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ABSTRACT

A proactive dialogue system has the ability to proactively lead the
conversation. Different from the general chatbots which only re-
act to the user, proactive dialogue systems can be used to achieve
some goals, e.g., to recommend some items to the user. Background
knowledge is essential to enable smooth and natural transitions in
dialogue. In this paper, we propose a new multi-task learning frame-
work for retrieval-based knowledge-grounded proactive dialogue.
To determine the relevant knowledge to be used, we frame knowl-
edge prediction as a complementary task and use explicit signals
to supervise its learning. The final response is selected according
to the predicted knowledge, the goal to achieve, and the context.
Experimental results show that explicit modeling of knowledge
prediction and goal selection can greatly improve the final response
selection. Our code is available at https://github.com/DaoD/KPN/.

CCS CONCEPTS

+ Computing methodologies — Discourse, dialogue and prag-
matics.

KEYWORDS
Proactive Dialogue; Retrieval-based Chatbot; Multi-task Learning

ACM Reference Format:

Yutao Zhu, Jian-Yun Nie, Kun Zhou, Pan Du, Hao Jiang, and Zhicheng Dou.
2021. Proactive Retrieval-based Chatbots based on Relevant Knowledge
and Goals. In Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR °21), July 11—
15, 2021, Virtual Event, Canada. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3404835.3463011

1 INTRODUCTION

From Microsoft Xiaoice, Apple Siri, to Google Assistant, dialogue
systems have been widely applied in our daily life. In general, these
systems are designed to make responses in reaction to the user’s
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requirements, such as play music, set a clock, or show the weather
forecast. These systems are perceived just as tools by users as they
only react passively. Users may be bored quickly. The problem is
even more severe in a chit-chat style dialogue system. Proactive
conversation offers a solution to this problem [11, 12, 14]. A proac-
tive dialogue system can lead the dialogue proactively to achieve
some goals. For example, it can drive the conversation to educate
the kids about some topics, to comfort a person, to place ads un-
obtrusively, or to recommend items to users. Various application
scenarios are emerging, yet there has not been a standard definition
of what proactive conversation should be. Variations have been
observed in the way that a goal is defined: by a sentence [17] or by
some entities that should be covered in the conversation [12], and
whether the goal should be generated dynamically [11] or prede-
fined [14]. We are still in the early stage of exploration in which
people test different approaches in different settings. This study is
a contribution to this exploration.

In this work, we follow the setting given by Wu et al. [12], where
the goal is specified by a set of entities (topics) and the background
knowledge about these entities is provided in a knowledge graph.
The goal is to lead the conversation smoothly to mention the re-
quired entities. The knowledge graph helps to generate paths of
conversation that appear natural. Despite its simplicity, this setting
has many potential applications in practice, in particular in conver-
sational recommendation systems [4, 5, 9], where some items can
be set in advance for recommendation. An example of proactive
conversation in the movie domain is shown in Figure 1. The goal
is defined by two entities (topics): the movie McDull: Rise of the
Rice Cooker and the star Bo Peng. The system is asked to cover
both entities during the conversation. By exploiting the knowledge
graph, the system aims to naturally transit from one conversation
topic to another and eventually fulfill the pre-defined goal.

In this work, we focus on the retrieval-based method due to
its higher fluency. Although knowledge has been incorporated in
some existing approaches to proactive conversation [12], it has been
simply embedded in the response selection process [1, 6, 7], which
is optimized globally according to the loss on the final response
selection. Although the end-to-end training could be reasonable
with a very large amount of training data, in practice, the limited
training data may lead to sub-optimal solutions: when a wrong
response is selected by the system, it is hard to tell if it is due to a
poor knowledge prediction or a bad response selection, thus hard
to optimize.


https://github.com/DaoD/KPN/
https://doi.org/10.1145/3404835.3463011
https://doi.org/10.1145/3404835.3463011
https://doi.org/10.1145/3404835.3463011

Goal (g) START —  McDull: Rise of the Rice Cooker —» Bo Peng

Knowledge (k) (3 turn) Representative

(5t turn) 6.9 Work

th
Native Place (77 turn)

Nice, very Rating Tack of expl
funny McDull: Rise of the Rice Cooker l l Bo Peng Comment,
performance
Comment |5 released, Blood type
Yes Star Type O

Conversation (c,r)

(1) Bot Do you usually spend your weekend watching movies?

(2) User  Of course, could you recommend good films for me? | can watch it on this weekend.

(3)Bot  You can watch Rise of the Rice Cooker, which is rated 6.9.

(4) User  Sounds great, thanks.

(5) Bot Itis very nice and funny. Do you know who is the star of this movie?

(6) User I don’t know. Who is that?

(7) Bot It’s Bo Peng. Do you know him? People said that he was a kind of lacking explosive performance.
(8) User | will know more about him later.

Figure 1: An example of proactive dialogue. The system is
asked to exploit the background knowledge to lead the dia-
logue and accomplish the goal.

To tackle this problem, we design an explicit Knowledge Predic-
tion (KP) module to select the relevant piece of knowledge to use.
This module is combined with a Response Selection (RS) module,
and both form a multi-task learning framework, called Knowledge
Prediction Network (KPN). The two tasks are jointly learned. The
KP module first tracks the state of goal achievement, i.e., which part
of the goal has been achieved, and then leverages the dialogue con-
text to predict which knowledge should be used in the current turn.
The RS module then relies on the selected knowledge to help select
the final answer. Different from the existing methods, we explic-
itly optimize KP using automatically generated weak-supervision
signals to help better learn to predict the relevant knowledge. Ex-
perimental results show that the explicitly trained KP process can
indeed select the most relevant piece of knowledge to use, and this
leads to superior performance over the state-of-the-art methods.

Our main contributions are two-fold: (1) We propose a multi-task
learning framework for knowledge-grounded proactive dialogue, in
which the knowledge prediction task is explicitly trained in a weakly
supervised manner. (2) We show experimentally that our model
significantly outperforms the existing methods, demonstrating the
great importance of knowledge selection in proactive conversation.

2 KNOWLEDGE PREDICTION NETWORK

Problem Formalization We follow the task definition formulated
by Wu et al. [12]. For a dataset D, each sample is represented as
(¢.g,k,r,y) (as shown in Figure 1), where ¢ = {uy,--- ,ur} repre-
sents a conversation context with {ui}{le as utterances; g represents
the goal containing some entities that the dialogue should talk about
(e.g., “Bo Peng”); k = (k1,- - - , kar) are knowledge triplets where k;
is in form of SPO (Subject, Predicate, Object); r is a response can-
didate; y € {0, 1} is a binary label. The task is to learn a matching
model s(c, g, k, ) with D to measure the suitability of a response
candidate r.

In this work, we propose a multi-task learning framework KPN
that contains response selection (RS) and knowledge prediction (KP)
as two distinct tasks, as illustrated in Figure 2. The predicted knowl-
edge and updated goal from the KP task are used as input to the RS
task. The loss functions in the two tasks are combined for training
the model jointly. Different from the existing work that fuses the
two tasks together and trains the whole model by only the final
RS loss (Lys), we propose using a KP loss (L) to supervise the
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Figure 2: The structure of KPN. The predicted knowledge eki
and updated goal e’ in the knowledge prediction task will
be used as input to the response selection task.

knowledge prediction process directly. The overall loss is as follows:
L= ALkp + Lys, (1)

where A is a hyperparameter (set as 0.3 in our experiment) to control
the influence of the KP loss. The joint learning process allows us to
better tell if a wrong response is obtained due to a wrong prediction
of knowledge or a wrong selection of response. Details of the two
tasks are presented in Sections 2.1 and 2.2.

The processes of KP and RS are based on the following basic
representations: an utterance u; in the context, a goal g, a knowledge
triplet k; (concatenated as a word sequence), and a response r are
first represented as matrices e, e9, K/, and e” respectively through
a pre-trained embedding table. They will be used in different ways
in the KP and RS processes.

2.1 Knowledge Prediction (KP) Task

It is widely believed that knowledge can help select suitable re-
sponses. However, not all knowledge triplets are useful in selecting
responses for a conversation turn. Therefore, predicting whether a
knowledge triplet should be used is a critical step.

Goal Tracking To decide what to say in a response, one has to
know what part of the goal is still uncovered. KPN achieves this by
a goal tracking process (shown in the Tracking part of Figure 2). The
basic idea is to match the goal and the context, then the mismatched
entities are considered as uncovered. Concretely, we concatenate
all utterances in the context as a long sequence {e;f}l{i 1» Where
N is the total number of words in all the utterances, and then
match it with the goal (e9) by cosine similarity: m;; = cos(e? , e]’?).
Then max-pooling is applied to extract the strongest matching
signals: v; = ReLU(Maxpooling(m;.)). The obtained values (v)
represent the degree of coverage of the entities in the goal, while
v’ = 1 — v represents the remaining part that should be covered



in the following dialogue. Finally, the vector v’ is used to update
the representation of the goal: e = v’ - e. This goal tracking
method is simple but effective, and more sophisticated designs can
be investigated as future work.
Knowledge Predicting The knowledge prediction process is shown
in the Predicting part of Figure 2. The relevance of a piece of knowl-
edge is determined by both the state of the goal and the current
topic of the dialogue. The former determines the target, while the
latter determines the starting point. Ideally, the relevant knowledge
should pave a way leading from the current topic to the desired
goal. Usually, the current topic is contained in the last several ut-
terances, thus we leverage them to predict the relevant knowledge.
Given the updated goal €7, the last m utterances {e% }{'J:L—m +
(where L is the number of utterances in the context, and m is a
hyperparameter set as 3 in our experiments), and the j-th piece
of knowledge ki, we first compute their sentence-level represen-
tations by mean-pooling over word dimensions: €% = mean(e%),
& = mean(e-‘/), and éX/ = mean(eX/). Then we use cosine simi-
larity sg,j = cos(ég/, ékf'), sij = cos(e%, ékf) to measure their rel-
evance, where i € [L — m + 1,L], and we obtain (m + 1) scores
kj ki
[sg’ sL—m+1’ e
the goal and the context topic are aggregated by a multi-layer per-
ceptron (MLP) with a sigmoid activation function (o), which is then
used to update the representation of the j-th knowledge triplet:

Skj _ O'(MLP([S(I)Cj;SIZim+1; e ;slzj])), ek} = skjekj, ()

kj .
,sL’]. The relevance scores with respect to both

where sk/ is the predicted probability of the j-th knowledge triplet
to be used in the current turn.

Weakly Supervised Knowledge Prediction To make a correct
prediction of knowledge, the common method is tuning the knowl-
edge prediction process according to the final response selection
error. The process is thus implicitly supervised [6, 7, 12]. To further
improve the learning of the knowledge prediction, besides the re-
sponse selection loss, we introduce a weakly supervised knowledge
prediction loss to train it explicitly.

In practice, it is difficult to have manual labels for knowledge
triplets in each dialogue turn. To address this problem, we propose a
method to generate weak labels automatically. For each knowledge
SPO triplet, we adopt an entity linking method to link it to the
response: if the object entity appears in the ground-truth response,
we label it as 1, otherwise as 0!. We assume this weak label can
indicate whether such a piece of knowledge is used in the ground-
truth response. With the weak labels yy,, we can compute a binary
cross-entropy loss, which we call KP loss, as follows:

1 . )
Lip =17 > (v, log s/ + (1 -y, ) log(1 - s*)).  (3)

2.2 Response Selection (RS) Task

Response selection (RS) is the main task. As shown in Figure 2,
KPN considers the interactions between response and three types
of information, i.e., the context, the knowledge, and the remaining
goal. The former two can be modeled in the same way: similar to

!For long descriptive entities (i.e., non-factoid sentences such as the Comment entity
about Bo Peng in the Knowledge Graph in Figure 1), if more than 70% part is covered
by the ground-truth response, we label it as one. We do not use the subject entity (e.g.,
“Bo Peng”), because it is shared by many triplets, thus is less accurate as the label.

existing work [3, 13, 16], we compute matching matrices based on

both the input representations (e, e and e” ) and their sequential
representations obtained by LSTM [2]. As a result, we denote the ob-
tained matrices as M* and M¥ and apply a CNN with max-pooling
to extract the matching features v and vF.

(1) Context-Response Matching The matching features be-
tween the context and response are aggregated by an LSTM and the
corresponding final state is fed into an MLP to compute the match-
ing score s¢. We use LSTM because it can model the dependency
and the temporal relationship of utterances in the context.

(2) Knowledge-Response Matching Different from the con-
text, we assume knowledge triplets to be independent. Thus, we
use an attention-based method to aggregate the matching features:

kM o
e 4

a; = RELU(MLP(vF)), hy = )" Wv’;, skr = MLP(hy).  (4)

i=1 J

This way, a knowledge triplet that is more related to the response
will have a higher weight in the aggregated features and contributes
more in computing the final matching score.

(3) Goal-Response Matching As the goal is a single sequence
of tokens, which is much easier to model, we compute the goal-
response matching score sy by an MLP based on their LSTM rep-
resentations at the last time step.

The final matching score is then computed as: § = (s + g, +
sgr) /3. We use the binary cross-entropy loss to compute the errors:

L= D logo(d) - (1- ) log(1 - a(@). ()

3 EXPERIMENTS
3.1 Datasets and Baseline Models

We experiment on datasets DuConv and DuRecDial. DuConv [12]
is built for knowledge-grounded proactive human-machine conver-
sation. The dialogues are about movies and stars. The total number
of training, validation, and test samples is 898,970, 90,540, and
50,000. DuRecDial [8] is created as a conversational recommen-
dation dataset, which contains dialogues between a seeker and a
recommender. The domain of dialogue includes movie, music, food,
etc. The number of training, validation, and test samples is 342,340,
38,060, and 55,270. The negative responses are randomly sampled
with a 1:9 positive/negative ratio in both datasets.

We compare our model against two groups of baseline methods:
DuRetrieval [12] is the only retrieval-based model specifically de-
signed for proactive dialogue. It uses a Transformer-based encoder
for context and response representation. The conversation goal is
used as an additional piece of knowledge. All knowledge triplets
are represented by a bi-GRU with attention mechanism.

The other group of methods are not proposed for proactive dia-
logue but for general knowledge-grounded dialogue. As they also
incorporate knowledge into dialogue generation, we replace our
knowledge selecting module in the KP task by theirs to make a com-
parison. MemNet [1] uses a memory network that performs “read”
and “write” on the knowledge by matrix multiplication. PostKS [6]
trains a knowledge prediction process to make the prior probability
(using only the context) of the knowledge prediction close to the
posterior probability (using both context and response). NKD [7] is



similar to MemNet, but it first concatenates the context and knowl-
edge representations and then uses an MLP to compute the weight
for each piece of knowledge.

3.2 Evaluation

All models are evaluated in two scenarios.

On test set Similar to the existing work [12, 15], we evaluate the
performance of each model by Hits@1, Hits@3, and Mean Re-
ciprocal Rank (MRR) for selecting the correct response when it is
mixed up with several other candidates. Hits@k measures the ratio
of the ground-truth response among the top k results.

Practical application Following [12], we also evaluate the per-
formance of the models in a more practical scenario, where each
ground-truth utterance is mixed up with 49 utterances retrieved
by Solr?. The task is to rank the ground-truth response as high as
possible. This test simulates a practical scenario where the model
is acting as a reranker for the candidate list returned by an up-
stream retrieval system. We use several metrics to evaluate the
model from different perspectives. BLEUs are used to measure the
quality (similarity) of the response w.r.t. the ground-truth. To eval-
uate the model’s ability to incorporate knowledge into dialogues,
we compute the knowledge precision/recall/F1 score used in
previous studies [6, 10, 12], which measure how much knowledge
(either correct or wrong) has been used in the responses. We also
compute a more meaningful knowledge accuracy to measure if
the selected response uses the same piece of knowledge as that
involved in the ground-truth response. Similarly, goal accuracy
measures if a goal in the ground-truth is correctly covered by the
selected response.

3.3 Experimental Results

The evaluation results are shown in Table 1. Based on the results,
we can observe: (1) KPN outperforms all baselines significantly by
achieving the highest scores on all evaluation metrics. (2) Com-
pared with DuRetrieval, KPN improves Hits@1, Hits@3, and MRR
by a large margin. This strongly indicates that KPN has a better
capability of selecting correct responses. (3) In the practical appli-
cation scenario, according to the results on BLEU, we can conclude
that KPN can select responses that are more similar to the golden
responses. (4) On knowledge prediction, as a comparison, we also
provide the evaluation result of the ground-truth. We find that our
method outperforms other knowledge prediction models (Mem-
Net, PostKS, and NKD) on knowledge P/R/F1 and accuracy. This
demonstrates that the explicit supervised knowledge prediction is
more effective than the implicit ones used in the other methods.
Nevertheless, there is still a big gap between our results and the
ground-truth, showing that the process could be much improved.

Reliability of the Weak Labels As we use an entity linking
method to automatically generate weak labels for knowledge pre-
diction, to evaluate the reliability of these labels, we randomly
select 100 samples comprising 1,437 knowledge triplets from the
validation set of DuConv, and ask three human annotators to label
which triplet is necessary to select the current response. The result
indicates that 90.26% of the generated labels are consistent with

Zhttps://lucene.apache.org/solr/. If the number of retrieved results is less than 49, we
use random samples to pad.

Table 1: Evaluation results. “KLG” stands for knowledge, and
“Acc” for accuracy. “GT” for ground-truth. “+X” means that
the knowledge prediction module is replaced by X. The im-
provement obtained by KPN over DuRetr. is statistically sig-
nificant with p-value < 0.01 in t-test.

GT DuRetr. KPN

Full +MemNet | +PostKS +NKD

Hits@1 - 50.12 66.94 52.54 39.98 | 56.42
Hits@3 - 75.68 87.52 78.79 65.70 | 81.54
MRR - 63.13 78.30 67.90 57.09 | 70.77

o BLEU1 1.00 0.47 0.56 0.50 0.48 0.50
£ | BLEU2 1.00 0.32 0.42 0.34 0.33 0.35
E KLG. P 38.24 30.11 33.45 29.24 28.55 | 29.40
KLG.R 9.20 7.24 8.05 7.03 6.87 7.07
KLG. F1 14.83 11.68 12.97 11.34 11.07 11.40
KLG. Acc. 100.0 53.64 57.82 50.90 50.42 52.94
Goal Acc. 100.0 58.90 77.58 72.36 69.44 | 74.62
Hits@1 - 77.38 91.50 75.34 82.45 82.74
Hits@3 - 89.02 98.86 93.92 96.60 | 97.03
MRR - 84.07 95.18 85.00 89.58 89.96

— | BLEU1 1.00 0.46 0.61 0.51 0.53 0.53
é BLEU2 1.00 0.39 0.51 0.39 0.41 0.41
% KLG. P 52.64 43.42 52.55 41.04 43.70 | 42.87
A | KLG.R 3.76 3.10 3.76 2.93 3.12 3.07
KLG. F1 7.02 5.79 7.01 5.48 5.83 5.72
KLG. Acc. | 100.00 94.90 95.35 94.32 94.90 94.81
Goal Acc. | 100.00 78.34 84.96 82.58 83.12 | 83.93

human annotations®. This demonstrates the high reliability of the
labels automatically generated by our entity linking method.

We carried out detailed Ablation Study and Influence of Hy-
perparameter, showing that both the goal and knowledge strongly
impact the final results. Due to space limit, these experiments are
presented in our Github page.

4 CONCLUSION

In this paper, we proposed a new approach to retrieval-based proac-
tive dialogue. In our model, we define two tasks for response selec-
tion and knowledge prediction. An interactive matching structure
is applied to model the matching between the knowledge and the
response. In order to make a good prediction of knowledge, explicit
supervision signals are used, which are derived from the ground-
truth responses. Experimental results demonstrated that our model
can achieve better performance than the baseline models in which
the two tasks are mixed up. In particular, it is shown that training
the knowledge prediction explicitly is very effective. This work is a
first demonstration of the importance of modeling knowledge and
goals explicitly in proactive dialogue.
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