
BanditProp: Bandit Selection of Review Properties for Efective

Recommendation

XI WANG, University of Glasgow, UK

IADH OUNIS, University of Glasgow, UK

CRAIG MACDONALD, University of Glasgow, UK

Many recent recommendation systems leverage the large quantity of reviews placed by users on items. However, it is both

challenging and important to accurately measure the usefulness of such reviews for efective recommendation. In particular,

users have been shown to exhibit distinct preferences over diferent types of reviews (e.g. preferring longer vs. shorter or

recent vs. old reviews), indicating that users might difer in their viewpoints on what makes the reviews useful. Yet, there

have been limited studies that account for the personalised usefulness of reviews when estimating the users’ preferences. In

this paper, we propose a novel neural model, called BanditProp, which addresses this gap in the literature. It irst models

reviews according to both their content and associated properties (e.g. length, sentiment and recency). Thereafter, it constructs

a multi-task learning (MTL) framework to model the reviews’ content encoded with various properties. In such an MTL

framework, each task corresponds to producing recommendations focusing on an individual property. Next, we address

the selection of the features from reviews with diferent review properties as a bandit problem using multinomial rewards.

We propose a neural contextual bandit algorithm (i.e. ConvBandit) and examine its efectiveness in comparison to eight

existing bandit algorithms in addressing the bandit problem. Our extensive experiments on two well-known Amazon and

Yelp datasets show that BanditProp can signiicantly outperform one classic and six existing state-of-the-art recommendation

baselines. Moreover, BanditProp using ConvBandit consistently outperforms the use of other bandit algorithms over the

two used datasets. In particular, we experimentally demonstrate the efectiveness of our proposed customised multinomial

rewards in comparison to binary rewards, when addressing our bandit problem.

CCS Concepts: · Information systems→ Recommender systems; Personalization.

Additional Key Words and Phrases: recommendation systems, bandit search, user behaviour modelling, review property

1 INTRODUCTION

Recent recommendation studies [16, 23, 44] have shown the value of identifying those useful reviews that better
capture the users’ preferences as well as the items’ characteristics in order to improve the recommendation
performance. In particular, the properties of reviews, such as their length, recency and associated ratings have
been shown to improve review-based recommendation systems [19, 56]. Moreover, Wang et al. [56] investigated
the efectiveness of predicting the reviews’ usefulness with diferent individual review properties. They showed
that various review properties have a varying efectiveness in identifying useful reviews in downstream recom-
mendation tasks. Such results demonstrate the necessity of predicting which review property allows to better
predict the reviews’ usefulness.
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Fig. 1. A pipeline of user-review-item interactions with examples of review sorting interfaces from Yelp (let), Amazon (top

right), and Goodreads (botom right).

In this paper, we also argue that if a recommendation system is able to accurately predict the properties of
the useful reviews (e.g. length, recency) that better capture a given user’s preferences then the overall recom-
mendation performance will be improved. This argument is motivated by how users interact with items on
various e-commerce websites and the review interfaces of various platforms as illustrated in Figure 1. Indeed,
reviews are typically sorted according to various available review properties on e-commence websites, and
users tend to browse and read many reviews about their targeted items before making their decisions. Our
main argument in this paper is that a recommendation model can beneit from capturing the users’ preferences
from their interactions with diferent types of reviews, thereby improving its recommendation performance.
The users’ preferences for reviews exhibiting diferent properties can be captured from the users’ engagement
with such reviews [15]. For example, the Users’ Adoption of Information (UAoI) framework [51] leverages the
users’ behaviour to classify users into central and peripheral users. To support their decision making, the central
users tend to leverage insightful and in-depth information, while the peripheral users prefer to use simple and
straightforward information instead. Such diferences among users support the premise of our argument in this
paper, namely that it is beneicial for a recommendation model to learn the users’ behaviours or preferences
from their engagement with diferent types of reviews. However, to the best of our knowledge, very few studies
have investigated the efectiveness of leveraging such users’ diferences in a recommendation model. One such
a study is by Wang et al. [56], who applied a dot-product attention mechanism to learn the importance of review
properties for a user. The dot-product attention mechanism linearly combines diferent parts of the input to
compute a representation, so as to enhance the corresponding model’s performance [53]. Yet, as mentioned above,
following the UAoI framework, diferent types of users prefer reviews exhibiting diferent properties. However,
the attention mechanism cannot leverage such users’ diferences to capture the usefulness of reviews.
In this paper, we argue that, instead of using an attention mechanism, it is advantageous to characterise the

users’ selection of various review properties in estimating the usefulness of reviews as a multi-armed bandit
problem. Indeed, the identiication of those review properties that are most preferred by a given user can be
characterised as an exploration vs. exploitation dilemma [4]. Typically, a contextual bandit search algorithm
relies on the context to estimate the rewards for selecting diferent arms. To capture the users’ diferences, we
propose to leverage the users’ posted reviews, since they convey rich preferences information [3, 21], as the
context used by the contextual bandit search algorithm, so as to efectively estimate the value of each review
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property for a given user. By using the users’ posted reviews as context, we also address the limitation of the
dot-product attention mechanism.

Accordingly, we propose a novel deep neural network (NN) model (called BanditProp) to address the introduced
bandit problem and the recommendation task. In particular, BanditProp is a hard parameter sharing-based multi-
task learning (MTL) NN model [42]. In this MTL model, each task corresponds to the use of reviews encoded with
one particular review property to model the reviews. As a consequence, with � review properties, BanditProp
has � sub-networks to extract and generate the feature vectors of reviews corresponding to every used review
property. Using the generated feature vectors through the modelling of reviews encoded with � review properties,
for a user-item pair, the model generates � scores that estimate the user’s preferences on the item given a
particular review property. To the best of our knowledge, our study is the irst to investigate the use of both MTL
and bandit algorithms to estimate the users’ preferences on using various review properties for examining the
reviews’ usefulness, so as to enhance the performance of a recommendation system. Our aim is to capture the
users’ most preferred review property in identifying a given review’s usefulness, so as to maximise the model’s
recommendation performance.

The main contributions of this paper are as follows:
(1) We propose a new MTL recommendation model, BanditProp, which considers the features extracted from

reviews with diferent review properties as multiple tasks to simultaneously address the recommendation task.
(2)We propose to convert the selection of the properties of the useful reviews that better capture the users’

preferences into a bandit problem and integrate various bandit algorithms into BanditProp to predict the users’
preferred review properties.
(3) We explore various bandit algorithms and further leverage the users’ posted reviews as the contextual

information of a newly proposed neural contextual bandit algorithm called ConvBandit. ConvBandit is designed
to estimate the payofs of selecting the � review scores and their corresponding review properties so as to enhance
the efectiveness of estimating the users’ preferred review properties when making recommendations.

(4) We thoroughly evaluate the efectiveness of our proposed BanditProp model in comparison to one classic
and six state-of-the-art recommendation approaches on two public datasets (i.e. the Yelp and Amazon datasets).

(5) We further experimentally demonstrate the efectiveness of ConvBandit in comparison to various existing
bandit approaches in addressing our bandit problem.

2 RELATED WORK

In this section, we briely describe the three bodies of related work, namely review-based, multi-task learning-
based and Bandit Problem-based recommendation.
(1) Review-based Recommendation: Users’ posted reviews can provide useful evidence for recommendation
systems. Indeed, many previous studies [9, 61, 64] have investigated the beneit to recommendation performance
of leveraging reviews to capture the users’ preferences and items’ characteristics. Two typical approaches are the
review aspect-based and review body-based recommendation strategies, respectively. The review aspect-based
recommenders [5, 19, 28, 30] aim to predict users’ preferences on the extracted aspects of the items to estimate
the users’ preferences on items in a more ine-grained manner. However, their recommendation performances are
dependent on the performance of the extracted aspects. The deinition of the aspect, the used tool to extract the
aspects and the strategy in applying the aspects in a recommendation system have indeed a marked impact on the
resulting recommendation performances [11, 16]. On the other hand, the body-based recommenders convert the
whole textual content of reviews into latent vectors. Their performances have been improved through beneiting
from recent developments in neural language modelling techniques [56].
Therefore, in this paper, we opt to use an approach that considers using a review body-based strategy when

addressing the recommendation task. However, diferent from the aforementioned prior approaches, we consider
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further enhancing the performances of review body-based recommendation approaches by additionally encoding
the properties of the reviews (e.g. length or recency of reviews). In particular, instead of learning the users’
preferences from the items’ aspects, we leverage the learned users’ preferences on the used review properties to
capture those useful reviews that enhance personalised recommendation.
(2) Multi-task learning (MTL)-based Recommendation: Many studies have investigated the use of MTL
to improve the performances of recommendation models. MTL is essentially a transfer learning mechanism that
aims to leverage the shared information between several related tasks to improve a given model’s generalisa-
tion performances [8]. A number of previous approaches [10, 20, 32] have indeed aimed to aggregate several
recommendation-related tasks to improve the recommendation results. Examples included aggregating rating
prediction and explainable recommendation tasks [32], context-aware entity search and recommendation [20]
or rating prediction on target users as well as their friends [37]. Diferently from the existing MTL-based rec-
ommendation studies, we propose to consider the learning of the users’ preferences and items’ characteristics
using reviews encoded with their various properties as multiple tasks (i.e. the additional encoding of a given
single review property into the review’s body corresponds to a single task) so as to construct a novel MTL model.
(3) Bandit Problem-based Recommendation: Many studies [7, 29, 57] proposed to formulate the recommen-
dation task as a bandit problem. In a common setup [29, 45, 57], each user is considered as an agent that selects
arms (i.e. items) and evaluates the corresponding payofs in generating efective recommendations. However, as
highlighted by [12], in a multi-armed bandit problem, the diiculty of inding the optimal arm increases as the
number of arms increases. As a consequence, under the aforementioned common setup, which considers items as
arms, the recommenders’ performances will be limited when applied to a large dataset with numerous items.
On the other hand, instead of predicting the users’ preferences on items, bandit algorithms can also be used to
address other exploration vs. exploitation dilemmas - indeed, Javier et al. [46] considered users as arms instead
of items in their proposed neighbour selection scheme. Our approach is diferent from previous bandit-based
recommendation approaches in that we consider the small number of review properties as arms in our proposed
bandit problem instead of either items or users. Hence, given that the existing bandit-based recommendation
approaches do not address the use of review properties, while considering users or items as arms, they do not
constitute suitable baselines for our proposed ConvBandit bandit approach. To the best of our knowledge, we are
the irst study that leverages the users’ posted reviews as context to estimate the users’ preferences on review
properties so as to examine the usefulness of reviews.

3 METHODOLOGY

In this section, we irst present the review-based recommendation task and the commonly available properties
associated to the reviews (Section 3.1). Next, we describe the review modelling in our proposed BanditProp
multi-task learning recommendation model (Section 3.2). We also introduce how BanditProp estimates the users’
preferences on the learned features from using diferent review properties as a bandit problem (Section 3.3). In
particular, we describe various bandit algorithms used to address the bandit problem.

3.1 Problem Statement

We focus on addressing a recommendation task, which aims at efectively estimating the users’ preferences
and recommending items of interest by leveraging the users’ posted reviews and their properties. Essentially, a
recommendation task involves two main entities: the set of users� = {�1, �2, ..., �� } with size N and the set of
items � = {�1, �2, ..., �� } with size M. To address this task, we leverage the reviews posted by users on items to
learn their preferences. For a given user � or item � , there is a set of corresponding reviews�� or�� . Furthermore,
each review � can be additionally encoded with � review properties P = {�1, �2, ..., �� } to depict the usefulness of
reviews from diferent perspectives. In particular, for a given review property, e.g. �� , such a review � posted
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Fig. 2. The structure of the BanditProp model

by user � or on item � , has an associated property score ��
�,�

or ��
�,�
. Note that we map the property scores into

scalars in the range of [0..1] through an adequate function in Section 3.2.

3.2 Review Modelling in BanditProp

To address the introduced recommendation task, we propose a neural network model (i.e. BanditProp) that learns
the users’ preferences on items from reviews additionally encoded with their properties. Figure 2 presents the
architecture of BanditProp. Such architecture involves two duplicated neural networks to learn the features of the
user and the item, respectively. We use the user modelling neural network as an example to illustrate the network
structure. In the BanditProp’s input data, for a given user, we have their ID and associated reviews. Each type of
input is learned by using a separate network. To use the user ID, we leverage the one-hot encoding technique to
encode the general features of a given user. On the other hand, in the review modelling network, we construct �
parallel neural networks to model the reviews, which are additionally encoded with � diferent review properties.
This architecture can also be seen as a multi-task learning network that uses the shared user/item embeddings
among � diferent review property modelling networks. In the following, we further describe the details of the
review modelling neural networks.

3.2.1 Review Modelling Networks. In the review modelling networks of BanditProp, there are � parallel neural
networks that learn features from the reviews additionally encoded with � diferent review properties. We
follow [56] and use six commonly available review properties (age, length, rating, Polar_Senti, Helpful and
Prob_Helpful that introduced in Table 1) to describe the reviews from diferent aspects. The network that models
the reviews additionally encoded with each of the six review properties consists of ive layers from the embedding
to the concatenation layer. In the following, since the parallel review property modelling networks have the same
structure, we use the network that focuses on the use of the length property to illustrate the ive layers of the
networks.
First, in the embedding layer, we convert each review into the embedding vector � by using the pre-trained

BERT model [13], which is a widely used language modelling approach. Next, in the property-encoding layer, we
embed the scores of the length property of reviews into the converted review embedding vectors. For example,
for a given review � posted by user � and the length property �� , we calculate the length property score ��

�,�
for
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Properties Descriptions

Recency
The min-max normalised number of days � since a review

has been posted.

Length
The min-max normalise number of words that are included

in a review.

Rating The min-max normalised rating associated with the review.

Polar_Senti

A CNN classiier [24] is used to calculate the corresponding

probabilities of the positive reviews being actually positive

or the negative reviews being negative.

Helpful
The min-max normalised number of helpful votes for a

given review.

Prob_Helpful
The estimated probability of a review being helpful by

using a review helpfulness classiier [55].

Table 1. Summary of the review properties.

review � as described in Table 1. This review property score indicates the importance of review � according to the
length property �� . In particular, according to the description of the length property, a longer review will obtain
a higher length property score than a shorter review. Afterwards, the integration of the review property scores
to the review embedding vector � is done by the dot-product operation, which is formalised as follows:

��,�� = [�1 · �
�
�,1, �2 · �

�
�,2, ..., � |�� | · �

�
�, |�� |
] (1)

where �� refers to the ��ℎ property and the property scores are applied to user �’s |�� | reviews. As a consequence,
BanditProp can extract and learn features from the score-embedded latent vectors for each of the given review
property (e.g. the length property). Moreover, by using � review properties, BanditProp can comprehensively
capture features from reviews using diferent review properties. After the property encoding layer, the review
property-encoded latent vector ��,�� is used as input to the convolutional layer and then the max-pooling
operation is applied in the next layer. Note that, in the convolutional layer, given the textual nature of the users’
posted reviews, we apply the one-dimensional convolutional operator to capture the features from the reviews.
Next, we concatenate the learned embedding vector from the review modelling network and the embedding
of the corresponding user into a latent vector. This latent vector indicates the learned feature from the user by
looking at both their general preferences on items and their learned preferences from the reviews using a speciic
review property (e.g. length of reviews). Afterwards, for a given user � or item � with � review properties, we
obtain � resulting latent vectors (� ′�,� and � ′�,� , � ∈ P) for both user � and item � . We denote the parameters

included in these review modelling networks as � where ��� indicates the parameters in the network that models
the ��ℎ review property �� .

Next, for the reviewmodelling network of the reviews additionally encoded with a given review property �� , we
apply the dot-product operation on the learned latent vectors between user � and item � (i.e. �

′′

�,�,�
= � ′�,�� ·�

′
�,��

)

to conduct users’ preference estimation. This results in � scores that estimate the user’s preferences on items for
each of the � review properties.

3.3 Arm Selection Layer in BanditProp

After the prediction layer, we have an arm-selection layer to selectively use the computed scores �
′′

�,�,�
from

the modelling of � review properties. In this arm selection layer, we propose to consider the selection of the

ACM Trans. Web



BanditProp: Bandit Selection of Review Properties for Efective Recommendation • 7

computed scores �
′′

� ,�,�
of all users� and items � on the � review properties from the review modelling networks

as a bandit problem. The target is to enhance BanditProp’s performances by selecting the scores �
′′

� ,�,�
to estimate

users’ preferences on items. We formulate such a bandit problem as follows:
• The arms A correspond to the � review properties P. The selection of diferent arms is akin to the use of the
corresponding review properties.
• The reward R is calculated based on the users’ historical interactions similar to [31, 63]. The reward follows a
multinomial distribution and is deined as the ratio of times that the model ranks the positive item higher than
the randomly sampled negative item in Γ positive-negative item pairs by using the feature score of a given review
property 1. For example, after conducting an arm selection, if the model ranks the positive item higher than the
negative item six times in ten positive-negative item pairs, the reward is 0.6. The resulting rewards’ values are
the elements of a set {0, 1

Γ
, ..., 1}. By maximising the expected rewards, the model can better distinguish between

the positive and negative items so as to generate the top items for each user. Note that as argued in [2, 40], the
multinomial rewards can be seen as more detailed and informative than the binary rewards. Indeed, in Section 6,
we experimentally demonstrate the advantage of using multinomial rewards over binary rewards.
• The state S is the review-based feature vector of a given user. According to the UAoI framework [15, 51],
there is a relationship between the users’ type and their preferred properties of reviews. In particular, in [56],
the authors experimentally showed that there is a potential correlation between the properties of the users’
posted reviews and the users’ types. Therefore, we propose to leverage the users’ posted reviews as context to
approximate the users’ type so as to support the prediction of the users’ preferred review properties. Note that,
the contextual bandit algorithms extend the multi-armed bandit algorithms by leveraging the state S to construct
their algorithms and predict the users’ preferences on the review properties.
To efectively address the bandit problem within a deep neural network, we propose a customised learning

algorithm, which is described in Algorithm 1. In Algorithm 1, we introduce how we separately train the parallel
review modelling networks and the bandit approaches. In particular, the BPR loss function [39] is leveraged to
update the parameters of each of the review modelling networks that encapsulate the selected review properties.
Moreover, to update the parameters of the neural networks, we apply a freezing mechanism, such that the
parameters of the review modelling network that encapsulates the selected review property are updated, while
the networks that address other review properties are frozen, i.e. unchanged. Note that we use the greedy search
as an example in Algorithm 1, but it can be replaced with any other bandit algorithms.
For the bandit approaches that we use as surrogates to the default greedy search algorithm in Algorithm 1,

we consider two types of bandit algorithms, namely multi-armed bandit (MAB) and neural contextual bandit
algorithms, to address our introduced bandit problem. We now introduce these algorithms:
(1) Multi-Armed Bandit Approaches In general, a multi-armed bandit can be described as a tuple ⟨A,R⟩ that
indicates actions and rewards, respectively. In this paper, we include three types of MAB algorithms, namely
greedy search-based [26], UCB-based [22] and Thompson Sampling (TS)-based [43] algorithms. Greedy search-
based encapsulate variants such as �-greedy search and decayed �-greedy search [26]. They exploit the averaged
historical accumulated payofs of selecting the corresponding review properties. The corresponding arm selection
strategy is formulated as follows:

�∗� = argmax
�∈A

[
1

� (�)

�︁

�=0

�� (�� = �)

]

(2)

However, the greedy search-based algorithms difer in conducting the exploration of the arm selections. The
greedy search solely relies on the exploitation of historical payofs (i.e. Equation (2)). Note that, we later use the
greedy search as the default bandit algorithm in our BanditProp model. Meanwhile, the �-greedy search [26] uses

1An item is positive if it has been interacted with by the corresponding user, and it is negative otherwise.
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Algorithm 1:Model learning for user � by using the default greedy search for selecting arms (i.e. the
set of review properties P). This can be replaced by any other general bandit algorithm (including a
contextual bandit algorithm).

1 ��,P ← 0; // Accumulated reward ;

2 ��,P ← 0; // Count the selection of arms ;

3 �← 0;

4 repeat

5 // neural network training

6 for �� ∈ P do

7 ��,�� ← the reward by using property �� ;

8 L�,�� ←
∑

�,�+,�−∈� ��[� (� ′′
�,�+,��

− � ′′�,�−,�� )]; // calculate the BPR loss [39] using �� ;

9 // � := {(�, �+, �−) |�+ ∈ �+� ∧ �
− ∈ � \ �+� };

10 Freeze the gradients of �P − ��� ;

11 Update ��� according to L�,�� ;

12 end

13 // bandit search illustrated with the default greedy search

14 for � ← 0 to � do

15 � ← argmax(��,�� /��,�� ); // Equation (2);

16 ��,�� ← ��,�� + ��,�� ;

17 ��,�� ← ��,�� + 1;

18 end

19 �← � + 1;

20 until Convergence;

a ixed exploration factor � to indicate the probability of selecting random arms. On the other hand, the decayed
�-greedy (i.e. DE-greedy) search [26] downgrades the value of the exploration factor � over time. In this paper, we
use the following decay function: �� =

1
��� (� )

. Note that by using diferent decay functions, we can have various DE-

greedy search algorithms, which have diferent rates of decline in the value of � . However, we have experimentally
found that there is no signiicant diference between the performances of these variants when addressing our
speciic bandit problem. Hence, due to space constraints, we only focus on the DE-greedy search approach.
Apart from the greedy search-based algorithms, we consider another family of bandit algorithms (i.e. UCB

search [22]). Diferent from the greedy search algorithms, the UCB search algorithms estimate the values of arms

by capturing the upper conidence bounds of selecting arms. The upper conidence bound �̂ is deined as the
uncertainty in the payofs of selecting an arm. If an arm has been frequently selected, it has a lower uncertainty
in the payofs than selecting other arms. Therefore, the system tends to select arms with higher uncertainty in
the payofs to capture the values of selecting these arms. We consider two UCB-based algorithms (i.e. UCB1 and
Bayes-UCB [22]). UCB1 can be formulated as follows:

�∗� = argmax
�∈A



1

� (�)

�︁

�=0

�� (�� = �) +

︄
2 log(� )

� (�)


(3)

UCB1 estimates the value of arms according to the averaged accumulated rewards (left part of Equation (3))
like the greedy search-based approaches and the uncertainty score (right part of Equation (3)). The Bayes-UCB
algorithm leverages the prior knowledge of the arms’ values to estimate the posterior values of arms. We assume
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that the prior knowledge of arms can be modelled by the beta distribution, which includes two shape parameters
� (�) and � (�). At each iteration, if arm � is selected, � (�) and � (�) are updated by ��+1 (�) = �� (�) + ��,� and
��+1 (�) = �� (�) + (1 − ��,�), respectively. The Bayes-UCB estimates the values of arms as:

�∗� = argmax
�∈A

[
�� (�)

�� (�) + �� (�)
+ ��

(
�� (�), �� (�)

)]
(4)

where �� (�� (�), �� (�)) is the standard deviation of the beta distribution and c determines the size of the conidence
interval.

Moreover, similar to the Bayes-UCB strategy, we also consider the TS algorithm, which also relies on the beta
distribution as the prior knowledge. However, the Bayes-UCB and TS algorithms are diferent in estimating the
values of selecting arms. The TS algorithm follows the idea of probability matching [48], which is a decision
strategy that relies on the deined prior distribution. At each time step, the system samples the posterior probability
of each arm and selects the arm that maximises the expected reward E. This process can be interpreted with the
following equation:

�∗� = E

[
argmax

�∈A

(
� |����(�� (�), �� (�))

)]
(5)

Furthermore, given that we are using multinomial rewards to examine the value of selecting arms, we also
consider Multinomial TS (Mul-TS) [40], a state-of-the-art bandit algorithm that has been designed to address
bandit problems using multinomial rewards. At each round of the bandit selection, for each arm �, Mul-TS
leverages the Dirichlet distributions ��� (��0 , �

�
1 , .., �

�
Γ
) with dimension Γ + 1 to generate samples �� . Essentially,

�� refers to the likelihood of obtaining speciic values of multinomial rewards after selecting a corresponding arm.
After that, the arm selection can be described by the following equation: �∗� = argmax

�∈A

[
(0, 1

Γ
, 2
Γ
, ..., 1)⊤��

]
. Then,

if a reward
�

Γ
is observed, the parameters of the used Dirichlet distribution are updated with �

�∗
�

� := �
�∗
�

� + 1. On
the other hand, by comparing the implementations of the considered MAB approaches in this paper, we observe
that the greedy search-based approaches and the UCB1 strategy rely on the accumulated historical rewards to
estimate the values of arms, while the Bayes-UCB, TS and Mul-TS algorithms focus on constructing functional
estimators to predict the values of arms. Given such a diference, the Bayes-UCB and TS-based approaches require
an additional efort in learning the estimators, which makes it challenging for them to efectively estimate the
values of arms. However, by comparing TS and Mul-TS, we expect that Mul-TS should outperform TS by capturing
the multinomial nature of the reward distribution.
(2) Neural Contextual Bandit Approaches

Neural contextual bandit algorithms extend the MAB algorithms by leveraging the state information S to
support the estimation of the arms’ values. Recently proposed neural contextual bandits [41, 60] are considered to
be the current state-of-the-art and generally have a good performance in tasks where exploitation vs exploration
must be addressed. Therefore, in this paper, we consider the neural contextual bandit approaches, which model
the arms, states and rewards (i.e. ⟨A,S,R⟩) through a neural network. The action-value function is formulated
by the expected reward, which considers both the state and action (i.e. � (�, �) = E(� |�, �)).

As mentioned above, we propose to use the review-based feature vectors � of the users as the state S. We irst
construct a linear neural contextual bandit algorithm (LinBandit) [65]. It approximates the value of arms with the
following equation:

���������������� =� �
� �

(
� �

�−1� (...� (�1 [� ⊕ �
�]))

)
(6)

where� indicates the feature vector of the reviews posted by a given user.�� is the review feature vector encoded
with the information of arm �. The latter corresponds to the feature vector��,�� within Equation (1) with review
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property � . ⊕ refers to the residual connector. In particular, LinBandit assumes that the values of arms can be
linearly approximated from the corresponding context or state S. Next, we observe that the review feature
vectors � of the arms are extracted from the textual documents. Given that the convolutional operation can
efectively capture the local features of documents by modelling local receptive ields and shared weights [23, 24],
we postulate that the convolutional operation can outperform the linear operation in better capturing information
in the review-based feature vectors � . Therefore, in this paper, we propose another neural contextual bandit
algorithm (i.e. ConvBandit) that uses the convolutional operation-based approximation function to estimate the
reward of selecting various arms. Its reward approximation function is:

����������������� = �
[
� �1 ∗ (�

�
1 (� (�

�
0 ∗ �

�
0 [� ⊕ �

�])))
]

(7)

where � (.) and ∗ are the activation function and the convolutional operation, respectively. Note that for both
LinBandit and ConvBandit, we irst train the approximation functions by minimising Mean Squared Error (MSE)

between their predicted values for the given arms and the averaged historical rewards (i.e. 1
� (�)

∑�
�=0 �� (�� = �)).

Next, similar to NeuralUCB [65], while using the neural approaches for the arm value’s estimation, we also
leverage the upper conidence bound as in Equation (3) to implement the arm exploration. Therefore, the arm
selection of both LinBandit and ConvBandit are implemented as follows:

�∗� = argmax
�∈A

(������� +

︄
2 log(� )

� (�)
) (8)

4 EXPERIMENTAL SETUP

We irst introduce our research questions, which examine the efectiveness of BanditProp. Next, we describe the
two used datasets as well as the baseline approaches. Then, we describe in detail the settings used to train and
deploy both BanditProp and the baseline approaches. In order to evaluate our proposed BanditProp model, we
aim to answer the following research questions:
RQ1: Does BanditProp, which uses a multi-task learning framework with a default greedy search algorithm
outperform existing state-of-the-art baseline approaches on the two used datasets?
RQ2: Which multi-armed bandit algorithm performs the best when applied to the BanditProp model on the two
used datasets?
RQ3: Do the neural contextual bandit algorithms outperform the multi-armed bandit ones when applied to the
BanditProp model?

4.1 Datasets

We follow [56] and use two real-world datasets (i.e. the Yelp (round 13)2 and the Amazon3 [18] datasets). They have
been used in many review-based recommendation studies [35, 47]. Following the dataset iltering strategy in [56],
for the Yelp dataset, we use the users’ reviews on the top category of venues (i.e. restaurant). Moreover, for the
Amazon dataset, we include the users’ reviews from six categories4. These two datasets contain rich review prop-
erties (e.g. timestamp and helpfulness vote), allowing to capture the users’ preferences on the reviews properties
under diferent system interfaces and conditions. We also ilter the datasets to alleviate the datasets’ sparseness
problem as in [44, 56]. The iltering operation results in all the users and items in both datasets having at least
5 associated reviews. After the iltering step, the resulting Yelp and Amazon datasets, have 47k users / 16k items /
551k reviews and 26k users / 16k items / 285k reviews, respectively. In order to evaluate the performances of our
proposed approaches and baselines on the two datasets, we further randomly split both datasets into 80% training,

2https://www.yelp.com/dataset
3http://jmcauley.ucsd.edu/data/amazon/
4‘amazon instant video’, ‘automotive’, ‘grocery and gourmet food’, ‘musical instruments’, ‘oice products’ and ‘patio lawn and garden’
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10% validation and 10% testing sets. The recommenders’ performances are measured on the testing set using the
Precision (P@1 and P@5), Recall (R@10), Mean Average Precision (MAP) and Normalised Discounted Cumulative
Gains (NDCG@10) metrics. Note that‘@#’ indicates the cutof position at ‘#’ for the corresponding metric.

4.2 Baseline Approaches

We evaluate our proposed BanditProp model on the two used datasets in comparison to six strong state-of-the-art
baselines, namely:

(1) BPR-MF [39] is a classical recommendation model, which estimates the users’ preferences on items by
leveraging the interactions between the decomposed user-item feature vectors.

(2) DREAM [59] is a sequential recommender, which leverages the recency of reviews and estimates the users’
preferences on items by considering sequential dependencies in user-item interactions.

(3) CASER [52] is a state-of-the-art sequential recommender. It uses the convolutional neural network to model
the sequential interaction between a given user and the items.

(4) JRL [61] is a heterogeneous recommender that estimates the users’ preferences from various types of users’
explicit feedback (e.g. reviews and ratings). We implement the JRL model by only using the users’ posted
reviews.

(5) DeepCoNN [64] is a popular review-based recommendation baseline [9, 55]. It uses the interaction between
the review feature vectors of the user-item pairs to estimate the users’ preferences.

(6) NARRE [9] is a state-of-the-art review-based recommender. It ranks the users’ interest in items, using
both the one-hot embedding and the review feature vectors for a given user-item pair. It also leverages an
attention mechanism to observe useful review features.

(7) RPRS [56] is a recent review-based recommender, which builds upon the users’ adoption of information
framework. It uses various review properties to describe the reviews from diferent perspectives. Then, it
models the users’ interactions with a given type of reviews so as to estimate the users’ tendency in using
the review data and to improve the recommendation accuracy.

4.3 Models’ Setings

We deploy our proposed BanditProp model5 and the baseline approaches using the PyTorch framework [38]. For
the BanditProp’s setup, we leverage the pre-trained BERT model as in [56] and use the representation vector
of the ‘[CLS]’ token to convert the review tokens into a 768-sized latent vector. We apply the pre-trained BERT
model since BERT and other recent neural language models have been shown to be more efective than classic text
feature representation techniques [49, 54, 62] (e.g. bag-of-words [62]) in many text-based tasks, such as document
retrieval [33, 54] and text classiication [36]. Similarly, for the DeepCoNN, NARRE and RPRS baseline approaches,
we also use BERT to compute the review embeddings used as input to these baseline models. Note that the
DeepCoNN and NARRE models were originally designed to address the rating prediction task. Hence, in this
paper we convert them into ranking-based approaches. To do so, we change their training to use the BPR ranking
method [39] by leveraging the calculated scores of the users’ preferences on items as input to the BPR loss function.
Next, in the property-encoding layer, we compute the scores of the review properties as described in Table 1. For
the ‘Polar_Senti’ and ‘Prop_Helpful’, we use a trained CNN-based classiier and a review helpfulness classiier,
namely NCWS [55], which is a state-of-the-art review helpfulness classiier, to estimate the probabilities of the
reviews being sentimentally polarised (i.e. strongly positive or negative) or being helpful. Note that, for the CNN-
based sentiment classiier, we train it on 100,000 reviews, which include half positive and half negative reviews
that are sampled from the Yelp Challenge dataset round 12. As for the NCWS classiier, we follow the experimental
setup in [55] by training two classiiers on the reviews from the Yelp Challenge dataset round 12 and the Amazon

5We will release all our code upon the acceptance of this paper.
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kindle datasets, respectively. Then, these two classiiers are used to predict the helpfulness property of each of the
collected reviews from the same website. In particular, in the ground truth, we consider one review as helpful if it
has at least one helpful vote. Furthermore, for the bandit problem tackled in this paper, to generate the multinomial
rewards and speed up the training, we follow [58] and set the number of randomly sampled positive-negative item
pairs Γ to 10. For the �-greedy search algorithm, as in [14], we set the � to 0.1 to indicate the probability of selecting
random arms. On the other hand, in the Bayesian UCB algorithm of Equation (4), we set the value of � to 3 to
control the size of the conidence interval. For training the BanditProp model, we apply the early-stopping strategy
with a maximum 200 epochs and use the Adam optimiser [25] with a 1�−4 learning rate. The same strategy is also
used to train the baseline approaches. In addition, as we argued in Section 1, the performance of a review-based
recommendation system can beneit from the accurate prediction of the properties of the useful reviews that better
capture the users’ preferences and the items’ attributes. Therefore, to evaluate diferent strategies for estimating the
properties of useful reviews, we directly compare the recommendation performances of BanditProp with diferent
bandit algorithms that learn to selectively use various review properties to estimate the usefulness of reviews.

Table 2. Recommendation performances. 1/2/3/4/5 denote a significant diference w.r.t. BPR-MF, DREAM, NARRE, RPRS

and Bandit-Prop, respectively, on NDCG@10 according to a paired t-test with the Tukey HSD correction (� < 0.05).

Dataset Amazon Yelp

Model P@1 P@5 R@10 MAP NDCG@10 P@1 P@5 R@10 MAP NDCG@10

1 BPR-MF 2, 3, 4, 5 0.00538 0.00431 0.03013 0.01118 0.01633 0.01014 0.00656 0.03919 0.01455 0.02176
2 DREAM 1, 3, 4, 5 0.00523 0.00358 0.02914 0.01067 0.01506 0.00838 0.00723 0.04692 0.01555 0.02292
– CASER 1, 2, 3, 4, 5 0.00934 0.00720 0.04991 0.02392 0.03150 0.01112 0.00937 0.05710 0.02291 0.03333
– DeepCoNN 2, 3, 4, 5 0.00534 0.00451 0.03431 0.01196 0.01575 0.00549 0.00310 0.01739 0.00726 0.01154
– JRL 1, 2, 3, 4, 5 0.00417 0.00384 0.03102 0.00923 0.01238 0.00437 0.00294 0.01355 0.00615 0.00928
3 NARRE 1, 2, 4, 5 0.01753 0.01024 0.05885 0.02797 0.03654 0.01375 0.00994 0.06057 0.02289 0.03324
4 RPRS 1, 2, 3, 5 0.02238 0.01270 0.08657 0.03784 0.04966 0.01618 0.01221 0.07611 0.02713 0.04205

5 BanditProp 1, 2, 3, 4 0.02534 0.01423 0.09481 0.04197 0.05536 0.01760 0.01326 0.08144 0.02952 0.04486

5 RESULTS ANALYSIS

In the following, we evaluate and analyse the performance of the proposed BanditProp by answering our three
research questions.

5.1 RQ1: BanditProp Performance Evaluation

Our irst research question aims to determine if our BanditProp model ś with a default greedy search algorithm ś
can outperform the existing state-of-the-art recommendation approaches. Table 2 presents the performances of
BanditProp with a default greedy search algorithm in comparison to 7 baselines. Following [34, 50], statistical
signiicance diferences among the various approaches on the NDCG@10 metric are assessed using the paired
t-test as well as the Tukey HSD correction test (p-value < 0.05). Among the baseline approaches, we observe
that the DeepCoNN and JRL models, which solely rely on the reviews’ text as input, provide less competitive
recommendation performances than other approaches. Meanwhile, by using both the user/item embeddings
and the review text as input, NARRE can signiicantly outperform BPR-MF, DeepCoNN and JRL on the two
datasets. Similarly, we observe that the performances of sequential recommenders can also be improved by using
the user/item embeddings. For example, the CASER model, which uses the user/item embeddings, signiicantly
outperforms DREAM, which solely relies on the sequential pattern of user-item interactions. This result supports
the use of the user/item embeddings in BanditProp. Next, we observe that RPRS signiicantly outperforms all the
baselines on two datasets. This result demonstrates that RPRS is efective at capturing the users’ preferences by
leveraging various review properties, and predicting the users’ interests in items. We now turn our attention
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to the performance of our proposed BanditProp model. The experimental results in Table 2 show that just by
using the default greedy search algorithm, BanditProp signiicantly outperforms all the baseline approaches
including RPRS. Given how RPRS and BanditProp difer in their use of review properties, these results also
support our argument for developing a model encompassing multi-task learning and a bandit search strategy that
captures the users’ preferences from their interaction with diferent types of reviews as we advocated in Section 1
based on the existing review sorting interfaces of various platforms (c.f. Figure 1). Therefore, in answering RQ1,
we conclude that our proposed BanditProp model can signiicantly outperform the existing state-of-the-art
recommendation baselines. In particular, we showed the efectiveness of two main components in the BanditProp
model, namely (1) the user/item embeddings; (2) the multi-task learning component and the corresponding bandit
search strategy-based model architecture, as motivated the need to capture users’ behaviour with the review
sorting interfaces of various platforms.

Table 3. Performances of the recommendation approaches. ↑ denotes a significant diference w.r.t. RPRS on all ranking metrics

according to a paired t-test with the Tukey HSD multiple testing correction (� < 0.05). Similarly ◦ and •, respectively, denote

significant diferences using the same test w.r.t. BanditProp using the default greedy bandit algorithm and ConvBandit.

Dataset Amazon Yelp

Model P@1 P@5 R@10 MAP NDCG@10 P@1 P@5 R@10 MAP NDCG@10

ś RPRS 0.02238◦• 0.01270◦• 0.08657◦• 0.03784◦• 0.04966◦• 0.01618◦• 0.01221◦• 0.07611◦• 0.02713◦• 0.04205◦•

Multi-armed Bandit Algorithms

↑ greedy 0.02534• 0.01423• 0.09481• 0.04197• 0.05536• 0.01760• 0.01326• 0.08144• 0.02952• 0.04486•
↑ �-greedy 0.02545• 0.01447• 0.09521• 0.04258◦• 0.05603◦• 0.01773• 0.01325• 0.08144• 0.02936• 0.04431•
↑ DE-greedy 0.02534• 0.01437• 0.09413◦• 0.04237• 0.05568• 0.01773• 0.01345• 0.08146• 0.02957• 0.04490•
↑ UCB 0.02484• 0.01428• 0.09315◦• 0.04156• 0.05488◦• 0.01680◦• 0.01267◦• 0.07943◦• 0.02800◦• 0.04281◦•
ś Bayes-UCB 0.02491• 0.01404• 0.09135◦• 0.04070◦• 0.05416◦• 0.01656◦• 0.01252◦• 0.07859◦• 0.02790◦• 0.04227◦•
ś TS 0.02461◦• 0.01386◦• 0.09193◦• 0.04122◦• 0.05448◦• 0.01637◦• 0.01229◦• 0.07472◦• 0.02725◦• 0.04189◦•
↑ Mul-TS 0.02526• 0.01423• 0.09298◦• 0.04190• 0.05473◦• 0.01728• 0.01302• 0.07878◦• 0.02849◦• 0.04311◦•

Neural Contextual Bandit Algorithms

↑ LinBandit 0.02572• 0.01476◦• 0.09553◦• 0.04285◦• 0.05603◦• 0.01781• 0.01344• 0.08121• 0.02946• 0.04437•
↑ ConvBandit 0.02637◦ 0.01558◦ 0.09675◦ 0.04386◦ 0.05723◦ 0.01825◦ 0.01408◦ 0.08183◦ 0.03015◦ 0.04539◦

5.2 RQ2: Efectiveness of the MAB Algorithms

To answer RQ2, we investigate the efectiveness of using various multi-armed bandit (MAB) algorithms when
applied to our proposed BanditProp model. In Section 3.3, we introduced three types of MAB algorithms, namely
the greedy search-based, UCB-based and TS-based approaches. Recall that the main diference between these MAB
algorithms consists in whether a bandit algorithm uses the averaged historical rewards (the greedy search-based
and the UCB1 algorithms) or a functional estimator (the Bayes-UCB, TS and Mul-TS algorithms) to approximate
the value of arms. Table 3 presents the performances of using these three types of bandit algorithms in our
BanditProp model. Note that the algorithm denoted by ‘greedy’ in Table 3 corresponds to the default bandit
greedy search strategy used in the BanditProp model in Table 2. First, we investigate the efectiveness of using the
greedy search-based algorithms. We observe that the �-greedy search approach is the best performing among the
greedy-search approaches on the Amazon dataset. It also signiicantly outperforms the default greedy search on
MAP and NDCG@10. On the Yelp dataset, the DE-greedy search algorithm outperforms the greedy and �-greedy
search algorithms. Such results demonstrate the positive impact of introducing the exploration component into
the default greedy search algorithm on the recommendation performances. On the other hand, we also observe
that all the greedy search approaches as well as the UCB1 algorithm, which rely on the accumulated historical
rewards, signiicantly outperform the strongest RPRS baseline on all ranking metrics. These results indicate the
beneits of leveraging the accumulated historical rewards for estimating the values of arms, so as to make efective
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recommendations. Next, we evaluate the performances of using the Bayes-UCB and TS-based approaches (namely
TS and Mul-TS), which use functional estimators to approximate the values of arms, within the BanditProp model.
The reported results in Table 3 show that the Bayes-UCB and TS approaches are signiicantly outperformed by
the default greedy search algorithm on most of the ranking metrics. This observation indicates that it is diicult
for the functional estimator-based algorithms to efectively approximate the values of arms and improve the
recommendation performances when used within BanditProp. However, by comparing the performances of TS
and Mul-TS, the obtained results in Table 3 show that Mul-TS outperforms TS while achieving a signiicantly
indistinguishable performance in comparison to the default greedy search algorithm on many ranking metrics.
This indicates the advantage of modelling the multinomial rewards with a Dirichlet distribution instead of the
beta distribution used within TS. Therefore, in answering RQ2, we conclude that the MAB algorithms that rely
on the accumulated rewards to approximate the values of arms (namely the greedy-based and UCB1 approaches)
are more efective than the approaches that use functional estimators (namely the Bayes-UCB and TS-based
approaches) in predicting the arms’ values within our proposed BanditProp model. Moreover, we also observe
the beneit of using a bandit approach (namely Mul-TS) that models the multinomial rewards with the Dirichlet
distribution within BanditProp. Thus far, the reported experimental results show that by considering various
multi-armed bandit algorithms that selectively use diferent review properties, so as to capture the usefulness
of reviews, BanditProp can indeed yield a signiicantly improved recommendation performance. However, the
impact of using the state information (c.f. Section 3.3) on the selection of the review properties and consequently
on the recommendation performance remains to be investigated. Therefore, next, we present and discuss the
performances of applying the contextual bandit algorithms to our proposed BanditProp model.

5.3 RQ3: Using the Contextual Information

To answer RQ3, we investigate whether using the state information S, a neural contextual bandit algorithm that
encapsulates the features extracted from the reviews (an information not conveyed by the MAB algorithms), can
lead to efective recommendation performances along BanditProp. In particular, we examine the performance
of our proposed ConvBandit algorithm in comparison to the LinBandit algorithm, which is a state-of-the-art
neural contextual bandit algorithm. Recall that in Section 3.3, ConvBandit difers from LinBandit, that used a
linear operation, by using the convolutional operation to model the state information S. Table 3 reports the
results on the two used datasets. We observe that when used in BanditProp, ConvBandit signiicantly outperforms
LinBandit as well as the multi-armed bandit (MAB) algorithms on all ranking metrics across the two used datasets.
The diference between the neural contextual bandit approaches (e.g. ConvBandit and LinBandit) and the MAB
algorithms is that the neural contextual bandit algorithms consider the action, state and reward instead of only
the action and reward used by the MAB algorithms (as denoted in Section 3.3). The observed efectiveness of
ConvBandit indicates the usefulness, for a bandit approach, to leverage the feature vectors of reviews as context
to approximate the values of arms within BanditProp. The improved performance using ConvBandit compared
to that using the default greedy search algorithm also demonstrates the advantage of considering additional
components (i.e. the state information as well as the exploration mechanism introduced in Equation (3)), instead
of solely relying on the accumulated rewards. In particular, as previously described in Section 3.3, the Bayes-UCB,
TS-based, LinBandit and ConvBandit approaches all use functional estimators to approximate the values of
arms. The signiicantly better performance achieved by ConvBandit, in comparison to both the Bayes-UCB and
TS-based approaches, further demonstrates that it is useful to leverage the feature embeddings of reviews as
context when estimating the arms’ values to improve the BanditProp’s performance. Therefore, in answering RQ3,
we conclude that ConvBandit signiicantly outperforms the existing state-of-the-art LinBandit and Mul-TS bandit
algorithms as well as various classic bandit algorithms on both the Amazon and Yelp datasets when applied to
our proposed BanditProp model. In addition, the signiicantly better performance of ConvBandit, in comparison
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Fig. 3. Efectiveness comparison between using the binary rewards or the multinomial rewards on the two datasets.

to other functional estimator-based bandit approaches without the context information, further supports the
added value of the used context information within ConvBandit.

6 MULTINOMIAL VERSUS BINARY REWARDS

The strategy used to leverage the collected rewards after selecting the arms plays an important role in addressing a
bandit problem [1]. In Section 3.3, we used the multinomial rewards in various bandit algorithms. The multinomial
rewards are computed according to the ratios of the correctly ranked positive-negative item pairs. Alternatively,
we can also compute binary rewards by applying a conditional function to the multinomial rewards (i.e. the reward
is 1 if the multinomial reward is greater than 0.5, 0 otherwise). For the used bandit approaches, we argued that
using the multinomial rewards can better capture the values of selecting diferent arms than the binary rewards.
However, in the existing literature, the binary rewards are still frequently used in many bandit approaches for
addressing a wide range of bandit problems [6, 17, 27]. Therefore, in this section, we experimentally compare the
efectiveness of using either the multinomial or binary rewards in various bandit approaches within BanditProp
on two datasets. Figure 3 presents the recommendation performance diferences between the use of binary or
multinomial rewards for various bandit approaches within BanditProp. Note that, as an illustration, we use the
MAP ranking metric when measuring the performance diferences of these approaches6. We observed similar
trends when using other ranking metrics.

In Figure 3, we observe that the multinomial rewards outperform the binary rewards when used within most
bandit approaches with the exceptions of Bayes-UCB and TS on Amazon. This shows the efectiveness of using the
multinomial rewards to measure the values of arms when addressing our bandit problem. Moreover, for the Bayes-
UCB and TS algorithms, the binary rewards do not consistently enhance the performances of both Bayes-UCB and
TS on the two used datasets (i.e. the multinomial rewards are a better choice for both approaches on Yelp). There-
fore, from the obtained results, we conclude that to address our tackled bandit problem,the multinomial rewards
are more efective than the binary rewards when used in various bandit approaches within the BanditProp model.

7 CONCLUSIONS

We proposed a novel recommendation model, BanditProp, which encompasses a multi-task learning and a bandit
search strategy to estimate the users’ preferences on the review properties thereby enhancing the recommendation
performances. We investigated various bandit search algorithms to address the selection of review properties
to use for a given user, including a novel neural contextual bandit approach called ConvBandit. Our extensive
experiments using two well-known datasets showed that BanditProp signiicantly and consistently outperforms
one classical and six state-of-the-art baselines over the two used datasets. Moreover, we showed that the proposed

6Mul-TS is not included, since it is designed to model the multinomial rewards.
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ConvBandit algorithm signiicantly outperforms other strong bandit algorithms. Our obtained results demonstrate
that the additional features extracted from the users’ posted reviews allow to efectively capture the users’
preferences on the review properties for an enhanced recommendation performance. Our experiments also
showed the efectiveness of using the multinomial rewards to capture the values of arms, when addressing our
tackled bandit problem. As future work, we plan to further evaluate the efectiveness of our proposed BanditProp
model in some extreme usage cases, such as when users have few or no reviews (i.e. cold-start vs. full cold-start
users) or users with mostly positive or negative reviews.
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