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ABSTRACT
Attention operators have been applied on both 1-D data like texts

and higher-order data such as images and videos. Use of atten-

tion operators on high-order data requires flattening of the spatial

or spatial-temporal dimensions into a vector, which is assumed

to follow a multivariate normal distribution. This not only incurs

excessive requirements on computational resources, but also fails

to preserve structures in data. In this work, we propose to avoid

flattening by assuming the data follow matrix-variate normal distri-

butions. Based on this new view, we develop Kronecker attention

operators (KAOs) that operate on high-order tensor data directly.

More importantly, the proposed KAOs lead to dramatic reductions

in computational resources. Experimental results show that our

methods reduce the amount of required computational resources

by a factor of hundreds, with larger factors for higher-dimensional

and higher-order data. Results also show that networks with KAOs

outperform models without attention, while achieving competitive

performance as those with original attention operators.
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1 INTRODUCTION
Deep neural networks with attention operators have shown great

capability of solving challenging tasks in various fields, such as

natural language processing [3, 19, 33], computer vision [26, 38],

and network embedding [9, 34]. Attention operators are able to cap-

ture long-range dependencies, resulting in significant performance

boost [23, 27]. While attention operators were originally proposed
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for 1-D data, recent studies [7, 35, 40] have attempted to apply

them on high-order data, such as images and videos. However, a

practical challenge of using attention operators on high-order data

is the excessive requirement computational resources, including

computational cost and memory usage. For example, for 2-D image

tasks, the time and space complexities are both quadratic to the

product of the height and width of the input feature maps. This

bottleneck becomes increasingly severe as the spatial or spatial-

temporal dimensions and the order of input data increase. Prior

methods address this problem by either down-sampling data before

attention operators [35] or limiting the path of attention [16].

In this work, we propose novel and efficient attention opera-

tors, known as Kronecker attention operators (KAOs), for high-

order data. We investigate the above problem from a probabilistic

perspective. Specifically, regular attention operators flatten the

data and assume the flattened data follow multivariate normal

distributions. This assumption not only results in high computa-

tional cost and memory usage, but also fails to preserve the spatial

or spatial-temporal structures of data. We instead propose to use

matrix-variate normal distributions to model the data, where the

Kronecker covariance structure is able to capture relationships

among spatial or spatial-temporal dimensions. Based on this new

view, we propose our KAOs, which avoid flattening and operate

on high-order data directly. Experimental results show that KAOs

are as effective as original attention operators, while dramatically

reducing the amount of required computational resources. In par-

ticular, we employ KAOs to design a family of efficient modules,

leading to our compact deep models known as Kronecker attention

networks (KANets). KANets significantly outperform prior com-

pact models on the image classification task, with fewer parameters

and less computational cost. Additionally, we perform experiments

on image segmentation tasks to demonstrate the effectiveness of

our methods in general application scenarios.

2 BACKGROUND AND RELATEDWORK
In this section, we describe the attention and related non-local

operators, which have been applied on various types of data such

as texts, images and videos.

2.1 Attention Operator
The inputs to an attention operator include a query matrix Q =
(︀q1,q2,⋯,qm⌋︀ ∈ Rd×m with each qi ∈ Rd , a key matrix K =
(︀k1,k2,⋯,kn⌋︀ ∈ Rd×n with each ki ∈ Rd , and a value matrix

V = (︀v1,v2,⋯,vn⌋︀ ∈ Rp×n with each vi ∈ Rp . The attention op-

eration computes the responses of a query vector qi by attending

it to all key vectors in K and uses the results to take a weighted

sum over value vectors in V . The layer-wise forward-propagation
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Figure 1: An illustration of the attention operator. Here, ×
denotesmatrixmultiplication, and softmax(⋅) is the column-
wise softmax operator.Q ,K , andV are inputmatrices. A sim-
ilarity score is computed between each query vector as a col-
umn of Q and each key vector as a column in K . Softmax(⋅)
normalizes these scores and makes them sum to 1. Multipli-
cation between normalized scores and the matrix V yields
the corresponding output vector.

operation of an attention operator can be expressed as

O = attn(Q,K ,V ) = V × Softmax(KTQ). (1)

Matrix multiplication betweenKT
andQ results in a coefficient ma-

trix E = KTQ , in which each element ei j is calculated by the inner

product between kTi and qj . This coefficient matrix E computes sim-

ilarity scores between every query vector qi , and every key vector

kj and is normalized by a column-wise softmax operator to make

every column sum to 1. The outputO ∈ Rp×m is obtained by multi-

plyingV with the normalized E. In self-attention operators [33], we

haveQ = K = V . Figure 1 provides an illustration of the attention

operator. The computational cost in Eq. 1 isO(m×n×(d +p)). The
memory required for storing the intermediate coefficient matrix

E is O(mn). If d = p andm = n, the time and space complexities

become O(m2 × d) and O(m2), respectively.
There are several other ways to compute E fromQ andK , includ-

ing Gaussian function, dot product, concatenation, and embedded

Gaussian function. It has been shown that dot product is the sim-

plest but most effective one [35]. Therefore, we focus on the dot

product similarity function in this work.

In practice, we can first perform separate linear transformations

on each input matrix, resulting in the following attention operator:

O =WVV Softmax((W KK)TWQQ), whereWV ∈ Rp
′
×p

,W K ∈
Rd
′
×d

, andWQ ∈ Rd
′
×d

. For notational simplicity, we omit linear

transformations in the following discussion.

2.2 Non-Local Operator
Non-local operators, which is proposed in [35], apply self-attention

operators on higher-order data such as images and videos. Taking

2-D data as an example, the input to the non-local operator is a

third-order tensorX ∈ Rh×w×c , whereh,w , and c denote the height,
width, and number of channels, respectively. The tensor is first

Figure 2: Conversion of a third-order tensor into amatrix by
unfolding along mode-3. In this example, a h ×w × c tensor
is unfolded into a c × hw matrix.

converted into a matrix X
(3)
∈ Rc×hw by unfolding along mode-

3 [21], as illustrated in Figure 2. Then we perform the operation

in Eq. 1 by settingQ = K = V = X
(3)

. The output of the attention

operator is converted back to a third-order tensor as the final output.

One practical challenge of the non-local operator is that it con-

sumes excessive computational resources. If h = w , the computa-

tional cost of a 2-D non-local operator is O(h4 × c). The memory

used to store the intermediate coefficient matrix incursO(h4) space
complexity. The time and space complexities are prohibitively high

for high-dimensional and high-order data.

3 KRONECKER ATTENTION NETWORKS
In this section, we describe our proposed Kronecker attention op-

erators, which are efficient and effective attention operators on

high-order data. We also describe how to use these operators to

build Kronecker attention networks.

3.1 From Multivariate to Matrix-Variate
Distributions

We analyze the problem of attention operators on high-order data

and propose solutions from a probabilistic perspective. To illustrate

the idea, we take the non-local operator on 2-D data in Section 2.2 as

an example. Formally, consider a self-attention operator withQ =
K = V = X

(3)
, where X

(3)
∈ Rc×hw is the mode-3 unfolding of a

third-order input tensorX ∈ Rh×w×c , as illustrated in Figure 2. The

ith row of X
(3)

corresponds to vec(X ∶∶i)T ∈ R1×hw , where X ∶∶i ∈
Rh×w denotes the ith frontal slice of X [21], and vec(⋅) denotes
the vectorization of a matrix by concatenating its columns [12].

The frontal slices X ∶∶1,X ∶∶2, . . . ,X ∶∶c ∈ Rh×w of X are usually

known as c feature maps. In this view, the mode-3 unfolding is

equivalent to the vectorization of each feature map independently.

It is worth noting that, in addition to vec(⋅), any other operation

that transforms each feature map into a vector leads to the same

output from the non-local operator, as long as a corresponding

reverse operation is performed to fold the output into a tensor. This

fact indicates that unfolding of X in local operators ignores the

structural information within each feature map, i.e., the relation-
ships among rows and columns. In addition, such unfolding results

in excessive requirements on computational resources, as explained

in Section 2.2.

In the following discussions, we focus on one feature map X ∈
{X ∶∶1,X ∶∶2, . . . ,X ∶∶c} by assuming feature maps are conditionally

independent of each other, given feature maps of previous layers.

This assumption is shared by many deep learning techniques that



process each feature map independently, including the unfolding

mentioned above, batch normalization [18], instance normaliza-

tion [31], and pooling operations [22]. To view the problem above

from a probabilistic perspective [18, 31], the unfolding yields the

assumption that vec(X) follows a multivariate normal distribution

as vec(X) ∼ 𝒩hw (µ,Ω), where µ ∈ Rhw and Ω ∈ Rhw×hw . Appar-

ently, the multivariate normal distribution does not model relation-

ships among rows and columns in X . To address this limitation, we

propose to modelX using a matrix-variate normal distribution [12],

defined as below.

Definition 1. A random matrix A ∈ Rm×n is said to follow a

matrix-variate normal distributionℳ𝒩m×n(M,Ω⊗Ψ)withmean

matrixM ∈ Rm×n and covariancematrixΩ⊗Ψ, whereΩ ∈ Rm×m ≻
0 and Ψ ∈ Rn×n ≻ 0, if vec(AT ) ∼ 𝒩mn(vec(MT ),Ω ⊗ Ψ). Here,
⊗ denotes the Kronecker product [11, 32].

The matrix-variate normal distribution has separate covariance

matrices for rows and columns. They interact through the Kro-

necker product to produce the covariance matrix for the original

distribution. Specifically, for two elements Xi j and Xi ′ j ′ from dif-

ferent rows and columns in X , the relationship between Xi j and

Xi ′ j ′ is modeled by the interactions between the ith and i′th rows

and the jth and j′th columns. Therefore, the matrix-variate normal

distribution is able to incorporate relationships among rows and

columns.

3.2 The Proposed Mean and Covariance
Structures

In machine learning, Kalaitzis et al. [20] proposed to use the Kro-

necker sum to form covariance matrices, instead of the Kronecker

product. Based on the above observations and studies, we pro-

pose to model X as X ∼ ℳ𝒩h×w (M,Ω ⊕ Ψ), where M ∈ Rh×w ,
Ω ∈ Rh×h ≻ 0, Ψ ∈ Rw×w ≻ 0, ⊕ denotes the Kronecker sum [20],

defined as Ω ⊕ Ψ = Ω ⊗ I
(︀w⌋︀ + I

(︀h⌋︀ ⊗ Ψ, and I
(︀n⌋︀ denotes an

n ×n identity matrix. Covariance matrices following the Kronecker

sum structure can still capture the relationships among rows and

columns [20]. It also follows from [2, 37] that constraining the mean

matrixM allows a more direct modeling of the structural informa-

tion within a feature map. Following these studies, we assume X
follows a variant of the matrix-variate normal distribution as

X ∼ℳ𝒩h×w (M,Ω ⊕Ψ), (2)

where the mean matrixM ∈ Rh×w is restricted to be the outer sum

of two vectors, defined as

M = µ|υ = µ1T
(︀w⌋︀ + 1

(︀h⌋︀υ
T
, (3)

where µ ∈ Rh , υ ∈ Rw , and 1
(︀n⌋︀ denotes a vector of all ones of size

n.
Under thismodel, themarginal distributions of rows and columns

are both multivariate normal [2]. Specifically, the ith row vector

X i ∶ ∈ R1×w follows XT
i ∶ ∼ 𝒩w (µi + υT ,Ωii + Ψ), and the jth

column vector X ∶j ∈ Rh×1 follows X ∶j ∼ 𝒩h(υi + µ,Ψii + Ω). In
the following discussion, we assume that Ω and Ψ are diagonal,

implying that any pair of variables inX are uncorrelated. Note that,

although the variables inX are independent, their covariancematrix

still follows the Kronecker covariance structure, thus capturing the

relationships among rows and columns [2, 37].

3.3 Main Technical Results
Let X row = (∑h

i=1X
T
i ∶)⇑h ∈ Rw and X col = (∑w

j=1X ∶j)⇑w ∈ Rh
be the average of row and column vectors, respectively. Under

the assumption above, X row and X col follow multivariate normal

distributions as

X row ∼ 𝒩w (µ +υ,
Ω +Ψ
h

), (4)

X col ∼ 𝒩h(υ + µ,
Ψ + Ω
w

), (5)

where µ = (∑h
i=1 µi)⇑h, Ω = (∑h

i=1 Ωii)⇑h, υ = (∑w
j=1 υj)⇑w , and

Ψ = (∑w
j=1 Ψj j)⇑w . Our main technical results can be summarized

in the following theorem.

Theorem 1. Given the multivariate normal distributions in

Eqs. (4) and (5) with diagonal Ω and Ψ, if (a) r1, r2, . . . , rh are

independent and identically distributed (i.i.d.) random vectors that

follow the distribution in Eq. (4), (b) c1, c2, . . . , cw are i.i.d. random

vectors that follow the distribution in Eq. (5), (c) r1, r2, . . . , rh and

c1, c2, . . . , cw are independent, we have

˜X ∼ℳ𝒩h×w ( ˜M,
Ψ + Ω
w

⊕ Ω +Ψ
h

) , (6)

where
˜X = (︀r1, r2, . . . , rh⌋︀T +(︀c1, c2, . . . , cw ⌋︀, ˜M = (µ|υ)+(µ+υ).

In particular, if h =w , the covariance matrix satisfies

tr(Ψ + Ω
w

⊕ Ω +Ψ
h

) = 2

h
tr (Ω ⊕Ψ) , (7)

where tr(⋅) denotes matrix trace.

Proof. The fact thatΩ andΨ are diagonal implies independence

in the case ofmultivariate normal distributions. Therefore, it follows

from assumptions (a) and (b) that

(︀r1, r2, . . . , rh⌋︀
T ∼ℳ𝒩h×w (Mr , I (︀h⌋︀ ⊗

Ω +Ψ
h

) , (8)

whereMr = µ + (︀υ,υ, . . . ,υ⌋︀T = µ + 1
(︀h⌋︀υ

T
, and

(︀c1, c2, . . . , cw ⌋︀ ∼ℳ𝒩h×w (Mc ,
Ψ + Ω
w

⊗ I
(︀w⌋︀) , (9)

whereMc = υ + (︀µ, µ, . . . , µ⌋︀ = υ + µ1T
(︀w⌋︀.

Given assumption (c) and
˜X = (︀r1, r2, . . . , rh⌋︀T +(︀c1, c2, . . . , cw ⌋︀,

we have

˜X ∼ℳ𝒩h×w ( ˜M,
Ψ + Ω
w

⊕ Ω +Ψ
h

) , (10)

where
˜M =Mr +Mc = (µ|υ) + (µ +υ).

If h =w , we have

tr(Ω ⊕Ψ) = h (∑Ωii +∑Ψj j) , (11)



Figure 3: Illustrations of regular attention operator (a), KAOKV (b) and KAOQKV (c) on 2-D data. In the regular attention op-
erator (a), the input tensor is unfolded into a mode-3 matrix and fed into the attention operator. The output of the attention
operator is folded back to a tensor as the final output. In KAOKV (b), we juxtapose the horizontal and lateral average matrices
derived from the input tensor as the key and value matrices. We keep the mode-3 unfolding of input tensor as the query ma-
trix. In KAOQKV (c), all three input matrices use the juxtaposition of two average matrices. In contrast to KAOKV , we use an
outer-sum operation to generate the third-order tensor from the output of the attention operator.

and

tr(Ψ + Ω
w

⊕ Ω +Ψ
h

)

= tr( 1
h
(Ω ⊕Ψ) + 1

h
(Ψ + Ω))

= (∑Ωii +∑Ψj j) + h(Ψ + Ω)
= 2(∑Ωii +∑Ψj j)

= 2

h
⋅ tr (Ω ⊕Ψ) . (12)

This completes the proof of the theorem. □

With certain normalization onX , we can have µ+υ = 0, resulting
in

˜M = µ|υ . (13)

As the trace of a covariance matrix measures the total variation,

Theorem 1 implies that
˜X follows a matrix-variate normal distribu-

tion with the same mean and scaled covariance as the distribution

of X in Eq. (2). Given this conclusion and the process to obtain

˜X from X , we propose our Kronecker attention operators in the

following section.

3.4 Kronecker Attention Operators
We describe the Kronecker attention operators (KAO) in the context

of self-attention on 2-D data, but they can be easily generalized

to generic attentions. In this case, the input to the ℓth layer is a

third-order tensor X(ℓ) ∈ Rh×w×c . Motivated by the theoretical

results of Sections 3.2 and 3.3, we propose to use horizontal and

lateral average matrices to represent original mode-3 unfolding

without much information loss. Based on Eq. (4) and Eq. (5), the

horizontal average matrix H and the lateral average matrix L are

computed as

H = 1

h

h
∑
i=1

X
(ℓ)
i ∶∶ ∈ R

w×c
,

L = 1

w

w
∑
j=1

X
(ℓ)
∶j ∶ ∈ R

h×c
,

(14)

where X
(ℓ)
i ∶∶ and X

(ℓ)
∶j ∶ are the horizontal and lateral slices [21] of

tensor X(ℓ), respectively. We then form a matrixC by juxtaposing

HT
and LT as

C = (︀HT
,LT ⌋︀ ∈ Rc×(h+w). (15)

Based on the horizontal and lateral average matrices contained

in C , we propose two Kronecker attention operators (KAOs), i.e.,



Figure 4: Architectures of the BaseModule (a), BaseSkipModule (b), AttnModule (c), and AttnSkipModule (d) as described in
Section 3.5. The skip connections indicated by single dashed paths are not used when s > 1 or c ≠ d . Those indicated by double
dashed paths are not used when s > 1.

KAOKV and KAOQKV . In KAOKV as shown in Figure 3 (b), we use

X
(ℓ)

(3)
as the query matrix andC as the key and value matrices as

O = attn(X (ℓ)
(3)
,C,C) ∈ Rc×hw . (16)

Note that the number of columns inO depends on the number of

query vectors. Thus, we obtainhw output vectors from the attention

operation in Eq. (16). Similar to the regular attention operator,O is

folded back to a third-order tensor Y(ℓ) ∈ Rh×w×c by considering

the column vectors in O as mode-3 fibers of Y(ℓ). KAOKV uses

Y(ℓ) as the output of layer ℓ.

If h =w , the time and space complexities of KAOKV are O(hw ×
c × (h +w)) = O(h3 × c) and O(hw × (h +w)) = O(h3), respec-
tively. Compared to the original local operator on 2-D data, KAOKV

reduces time and space complexities by a factor of h.
In order to reduce the time and space complexities further, we

propose another operator known as KAOQKV . In KAOQKV as shown

in Figure 3(c), we useC as the query, key, and value matrices as

(︀H̃
⟩︀
h

, L̃
⟩︀
w

⌋︀ =O = attn(C,C,C) ∈ Rc×(h+w). (17)

The final output tensor Y(ℓ) ∈ Rh×w×c is obtained as

Y
(ℓ)
∶∶i = H̃

T
i ∶ | L̃

T
i ∶ , (18)

where H̃ i ∶ and L̃i ∶ are the ith rows of the corresponding matrices.

That is, the ith frontal slice of Y(ℓ) is obtained by computing the

outer sum of the ith rows of H̃ and L̃.
If h =w , the time and space complexities of KAOQKV areO((h+

w) × c × (h +w)) = O(h2 × c) andO((h +w) × (h +w)) = O(h2),

respectively. Thus, the time and space complexities have been re-

duced by a factor of h2 as compared to the original local operator,

and by a factor of h as compared to KAOKV .

Note that we do not consider linear transformations in our de-

scription, but these transformations can be applied to all three input

matrices in KAOKV and KAOQKV as shown in Figure 3.

3.5 Kronecker Attention Modules and
Networks

Attention models have not been used in compact deep models to

date, primarily due to their high computational cost. Our efficient

KAOs make it possible to use attention operators in compact convo-

lutional neural networks (CNNs) like MobileNet [28]. In this section,

we design a family of efficient Kronecker attention modules based

on MobileNetV2 that can be used in compact CNNs.

BaseModule:MobileNetV2 [28] is mainly composed of bottle-

neck blocks with inverted residuals. Each bottleneck block consists

of three convolutional layers; those are, 1 × 1 convolutional layer,
3 × 3 depth-wise convolutional layer, and another 1 × 1 convolu-
tional layer. Suppose the expansion factor is r and stride is s . Given

inputX(ℓ) ∈ Rh×w×c for the ℓth block, the first 1×1 convolutional
layer outputs rc feature maps X̃

(ℓ) ∈ Rh×w×rc . The depth-wise
convolutional layer uses a stride of s and outputs rc feature maps

X̄
(ℓ) ∈ R

h
s ×

w
s ×rc . The last 1 × 1 convolutional layer produces d

feature mapsY(ℓ) ∈ R
h
s ×

w
s ×d . When s = 1 and c = d , a skip connec-

tion is added betweenX(ℓ) andY(ℓ). The BaseModule is illustrated

in Figure 4 (a).

BaseSkipModule: To facilitate feature reuse and gradient back-
propagation in deep models, we improve the BaseModule by adding



Table 1: Details of the KANets architecture. Each line de-
scribes a sequence of operators in the format of “input size
/ operator name / expansion rate r / number of output chan-
nels c / number of operators in the sequence n / stride s”.
“Conv2D” denotes the regular 2D convolutional layer. “Avg-
Pool” and “FC” denote the global average pooling layer and
the fully-connected layer, respectively. All depth-wise con-
volutions use the kernel size of 3× 3. For multiple operators
in a sequence denoted in the same line, all operators produce
c output channels. And the first operator applies the stride
of s while the following operators applies the stride of 1. k
denotes the class number in the task.

Input Operator r c n s

224
2×3 Conv2D 3 × 3 - 32 1 2

112
2×32 BaseSkipModule 1 16 1 1

112
2×16 BaseSkipModule 6 24 2 2

56
2×24 BaseSkipModule 6 32 2 2

28
2×32 AttnSkipModule 6 32 1 1

28
2×32 BaseSkipModule 6 64 1 2

14
2×64 AttnSkipModule 6 64 3 1

14
2×64 AttnSkipModule 6 96 3 1

14
2×96 BaseSkipModule 6 160 1 2

7
2×160 AttnSkipModule 6 160 2 1

7
2×160 AttnSkipModule 6 320 1 1

7
2×320 Conv2D 1 × 1 - 1280 1 1

7
2×1280 AvgPool + FC - k 1 -

a skip connection. Given inputX(ℓ), we use an expansion factor of

r − 1 for the first 1 × 1 convolutional layer, instead of r as in Base-

Module. We then concatenate the output with the original input,

resulting in X̃
(ℓ) ∈ Rh×w×rc . The other parts of the BaseSkip-

Module are the same as those of the BaseModule as illustrated in

Figure 4 (b). Compared to the BaseModule, the BaseSkipModule

reduces the number of parameters by c × c and computational cost

by h ×w × c . It achieves better feature reuse and gradient back-

propagation.

AttnModule: We propose to add an attention operator into the

BaseModule to enable the capture of global features. We reduce

the expansion factor of the BaseModule by 1 and add a new par-

allel path with an attention operator that outputs c feature maps.

Concretely, after the depth-wise convolutional layer, the original

path outputs X̄
(ℓ)
a ∈ R

h
s ×

w
s ×(r−1)c . The attention operator, option-

ally followed by an average pooling of stride s if s > 1, produces
X̄
(ℓ)
b ∈ R

h
s ×

w
s ×c . Concatenating them gives X̄

(ℓ) ∈ R
h
s ×

w
s ×rc .

The final 1 × 1 convolutional layer remains the same. Within the

attention operator, we only apply the linear transformation on the

value matrixV to limit the number of parameters and required com-

putational resources. We denote this module as the AttnModule

as shown in Figure 4 (b). In this module, the original path acts as

locality-based feature extractors, while the new parallel path with

an attention operator computes global features. This enables the

module to incorporate both local and global information. Note that

we can use any attention operator in this module, including the

regular attention operator and our KAOs.

AttnSkipModule: We propose to add an additional skip con-

nection in the AttnModule, as shown in Figure 4 (d). This skip

connection can always be added unless s > 1. The AttnSkipModule

has the same amount of parameters and computational cost as the

AttnModule.

4 EXPERIMENTAL STUDIES
In this section, we evaluate our proposed operators and networks

on image classification and segmentation tasks. We first compare

our proposed KAOs with regular attention operators in terms of

computational cost and memory usage. Next, we design novel com-

pact CNNs known as Kronecker attention networks (KANets) using

our proposed operators and modules. We compare KANets with

other compact CNNs on the ImageNet ILSVRC 2012 dataset [5].

Ablation studies are conducted to investigate how our KAOs benefit

the entire networks. We also perform experiments on the PASCAL

2012 dataset [6] to show the effectiveness of our KAOs on general

application scenarios.

4.1 Experimental Setup
In this section, we describe the experimental setups for both image

classification tasks and image segmentation tasks.

Experimental Setup for Image Classification As a common

practice on this dataset, we use the same data augmentation scheme

in He et al. [14]. Specifically, during training, we scale each image to

256×256 and then randomly crop a 224×224 patch. During inference,
the center-cropped patches are used. We train our KANets using

the same settings as MobileNetV2 [28] with minor changes. We per-

form batch normalization [18] on the coefficient matrices in KAOs

to stabilize the training. All trainable parameters are initialized

with the Xavier initialization [10]. We use the standard stochastic

gradient descent optimizer with a momentum of 0.9 [30] to train

models for 150 epochs in total. The initial learning rate is 0.1 and

it decays by 0.1 at the 80th, 105th, and 120th epoch. Dropout [29]

with a keep rate of 0.8 is applied after the global average pooling

layer. We use 8 TITAN Xp GPUs and a batch size of 512 for training,

which takes about 1.5 days. Since labels of the test dataset are not

available, we train our networks on training dataset and report

accuracies on the validation dataset.

Experimental Setup for Image Segmentation We train all

the models with randomly cropped patches of size 321 × 321 and a

batch size of 8. Data augmentation by randomly scaling the inputs

for training is employed. We adopt the “poly” learning rate pol-

icy [25] with power = 0.9, and set the initial learning rate to 0.00025.
Following DeepLabV2, we use the ResNet-101 model pre-trained

on ImageNet [5] and MS-COCO [24] for initialization. The models

are then trained for 25,000 iterations with a momentum of 0.9 and

a weight decay of 0.0005. We perform no post-processing such as

conditional random fields and do not use multi-scale inputs due to

limited GPU memory. All the models are trained on the training

set and evaluated on the validation set.



Table 2: Comparisons between the regular attention operator, the regular attention operator with a pooling operation [35],
and our proposed KAOKV and KAOQKV in terms of the number of parameters, number of MAdd, memory usage, and CPU
inference time on simulated data of different sizes. The input sizes are given in the format of “batch size × spatial sizes ×
number of input channels”. “Attn” denotes the regular attention operator. “Attn+Pool” denotes the regular attention operator
which employs a 2 × 2 pooling operation on K and V input matrices to reduce required computational resources.

Input Operator MAdd Cost Saving Memory Memory Saving Time Speedup

8 × 142 × 8

Attn 0.63m 0.00% 5.2MB 0.00% 5.8ms 1.0×
Attn+Pool 0.16m 75.00% 1.5MB 71.65% 2.0ms 3.0×
KAOKV 0.09m 85.71% 0.9MB 82.03% 1.7ms 3.5×
KAOQKV 0.01m 97.71% 0.3MB 95.06% 0.8ms 6.8×

8 × 282 × 8

Attn 9.88m 0.00% 79.9MB 0.00% 72.4ms 1.0×
Attn+Pool 2.47m 75.00% 20.7MB 74.13% 20.9ms 3.5×
KAOKV 0.71m 92.86% 6.5MB 91.88% 7.1ms 10.1×
KAOQKV 0.05m 99.46% 0.9MB 98.85% 1.7ms 40.9×

8 × 562 × 8

Attn 157.55m 0.00% 1,262.6MB 0.00% 1,541.1ms 1.0×
Attn+Pool 39.39m 75.00% 318.7MB 74.76% 396.9ms 3.9×
KAOKV 5.62m 96.43% 48.2MB 96.18% 49.6ms 31.1×
KAOQKV 0.21m 99.87% 3.4MB 99.73% 5.1ms 305.8×

4.2 Comparison of Computational Efficiency
According to the theoretical analysis in Section 3.4, our KAOs have

efficiency advantages over regular attention operators on high-

order data, especially for inputs with large spatial sizes. We conduct

simulated experiments to evaluate the theoretical results. To reduce

the influence of external factors, we build networks composed of a

single attention operator, and apply the TensorFlow profile tool [1]

to report the multiply-adds (MAdd), required memory, and time

consumed on 2-D simulated data. For the simulated input data, we

set the batch size and number of channels both to 8, and test three

spatial sizes; those are, 56 × 56, 28 × 28, and 14 × 14. The number of

output channels is also set to 8.

Table 2 summarizes the comparison results. On simulated data of

spatial sizes 56×56, our KAOKV and KAOQKV achieve 31.1 and 305.8

times speedup, and 96.18% and 99.73% memory saving compared

to the regular attention operator, respectively. Our proposed KAOs

show significant improvements over regular attention operators in

terms of computational resources, which is consistent with the theo-

retical analysis. In particular, the amount of improvement increases

as the spatial sizes increase. These results show that the proposed

KAOs are efficient attention operators on high-dimensional and

high-order data.

4.3 Results on Image Classification
With the high efficiency of our KAOs, we have proposed several

efficient Kronecker attention modules for compact CNNs in Sec-

tion 3.5. To further show the effectiveness of KAOs and the modules,

we build novel compact CNNs known as Kronecker attention net-

works (KANets). Following the practices in [35], we apply these

modules on inputs of spatial sizes 28 × 28, 14 × 14, and 7 × 7. The
detailed network architecture is described in Table 1 in the Sec-

tion 4.1.

We compare KANets with other CNNs on the ImageNet ILSVRC

2012 image classification dataset, which serves as the benchmark

for compact CNNs [8, 15, 28, 39]. The dataset contains 1.2 million

Table 3: Comparisons between KANets and other CNNs in
terms of the top-1 accuracy on the ImageNet validation set,
the number of total parameters, andMAdd.WeuseKANetKV
andKANetQKV to denoteKANets usingKAOKV andKAOQKV ,
respectively.

Model Top-1 Params MAdd
GoogleNet 0.698 6.8m 1550m

VGG16 0.715 128m 15300m

AlexNet 0.572 60m 720m

SqueezeNet 0.575 1.3m 833m

MobileNetV1 0.706 4.2m 569m

ShuffleNet 1.5x 0.715 3.4m 292m

ChannelNet-v1 0.705 3.7m 407m

MobileNetV2 0.720 3.47m 300m

KANetKV (ours) 0.729 3.44m 288m

KANetQKV (ours) 0.728 3.44m 281m

training, 50 thousand validation, and 50 thousand testing images.

Each image is labeled with one of 1,000 classes. Details of the ex-

perimental setups are provided in the Section 4.1.

The comparison results between our KANets and other CNNs

in terms of the top-1 accuracy, number of parameters, and MAdd

are reported in Table 3. SqueezeNet [17] has the least number of

parameters, but uses the most MAdd and does not obtain compet-

itive performance as compared to other compact CNNs. Among

compact CNNs, MobileNetV2 [28] is the previous state-of-the-art

model, which achieves the best trade-off between effectiveness and

efficiency. According to the results, our KANets significantly outper-

form MobileNetV2 with 0.03 million fewer parameters. Specifically,

our KANetKV and KANetQKV outperform MobileNetV2 by mar-

gins of 0.9% and 0.8%, respectively. More importantly, our KANets

has the least computational cost. These results demonstrate the

effectiveness and efficiency of our proposed KAOs.



Table 4: Comparisons between KANets with regular atten-
tion operators (denoted as AttnNet), KANets with regular
attention operators with a pooling operation (denoted as At-
tnNet+Pool) and KANets with KAOs in terms of the top-1
accuracy on the ImageNet validation set, the number of to-
tal parameters, and MAdd.

Model Top-1 Params MAdd
AttnNet 0.730 3.44m 365m

AttnNet+Pool 0.729 3.44m 300m

KANetKV 0.729 3.44m 288m

KANetQKV 0.728 3.44m 281m

The performance of KANets indicates that our proposedmethods

are promising, since we only make small modifications to the ar-

chitecture of MobileNetV2 to include KAOs. Compared to modules

with the regular convolutional layers only, our proposed modules

with KAOs achieve better performance without using excessive

computational resources. Thus, our methods can be used widely for

designing compact deep models. Our KAOs successfully address the

practical challenge of applying regular attention operators on high-

order data. In the next experiments, we show that our proposed

KAOs are as effective as regular attention operators.

4.4 Comparison with Regular Attention
Operators

We perform experiments to compare our proposed KAOs with regu-

lar attention operators. We consider the regular attention operator

and the one with a pooling operation in [35]. For the attention

operator with pooling operation, the spatial sizes of the key matrix

K and value matrix V are reduced by 2 × 2 pooling operations to
save computation cost. To compare these operators in fair settings,

we replace all KAOs in KANets with regular attention operators

and regular attention operators with a pooling operation, denoted

as AttnNet and AttnNet+Pool, respectively.

The comparison results are summarized in Table 4. Note that all

these models have the same number of parameters. We can see that

KANetKV and KANetQKV achieve similar performance as AttnNet

and AttnNet+Pool with dramatic reductions of computational cost.

The results indicate that our proposed KAOs are as effective as

regular attention operators while being much more efficient. In

addition, our KAOs are better than regular attention operators that

uses a pooling operation to increase efficiency in [35].

4.5 Ablation Studies
To show how our KAOs benefit entire networks in different set-

tings, we conduct ablation studies on MobileNetV2 and KANetKV .

For MobileNetV2, we replace BaseModules with AttnModules as

described in Section 3.5, resulting in a new model denoted as Mo-

bileNetV2+KAO. On the contrary, based on KANetKV , we replace all

AttnSkipModules by BaseModules. The resulting model is denoted

as KANet w/o KAO.

Table 5 reports the comparison results. By employing KAOKV ,

MobileNetV2+KAO gains a performance boost of 0.6% with fewer

Table 5: Comparisons between MobileNetV2, MobileNetV2
with KAOsKV (denoted as MobileNetV2+KAOKV ), KANetKV ,
and KANetKV without KAOKV (denoted as KANet w/o KAO)
in terms of the top-1 accuracy on the ImageNet validation
set, the number of total parameters, and MAdd.

Model Top-1 Params MAdd
MobileNetV2 0.720 3.47m 300m

MobileNetV2+KAO 0.726 3.46m 298m

KANetKV 0.729 3.44m 288m
KANet w/o KAO 0.721 3.46m 298m

Table 6: Comparisons of DeepLabV2, DeepLabV2 with the
regular attention operator (DeepLabV2+Attn), DeepLabV2
with our KAOKV (DeepLabV2+KAOKV ), and DeepLabV2with
our KAOQKV (DeepLabV2+KAOQKV ) in terms of the pixel-
wise accuracy, and mean IOU on the PASCAL VOC 2012 val-
idation dataset.

Model Accuracy Mean IOU
DeepLabV2 0.944 75.1

DeepLabV2+Attn 0.947 76.3

DeepLabV2+KAOKV 0.946 75.9

DeepLabV2+KAOQKV 0.946 75.8

parameters thanMobileNetV2. On the other hand, KANetKV outper-

forms KANet w/o KAO by a margin of 0.8%, while KANet w/o KAO

has more parameters than KANetKV . KANetKV achieves the best

performance while costing the least computational resources. The

results indicate that our proposed KAOs are effective and efficient,

which is independent of specific network architectures.

4.6 Results on Image Segmentation
In order to show the efficiency and effectiveness of our KAOs in

broader application scenarios, we perform additional experiments

on image segmentation tasks using the PASCAL 2012 dataset [6].

With the extra annotations provided by [13], the augmented dataset

contains 10,582 training, 1,449 validation, and 1,456 testing images.

Each pixel of the images is labeled by one of 21 classes with 20

foreground classes and 1 background class.

We re-implement the DeepLabV2 model [4] as our baseline. Fol-

lowing [36], using attention operators as the output layer, instead

of atrous spatial pyramid pooling (ASPP), results in a significant

performance improvement. In our experiments, we replace ASPP

with the regular attention operator and our proposed KAOs, re-

spectively, and compare the results. For all attention operators,

linear transformations are applied onQ , K , and V . Details of the

experimental setups are provided in the Section 4.1.

Table 6 shows the evaluation results in terms of pixel accuracy

and mean intersection over union (IoU) on the PASCAL VOC 2012

validation set. Clearly, models with attention operators outperform

the baseline model with ASPP. Compared with the regular attention

operator, KAOs result in similar pixel-wise accuracy but slightly

lower mean IoU. From the pixel-wise accuracy, results indicate that



KAOs are as effective as the regular attention operator. The decrease

in mean IoU may be caused by the strong structural assumption

behind KAOs. Overall, the experimental results demonstrate the

efficiency and effectiveness of our KAOs in broader application

scenarios.

5 CONCLUSIONS
In this work, we propose Kronecker attention operators to address

the practical challenge of applying attention operators on high-

order data. We investigate the problem from a probabilistic perspec-

tive and use matrix-variate normal distributions with Kronecker

covariance structure. Experimental results show that our KAOs

reduce the amount of required computational resources by a factor

of hundreds, with larger factors for higher-dimensional and higher-

order data. We employ KAOs to design a family of efficient modules,

leading to our KANets. KANets significantly outperform the previ-

ous state-of-the-art compact models on image classification tasks,

with fewer parameters and less computational cost. Additionally,

we perform experiments on the image segmentation task to show

the effectiveness of our KAOs on general application scenarios.
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