estimate. It calculates the average of
the last 𝑘 location estimates to obtain the final location es-
timate. More formally, given a stream of location estimates
𝑙1, 𝑙2, ..., 𝑙𝑡 , the technique estimates the current location 𝑙𝑡 at
time 𝑡 as:

𝑙𝑡 =
1

𝑚𝑖𝑛(𝑘, 𝑡)

𝑡∑︁
𝑡−𝑚𝑖𝑛 (𝑘,𝑡 )

𝑙𝑖 (9)

Note that both techniques are independent and can be applied
together to further enhance accuracy.s

2If the user profile over the different cells (𝑃 (𝑔)) is known, it can be used directly in
Equation 5.
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Fig. 9. Environment testbed

Parameter Range Default value
Cell size (𝐺𝑆 ) 1 - 64 (m) 1
Number of averaged locations (𝑘) 1 - 16 10
Number of training samples (𝑁𝑠 ) 100-700 700

Cell assignment method
Location only,
Unweighted confidence,
Weighted confidence

Weighted
confidence

Table 2: Default parameters values.

4 PERFORMANCE EVALUATION
In this section, we evaluate the performance of HybridLoc in a
typical indoor environment. We also describe the effect of different
parameters on HybridLoc performance. Finally, we compare our
system with the traditional manual fingerprint techniques.

4.1 Data Collection
To collect the necessary data for evaluation, we deployed our system
in a floor of our university campus building with a 37𝑚 × 17𝑚
area containing offices, labs, meeting rooms as well as corridors
(Figure 9). The ceiling height is 3m. We installed 20 iBeacons at the
same height of 2.5m uniformly across the rooms with an average
density of one beacon/33 𝑚2. We use the already installed WiFi
infrastructure in the building, mainly four APs in addition to 12
APs overheard from other floors/buildings. The data is collected by
four participants using different Android phones (e.g., LG Nexus
5, Samsung Galaxy Note 3, Samsung Galaxy 4, Galaxy Tab, among
other). Two independent data sets are collected for constructing
the fingerprint and evaluating the system. This captures the time-
variant nature of the WiFi fingerprint as well as the heterogeneity
of users and devices

We implemented a scanning program using the Android SDK
to simultaneously scan APs and beacons. The program records the
(MAC address, RSS, timestamp) for each heard WiFi access point
and the (UUID-major, minor, Tx power, Bluetooth address) for each
BLE beacon. The scanning rate was set to one per second. Test
points were collected on a uniform grid with a 1m spacing.

4.2 Effect of Changing HybridLoc Parameters
In this section, we study the effect of the different parameters on
the system performance including cell assignment method, the grid
cell spacing, number of location samples used in the training phase,
ground-truth location accuracy, and the number of most probable

locations averaged to obtain the final location. Table 2 shows the
default parameters values used throughout the evaluation section.

4.2.1 Effect of the cell assignment method. Figure 10 shows the
box-plot for the localization accuracy when using the three em-
ployed cell assignment methods described in Section 3.1.1. The
figure shows that the using the two confidence assignment meth-
ods lead to better accuracy as they handle the location noise better.
In addition, the “unweighted confidence” and the “weighted con-
fidence” methods have comparable localization accuracies with
a slight advantage in favor of the weighted confidence approach.
Therefore, the system designer can use the more computationally-
efficient “unweighted confidence” technique.

4.2.2 Effect of grid spacing (𝐺𝑆 ). Figure 11 shows the effect of
the grid spacing on the median localization accuracy achieved by
HybridLoc. The figure shows that, as expected, the localization
accuracy increases with smaller cell lengths. This increase comes
at the expense of a larger fingerprint and more time required to
construct it due to the larger number of cells. However, this is
performed only during the offline phase and; since HybridLoc is
a crowdsensing-based system; is amortized over the number of
system users.

4.2.3 Effect of the number of samples used for training (𝑁𝑠 ).
Figure 12 shows the effect of the number of collected BLE ground-
truth training samples from high-end phones on the median WiFi
localization accuracy achieved by HybridLoc. Evident from the
figure, as the number of training samples increases, the localization
accuracy increases; till it saturates when the number of samples
reaches 600. This can be explained by noting that as the training
samples density increases, the estimated histogram becomes more
accurate and representative of the fingerprint at that cell, leading
to better accuracy. Note again that this is amortized over all system
users.

4.2.4 Effect of the number time-averaging window size(𝑘). Fig-
ure 13 shows the effect of the number of averaged locations in
the continuous location estimator module on the system median
accuracy. The figure shows that as more location samples are aggre-
gated to obtain the user location, the localization accuracy increases.
However, using a large window size leads to an increased latency
in response to user movement. Therefore, we have a trade-off be-
tween accuracy and latency of the location estimate that should be
optimized based on the end user needs in a particular deployment.

4.2.5 Effect of the cell representative location method. As dis-
cussed in Section 3.1.2, the location that represents the grid cell
may be the geometric center of the cell or the center of mass of
all samples that are collected within that cell. Figure 14 shows the
box-plot of localization error for the two techniques. The figure
confirms that the center of mass representation of the cell location
has a slight improvement over the geometric cell center. This is
because the former implicitly better captures the building geometry
and where people move.

4.2.6 Heterogeneity Effect. To demonstrate that HybridLoc is
robust to different heterogeneous phones due to its “Devices Hetero-
geneity Handler” module, we perform an experiment where differ-
ent phones are used for training and testing. Specifically, we carried
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Fig. 10. Effect of the employed cell as-
signment method on the localization
accuracy.
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Fig. 11. Effect of the grid cell spacing
on the median localization accuracy.
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Fig. 13. Effect of the time-averaging
window size on the median localiza-
tion accuracy.
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curacy on the WiFi localization accu-
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out experiments on two different phone models: Samsung Galaxy
Note 3 tablet and Samsung S4 smartphone. The two phones have
a completely different form factor and WiFi chips.

Figure 16 shows the effect of employing the “Devices Heterogene-
ity Handler” module on the system accuracy when the Samsung
Galaxy Note 3 tablet is used for training and the Samsun S4 smart
phone is used for testing. The figure shows that the module does
provide higher accuracy by 14%.

We also study the effect of the module when using the same
device (Samsung Galaxy Note 3) for training and testing. Figure
16 shows even with the same model, the module leads to a better
localization accuracy. This is due to reducing the effect of the noisy
wireless channel.

4.2.7 Effect of the employed BLE system accuracy. To under-
stand the effect of the ground-truth locations from the BLE indoor
localization technology on HybridLoc, we plot the WiFi localization
accuracy at different accuracies of the ground-truth locations pro-
vided by BLE-based technique (Figure 15). The figure shows that as
BLE localization accuracy increases, the WiFi localization accuracy
increases too. The techniques that use the confidence estimate are
more robust and less-sensitive to the changes in the accuracy of the
employed BLE localization system. Therefore, users with low-end
phones with WiFi only can obtain comparable accuracy to those
obtained using high-end phones with BLE.
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Fig. 16. Effect of removing the common offset using the
same device (Note 3) and different devices (training: Note 3,
test : S4).

4.3 Comparison with Other Systems
In this section, we compare the location accuracy generated auto-
matically by the three different methods used in HybridLoc against
a typical probabilisticmanual fingerprinting technique (i.e., the
Horus System [13]). Figure 17 shows the CDF of localization accu-
racy for these different algorithms. The figure illustrates that the
confidence-based approach achieves approximately similar location
accuracy as manual fingerprinting one as summarized in Table 3.
This comes with no the costly or time-consuming calibration phase.
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Technique 25𝑡ℎ
percentile

50𝑡ℎ
percentile

75𝑡ℎ
percentile

90𝑡ℎ
percentile

Manual Fingerprinting [13] 1.7 3.3 6.3 10.1
HybridLoc-Weighted confidence 2.4 4.1 6.4 8.7
HybridLoc-Unweighted confidence 2.5 4.1 6.5 8.8
HybridLoc-Location only 2.5 4.4 7.3 12.5

Table 3: summary of the location accuracy percentiles of dif-
ferent techniques

5 RELATEDWORK
This section presents a brief background on the current techniques
for WiFi-based indoor localization categorized into fingerprinting-
based, propagation models-based, and crowdsourcing-based tech-
niques.

5.1 Fingerprinting-based Techniques
In these techniques, the radio map is built by maintaining the RSS
signature of heard APs at different locations in a database during the
offline phase. During the tracking phase, the set of overheard APs is
matched against fingerprints in the database for the closest location
in the RSS space to the unknown location. This matching is done
using either deterministic methods [18, 19] or probabilistic methods
[13, 20]. In the deterministic case, the fingerprint is represented by
a scalar quantity, e.g. the average RSS of the heard APs in a certain
location. During the online phase, the RSS vector collected while
scanning the unknown location is matched (based on some distance
metric such as Euclidean, Manhattan, or Mahalanobis distance)
against the fingerprints of all locations maintained in the radio map
to find the nearest match [21]. On the other hand, probabilistic tech-
niques construct signal strength histograms for the RSS received
from each AP at each location in the area of interest. During track-
ing, the fingerprint is used to calculate the probability of the RSS
vector at the unknown location at each location stored in the radio
map. The most probable location is used as the estimated location.
Many variants of probabilistic WiFi fingerprinting based indoor
localization have been proposed to improve the performance. For
instance, talking the high correlation between consecutive signal

strength samples from same APs into account can help to achieve
better accuracy [22]. Another approach aims to detect small scale
signal variations and perturbs the signal strength vector entries
to overcome it, thus improving accuracy [23]. Clustering locations
that share a common set of access points will significantly reduce
the computational overhead [24]. Finally, probabilistic techniques
have been proven to be superior to deterministic techniques [12].

Although fingerprinting-based methods are relatively accurate,
their deployment is impeded by the high cost of calibration phase
and the user inconvenience. In addition, they need to handle the
fingerprint differences between heterogeneous devices.

HybridLoc, in contrast, automatically constructs the fingerprint
without requiring direct user participation nor calibration measure-
ments. In addition, it has modules to address the devices heterogeneity
issue.

5.2 Propagation Models-based Techniques
Modeling-based techniques try to capture the relation between
signal strength and distance using a propagation model. Therefore,
they can automatically generate the fingerprint without expensive
site surveying. For example, the Wall Attenuation Factor (WAF)
model augments the free space path loss model with the attenu-
ation caused by walls to handle the complex indoor propagation
conditions [18]. Specifically, the direct path between the transmitter
and receiver is used to calculate the number of walls between them,
where passing through each wall leads to signal attenuation by a
constant amount.

More sophisticated propagation models use the ray shooting
technique to calculate the path ofwaves, augmenting reflections and
absorption from walls and other objects into the model. ARIDANE
[4] and Aroma [3] incorporate the 2D and 3D ray tracing techniques
respectively to get better RSS estimation across the designated area.
These models take as an input the 3D floor plan of the area of
interest, obtained from CAD tools or generated automatically [25–
29], and the location of APs. They then estimate the 2D or 3D paths
between the transmitter and receiver along with their interactions
with the materials in the environment[30] to compute the RSS
values from all available APs at each reference point on a grid.

Propagation models-based techniques, however, has lower ac-
curacy than fingerprinting-based techniques, still require samples
from the environment to calibrate the model, require the locations
of the access points in the building, require high computational
requirements for ray tracing, and the model parameters still depend
on the specific phone used for measurements.

5.3 Crowdsourcing-based Techniques
Another line of research on WiFi-based localization tries to reduce
the calibration overhead by using crowdsourcing for the finger-
print construction through explicit [7] or implicit [5, 6, 31] user
feedback. In [7], the user mobile periodically gathers a fingerprint
of nearby APs and checks against the signal strength map to deter-
mine the user’s location. If it cannot do that with a certain accuracy,
it prompts the user to indicate her current location on a displayed
map. This on-the-fly surveying binds the fingerprint observed by
the user to the relevant space.
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Although this reduces the deployment burden of the system,
prompting the user frequently to gain more coverage/accuracy is
inconvenient.

To avoid prompting the user, Unloc [5, 31] and Zee [6] both
leverage inertial sensors to get a rough estimate of the user location
through dead-reckoning and associate a fingerprint with it. To reset
the accumulated error, Zee performs map matching with the floor-
plan while Unloc leverages unique anchors in the environment,
detected based on the multi-modal sensors signature. However,
inertial sensors in commodity cell phones are noisy, reducing local-
ization accuracy. In addition, their accuracy depends on the phone
holding position and orientation [32, 33], which is still an active
area of research.

HybridLoc, on the other hand, does not depend on inertial sensors
and provides accuracy comparable to manual fingerprinting tech-
niques. In addition, it handles heterogeneous devices naturally.

6 CONCLUSION
We presented HybridLoc: a hybrid, accurate, and low-overhead
indoor localization system that works with heterogeneous phones.
HybridLoc leverages users with high-end phones in a crowdsourcing
manner to automatically build the WiFi fingerprint. As part of
HybridLoc, it handles different practical deployment issues such as
handling the inherent error in the BLE-based ground-truth location,
missing RSS samples, and devices heterogeneity.

Evaluation of HybridLoc in a typical building using different
Android phones shows that it can achieve a median distance error
of 4.1m using WiFi only, which is comparable to this obtained
using manual fingerprinting as well as high-end phones with BLE
chips. However, HybridLoc avoids the intensive, tedious and time-
consuming calibration phase.
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