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Smaller transistor sizes and reduction in voltage levels in modern microprocessors induce higher soft error
rates. This trend makes reliability a primary design constraint for computer systems. Redundant multithread-
ing (RMT) makes use of parallelism in modern systems by employing thread-level time redundancy for fault
detection and recovery. RMT can detect faults by running identical copies of the program as separate threads
in parallel execution units with identical inputs and comparing their outputs. In this article, we present a sur-
vey of RMT implementations at different architectural levels with several design considerations. We explain
the implementations in seminal papers and their extensions and discuss the design choices employed by the
techniques. We review both hardware and software approaches by presenting the main characteristics and
analyze the studies with different design choices regarding their strengths and weaknesses. We also present
a classification to help potential users find a suitable method for their requirement and to guide researchers
planning to work on this area by providing insights into the future trend.
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1 INTRODUCTION

While CMOS scaling leads to valuable enhancements in performance gain and power consump-
tion [5], with a large number of smaller transistors and reduced voltage levels, modern micropro-
cessors tend to be more vulnerable devices to soft errors [44, 45]. Soft errors (or transient errors),
which are temporary malfunctions in the operation of hardware elements due to environmental
factors, are known to be a major threat to the reliability of modern processors [64]. Soft-error-
induced failures in commercial products emphasize the importance of fault tolerance in those
systems [1, 38].

To deal with the reliability problem in modern architectures, researchers in both academia
and industry target providing efficient solutions to detect or correct soft errors by exploiting the
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inherent redundancy of modern systems and utilizing redundant resources such as extra cores
or threads. In traditional dual or triple modular redundancy techniques [48], hardware compo-
nents are replicated, and error detection or recovery is achieved by comparing outputs of repli-
cas. However, such hardware-level redundancy techniques incur additional hardware cost and
energy consumption overheads. Therefore, the redundant multithreading (RMT) mechanism em-
ploying thread-level time redundancy has drawn great attraction with lower cost compared to the
hardware-level ones. RMT provides error detection by running the identical copies of the program
as separate threads in parallel execution units with identical inputs and comparing their outputs.
The redundant threads are executed either on the same simultaneous multithreading (SMT) [74]
core or on different CMP cores [49] or parallel execution units in GPGPUs.

In this article, we focus on the discussion of RMT techniques by analyzing state-of-the-art stud-
ies in the literature. Additionally, the supplementary studies with extensions to the main works are
included to present most of the overall work in this area. We also consider the application of RMT
techniques to modern GPU architectures, power-efficient solutions of RMT, and performance-
efficient solutions of RMT by using thread-to-core mapping techniques. Although the main focus
is on soft errors, we also include the studies that target handling hard errors. Improving reliability
with redundancy techniques may have overhead in terms of performance and power consumption.
Therefore, we discuss the techniques by presenting their key contributions and findings based on
performance, throughput, power consumption, and reliability.

Section 2 summarizes the background information related to soft errors and redundant multi-
threading as a fault tolerance technique against soft errors. While Section 3 explains our classi-
fication methodology for the work done on redundant multithreading in the literature, Section 4
presents RMT-based approaches by analyzing the methods and performing comparison. We con-
clude the article in Section 5 by providing research directions on redundant multithreading.

2 BACKGROUND AND TERMINOLOGY
2.1 Soft Errors

Faults can be classified as permanent, intermittent, and transient. While permanent faults result
from persistent physical changes in a hardware component, intermittent faults occur occasionally
and repeat themselves over time, and transient faults are temporary malfunctions of the system
components. One or more components of the system deviate from normal operation in case of an
active fault, and it is known as an error.

Soft errors, which are a manifestation of transient faults, result from a fault in a single bit in the
computer systems as a result of alpha particles, cosmic rays, thermal neutrons, or other environ-
mental causes [64, 81]. If the data in a memory location or a register is affected from a soft error, it
becomes corrupted and produces incorrect results until it is updated. This sort of error, also called
a single-event upset (SEU), appears randomly and may cause termination of program execution
in addition to data corruption during the execution. The presence of such errors may affect the
target system in different ways. As an example, the loss of correct functioning of a safety-critical
system (e.g., programs controlling an aircraft or a nuclear power plant) can result in catastrophe
even if the fault is temporary.

The possible results of a single-bit fault in a hardware structure are demonstrated in Figure 1.
Silent data corruption (SDC), which is shown as outcome 4 in the figure, is assumed to be the
most crucial one since it produces incorrect outputs in the system. The errors, named detected
unrecoverable errors (DUEs), are distinguished by the system; however, they are not recovered by
using any mechanism. A false DUE (shown as outcome 5 in the figure) is the case where a faulty bit
read occurs; however, it does not influence the program output. A true DUE (shown as outcome 6
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Fig. 1. Possible outcomes of a single-bit fault [45, 81].

in the figure) is the case that influences the program output as a consequence of a faulty bit. Fault
tolerance strategies including both detection and recovery mechanisms are utilized with a specific
goal to reduce error rates in order to eliminate outcomes 3 through 6 in the figure.

Processor frequencies may not be increased at arbitrary rates, so processor designers aim to
place more processor cores in a chip to increase parallelism and throughput [49]. By putting a
large number of processor cores on a single chip, they allow running of multiple threads con-
currently to exhibit high performance. Reduction in transistor sizes with technology scaling and
aggressive low-power optimizations to improve performance affect the susceptibility of modern
architectures to soft errors [44]. This trend in transistor size increases the soft error rate (SER) in
the chip multiprocessors [6]. More specifically, technology vendors estimate that there will be an
8% increase in the soft error rate per bit with each technology generation [25]. Therefore, soft er-
rors are an unignorable design challenge in modern architectures and its significance is probably
going to increment in every upcoming technology [6]. As a consequence, soft error is our main
focus in this study by considering multithreading approaches either in single- or multiprocessing
environments.

2.2 Soft Error Resilience

Fault tolerance is known as preventing a system from failures in the occurrence of faults [4]. Error
detection, error containment, and error recovery are basic steps to provide reliability solution for
soft errors. Error detection requires techniques that only recognize the occurrence of an error. In
order to prevent the consumption of erroneous data by the system, error containment is needed,
which restricts the propagation of error with isolation. After the detection and containment, the
system can be restored to an error-free state, which is known as error recovery. Error recovery
techniques might be rollback recovery, which means returning back to a previous safe state (e.g.,
checkpoint), or roll-forward recovery, which means continuing from an erroneous state by making
corrections to be able to move forward (e.g., TMR [48]).

As a fault tolerance technique, redundancy, which is basically adding new functionalities to the
system to enable correct execution in the presence of errors, is very popular. Redundancy tech-
niques can be implemented in three ways: (1) spatial redundancy, which physically replicates a
system component; (2) temporal redundancy, which re-executes an entire program or some parts
of it; and (3) information redundancy, which adds new information to program data. In a redundant
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Fig. 2. Temporal redundancy example with one operation module executing multiple times [11].
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system, normal system functions should be performed without the need for additional compo-
nents, and these components are used to detect errors or recover the system.

A widely used spatial redundancy technique is N-modular redundancy (NMR), which utilizes an
N replicated copy of processing elements to work on the same data [33]. Dual modular redundancy
(DMR), which uses two replicated components to detect errors, and triple modular redundancy
(TMR) [48], which utilizes three identical copies of processing elements to detect and correct er-
rors with majority voting, are two popular examples of NMR techniques. In DMR, the outputs of
the original and replicated components are compared to detect errors. On the other hand, faulty
components cannot be identified in DMR; hence, it is suitable only for error detection. In TMR,
the comparator of DMR is exchanged with a majority voter assuming that at least two same re-
sults are considered as accurate, and the system continues to the operation with this outcome. In
such a case, the error is masked without affecting the correct functioning of the system. TMR is
more powerful than DMR since it can both detect and correct errors; however, it is a costly ap-
proach in terms of utilized resources. In general, the number of replicas may change in the NMR
approach and it can be increased depending on the available resources. On the other hand, adding
redundant hardware components to the system causes high hardware cost in spatial redundancy
techniques.

In temporal (or time) redundancy, the same operation is performed in an NMR approach; how-
ever, the N shows the number of times the operation performed in the same hardware. Figure 2
shows a temporal redundancy example with one module executing three consecutive times to
eliminate the output corruption as a result of the soft error. The output of each instance is written
to the intermediate memory, and the voter decides the final output by using majority rule [11].
Another well-known temporal redundancy technique is using checkpoints to perform rollback re-
covery. In this case, the state of the system is saved at specific times and the system is restored by
reloading the last safe state in case of an error. Redundant multithreading provides thread-level
time redundancy by executing replicated threads either on the same or different cores for error
detection or recovery.

In information redundancy, additional information is added to the program data for error de-
tection or correction. Error-detecting codes (EDCs) and error-correcting codes (ECCs) are two
information redundancy techniques. As an EDC example, parity check uses a single-parity bit to
count the number of 1s (or 0s) in binary data for error detection. As an example of the ECC tech-
nique, the Single Error Correction and Double Error Detection (SECDED) technique uses multiple
bits to count the number of 1s (or 0s) in different parts of binary data to correct single-bit errors
and detect double-bit errors [26].

Temporal or information redundancy techniques do not require any additional hardware com-
ponent in most cases; therefore, their drawbacks are based on the additional usage of memory
space or performance degradation caused from the re-execution rather than the hardware cost. Ex-
isting redundancy approaches might have overheads in terms of hardware cost, additional memory
usage, performance degradation, and energy consumption. Redundant multithreading approaches
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propose a flexible execution environment and aim to provide similar fault tolerance compared to
spatial redundancy techniques with minimum hardware costs.

2.3 Calculating Soft Error Rate

In order to calculate the soft error rate, there are two major techniques: statistical fault injection
and architectural vulnerability factor (AVF).

Fault injection, which is a traditional way of calculating the soft error rate, quantifies the reli-
ability level of a system by inserting faults into the various system components at different times
and evaluates the outcome [10]. In fault injection experiments, one should follow a brute-force
approach and count all possible fault injection points by considering fault type, fault location, and
injection time. Determining all combinations of these points is tedious and complex work, and
the number of experiments might be enormously high. Therefore, an optimized way is to use a
statistical approach to utilize a subset of all combinations. In such a case, a number of fault injec-
tion points, which is a representative sample of the whole search space, is selected and the soft
error rate is given with a statistical confidence rate. With such an approach, the possible size of
experiments decreases, but the accuracy level of the soft error rate decreases [80].

Architectural vulnerability factor (AVF)is a metric to evaluate vulnerability from the architectural
perspective as the probability of an error in the program outcome in case of a fault in the hardware
structure [47]. All of the transient errors may not affect the program outcome; some of them might
be masked, and the program continues to execute without being affected by that error. The bits
that influence the program output or execution are named Architecturally Correct Execution (ACE)
bits, and these bits are used in the computation of the AVF metric. AVF is estimated as the average
number of ACE bits over the total number of bits that the hardware structure has in a cycle [47].
The higher value of AVF for a hardware structure means it is more probable to have soft error in
the corresponding structure.

2.4 Redundant Multithreading

With the introduction of SMT [74] and then the emergence of multicore processors [49], both
providing execution of multiple independent threads simultaneously, RMT has become a widely
used fault tolerance technique. RMT enables the execution of two copies of the program as separate
threads in multiple execution units (either SMT processors [56], CMPs [46], or GPU cores [31]) by
comparing their results for fault detection.

The key concepts for redundant multithreading are the components included in the redundant
execution, the inputs to be replicated, and the outputs to be compared after redundant execu-
tion. Within these concepts, the Simultaneous and Redundantly Threaded (SRT) processor [56]
introduces the sphere of replication (SOR) as the logical boundary of the redundant execution. The
components in the SOR are included in the redundant execution, while the components outside
must be protected by other resilience mechanisms. The values entering the SOR (inputs) must
be replicated, and the values leaving the SOR must be compared. Figure 3(a) presents a general
sphere of replication. Two execution streams run redundantly inside the sphere of replication,
while the input to the original execution is replicated for two copies. After the execution of the
redundant copies is completed, the results are compared outside the SOR to detect any fault during
execution. As an example implementation, Figure 3(b) presents the SOR of the theoretical SRT pro-
cessor architecture [56]. The SRT processor assumes that the CPU and registers are to be replicated,
but the overall memory components including the on-chip L1 caches, shared L2 cache, and DRAM
are outside the SOR, protected by ECC. In other words, the load/store instructions are not executed
twice by relying on ECC-protected memory structures; only the computations performed in the
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Fig. 3. (a) A General sphere of replication. (b) SRT processor’s SOR [56].

datapath using the register file are executed by the redundant threads. Different design choices
may implement different SOR boundaries, input replication, and output comparison methods.

If we consider a sphere of replication with the register file as in SRT, there are three output
values leaving the sphere and four input values entering the sphere. For output comparison, the
following three values need to be considered: Stores. The comparator must check the address and
value of each committed store before it sends them out of the SOR. Cached load addresses. While
cached memory load addresses (both data and instruction) exit the SOR, they do not influence the
execution since other output comparison detects errors. Uncached load addresses. The comparator
must check the addresses before the load commits. For input replication, the following four values
need to be considered: Instructions. The instruction fetch from redundant threads returns the same
instruction address with the assumption that the instruction space does not change. Cached load
data. Since it is possible that other processors update data values and an out-of-order processor
requests loads from different threads in a different order, cached load data needs to be handled by
using buffer spaces. Uncached load data. The value is replicated for both redundant threads after the
load data returns. External interrupts. Both threads must encounter the interrupts at the same time.
It might be solved either by synchronizing the redundant threads by barriers and interrupting both
threads or by interrupting the leading thread by recording the execution point and interrupting
the trailing thread at that execution point.

3 CLASSIFICATION

We classify the related studies according to their target architecture and main focus. SMT [74] pro-
vides execution of multiple threads simultaneously by exploiting instruction-level parallelism. We
first present the RMT-based studies on SMT processors in Section 4.1. Then we reserve a separate
section for partial redundant multithreading methods implemented on SMT due to their major
modifications on the system. With the introduction of multicore processors [49], CMP-based re-
dundant multithreading methods are studied, and we explain the major studies in Section 4.3. After
presenting hardware-based approaches, we also explain software-based multithreading methods
in Section 4.4.

In the related sections, we first include the most influential studies with high citation and ex-
tensions in the literature. We visualize the citation relations among the related studies to empha-
size the importance of the work by using the VOSviewer tool [75]. Figure 4 presents the citation
graph (created by VOSviewer with data taken from Web of Science) for the related studies given in
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Fig. 4. Citation relations among the studies.

Sections 4.1, 4.2, and 4.3. The graph validates our approach by putting the Reinhardt (2000) [56],
Vijaykumar (2002) [76], Mukherjee (2002) [46], and Gomaa (2003) [19] in the center with the high-
est number of citations. While Rotenberg (1999) [57], Smolens (2006) [66], and Lafrieda (2007) [36]
have less weight on the graph, we also include them as the base papers in our analysis (Section 4.1
and Section 4.3) due to their significant impact relative to the remaining studies. We also include
two other highly cited studies (Gomaa (2005) [20] and Sundaramoorthy (2000) [73]) in Section 4.2
since they propose partial redundant threading techniques.

After reviewing the main work in the area, we include the significant extensions to present the
cumulative work and improvements. We also reserve separate sections for the RMT studies based
on GPUs (Section 4.5), dealing with power issues (Section 4.6), and proposing thread mapping for
efficient RMT (Section 4.7).

Table 1 shows the general classification of the studies that we have analyzed in this study. We
list the research works in several dimensions including the structures in SOR, their key approach
or feature, fault types, error recovery support, processor architecture, evaluation platform, and
comparison metrics. We place some of the studies in two different rows based on their key fea-
ture. As an example, [69] is included in both the RMT application on CMPs and power-efficient
RMT. With the emergence of multicore platforms, RMT techniques are widely applied on multi-
core environments as is seen from the table. The target fault type of the works is transient faults
in most cases; however, some of them target permanent faults additionally. Most of the studies
prefer to use a simulation environment as an evaluation platform since it is more flexible and easy
to reconfigure based on the design specifications. In general, the researchers compare their work
based on performance using execution time or instruction per cycle (IPC) metrics. They do not
prefer to measure reliability in most studies since the soft errors can be detected or recovered with
redundant execution.
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Table 1. A Classification of Research Works
Classification References
[19, 21, 22, 36, 46, 53, 56, 57, 60, 61, 66, 76]
Pipeline [3, 17, 18, 20, 39, 50, 59, 62, 63, 73, 82]
Sphere of [51, 55, 65]
replication (SOR) Revisters [19, 21, 22, 36, 46, 53, 56, 57, 60, 65, 66, 76]
g [3, 17, 18, 20, 39, 50, 59, 61-63, 65, 73, 82]
L1Cache [17, 18, 36, 51, 53, 55, 66, 73, 82]
RMT via SMT [3, 39, 56, 57, 59, 62, 63, 76]
Partial RMT [20, 50-52, 55, 65, 73]
[18, 19, 21, 22, 34, 36, 46, 53, 58, 60, 61, 66]
RMT on CMP [17, 18, 23, 40, 71, 72, 82]
Key approach/ [7,8, 15,32, 35, 42, 52, 54, 68-70]
feature Compiler-level software-based RMT [24, 43, 67, 78, 84]
Application-level software-based RMT | [9, 28-30]
0OS-level software-based RMT [13, 14]
GPU-based RMT [12, 24, 31, 77]
Power-efficient RMT [41, 42, 54, 68-70]
Thread mapping for RMT [7,8,15,32,35,52]
[16, 19, 36, 46, 53, 5658, 60, 61, 65, 66, 76]
Transient [7, 8, 23, 32, 35, 40, 42, 52, 54, 68-72, 82]
Fault types [3, 9, 15, 20, 30, 39, 50, 51, 55, 59, 62, 63, 73]
[12-14, 17, 18, 24, 31, 77]
Permanent [12, 16, 17, 31, 36, 46, 58, 62, 65, 6972, 77, 82]
[19, 21, 34, 36, 40, 53, 57, 58, 60, 61, 66, 82]
Yes [3,7,9, 13, 14, 30, 32, 35, 55, 63, 65, 69, 73]
Error recovery [23, 41, 42, 54, 70-72]
No [8, 15-18, 20, 39, 46, 50-52, 56, 59, 65, 68]
Single core [3, 16, 20, 39, 50, 51, 55-57, 62, 63, 65, 76]
Processor ) [18, 19, 21, 22, 34, 36, 46, 53, 58, 60, 61, 66]
architecture Multicore [7, 8, 15, 23, 32, 35, 40, 42, 52, 54, 59, 68-72]
[9, 17, 30, 82]
GPU [12, 24, 31, 77]
[19, 21, 22, 36, 46, 53, 56, 57, 60, 65, 66, 76]
. [7, 8, 15, 23, 32, 39-42, 54, 59, 62, 68-72]
Simulator

Evaluation platform

[17, 18, 20, 31, 50, 51, 55, 65, 67, 73, 78, 82]
[35, 52, 58, 61]

Real hardware

[9, 12, 16, 24, 30, 34, 43, 77, 84]

Comparison/tradeoff

[19, 21, 22, 34, 36, 46, 53, 56, 57, 60, 61, 65, 76]
[3,7, 20,32, 35, 42, 50-52, 54, 62, 63, 68-72]

Performance [9, 13, 14, 30, 39, 43, 55, 66, 67, 73, 78, 84]
[12, 17, 18, 23, 24, 31, 58, 59, 77, 82]

Throughput [15, 40, 42, 52, 53, 71, 72]

Reliability 7,8, 21, 22, 35, 40, 52, 60, 61, 65]

Power/energy 23, 32, 40-42, 54, 68-70, 77]

Academic papers/
industry papers

Academic papers

43, 46, 50-63, 65-73, 76, 77, 82, 84]

Industry papers

[
[
[3,7-9, 12-24, 28, 31, 32, 34-36, 39-42]
[
[

12, 24, 28, 43, 46, 55, 56, 77, 78]
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We survey redundant multithreading techniques proposed during the last 20 years. To present
the distribution of the studies over the years, we present the number of papers published per year
in Figure 5.

4 SURVEY OF METHODS

This section reviews redundant multithreading studies to present the general approaches and al-
ternative methods to overcome the implementation or mission-specific issues.

4.1 Redundant Multithreading via Simultaneous Multithreading

SMT [74] allows multiple instruction issues from multiple independent threads by exploit-
ing superscalar processors with hardware multithreading. It increases performance by utilizing
instruction-level parallelism and provides opportunities for time-redundant fault tolerance. As an
example, we put the Simultaneous and Redundantly Threaded processor exploiting SMT for fault
detection in Figure 6. The fetch stage starts instructions from multiple threads to a decode queue,
where they are sent to the register update unit (RUU) with their source operands. The instructions
from redundant threads share the same RUU, which issues multiple instructions per cycle to the
computation and memory units. The instruction results for each thread are committed to the reg-
ister file in program order. The studies in the literature evaluate different spheres of replications
or propose performance improvements to handle the performance overhead due to thread com-
munications. This section presents SMT-based techniques by providing their main contributions.

AR-SMT. Active-stream/Redundant-stream Simultaneous Multithreading (AR-SMT) [57] pro-
poses a time redundancy fault-tolerant approach based on SMT microarchitecture. It exploits SMT
for time redundancy and performs the computations twice by executing two execution streams
(A-stream and R-stream) on SMT resources, then compares the results to detect transient errors.
The original program thread, called active stream (A-stream), executes and commits the instruc-
tions, and their results are also stored in the Delay Buffer. The redundant instruction stream
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(R-stream) processes the same instructions, and the computation results are compared to those
in the Delay Buffer. If they are not the same, a fault is detected. While an error in the R-stream is
detected immediately, an error in the A-stream is detected with some delay. AR-SMT also includes
operating system support to maintain A-stream/R-stream execution. In order to replicate the op-
erations with some delay in the R-stream, the I/O support allocates a separate memory image and
handles address translations. It also synchronizes the A-stream and R-stream for exceptions and
context switches.

SRT. The SRT processor [56] provides transient fault detection by executing multiple copies of
the program in SMT resources simultaneously. The study is the first that introduces the concept
of the sphere of replication (see Section 2.4). It proposes output comparison and input replication
design alternatives, as well as evaluating performance improvements in an SRT processor.

The redundant instructions in an SRT processor can execute in different cycles, in different or-
der due to the dynamic instruction scheduling. Therefore, lockstepping (instruction-by-instruction
comparison) may not work, and more advanced techniques are required for input replication and
output comparison. For input replication, the study proposes two structures: Active Load Address
Buffer (ALAB) and Load Value Queue (LVQ). The ALAB delays the cache block replacement until the
trailing thread commits to guarantee the correct input replication of the load operations having the
cached data. In the LVQ, only the leading thread issues the cached load operations and stores the
load’s address and the value in the queue. The trailing thread gets the data from the queue instead
of the cache by waiting for the leading thread’s corresponding operation. For the output compari-
son, SRT explores two spheres of replication: checking the memory accesses only or checking the
memory accesses and the register updates. For the memory store operations, a shared store buffer
is used to synchronize the redundant copies and verify the store values. After the verification, the
value is issued to the data cache. Similarly, for the register writeback operations, a register check
buffer is used for the comparison of the redundant computations.

SRT also tries to improve the performance by two mechanisms. First, the slack fetch inserts a
constant slack between the leading and trailing threads. The trailing thread probes both the branch
predictor and data caches of the leading thread to get some idea about the branch outcomes and
cache misses. Second, the branch outcome queue (BOQ) mechanism implements a hardware queue
to send the committed branch outcomes of the leading thread to the trailing thread. Thus, the
trailing thread never mispredicts the branches by using the results of the leading thread as the
branch predictor.

SRTR. The Simultaneous and Redundantly Threaded processor with Recovery (SRTR) [76] ex-
tends the SRT processor with fault recovery. The instructions of each thread are stored in a private
active list (AL) besides the shared issue queue. When an instruction leaves the issue queue after
completion, it still stays in the AL. The corresponding instructions from the leading and trailing
threads occupy the same positions in their ALs to be checked easily.

In order to provide recovery by checking the faults, the results of the trailing thread need to
be checked before the leading thread commits the instructions. The slack between the redundant
threads must be short, so that the leading thread does not have to wait for the trailing thread for
comparison. On the other hand, the slack must be long enough so that the trailing thread can use
branch outcomes of the leading thread as the branch prediction. To have a short slack, the trailing
thread in SRTR uses the branch predictions of the leading thread instead of the branch outcomes.
The leading thread stores the predicted PC value in the prediction queue (predQ), which is similar
to BOQ in the SRT. If the leading thread detects a branch misprediction, it performs one of the
two actions according to the status of the trailing thread. It clears the incorrect prediction in the
prediction queue if the trailing thread has not used the value yet. It squashes the trailing thread’s
mispredicted instructions in its AL if the trailing thread has already used the predQ entry.
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SRTR modifies the LVQ by operating speculative cached loads. It stores pointers to the LVQ in
a table, called the shadow active list (SAL), to keep it as efficient as possible. When the load enters
the AL, the leading thread creates an LVQ entry and puts a pointer in the SAL. After the issue
of the load, the leading thread gets the LVQ pointer from the SAL and stores the load address
and the value in the LVQ entry. Then, the trailing thread gets the LVQ pointer from the SAL and
compares its own load address with the one in the LVQ. If there is a match, the trailing thread gets
the value from the LVQ. Otherwise, it signals a rollback due to the erroneous load address. In case
of a rollback, the LVQ pointer in the SAL is placed back before the load operation. Similar to SRT,
store buffer (StB) is used to compare the address and the value of the store operation.

SRTR uses a sphere of replication with a register file. When the register values are compared,
they have been already written to the register file. To avoid bandwidth pressure on the register
file, SRTR maintains a structure called the register value queue (RVQ). The leading thread writes
the results in the RVQ with a pointer in the SAL, and the trailing thread gets the pointer from the
SAL to read the value from the RVQ and to perform comparison. Those operations are completed
without creating bandwidth pressure on the physical register file. SRTR also proposes dependence-
based checking elision (DBCE) to decrease the bandwidth demand on the RVQ. Since the faults
propagate through dependent instructions, checking only the last instruction in a dependence
chain is enough to discover the faulty case. DBCE exploits register dependencies to store only
those instructions in the RVQ to be checked by the trailing thread.

If the leading and trailing thread agree on the instructions’ results (stored in RVQ, StB, and LVQ
structures), commit vector (CV) entries are set to the checked-ok state (previously not-checked-yet
state). A leading thread commits only if the corresponding leading and trailing thread entries are
in this state. If the redundant threads do not agree, the entries are set to the failed-check state. The
leading thread squashes all later instructions in the AL, and both threads are restarted from the
latest safe state.

Abu-Ghazeleh et al. [3] propose lifetime-based checking elision (LBCE), which eliminates short-
lived values for the verification. An output value is defined as short lived if the destination register
has been renamed again before the value is committed.

Sharkey et al. [63] propose a recovery scheme that totally eliminates RVQ in SRTR. In the RVQ-
Free (RVQ_F) scheme, when the main thread commits an instruction, it stalls and waits for the
verification thread to catch up. Then the register states of both threads are compared for fault
detection. If there is no mismatch, a checkpoint of the register file is created.

Comparison. Table 2 presents the main SMT-based RMT approaches including AR-SMT, SRT,
and SRTR. While the SOR of AR-SMT and SRT includes CPU and registers, SRTR also covers L1
caches. Each architecture includes additional buffer areas to store the redundant results. Their
performance results do not yield much difference due to the similar architecture implementations.

Other RMT Extensions with SMT. While AR-SMT, SRT, and SRTR affect the literature sub-
stantially (see Figure 4), there have been other SMT-based redundancy studies based on them.

BlackJack [62] presents an SRT extension to support permanent fault detection on an SMT core.
The leading and trailing threads in SRT exploit the temporal redundancy to enable soft error detec-
tion by executing two identical copies at different times. However, the spatial redundancy is essen-
tial to detect hard errors by executing the redundant threads in different hardware components.
Since the redundant threads in SRT are almost identical and the redundant executions use the same
hardware, spatial diversity is not possible. BlackJack proposes instruction shuffling so that the re-
dundant threads follow different instruction streams. Instead of a naive approach, which forces
trailing thread instructions to use different pipeline resources from the leading thread, BlackJack
proposes a novel scheme, named safe-shuffle. In order to ensure spatial diversity, the redundant
threads need to be executed on completely different pipeline stages. Therefore, shuffling needs to
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Table 2. Comparison of RMT Techniques via Simultaneous Multithreading
AR-SMT [57] SRT [56] SRTR [76]
Sphere of CPU including processor CPU including processor | CPU including processor
replication pipeline and register files pipeline and register files | pipeline and register files

Hardware overhead

Delay buffer

Check Store Buffer, Load
Value Queue, Branch
Outcome Queue

Register Value Queue

Sim-outorder simulator

Simple-scalar OoO

Environment Simple-scalar OoO simulator from Simplescalar toolset | simulator
Processor SMT-based trace processor/ Out-of-order, speculative | Out-of-order SMT
architecture single core SMT processor processor

Yes, with a little
Error recovery Yes No .

exception

Fault types

Transient faults

Transient faults

Transient faults

Fault model

Single

Single

Single

Fault coverage

Assumption of broad coverage of
transient faults and restricted

Not evaluated

Not evaluated

coverage of permanent faults

10% to 30% compared to the SMT-Dual 32% slower,

Performance : . others improve 1%, 7% of SRT
single version of the program differently
Benchmark SPEC CPU95 SPEC CPU95 SPEC CPU95

be done before the fetch of the trailing thread (not in the middle of the pipelined execution exclud-
ing the fetch stage). However, instruction shuffling requires dependence information among the
instructions, and the dependencies cannot be known without fetching the instructions in program
order. Due to the slack between the leading and trailing threads, the leading thread can be used
to obtain dependencies before the trailing thread starts execution. Safe-shuffle uses the leading
thread for capturing the dependencies among the instructions, then performs shuffling of the trail-
ing thread instructions before it is fetched. With this implementation, BlackJack covers 97% of hard
errors on average with 33% slowdown compared to non-fault-tolerant single-thread execution.

DTE [39] presents a dual-thread execution architecture for SMT processors to provide efficient
fault tolerance. The front thread executes instructions as in the normal execution, except long-
latency L2-cache misses. L2-cache misses and the dependent instructions are invalidated, and the
front thread runs with a virtually ideal L2. The back thread re-executes the instructions by fetching
them from the front thread’s result queue and also executes twice the invalidated instructions by
using the cache misses as prefetching. While the trailing thread contains fewer instructions than
the leading thread in SRT, DTE implements the lightweight front thread. DTE proposes efficient
fetch policies to improve the performance of SRTR by dealing with resource-sharing issues in SMT
architectures. Since the front and back threads share an out-of-order execution core and cache
structure, it is critical to allocate resources efficiently between the front and the back threads
for better performance. DTE explores different fetch policies that decide the scheduling of the
threads and examines their effects on performance. The experimental study reveals that DTE,
with full coverage, improves performance by 15.5% on average over single-thread execution and
outperforms SRTR for each benchmark application.

4.2 Partial Redundant Multithreading

While the full redundancy exploited by SMT-based approaches provides full coverage from
soft errors, the systems with different design choices may prefer low-performance overhead by
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tolerating some errors. In order to evaluate performance-reliability tradeoffs, several studies pro-
pose partial redundant threading techniques for SMT.

Slipstream. The Slipstream processor [73] presents a processor architecture for the AR-SMT
approach by implementing the A-stream and R-stream in two architectural contexts. It mainly fo-
cuses on the performance benefit of the approach but also explores the potential fault tolerance
improvement. The study introduces new hardware components to support slipstreaming, which
represents an execution of a pair supporting each other for both performance and fault toler-
ance. The instruction-removal detector (IR detector) finds and eliminates unnecessary instructions
to create a shorter program for higher performance. It monitors the R-stream and constructs a
partial dataflow graph for a set of retired instructions (a trace). When a potential instruction to
be removed (such as unreferenced writes, nonmodifying writes, and branch instructions) is en-
countered, it is selected. Then back-propagation in the graph is performed to obtain dependent
instructions to remove. The IR detector sends the potentially skipped instructions by the A-stream
to the instruction-removal predictor (IR predictor). The IR predictor, which is a modified branch pre-
dictor, collects information for different traces and tries to create a confidence for instructions to
be removed by counting the selection of the same trace. If the same trace (a set of instructions) is
selected for instruction removal by the IR detector more than a threshold value, the IR predictor re-
moves those instructions from the A-stream. A delay buffer provides communication between the
A-stream and R-stream to compare the architectural states. When the instructions of the A-stream
are removed incorrectly (that should not be removed), IR misprediction occurs. When the R-stream
or IR detector detects IR mispredictions, the architectural state of the A-stream is restored so that
it is the same with the R-stream. The recovery controller handles the addresses of the potentially
corrupted memory locations in the A-stream to recover the A-stream’s memory context from the
R-stream’s memory context in case of an IR misprediction. The study analyzes a set of scenarios
to understand fault tolerance of Slipstream processing provided by redundant execution streams
and claims that it potentially increases the fault tolerance of the execution.

Opportunistic. Opportunistic Transient-Fault Detection [20] proposes a partial redundancy
scheme by presenting two opportunistic approaches to minimize the performance degradation for
soft error coverage. Partial explicit redundancy (PER) exploits the processor’s idle resources for re-
dundancy and activates the redundant execution only when the redundant thread does not block
the main thread. Since the performance degradation of the redundant execution results from the
competition between the main thread and redundant thread, which are executing simultaneously
in an SRT processor, PER does not replicate the execution during high-ILP phases of the main
thread. It executes in Single Execution Mode (SEM) with the main thread only unless the main
thread underutilizes the resources. Whenever the main thread enters a low-ILP phase or there is
an L2 miss, PER explicitly switches the execution to Redundancy Execution Mode (REM), simi-
lar to SRT. Unlike SRT, PER checks all instructions including the stores due to the potential fault
propagation through the duplicated and nonduplicated instructions. Since the duplication of all
instructions in a dependence chain is not probable in PER and the duplication of only store op-
erations provides low error coverage, PER duplicates all instructions in REM. Another issue with
PER is that the redundant thread needs to resume before an REM and to get the current state from
the main thread. PER maintains the register delay queue (RDQ) to store the main thread’s current
state including register values, branch outcomes, load values and addresses, and store values and
addresses. Its size is kept as the slack between the main thread and redundant thread to ensure
that the redundant thread matches the resume point. The final issue with PER is to decide the
switch time between SEM and REM. PER observes the threads to understand whether execute-
IPC of the main thread + execute-IPC of the redundant thread is less than the processor issue width,
which shows the resource usage state. This is helpful if PER executes in REM, but the IPC of the
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redundant thread cannot be obtained due to its absence during this period. PER uses the approxi-
mation of commit-IPC of the main thread as the IPC of the redundant thread since the redundant
thread does not employ any misprediction or cache misses due to its direct access to the main
thread information. As a result, PER checks that the condition execute-IPC of the main thread +
commit-IPC of the main thread is less than the processor issue width and switches to REM if the
condition holds and executes in SEM otherwise. Implicit redundancy through reuse (IRTR) uti-
lizes dynamic instruction reuse, where the same instruction is executed several times with the
same input values. Instruction reuse stores the results of those instructions in the reuse buffer (RB)
and uses them instead of re-executing instructions. IRTR maintains RB to eliminate the redundant
execution of the instructions by providing some coverage with no explicit redundancy and perfor-
mance loss. The study explores the benefit of both PER and IRTR and presents a tradeoff between
the performance and the soft error rate (SER) by reporting IPC and AVF values. The simulation
results yield that the combined PER and IRTR mechanism reduces the soft error rate by 56% with
only 2% performance loss.

SlicK. Slice-based Locality Exploitation [50] presents a partial redundant threading mechanism
by using slice-level execution and exploiting the value and control-flow locality. It executes the
leading thread as in SRT but tries to eliminate the trailing thread instructions by predicting the
outputs of them. Only the backward slices (instructions along dependency chain) of the unpre-
dicted outputs are executed redundantly. The system identifies the store and branch instructions
as the trigger instructions, which present a trigger point for verification. If a trigger instruction is
verified, the instruction and its backward slice are not executed redundantly and are flushed from
the trailing thread. Those trigger instructions are called Flush Triggers (FTs). On the other hand, if a
trigger instruction is not verified, its backward slice is extracted, and the instruction and its back-
ward slice are executed redundantly by the trailing thread. Those trigger instructions are called
Execute Triggers (ETs). The verification of triggers is handled by a simple last-value (LV) or Finite
Context Method (FCM) predictors for the store instructions, and a pattern-based filter-supported
branch predictor for the branch instructions. SlicK also implements an efficient backward-slice
extractor, Slice Extraction Matrix (SliceEM), to store the instructions on the backward slices of ETs
and FTs and specify them as flushable or redundant. The SliceEM frequently updates and keeps
track of dependency chains of the instructions in its buffer. Thus, it is possible to get a backward
slice of an instruction at any time during execution without any reverse traversal. Since its imple-
mentation relies on a small set of structures and bitwise operations, it works with a tolerable low
latency for frequent triggers and slice extraction requirement. The SlicK builds a full system by
integrating the predictors and SliceEM into an SRT. The study presents IPC and AVF values for the
comparison to the baseline SRT and performs 10% better than SRT with around 2% vulnerability.

Reddy et al. [55] analyze partial redundant threading approaches. The study presents the partial
redundant threading (PRT) spectrum by examining Opportunistic [20], ReStore [79], and Slip-
stream [73] as the examples using partial duplication, confident predictions, and both, respec-
tively. It especially analyzes Slipstream by implementing predictions including branch prediction,
silent write prediction, dead write prediction, and silent store prediction. As a result, branches
with a high confidence prediction, instructions that predictably write the same value in a regis-
ter or in a memory location as the previous write, and instructions that are predictably dead are
removed from the redundant execution. The experiments conducted in the study reveal that Slip-
stream implementation can detect the faults in 99.9% of the instructions. The authors also propose
a recovery implementation for Slipstream processors. The previous recovery implementation as-
sumes that the duplicated instruction is faulty when it detects a fault and restarts the execution
from the duplicated instruction. However, the faulty instruction may be the nonduplicated instruc-
tion producing a faulty value for the duplicated instruction that detects the fault. Therefore, the
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nonduplicated instruction is evaluated as nonfaulty, and the recovered state may still include the
corrupted data produced by the nonduplicated instruction. On the other hand, in the proposed re-
covery implementation, the duplicated instruction detects the fault, but the execution is restarted
from the oldest instruction in the reorder buffer (ROB) instead of the duplicated instruction. Since
it is probable that the nonduplicated instruction that produced the faulty value is in the ROB, the
recovered state becomes error-free. The experimental evaluation shows that 99% of the instruc-
tions are recovered by the best combination of the proposed methods. The study also proposes
a novel analysis framework for the comparison of PRT approaches by considering each instruc-
tion as potentially faulty and provides an alternate way for a complete fault injection experiment
including all instructions as faulty. The analysis covers both duplicated and nonduplicated instruc-
tions and simply tries to understand whether an instruction is checked directly or indirectly by
the fault tolerance approach.

Pouyan et al. [51] present a partial thread redundancy protection scheme based on the on-
line AVF estimations on SMT processors. They compute AVF for the issue queue, reorder buffer,
load/store queue, and register file in an SMT architecture during execution. By using online AVF
estimations, they consider two execution modes. While one mode includes a redundant thread
to check the instructions, the other mode executes single thread to eliminate performance degra-
dation for reliable intervals. The redundancy mode is switched to either the redundant or single
execution. If the AVF is greater than a predefined threshold value for an interval, the redundant
thread re-executes the instructions on that interval and checks the store instructions’ values with
the values of the main thread. Otherwise, the store values computed by the main thread are sent
to cache or main memory.

Siddiqua and Gurumurthi [65] analyze the effect of SRT on lifetime reliability. They observe
that executing a redundant copy of the same program increases activity on the chip, which in turn
reduces the lifetime reliability of RMT techniques. They apply Dynamic Voltage Scaling (DVS),
partial RMT, and a hybrid of both techniques to overcome this problem. By using the DVS tech-
nique, the voltage level of the processor can be reduced; therefore, the temperature of the chip
can be decreased. They determine a temperature threshold for on-chip structures and change the
DVS setting based on the difference between the current temperature and the threshold value. The
authors also use the partial RMT approach in which the redundant thread is disabled at certain
times to improve performance. In this case, when the temperature of on-chip structures is below
the threshold, a full redundant execution approach is used; otherwise, they switch to the partial
RMT approach. As a hybrid approach, they combine the DVS and partial RMT approaches by set-
ting a temperature threshold. When the temperature is above the threshold, they apply partial
RMT first; however, if the temperature does not fall below the threshold for multiple times, then
they change the DVS setting by scaling the temperature value. The hybrid scheme improves the
lifetime reliability significantly with a comparable performance loss relative to SRT.

4.3 Redundant Multithreading on Chip Multiprocessors

With the emergence of multicore architectures, applying redundant multithreading techniques to
CMPs becomes very popular. In those techniques, the redundant threads run on different processor
cores to balance the load and achieve high resource utilization. On the other hand, the communi-
cation cost between the redundant threads is the main bottleneck of those approaches. Chip-level
Redundant Multithreading [46] and Chip-level Redundantly Threaded multiprocessor with Recov-
ery [19] are the primary studies that apply RMT on CMP architectures to provide transient fault
detection and recovery, respectively. Figure 7 shows a representative schematic view of the CRTR
configuration. As can be seen from the figure, two copies of a given program run on two different
processors and the helper structures such as BOQ, StB, RVQ, and LVQ provide information flow
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Fig. 7. Chip-level Redundantly Threaded multiprocessor with Recovery (CRTR) [19].

from the leading thread to the trailing one. The proposed studies may differ in sphere of replica-
tion, how they reduce the interprocessor communication, or how they handle the synchronization
of shared resources. This section summarizes those studies by presenting their key points.

CRT. Chip-level Redundant Multithreading (CRT) [46] is an adaptation of SRT [56] to a CMP
environment in which two redundant threads are executed on separate processor cores. The sphere
of replication includes the processor pipeline and register files but excludes L1 data and instruction
caches. For the input replication, the load value queue is used as in SRT. The leading thread writes
the address and the data values of load instructions to the LVQ and the trailing thread loads these
values from that queue in an out-of-order way. For the output comparison, there is a store queue
to where the leading thread writes the store address and data values, and the trailing thread uses
the store comparator to verify its own address and data values with the ones in the store queue.
Only one copy of store instruction is released to the cache memory after the verification. Addition-
ally, the line prediction queue, a modified version of the branch outcome queue, sends the correct
line predictions from the leading thread to the trailing thread. Since the load value queue, store
comparator, and line prediction queue structures are utilized by the leading and trailing threads
executing on different processors, CRT needs wide datapaths between the processors.

By using space redundancy, CRT covers permanent faults within the transient faults as in the
lockstepping approach. Furthermore, CRT has performance advantages over the lockstepping ap-
proach by decoupling the execution of redundant threads with the existence of helper structures.
The leading thread of an application can be coupled with a trailing thread of another application on
the same processor. Therefore, efficient resource utilization can be achieved to enhance the system
throughput. The experimental evaluation of the study shows that CRT outperforms lockstepping
by 13% on average for multithreaded programs.

Gong et al. [21] propose dual-core redundancy with context saving (DCR-C), which extends the
CRT approach to reduce the bandwidth demand for interprocessor communication. Their approach
reduces the bandwidth demand by comparing only the store instructions before the commits as in
CRT. They save the processor context (such as the register file, PC, and state registers) for recovery,
which is performed on cache misses caused from the committed store instructions to hide the
saving latency. In case of a transient fault, the redundant cores roll back to the last context saving
point for recovery. In order to provide consistent load values in case of recovery, a queue, named
CLV, saves the commit load values between the successive context-saving points. The performance
overhead of DCR-C is 2% compared to CRT, including fault recovery based on the authors’ findings.

CRTR. Chip-level Redundantly Threaded multiprocessor with Recovery (CRTR) [19] is an ex-
tension of CRT and SRTR [76] that presents a recovery mechanism for RMT in CMPs. Since the
leading and the trailing threads are executed on different processors as in CRT, CRTR executes
them with a long slack by using an asymmetric commit to hide the performance degradation
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caused from the interprocessor communication. In CRTR, the leading thread commits the register
updates before checking, while the trailing thread does after checking. Therefore, the state of the
trailing thread is used for recovery. CRTR allows the commits for memory updates after checking
as in CRT and a consistent memory state can be provided. In case of a fault, an exception is raised
and the state of the trailing thread is copied to the leading thread for recovery.

There is a check buffer (CB), which has individual queues for load addresses and values, store
addresses and values, and branch outcomes and register values to forward them from the leading
thread to the trailing thread. CRTR can recover transient faults except for the faults affecting the
register file, which is assumed to be protected with ECCs as in SRTR.

The interprocessor bandwidth is increased with decreasing bandwidth demand in CRTR. To in-
crease bandwidth, interprocessor paths are pipelined by partitioning wires into a set of segments.
Bandwidth demand is decreased by checking only committed values and not speculative values
and utilizing a death- and dependence-based checking elision (DDBCE) scheme. The dependence-
based checking elision (DBCE) scheme of SRTR may have some problems in masking instructions.
A masking instruction may produce a correct result, although its input operands are faulty. The
DBCE scheme is extended with DDBCE, which traces the register deaths in masking instructions,
and a masking instruction is chained if its source operand dies after the instruction. The regis-
ter values are assumed to be dead for the input operands of the other instructions later than the
masking instruction in the chain; therefore, it will be ensured that the faulty data will not prop-
agate to the remaining instructions. Based on the experimental results, CRTR has imperceptible
performance overhead compared to CRT, including fault recovery.

In order to reduce the interprocessor communication demand, Gong et al. [22] propose dual-
core redundancy (DCR) and triple-core redundancy (TCR) techniques. In DCR, they simply extend
CRT by comparing only the store instructions before commit and provide a recovery mechanism
by utilizing the context-saving approach as in [21]. In TCR, they provide an extension of CRTR by
executing three redundant threads (leading, middle, and trailing threads) on three different cores.
Additionally, they compare only the store instructions to reduce the bandwidth demand. They
do not commit the store instructions of the leading thread until they are verified by the middle
thread. In case of matching, the results are forwarded to the memory system; otherwise, they use
a majority voting mechanism by including the trailing thread’s results. The helper structures such
as LVQ, StB, and BOQ are also used in TCR to communicate with the redundant threads, but the
RVQ structure in CRTR is eliminated to reduce bandwidth demand. Based on their experimental
results, DCR can recover most of the transient faults with similar performance overhead compared
to CRT, and TCR reduces the bandwidth demand with similar performance overhead in comparison
with CRTR.

Reunion. Complexity-Effective Multicore Redundancy [66] presents a redundancy model that
provides relaxed input replication for CMP-based RMT approaches. The previous RMT techniques
[19, 56, 76] use the LVQ to store the values from the memory load operations and to enable the
trailing thread to consume the values from the queue instead of the memory system. This approach
forces strict input replication and complicates the situation for the out-of-order execution. How-
ever, relaxed input replication allows the redundant threads to execute independently by issuing
load requests directly to the caches. On the other hand, the fault tolerance is not guaranteed as in
the strict input replication case.

The Reunion execution model defines two logical processor cores named vocal and mute cores.
While the vocal core updates the values to the whole memory system by considering the coherence
protocol and the consistency model, the mute core only performs update operations on its private
cache by providing no update in the other memory structures. Reunion maintains the cache coher-
ence in the vocal cores only and allows incoherent execution for the mute cores. After successful

ACM Computing Surveys, Vol. 52, No. 2, Article 27. Publication date: March 2019.



27:18 I. Oz and S. Arslan

comparison of the redundant output, a new safe state is defined to be stored as a fault-free state.
Whenever an output comparison mismatch occurs, the recovery mechanism restores the state to
the latest safe state defined by the vocal core. Only the undetected soft errors can cause an unsafe
state. The authors claim that their approach works well due to the infrequent undetected soft er-
rors. The study implements the proposed execution model on a baseline CMP architecture. The
first specialization is about the shared cache controller that manages the local and mute cores’
memory accesses. The shared cache controller ignores the mute cache requests due to their in-
coherent behavior. It provides coherence between vocal and mute cores for only synchronizing
requests. The processor pipeline also has changes to support the Reunion execution model. First,
the safe state is stored in the register file, store buffer, and memory. Second, output comparison is
implemented by an additional in-order stage to compare the fingerprints (the hash of instruction
results) of the redundant executions from the core pairs.

Reunion incurs a 5% and 6% average performance penalty for commercial and scientific work-
loads, respectively, compared to the baseline nonredundant execution. The experimental study
also includes detailed results related to the checking overhead, the frequency of the incoherence
events, and the serialization overhead.

DCC. Dynamic Core Coupling (DCC) [36] is a flexible version of the DMR technique for CMP
architectures in which one core can verify the execution of any other core dynamically at run-
time without static core binding. DCC has an advantage over DMR such that it does not require
any dedicated communication channels. The communication between the redundant threads is
achieved by using the system bus of a shared memory multicore system. The performance degra-
dation caused from the shared bus traffic is amortized by supporting long checkpoint intervals.
Two types of cores that do not have to be leading or trailing cores are used as the master and slave
cores. Both cores can load data from the shared memory to their private caches redundantly, but
only the master core is allowed to write the dirty cache lines back to the shared memory after
verifying it with the slave core. Therefore, the cache buffer of each core has an unverified bit for
each line to indicate whether that line is verified by the redundant core.

Both hard and soft errors can be detected and recovered with DCC. For fault recovery, it presents
on-demand TMR; otherwise, all cores are used as DMR pairs. In case of an interrupt, cache buffer
overflow, I/O request, or context switch, a checkpoint request is released by either the leading or
trailing cores. Then, the architectural state of the core is compressed and broadcast to other cores
via the system bus. Each core compares its own state with the received one and a checkpoint is
taken in case of a state match. In case of a mismatch, they apply backward error recovery (BER) and
the system rolls back to the last taken checkpoint. If multiple BERs cannot recover from a fault, then
a third processor is selected to enable TMR. These three processors, namely, one master and two
slaves, execute the next checkpoint interval and use the majority voting approach to obtain correct
results. After isolation of a faulty core, the remaining two cores continue execution as DMR pairs.
For parallel applications, DCC presents a master-slave memory access window model to provide
a consistent shared memory state. Either master or slave threads can open a read window in case
of a load instruction, and this window is closed when both threads commit the load instruction.
In a similar way, a master or slave thread can open a write window for a store instruction and
that window is closed when both threads commit the store instruction. The system does not allow
one to open a write window if there is already a read or write window for the same address in a
different node (a master-slave pair). On the other hand, opening windows for different addresses,
multiple read windows for the same address, or private data read/write operations are allowed
to be performed simultaneously. To implement this approach in the hardware level, they put an
age table on each cache controller, which indicates the number of load/store instructions from the
last checkpoint time to trace open read/write windows. Based on their experimental evaluation,
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Table 3. Comparison of RMT Techniques for Multicore Architectures
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Fault model

Single

Single

Single

Both single and
multiple faults

Assumption of full
coverage of transient

Assumption of full
coverage from single

Fault faults and high transient faults . Not evaluated Not evaluated
coverage coverage of except from register
file and the memory
permanent faults .
controller unit
5%, 6% for 3%-20% overhead
commercial and over a CMP without
Outperforms Negligible scientific workloads, fault tolerance
Performance | lockstepping by 13% performance loss respectively, depending on the
on average compared to CRT compared to a checkpoint interval,
non-fault-tolerant also outperforms
system DMR
Single applications:
SPEC2000 Parallel
Parallel commercial applications:
Benchmark SPEC CPU95 SPEC2000 and scientific scientific data mining

workloads

applications such as
Splash-2 and Spec
OpenMP

the overhead of DCC is 3% for sequential applications and 5% for parallel applications compared
to a non-fault-tolerant CMP. Additionally, they compare their age-table-based scheme over the
relaxed input replication paradigm proposed in Reunion to provide input coherence between the
threads. Their conclusion is that the relaxed input replication does not provide optimistic results
under DCC’s large checkpoint intervals and it has poor performance especially for the applications
having high read/write sharing.

Comparison. Although the proposed studies might use a different sphere of replication, en-
vironment, hardware model, or benchmarks, we show the results of the main studies (i.e., CRT,
CRTR, Reunion, and DCC) by presenting their hardware overhead, fault coverage, and perfor-
mance costs in Table 3. The main advantages of using RMT techniques in a multicore environ-
ment are to balance the load among the processors, to achieve high resource utilization, and to
provide permanent fault coverage since the leading and the trailing threads of an application do
not share a single processor. The main disadvantage of those studies is that they require intensive
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interprocessor communication with high bandwidth requirements. When we compare CRT with
CRTR, the latter has imperceptible performance overhead compared to the former by providing er-
ror recovery. CRT and CRTR do not utilize parallel applications in their benchmarks, while Reunion
and DCC use parallel applications by presenting effective solutions to the synchronization of the
parallel threads. Reunion proposes relaxed input replication by an optimistic low error probability
assumption. DCC presents fault recovery by enabling on-demand TMR in their solution with an
additional 3% to 20% performance cost compared to a non-fault-tolerant baseline configuration. It
supports long checkpoint intervals to hide the interprocessor communication cost, but this might
be seen as a problem for some of the parallel applications [34]. DCC utilizes bus-based multicore
architectures rather than supporting modern network-based architectures. Furthermore, DCC in-
cludes private caches within the processor in its sphere of replication; on the other hand, CRT and
CRTR assume that these structures are protected via ECC. Reunion further assumes a circuit-level
protection for pipeline control logic.

Other RMT Extensions on CMPs. Apart from the studies mentioned above, there are several
studies that extend the RMT approaches on CMP architectures.

Highly Decoupled Thread-Level Redundancy (HDTLR) [53] presents thread-level redundancy
(TLR) for parallel programs in a CMP environment such that the redundant threads are highly
decoupled from each other in time. The redundant threads, named computing wavefront (lead-
ing thread) and verification wavefront (trailing thread), are executed asynchronously as different
hardware contexts on different cores. Their architectural states are compared with each other at
certain time periods (named epochs) to detect transient faults. In their approach, two wavefronts
can read and write their own logical memory independently and the coherence mechanisms are
also handled separately. Since the redundant threads are highly decoupled in time, the number of
unverified instructions is high, which requires efficient buffering mechanisms. Only the validated
data is allowed to be written to the shared memory, and unverified data is buffered in private mem-
ories. The store instructions are committed without waiting and written to the post commit buffer
(PCB) until they are verified. The PCB is simply an extension of an L1 cache with several sections.
In case of a store instruction, the value is written to both the L1 cache and the PCB. When the
corresponding section of the PCB is filled and verified, it will be written back to the L2 cache. The
L1 cache no longer performs write-back operations; instead, the PCB does.

The recovery mechanism in HDTLR is based on the checkpoints. At each epoch, the register
content and the valid lines of the PCB of both wavefronts are compared. In case of a mismatch,
HDTLR restores a previous checkpoint for recovery. To reduce the bandwidth demand, it com-
presses the state by using a checksum.

The nondeterminism in parallel applications may result in different outcomes based on the ex-
ecution timing of both wavefronts. To handle such situations, HDTLR simply tracks the races. It
partitions the instructions in subepochs such that there is no data race within a subepoch. To en-
force the execution order of subepochs, it presents three approaches: strict enforcement, in which
a processor has to wait on the execution of subepochs of the other verification processors; blind
speculation, in which order violations are assumed not to happen optimistically; selective enforce-
ment, which is the hybrid of previous approaches, offers to perform strict enforcement for only
the tight races happening in close-by temporal proximity. These three techniques have different
overheads in terms of performance. While the strict enforcement may keep waiting on the verifi-
cation wavefront unnecessarily due to a false ordering, the assumption made in blind speculation
may not be so realistic. If there is an output inconsistency between the wavefronts in the blind
speculation approach, HDTLR uses a rollback mechanism for the verification wavefront and en-
forces the strict ordering in the second turn. In case of selective enforcement, HDTLR selectively
enforces the ordering for a race condition that occurs between two instructions close in time.
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Based on the experimental findings, their PCB approach offers 2.5% performance overhead com-
pared to the nonredundant execution, and the memory access tracking model does not affect the
performance of the system significantly.

The redundant multithreading technique is applied to a dataflow-scheduled multithreaded pro-
cessor, named DRMT, in which the redundant threads are executed on different cores of a CMP [18].
The sphere of replication includes the processor pipeline, the thread scheduler, the register file, and
the L1 cache. DRMT uses the relaxed input replication approach proposed in Reunion and utilizes
the asynchronous output comparison mechanism to decrease the interprocessor communication
overhead. It uses a comparison buffer, which keeps the unverified store instructions, shared by a
core pair. Therefore, there is no need to transmit data among the cores for the output comparison.
The approach performs only fault detection with a maximum performance overhead of 60% when
the number of threads is 4X relative to the number of processors.

Fu et al. [17] propose an on-demand thread-level redundancy technique for concurrent pro-
grams in a multicore environment. The redundant threads run on an adjacent fixed core pair. The
processor pipeline, register file, and L1 cache of each core are included in the sphere of replica-
tion. A relaxed input replication technique is utilized for the input replication, and only the store
instructions’ results are compared for the output comparison. Their cross-layer approach needs
support from the programming model, compiler, ISA, and micro-architecture. In the proposed on-
demand thread-level redundancy technique, the redundancy level of a program might be specified
by the user. A master thread can create the child threads of both the master and redundant threads
and handles the synchronization of a child thread with its redundant parent. The model can de-
tect both hard and soft errors for concurrent programs with a maximum performance overhead of
100% for multicore benchmarks compared to a non-fault-tolerant baseline.

Yu et al. [82] present a thread-level redundancy approach similar to HDTLR. The sphere of repli-
cation includes the processor pipeline, the register files, and the private caches apart from the L2
cache. An additional cache, named unverified value cache (UV cache), keeps the results of the unver-
ified store instructions to prevent a shared L2 cache update before verification (similar to the PCB
approach of HDTLR). The proposed fault-tolerant system utilizes a network-based architecture
rather than a shared-bus system. The nondeterminism of the parallel applications is handled by
enabling L1 cache updates for the unverified store instructions; however, it is not allowed to update
L2 cache for the unverified instructions. The thread-level redundancy approach with checkpoint-
based recovery mechanism has 3% performance overhead compared to a nonredundant system for
shared-memory parallel applications.

Madan and Balasubramonian [40] propose an eager register release technique applied on sev-
eral RMT techniques such as SRTR and CRTR. Providing redundant copies of threads in RMT
techniques has negative effects on the performance because of the shared resources such as a reg-
ister file. For this reason, they propose utilizing eager register release in the leading thread so the
trailing thread can take advantage of using the available registers. A physical register used by the
leading thread can be released after the value is rewritten or used by all consumers in the pipeline.
They apply hardware modifications to keep track of the various register states. Therefore, a regis-
ter file with a smaller size can be utilized with improvements in power consumption, register file
access time, and reliability. Based on the experimental results, the size of the register file can be
reduced by 37.5% with similar throughput compared to the baseline approaches (CRTR and SRTR)
with a minor decrease in fault coverage.

Greskamp and Torrellas [23] propose a leader-checker microarchitecture, named Paceline, to
improve CMP performance by overclocking (executing at a higher clock rate than the nominal
rate) the leader core. On the other hand, the checker core runs at a nominal frequency rate in the
same CMP. The checker thread has already executed faster than the leader due to information
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flow from the leader core. In order to detect faults, the leader and checker cores compare their
architectural states periodically. In order to balance the heat and power consumption on CMP, two
cores change their roles periodically (leader core may exchange between two cores). The proposed
microarchitecture improves performance by 9% and 21% for different benchmarks, increasing the
frequency of the leader core by 30% compared to a baseline configuration without overclocking
and the helper structures.

Subramanyan et al. [71] observe that the proposed fault-tolerant CMPs suffer from the through-
put loss due to redundant use of the cores. Therefore, they present a multiplexed redundant execu-
tion (MRE) technique in which more than one trailing thread is executed on a single core and each
leading thread is executed on a different core based on one-to-one mapping. Their coarse-grained
multithreading model enables the execution of multiple trailing threads on the same core. Execu-
tion assistance forwards load values and branch outcomes from the leading thread to the trailing
threads to speed up the execution of the trailing thread. The leading thread executes a program
partitioned into chunks and puts the results of them into a run request queue (RRQ). These chunks
are verified by the corresponding trailing thread executed on the trailing core. Since there are mul-
tiple trailing threads on the same core, usage of RRQ and executing the program as chunks enable
fairness among them. The fault detection mechanism is based on exchanging fingerprints of redun-
dant cores periodically and the recovery mechanism is based on restoring to a previous checkpoint.
The model enhances the throughput by 23% over a baseline CRT for multiprogrammed workloads.

In another study of the same research group, an adaptive execution assistance approach [72] is
applied over the multiplexed redundant execution technique [71]. In this approach, the instruction
results fed from the leading core to the trailing one may vary depending on the characteristics of
the program executed. In the hardware-based adaptive execution assistance approach, they present
adaptive branch forwarding and adaptive critical value forwarding techniques. In the former one,
there are different branch forwarding levels that change from sending all branch outcomes to send-
ing only mispredicted ones. The starting level is determined as sending only the mispredicted ones,
but the level is incremented or decremented at the trailing core side based on the program phase
executed. In the latter one, the instruction results sent from the leading core to the trailing one are
kept in the instruction result queue (IRQ). When the queue becomes full, the leading core cannot put
the new results in and stalls. In such a case, it starts to send only the results of instructions on the
critical path (identified based on a heuristic) and the instruction at the head of the ROB identified
as critical. Based on their results, the throughput of their approach with both fault detection and
recovery is higher than CRT and MRE.

4.4 Software-Based Redundant Multithreading

Software-based redundant multithreading approaches deal with soft errors in either the compiler,
operating system, or application levels by considering the effect of the errors on the software
running on the system.

4.4.1  Compiler Level. Compiler-level redundant multithreading techniques (also referred to as
software RMT in the related literature) transform the application code into a redundant execu-
tion with two communicating threads. The leading thread performs all instructions in the original
code with additional communication code, while the trailing thread replicates the computations
and compares the results with those received from the leading thread. Figure 8 presents an exam-
ple transformation for a simple code segment. By the assumption that memory is protected by an
error detection mechanism and the sphere of replication only includes computations, the mem-
ory load/store operations are performed by only the leading thread, while the ALU operations
(additions here) are replicated in the trailing thread. The leading thread sends the computed load
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Original code Software RMT-protected code
Leading thread Trailing thread
rl = rl + 4 rl =rl + 4 rl =rl + 4
send rl receive ril’
load r2 <- [rl] load r2 <- [rl] if (rlt=rl’) Error
send r2 receive r2
r3 = r2 + r3 r3 = r2 + r3 r3 = r2 + r3
rd = r2 + 4 rd = r2 + 4 rd =r2 + 4
send r4 receive r4’
send r3 if (r4!=r4’') Error
store r3 -> [r4] store r3 -> [r4] receive r3’
if (r3!=r3’) Error

Fig. 8. The transformation of the code in software RMT.

address (r1) to the trailing thread, and the trailing thread checks the received value with its own
computed one. If they do not match, an error is raised by the trailing thread. Then the leading
thread performs the load operation and sends the loaded value (r2) to the trailing thread. The
trailing thread directly uses the received value in the subsequent computations since the load
operations are not in the SOR. After two threads perform addition operations redundantly, the
leading thread sends the values (r3 and r4) to the trailing thread. The trailing thread again com-
pares the received values, which are the operands of the next store operation, with the computed
ones. If there is no difference, the leading thread performs the store operation successfully. Since
software RMT techniques rely on code duplication and the thread communication overhead be-
comes very high due to the synchronization requirement between the threads, the related studies
propose optimizations to deal with the performance degradation.

SRMT. Similar to the hardware-based RMT approaches, SRMT [78] replicates the original pro-
gram code into two threads: the leading thread contains the original program instructions and
additional operations for communication with the trailing thread, and the trailing thread includes
the replication of the computations and compares its results with the leading thread’s results.
SRMT consists of compiler and runtime support for the target programs.

The SRMT compiler support defines the operations inside the SOR by considering the values
duplicated for redundancy and the values checked for error detection. It presents optimizations
for fail-stop situations and binary function calls. Since the system calls for I/O operations and
shared memory access operations are not included in the SOR, these operations are not replicated
(executed twice). Instead, the return values obtained by the leading thread are sent to the trailing
thread, and the trailing thread directly uses these values. Similarly, the addresses of the shared
memory load/store operations, the values of memory store operations, and the parameters for
system calls are sent to the trailing thread by the leading thread, and the trailing thread compares
the values by its own computed values. For the fail-stop operations, which represent the volatile
and shared variable accesses and incur waiting time for the no-error acknowledgment from the
trailing thread to the leading thread, the SRMT compiler behaves optimistically. It relies on the
assumption of the infrequent occurrence of those operations and relaxes for some of the memory
operations by rescheduling the instructions to eliminate the waiting time; the leading thread may
cause an exception even if the trailing thread detects an error. The compiler also provides support
for call-to and call-back from binary functions, excluded from the replication, by both the leading
and trailing threads.

The SRMT runtime support provides an optimization for the communication overhead between
the leading and trailing threads. It uses a software queue that implements delayed buffering (DB)
and lazy synchronization (LS) optimizations to make the communication granularity coarser and
reduce the synchronization overhead. The DB technique buffers the data to be sent to the trailing
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thread and only sends when the buffer reaches enough size (a predefined limit). The LS technique
keeps local copies of the shared variables in the queue implementation and updates the synchro-
nization variables in a lazy way to reduce the communication.

DAFT. Decoupled Acyclic Fault Tolerance (DAFT) [84], which is implemented as a compiler
transformation in the LLVM compiler framework [37], also replicates the program computation
in a redundant trailing thread and inserts fault detection instructions into program code by per-
forming them off the critical path. The SOR includes the processor and does not cover the memory
system by the assumption that memory is protected by error correction codes. The memory op-
erations are treated as in the SRMT; the loaded values are forwarded to the trailing thread, while
the stores are executed in the leading thread, and the addresses and the values are checked in
the trailing thread. Similar to SRMT, DAFT also tries to optimize the waiting time of the lead-
ing thread for no-error condition check by assuming infrequent occurrence of faulty operations.
Instead of rescheduling the instructions, DAFT removes the communication dependence between
the send signal (error check) of the trailing thread and the wait signal of the leading thread specula-
tively. To detect the misspeculation, which occurs in case of a transient error, DAFT presents three
mechanisms. In-Thread Operand Duplication performs the error checking of the volatile load/store
operations’ operands by duplicating them in the leading thread instead of thread pairs, which
eliminates the interthread communication. All of the other operations are compared in the trail-
ing thread with the values produced by the leading thread (Redundant Value Checking), and the
trailing thread reports a transient fault in case of a mismatch. The Custom Signal Handler allows
one to distinguish the normal program exceptions from a transient fault. When an exception oc-
curs in the execution, the DAFT signal handler waits for the trailing thread to complete. Unless the
value-checking code detects a transient error before a timeout, the exception is reported as a nor-
mal exception to be handled by the system signal handler; otherwise, a transient fault is reported
and the program is stopped.

DAFT proposes optimizations for minimal communication cost between the redundant threads
and smaller number of branches. Branch removal eliminates the branch instructions including
nonredundant code in the trailing thread. Interthread communication lifting moves the error
checks to remove some interthread communications. The software queue implementation uses
a streaming store and prefetching for better performance by accelerating communication.

COMET. The Communication-optimized multithreaded error detection technique (COMET)
[43] performs a detailed analysis on the communication overheads of the existing software redun-
dant multithreading techniques and proposes optimizations to reduce the communication time.
It evaluates the performance of the queue operations for the communication between the lead-
ing and the trailing threads and uses an optimized version of a multisection lock-free single-
producer/single-consumer queue to remove synchronization instructions of enqueue/dequeue
functions performed by the leading and trailing threads. When the threads reach a synchroniza-
tion point (defined as red zone), an exception is raised and the custom exception handler performs
the synchronization by keeping the threads waiting. In order to allow the handler to have full ac-
cess to the register file and eliminate the register allocation process for the queue index pointer,
which points to the next section in the queue, COMET uses a fixed register for the store and load
instructions of the enqueue and dequeue operations. COMET optimization also includes enqueue
function inlining, embedding the increment of the index within the memory instruction for the
consecutive enqueue (or dequeue) operations (called as address offset fusion), packing the data and
the address values to be checked into a single value to reduce queue access operations.

EXPERT. Effective and flexible error protection by redundant multithreading (EXPERT) [67]
provides microprocessor-wide error detection by including the memory operations inside the
SOR. While the previous software-RMT approaches (presented above) suffer from the vulnerable
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Table 4. Experimental Characteristics of Compiler-Level RMT Approaches

SRMT [78] DAFT [84] COMET [43] |EXPERT [67]
Compiler ICC 9.0 LLVM GCC 4.9 LLVM
Benchmark suite SPEC CPU2000 SPEC CPU2000 NAS Parallel MiBench
Environment Internal CMP simulator | 6-core Intel Xeon | Quad-core Corei5 Gem5
Fault coverage 99.79% 99.93% ~SRMT 65xSRMT
Performance overhead ~2.86X ~1.38x ~2.85x ~5x

input replication and output comparison processes, EXPERT solves this problem by duplicating
the memory read/write operation values. It assigns a checker thread for the main thread and co-
ordinates them for the memory operations. In the checker thread, it replicates both computational
instructions and memory load operations. In order to provide input data coherency for the loaded
values between the main and checker thread, EXPERT inserts synchronization points before store
operations in the main thread to prevent it from updating a memory location to be read by the
checker thread redundantly. It uses a relaxed approach to keep the number of synchronization
points at a minimum and puts a majority voting operation for the loads from the volatile memory
locations (which can be updated from the outside the application) instead of inserting synchro-
nization code. Both the leading and the checker threads perform three volatile load instruction
issues redundantly and check the results by a two-of-three majority voting. The checker thread
also checks the store operations by loading the value written by the main thread and comparing
it against its own computed value to be stored. The optimization mechanism for communication
overhead proposed by EXPERT evaluates memory operation packing to eliminate synchronization
points before memory operations. It considers all of the independent successive memory opera-
tions as one operation by packing them together and synchronizes the main and checker thread
once for the whole pack.

Comparison. Although the experimental study conducted for the compiler-level RMT tech-
niques is based on different settings for different approaches, we put together the main charac-
teristics to guide the future work. We list the experimental setup properties and performance of
the techniques in Table 4. While SRMT and EXPERT are tested in simulation environments, DAFT
and COMET are applied in a real multicore system. COMET, the only one that addresses the issues
for multithreaded applications, uses the NAS parallel benchmark suite in the experimental study.
Even though the results are based on different settings (the programs or the architecture), we list
the fault coverage and performance overhead to give insight about the potential benefit and cost
of each approach. While the related studies provide additional comparative performance results,
we only refer to the performance overhead relative to the case without any fault tolerance.

4.4.2 Application Level. A few studies propose application-level RMT techniques providing
multithreading as an interface to the programmer.

RedThreads. An Interface for Application-Level Fault Detection/Correction Through Adap-
tive Redundant Multithreading (RedThreads) [30] recently presented an RMT-based error detec-
tion/correction API configurable by the programmer. It provides a set of directives and library
routines specified for C/C++ programs. The directives include the number of the redundant thread
copies to indicate the level of redundancy and data scoping clauses to define both input variables
to be replicated and the output variables to be compared. The programmer may selectively de-
cide the code regions for reliable computation by providing the detection/correction level and the
selective variables.

The RedThreads compiler support extends Rolex [27] to enable redundant multithreaded ex-
ecution. The RedThreads runtime system manages the redundant thread execution specified by
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runtime library routines, which are only visible to the compiler. The execution mode may be ma-
nipulated adaptively by specifying the redundancy level. For the specified execution phases, the
user can focus on the system performance by eliminating redundancy; for the other times reli-
ability can be preferred by enabling redundant execution. The RedThreads runtime system also
provides opportunistic fault detection by monitoring the fault events in the system and taking
the detection/correction decisions based on the fault frequencies and probabilities. RedThreads
also provides runtime optimizations by considering lazy fault detection and thread clustering. The
lazy fault detection scheme relaxes the immediate synchronization of the redundant threads. The
runtime system buffers the computed values, and a lightweight thread performs the output value
comparison while the redundant threads continue their subsequent execution. The thread clus-
tering strategy assigns different priorities to the redundant threads. The runtime system assigns
higher priority to one of the redundant threads (the primary thread) for each code region and lower
priority to the duplicate threads. Moreover, all the duplicate threads are clustered and scheduled
in a single core. The primary threads can be assigned to the remaining cores. In this way, there
would be lower interference between the primary and the duplicate threads. Combining these two
optimizations, the primary thread can continue its execution without waiting for the others.

The same authors previously proposed an application-level adaptive redundant multithreading
based on a simple language level directive [29]. They also introduce the flexible spheres of repli-
cation concept. When the programmer identifies a code region to be executed redundantly, the
compiler translates the code block into flexible spheres of replication. The runtime system man-
ages flexible spheres of replication by turning off the redundant execution according to the fault
tolerance state of the system. It collects information about the system state from system logs re-
lated to failure events and computes Time Between Events (TBE) and Time Since Last Event (TSLE)
for system resources including the processor cores and memory modules. When the TSLE exceeds
the TBE, the redundant execution is switched off by considering that the currently executing code
region is not vulnerable to errors. This flexibility works on the computation and input redun-
dancy level; namely, if TSLE is higher than TBE for processor cores, the runtime system stops the
redundant computation being performed by the computation units; if TSLE is higher than TBE
for memory modules (DRAM or cache), the runtime system disables the replication of the inputs
stored in memory. The study also explores thread mapping policies by considering the execution
of the redundant threads on the same core or on the separate cores. In a follow-up paper [28],
the same authors proposed a lazy fault detection where the redundant results are not compared
immediately. As the redundant threads compute their results, they write their output values into
a buffer space. Then another lightweight thread performs the value comparison.

Chen and Chen [9] propose a programming model based on thread-level redundant execution
and majority voting for fault detection and recovery from errors. The leader thread creates sev-
eral follower threads to execute the protected code region redundantly and checks the results by
majority voting. The execution continues according to the majority voting. Moreover, a watch-
dog thread checks the leader and follower threads. If a follower is not alive, it recreates to avoid
an unresponsive system state. The study presents a programming model based on the POSIX
thread library by providing additional functions for the proposed fault tolerance approach. It
implements r_pthread_create() to handle the creation of the follower and watchdog thread, and
checkpoint_work1() to perform majority voting in the application level as functions using the stan-
dard pthreads functions. The programmers can call the functions to improve fault tolerance in their
programs without worrying about the implementation details.

4.4.3 OS Level. A couple of studies propose operating system support for RMT execution.
Romain. Operating System Support for Redundant Multithreading (Romain) [14] presents an
operating system service based on software-implemented RMT for error detection and recovery. It
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relies on ECC-protected memory hardware included in commercial off-the-shelf (COTS) systems
and deals with the soft errors affecting the functional units.

Romain is implemented inside a system architecture, ASTEROID, which includes a critical core
allowing the programs to correctly execute in the presence of errors. The system introduces the
reliable computing base (RCB) term for the critical core to represent the software essential for trans-
parent replication of applications to provide fault tolerance. In order to minimize the time for RCB
execution and the necessary code, the authors try to minimize interaction between the application
and the RCB during normal execution. They also consider the operating system kernel as a part of
the RCB by including a microkernel to minimize the code size of the RCB implementation. Even-
tually, the RCB includes the kernel, OS system services, and Romain to provide error detection and
recovery for the applications.

Romain replicates the execution at the binary code level transparently and does not need the
source code of the replicated application. The master process creates one thread for each replica in
a separate address space, and it is responsible for comparing their states during the execution. It
has access to every operation of the replicas, and the interactions between the replicated program
and the rest of the system are handled by the master. When a replica raises an exception (such
as a system call), the master blocks it until the other replicas reach that state. If the master finds
that the replicas are identical, the result of the operation (i.e., system call return value) is sent to
all replicas by overwriting their thread states. However, shared memory access is not in the con-
trol of the master; the replicas may modify it at any time without the master’s control. Although
the master does not control directly, it still needs to be informed about the state of the shared
memory operations. It can be accomplished either by emulating the memory operations, which
is too costly, or by executing them in the master’s memory, which is vulnerable due to the non-
replicated execution. Romain does not implement any of these features, and the master maintains
a representation of each replica’s address space redundantly. It uses n-way modular redundancy
and provides recovery without checkpoint and rollback techniques.

RomainMT. Operating System Service for Replication of Multithreaded Applications (Ro-
mainMT) [13] presents the extension of Romain [14] by replicating parallel binary applications.
Due to the undeterministic execution of multithreaded applications, the replication may cause un-
expected behavior. RomainMT aims to find out a suitable deterministic multithreading approach
for replicating the parallel applications. For a multithreaded application, it creates replicas with
multiple threads and defines thread groups as the threads doing the same job in different replicas.
The master process handles each thread group. RomainMT adds a debug breakpoint instruction
at the beginning of the lock function inside the thread library. When a thread requests a lock, this
instruction stops the thread and triggers the master process to serialize accesses to the same lock
by different thread groups. Thus, the RomainMT master process implements enforced determinism
through replicated execution by using a debug exception handler. To overcome the performance
issues caused by the debug trap and lock handling, RomainMT also proposes cooperative determin-
ism so that the replicas agree on the ordering of the lock operations cooperatively instead of using
the trap operations. It implements a replication-aware thread library that replaces pthreads lock
functions. For fault recovery, RomainMT relies on an external error correction mechanism in case
of DMR execution or performs majority voting if three or more replicas exist.

4.5 GPU-Based Redundant Multithreading

Recently, GPU-based RMT techniques have been studied to utilize the massive number of parallel
threads in general-purpose graphics processing units (GPGPUs). A GPGPU architecture consists
of streaming multiprocessors (SMs) providing data-level parallelism. The threads (or work items)
perform the execution of the given function (kernel) for a subset of data by being scheduled as
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Fig. 9. Examples of Warped-DMR executions [31].

warps (wavefronts) consisting of several threads. A set of threads also form thread blocks (or work
groups), and the threads in the same block can communicate through a shared memory [2].

Dimitrov et al. [12] first introduced the software-based redundancy in GPGPUs. Although re-
dundant multithreading is not the main focus of the study, it proposes three main redundancy
approaches: R-Naive, R-Scatter, and R-Thread. While R-Naive simply duplicates the computations
by executing them one after another, R-Scatter uses underutilized instruction-level parallelism
to get the benefit of the VLIW model implemented on specific GPU architectures. On the other
hand, R-Thread exploits unused thread-level parallelism. It doubles the number of thread blocks
per kernel, and the additional blocks carry out the redundant computations. If the original thread
blocks do not utilize the compute units, the redundant copies will increase the reliability by reduc-
ing redundancy overhead. Since R-Thread does not seek underutilization conditions explicitly and
doubles the execution directly, it does not perform well for the selected benchmarks that already
have sufficient thread-level parallelism.

Warped-DMR [31] presents a DMR-based fault detection technique utilizing parallel execution
units in GPGPUs. Warped-DMR proposes intrawarp and interwarp DMR to exploit different under-
utilized resources. A warp includes several threads executing the same code (with a single program
counter) and processing different data operands. Some of the threads inside a warp may become
idle in case of branch instructions. While some threads take a branch, the others do not take due to
data difference. Since all threads use the same program counter, only one set of threads continues
its execution; the other threads become inactive. Intrawarp DMR seeks those underutilized execu-
tion units and uses them for DMR of the active threads by forwarding an active thread’s operands
to an inactive thread (Figure 9(a)). To be able to enable forwarding efficiently, intrawarp DMR adds
a Register Forwarding Unit (RFU) to the microarchitecture. GPGPUs include three different types of
execution units: shader processor cores (SPs) for arithmetic operations, LD/ST units for memory
operations, and special function units (SFs) for executing complex operations such as sine, cosine,
and square root. Since one instruction usually uses only one of those units, the others become idle.
Interwarp DMR exploits those idle units to replicate the instructions (Figure 9(b)). Especially, if
the instructions using different execution units are interleaved, they can be redundantly executed
in the following cycle. For instance, if we have an add, load, sub operation order, interwarp DMR
executes the replication of add in SP during the original execution of the load operation, and the
replication of load in LD/ST during the original execution of the sub operation. For the unveri-
fied instructions, interwarp DMR adds a microarchitectural structure called ReplayQ to buffer and
dequeue the instructions when the execution units become idle.

Wadden et al. [77] present a real-world evaluation of compiler-based GPU RMT by implementing
redundant multithreading in OpenCL programs. Since the study is based on an OpenCL compiler,
it uses work group and work item terms for RMT implementation instead of the warp and thread
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terms in the hardware-based Warped-DMR approach. A work group consists of several work items
having their own private memory. Work items from one work group have access to the local mem-
ory of their own work group but are prevented from accessing the local memory of another work
group. The study proposes Intra-Group RMT and Inter-Group RMT: Intra-Group RMT duplicates
the computation between the work items within a work group, while Inter-Group RMT replicates
among entire work groups. Intra-Group RMT increases the size of the work group by duplicating
each work item (creates work-item pairs). Since work-item pairs can communicate through the
work-group local memory, it is possible to use local data share (LDS) for the output comparison.
Intra-Group RMT offers two options for the SOR: Intra-Group RMT+LDS, including LDS inside
the SOR, and Intra-Group RMT-LDS, excluding LDS from the SOR. In the first option, the data and
the load/store operations inside LDS are doubled, while the latter executes the memory operations
once by comparing output for store operations. Since the computation is replicated within a wave-
front (similar term as the warp in the Warped-DMR approach), the scalar register file (SRF), scalar
unit (SU), instruction fetch (IF), and instruction decode (ID), which are shared for an entire wave-
front, are not protected. Inter-Group RMT doubles the number of work groups globally and assigns
work-item pairs in separate work groups. Since the work items in different work groups are not
able to communicate through the local memory, the global application memory needs to be used
for the output comparison. Unlike Intra-Group RMT, the entire scalar unit, instruction fetch, and
decode units are protected in this approach, since the redundant work-item copies are replicated
among different wavefronts. Inter-Group RMT also implements synchronization among the work
items due to the lack of synchronization support among the work groups. The study presents a
detailed performance and power analysis for both approaches. They show that Inter-Group RMT
incurs higher overheads due to the communication through the global memory. While most RMT
approaches focus on theoretical aspects and are based on simulations, Wadden et al. present a
real-world implementation with the authors mostly from industry having opportunities directly
in the field.

Gupta et al. [24] extend the work done in [77] by using cross-lane operations and fingerprinting
to decrease the synchronization overhead. Intra-Permute RMT presents an optimization for the
Intra-Group RMT approach based on the currently introduced cross-lane operations. The cross-
lane operations (permute instructions) offer a register-level communication between different
wavefront/warps. Intra-Permute RMT uses those permute instructions, instead of the memfence
instruction (instruction for synchronizing memory operations) through local data share, for the
synchronization among the work-item pairs. Inter-Fingerprinting RMT proposes an optimization
for the Inter-Group RMT approach. In order to reduce the number of synchronization points be-
tween the redundant work-item pairs, it uses fingerprinting to combine several synchronization
events. Before a store operation, both the leading and trailing work items generate a hash using the
memory address, the value to be stored, and the previous hash value. If the threshold is reached for
the synchronization event, the leading work item sends the computed hash, which may include the
hash of the values from several synchronization points, to the trailing thread. The trailing thread
compares its hash value with the received one, and it raises an error in case of a mismatch.

4.6 Power-Efficient Redundant Multithreading

Most of the proposed redundant multithreading approaches have optimistic results in terms of
the performance and reliability; however, executing two copies of the same thread on either the
same or different cores incurs high power consumption overhead. Therefore, there are several
approaches that aim to provide close performance and reliability results to previously proposed
studies (such as CRT [46] and CRTR [19]) by minimizing power consumption overhead.
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The study proposed by Rashid et al. [54] (named PVA) is one of the first attempts that aims to
minimize the power consumption overhead of the provided redundancy. They provide core-level
redundancy similar to CRT. In their approach, there is a leader thread running on a lead processor
and a trailer thread executing on multiple checker processors. They reduce the power consumption
overhead by using two approaches that are the parallel verification process and prefetch effect
of the leader thread. Parallel verification is achieved by partitioning the unverified instructions
of the leader thread on multiple OoO checker cores. Each checker takes the checkpoint of the
corresponding chunk that has register file content and starting PC of the chunk. There is a PCB
for the leader thread, which keeps the address and data of the store instructions. The checkers
utilize the PCB of the leading core to verify each chunk. Additionally, the trailer thread takes
advantage of information flow from the leader thread, which assists the execution of it. Since both
the parallel verification and the prefetch effect of the leader thread accelerate the execution of
the trailer thread, they apply lower supply voltage for the checker cores compared to the lead
core. Using two checker cores run at half frequency and voltage levels provides lower energy
consumption compared to CRT without affecting performance.

Madan and Balasubramonian analyze the main factors that affect the power consumption in
RMT approaches analytically in [41] and provide a simulation-based study by considering these
effects in [42] (named P-CRTR). In these studies, they consider a redundancy model similar to
CRTR. They observe that the IPC value of the trailer thread is higher than the leader thread since
it has no branch mispredictions or cache misses due to helper structures such as LVQ, BOQ, RVQ,
and StB [41]. By taking advantage of the high IPC value for the trailer thread, the authors propose
to reduce the power consumption by considering in-order execution, dynamic frequency scaling
(DFS), and parallel verification. Based on their observations, the power consumption of an OoO
checker core is higher than the in-order checker core, although the OoO core has better IPC values.
Executing the leader thread on an OoO core and the trailer thread on an in-order core has better
power consumption results since using the in-order core for the trailer thread compensates for the
high intercore traffic overhead. Using the DFS technique, the frequency of cores is changed dynam-
ically according to the IPC values of the executing threads. Compared to PVA, they observe that
the parallelization of the verification process has little advantage over using an in-order checker
core since it reduces the dynamic power but increases the leakage power even if DFS is used.

Subramanyan et al. propose two studies ([68] and [70], named EERE) in which a core-level RMT
approach is used similar to CRT. There is a leader thread executing on a primary core and a trailer
thread executing on a redundant core. Branch outcomes, load values, and fingerprints are delivered
using a shared bus between these cores. In both approaches, they execute redundant core at a lower
voltage since the IPC value of the trailer thread is higher than the leader thread due to the helper
structures. They utilize a dynamic voltage and frequency scaling (DVFS) technique based on the
number of outstanding instructions at helper structures such as BOQ and LVQ. If the number of
instructions is higher than the high threshold, they increase the frequency of the redundant core;
and if it is less than the low threshold, they decrease the frequency of it. As a difference between
these two studies, they shut down the data cache of the trailer thread to reduce leakage power
in [68] since the trailer thread does not access the data cache (due to LVQ). Additionally, they
monitor the effects of LVQ and BOQ sizes and different high thresholds on performance, energy,
and EnergyxDelay? metrics in [68]. Compared to PVA and CRT, both of their approaches consume
less power relative to the nonredundant execution.

In another study of the same research group (named RECVF [69]), the leader thread forwards
the results of critical instructions to the trailer thread to accelerate the execution of it apart from
the helper structures. In that way, the voltage-frequency level of the trailing core can be decreased
to minimize the energy consumption. The critical instructions are a small set of instructions on the
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Table 5. Experimental Characteristics of Power-Efficient RMT Approaches

Power
Approach Estimation Simulator Power/Energy Results Performance
28% extra energy compared No performance loss
PVA [54] Wattch SimpleScalar ° 24 pa compared to nonredundant
to nonredundant execution .
execution
. 15% better ED? compared to 12% worse performance than
P-CRTR [42] Wattch SimpleScalar CRTR [19] CRTR [19]
Subramanyan | First-order 79% average energy savings 1.2% performance overhead
SESC compared to non-fault-
et al. [68] power model for redundant core .
tolerant baseline
. 0.3% performance overhead
EERE [70] Not specified SESC 1.48 times the energy Of. compared to non-fault-
non-fault-tolerant baseline .
tolerant baseline
. 1.2% performance overhead
RECVF [69] Wattch SESC 1.26 times the energy Of. compared to non-fault-
non-fault-tolerant baseline .
tolerant baseline

critical path that affects the performance of the program significantly (such as mispredicted branch
instructions). These instructions are identified at the leading core by using various heuristics. The
fanoutN heuristic, which identifies an instruction as critical if the output of it is used by at least
N in-flight instructions, shows the best performance. Since forwarding the results of the critical
instructions causes a slack between the leader and trailer threads, this overhead is compensated
by executing the trailing core at a low voltage-frequency level. The slack may change during the
execution of different program phases; therefore, the voltage-frequency level of the cores is ar-
ranged dynamically at runtime. In their approach, the IPC values of both leader and trailer threads
are monitored during regular time periods, and the frequency of cores is arranged based on the
scaled ratio of IPC values. According to their results, by forwarding a small set of instructions,
high performance results can be achieved with significant power gains.

Comparison. Although the studies mentioned above use different hardware configurations on
different simulators, we summarize the power/energy and performance results reported by them
in Table 5 to give an insight on the outcomes. The studies use similar benchmark suites (i.e., SPEC
CPU2000) by considering different baseline architectures such as non-fault-tolerant architecture,
CRT, or CRTR. Among the studies that consider the non-fault-tolerant architecture as baseline,
it is observed that the PVA consumes 28% extra energy than the baseline, the EERE consumes
1.48 times the energy of the baseline (where CRT consumes 1.99 times and PVA consumes 1.79
times the energy of the baseline, respectively), and RECVF consumes 1.26 times the energy of the
baseline (where CRT consumes 1.52 times and PVA consumes 1.32 times the energy of the base-
line, respectively) based on the reported experimental results. Since RECVF forwards only critical
instructions to the trailing thread, it might be required infrequent bandwidth usage might be re-
quired; therefore, it might present fewer energy consumption results. Apart from these studies, the
study proposed by Subramanyan et al. [68], which uses a simple first-order power model, reduces
the dynamic power in the redundant core by 79% based on their results. In P-CRTR, they show
that the overhead of the redundant core is 10% of the leader core’s power dissipation by using in-
order checker and OoO leader cores. Additionally, their approach show 15% better ED? compared
to CRTR for the multithreaded workloads. The proposed techniques improve the power/energy
consumption by presenting comparable performance results; however, they do not evaluate the
fault coverage of the proposed systems. Their conclusion about the fault coverage is based on
the assumptions. Most of the proposed studies model the power/energy consumption by using
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estimation tools; however, these tools might be limited with design parameters and make the es-
timations inaccurately.

4.7 Thread Mapping for Redundant Multithreading

There are several studies that try to improve the performance of RMT techniques by efficient
mapping of threads on many-core architectures.

Kalayappan and Sarangi [32] perform different thread mapping techniques in which the leader
and checker threads might be scheduled across different SMT cores. They assume that the number
of the leader and checker threads is more than the number of available cores; therefore, the leader
(or checker) thread of an application can be paired with a checker (or leader) thread of a different
application. They define an IPC value for each core that is the summation of IPC values of threads
executing on it. Then, they sort the cores based on the IPC values in increasing order. When they
map a single thread, they select the first core in the list that has an empty slot to map the thread onto
it. The target is simply to map a high IPC thread with a low IPC one to balance the load among the
cores. At certain time periods (named epochs), they calculate the IPC values of the current mapping
and reschedule the threads based on their activity for the next period. To map a set of threads, they
apply three algorithms. In Pinned Leaders, the leader threads are bound to a random set of cores
statically. At each epoch, the checker threads are sorted based on their IPC values in decreasing
order and they are bound to the selected cores (based on the criteria given above) dynamically.
In Unpinned Leaders, all threads are treated as the same and they are scheduled based on their
activity at each epoch. In Unpinned - All Leaders First, a hybrid of the previous two approaches is
applied in which threads are bound to the cores dynamically based on their IPC values; however,
it gives priority to the leader threads since they need more resources than the checkers. Among
these scheduling techniques, Unpinned - All Leaders First shows the best performance compared
with the other proposed mapping techniques since the leader threads, which have high demand
on resources, are prioritized over the checker ones. They also report that the proposed mapping
algorithm shows better performance than SRT [56] and CRT [46]. Since the leader and checker
threads of an application might be bound to different cores, the communication overhead of the
proposed approach is decreased by utilizing a network-on-chip (NoC) architecture and proposing
a set of enhancements such as selective forwarding of cache lines and forwarding filters to reduce
the network traffic. As forwarding filters, the recently forwarded buffer (RFB) is used by the leader
thread to eliminate sending the same cache lines multiple times to the trailer thread by keeping
the recently sent cache lines in the buffer. The lines to be forwarded buffer (LFB) contains the actual
cache lines to be sent to the trailer thread based on RFB entries. The proposed technique provides
a complete fault coverage based on their assumptions.

Chen et al. [8] propose a Mixed Redundant Threading (MRT) approach, which is a mixture of
SRT and CRT under limited time and core constraints. In their TMR-based RMT approach, two
replicated threads can be executed on two cores in parallel as in CRT, while one of the redundant
threads runs on the same core with the original thread sequentially as in SRT. They determine the
redundancy level of tasks as SRT, CRT, or MRT, then use Federated Scheduling to schedule tasks
on the cores. In Federated Scheduling, the tasks are divided into two groups as the high-utilization
tasks and the low-utilization tasks, where the former ones are scheduled first and the latter ones
are scheduled on the remaining cores. Based on this scheduling, a task can be mapped onto a
dedicated task executing one core or multitasking cores. For scheduling of the high-utilization
tasks, list scheduling is used where the parallel subtasks of the task are mapped on the cores
dedicated to it. For scheduling of the low-utilization tasks, they use the remaining cores by us-
ing rate-monotonic priority assignment. In order to assign the redundancy level for each task by
considering the task timing constraint, they use a dynamic programming approach. Furthermore,

ACM Computing Surveys, Vol. 52, No. 2, Article 27. Publication date: March 2019.



A Survey on Multithreading Alternatives for Soft Error Fault Tolerance 27:33

they select the optimal redundancy level for task stages by adapting the dynamic programming
approach since each task stage may require different redundancy levels under Federated Schedul-
ing. In that fine-grained optimization approach, a stage of a task can be executed with TMR, DMR,
or no redundancy. Their approach outperforms the greedy approach in terms of reliability penalty,
which is calculated as the probability of an error having a visible effect on the output during the
execution of a specific task, under the limited number of cores constraint.

Pouyan et al. [52] propose a reliability-aware CMP architecture in which online Architectural
Vulnerability Factor (AVF) [47] estimation is utilized for threads to activate a redundancy mech-
anism under reliability and performance constraints. They estimate the AVF of a thread by con-
sidering the vulnerability of hardware components allocated to that thread at runtime. If the AVF
value of the thread exceeds a predefined threshold value, then a redundant copy of it starts to ex-
ecute. Since providing full redundancy has bottlenecks in terms of performance and energy con-
sumption, their approach utilizes partial redundancy by activating/deactivating the redundancy
mechanism based on the estimated AVF value. In their adaptive redundancy approach, a dynamic
scheduling technique is used to map threads on the cores to improve system throughput. They
apply thread migration among the cores to balance the load and improve performance in addition
to a traditional round-robin-based scheduling technique. If a core has a high vulnerability value
having threads with a high Thread Vulnerability Factor (TVF), the thread with low TVF executing
on that core is migrated to another core since a redundant copy of the thread with high TVF starts
to execute on the original core. Here, the migrated core is the one that has the highest throughput
value among the cores. Therefore, load balancing and throughput improvement can be achieved
with the proposed scheduling and thread migration technique compared to the static scheduling
approaches.

Efficient task mapping techniques for the RMT approach are proposed in several studies by
considering the process variation effect [7, 15, 35]. Process variation results from a manufacturing
variability that may cause significant frequency changes among the cores and leads to performance
asymmetry in the system even though they have similar architectural characteristics. It also affects
the system reliability negatively with aging factors.

Kriebel et al. [35] propose a variation-aware thread mapping technique that also considers RMT
management (enabling/disabling RMT) for a set of tasks and selection of different compiled ver-
sions of the tasks under the process variation and aging effect. Their aim is to decrease the aging
rate of the slow cores to balance the aging profile of the system in RMT mode. The core allocation is
decided based on the aging profile and performance constraints of the application tasks. To enable
this, the cores are sorted based on their decreasing frequency levels, and the high-performance
cores are selected first to compensate for the aging rate of slow cores at minimum. Since the ap-
plication tasks with high duty cycles can speed up the aging of the cores, the low-activity tasks
are mapped on the slowest cores. Additionally, they provide an aging-aware RMT management in
which RMT of low-vulnerability threads is disabled at runtime under the constraint of a tolerable
error rate. The aging profile (based on duty cycles) and vulnerability level analysis (based on fault
injection experiments) are performed for each different compiled version and a version is selected
under the reliability-performance tradeoff. First, they select a compiled version based on the duty
cycles of it to minimize aging of the cores while meeting the system performance constraint. Then,
RMT of the tasks is disabled for high resilient ones while meeting the system vulnerability con-
straint. Therefore, they balance the aging profile of the system with an aging-aware task mapping
and core allocation technique.

Chen et al. [7] propose a soft-error-resilient application execution technique that considers both
task mapping and task execution mode of applications. They assume that the cores have differ-
ent frequencies due to process variation, aging, or architectural design. In their approach, the
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homogeneous tasks are mapped onto the heterogeneous performance cores efficiently by using the
Hungarian Algorithm to find an optimal solution with minimal reliability penalty in polynomial-
time complexity. In the case of heterogeneous tasks, some of which require TMR-based RMT tech-
nique and some do not need redundancy (NR) technique, they prefer to map TMR-based RMT tasks
onto the low-frequency cores first since the reliability penalty of these tasks is negligible. Then,
the NR tasks are mapped onto the high-performance and resilient cores by using the Hungarian
Algorithm to meet their deadline miss rate constraints. They also present an iterative execution
mode adaptation technique that decides the execution mode of the tasks as TMR-based RMT tasks
or NR tasks. In that approach, all tasks are considered as NR tasks initially, and the execution
mode of the tasks with maximum reliability penalty are upgraded to the TMR-based RMT tasks
gradually until there is no more improvement. Additionally, they enhance their mapping solution
by using the XY-routing algorithm to estimate the communication overhead for the data depen-
dencies. Based on their results, the proposed application execution technique improves the system
reliability compared to the greedy algorithm, which maps TMR-based RMT tasks onto the high-
performance cores.

Dong et al. [15] propose a variation-aware scheduling technique that considers intrapair and in-
terpair variations among redundant threads and application sensitivity to these variations. While
intrapair variation considers the performance asymmetry within a core pair executing the leader
and trailer threads, interpair variation is related with the performance asymmetry in different core
pairs executing the leader threads. They observe the application sensitivity to the variations men-
tioned above and model the problem as a 0-1 programming problem. Based on this, they propose a
scheduling algorithm to maximize system throughput by minimizing these variations for a case in
which the number threads is equal to the number of cores. Their thread-level redundancy approach
is similar to CRT and does not present a recovery mechanism.

The studies mentioned above consider thread mapping techniques for the RMT approach in
different aspects. While some of the studies give different priorities to the redundant threads for
the efficient mapping of them to the available cores [8, 32], the thread migration approach is used
in another study to improve the throughput of the system with load balancing [52]. A couple of
studies propose efficient thread mapping techniques for heterogeneous cores resulting from the
process variation or aging [7, 15, 35]. In some of the studies, the redundancy level of the executing
threads is changed at runtime and they utilize efficient scheduling techniques by considering both
reliability and performance aspects at the same time [7, 8, 35, 52]. We do not present the experi-
mental results of these studies since their evaluation metric is different for each case, such as the
system throughput, performance, aging profile, or reliability.

5 CONCLUSIONS AND RESEARCH DIRECTIONS

In this article, we survey redundant multithreading techniques proposed throughout the last
20 years. We review the basic work done for soft error fault detection and correction by using
thread-level redundancy on different design spaces. Since it is possible to perform time redun-
dancy both on hardware and software, the studies are proposed over a broad range of implemen-
tations. We cover the main single-core, multicore, and GPU designs by explaining the common
features. Due to the performance overhead of redundant execution, partial RMT techniques, with
an acceptable error coverage and lower execution times, propose instruction elimination or adap-
tive redundancy. Furthermore, we include the more recent extensions to give insight into future
trends in the area. For software approaches, RMT-based fault tolerance techniques implemented
on an operating system, compiler, or application level are explained as an alternative to hardware-
level approaches. As can be seen in the related sections, both hardware and software techniques
share major patterns and similar architectures such as providing multiple execution streams for
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redundant execution. While hardware approaches propose architecture-level modifications to han-
dle RMT execution, software approaches try to hide the redundant execution implementation from
the system by dealing with the redundant threads in the higher abstraction levels. Since the power
efficiency becomes another concern in redundant fault tolerance systems, we analyze the studies
optimizing power consumption in a separate section by explaining the main points and differences
between them. RMT introduces redundant thread execution, and assigning those threads on re-
dundant execution units gains importance in terms of performance overhead. Therefore, we also
examine thread mapping strategies proposed for RMT systems.

We develop a taxonomy to help potential users find a suitable method for their requirement
and to guide researchers planning to work in this area. Our classification table offers a large set
of RMT studies classified according to different criteria. People who want to work on a specific
architecture or on a specific implementation level can find the most relevant work for the identified
design choice.

Since computer architecture research evolves rapidly, RMT methods may be improved by ar-
chitectural innovations. RMT implementation utilizing GPU cores that support a high number of
threads, especially during long latency global memory access times, may be a good choice. Cur-
rently, a limited number of RMT studies have been applied on such architectures. Another popular
acceleration architecture, the Google Tensor Processing Unit (TPU), may be evaluated as an RMT
alternative, as the reliability is becoming a design criterion for this architecture [83].

Although existing RMT approaches solve the reliability problem successfully, they might have
overheads in terms of additional memory usage, performance degradation, and energy consump-
tion. To overcome such overheads, novel machine-learning techniques might be utilized for acti-
vating redundant multithreading automatically and efficient mapping of redundant threads to the
available cores. Furthermore, the activation threshold of RMT can be adjusted depending on the
target application domain. On the other hand, multithreaded workloads have been rarely utilized
in existing RMT approaches. Providing cost-effective solutions to the synchronization problem
among the redundant threads may be a good alternative research direction.

We believe that RMT-based fault tolerance techniques will be adapted as the parallel systems
evolve, and our survey will guide the system developers for this adaptation by providing relevant
work in the area. Moreover, application-specific solutions may be developed by using the existent
work to find a way for optimized redundant execution with high error coverage.
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