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Abstract—Autonomous Driving (AD) systems extensively manip-
ulate 3D point clouds for object detection and vehicle localization.
Thereby, efficient processing of 3D point clouds is crucial in these
systems. In this work we propose K-D Bonsai, a technique to cut
down memory usage during radius search, a critical building block
of point cloud processing. K-D Bonsai exploits value similarity
in the data structure that holds the point cloud (a k-d tree) to
compress the data in memory. K-D Bonsai further compresses
the data using a reduced floating-point representation, exploiting
the physically limited range of point cloud values. For easy
integration into nowadays systems, we implement K-D Bonsai
through Bonsai-extensions, a small set of new CPU instructions to
compress, decompress, and operate on points. To maintain baseline
safety levels, we carefully craft the Bonsai-extensions to detect
precision loss due to compression, allowing re-computation in full
precision to take place if necessary. Therefore, K-D Bonsai reduces
data movement, improving performance and energy efficiency,
while guaranteeing baseline accuracy and programmability. We
evaluate K-D Bonsai over the euclidean cluster task of Autoware.ai,
a state-of-the-art software stack for AD. We achieve an average of
9.26% improvement in end-to-end latency, 12.19% in tail latency,
and a reduction of 10.84% in energy consumption. Differently
from expensive accelerators proposed in related work, K-D Bonsai
improves radius search with minimal area increase (0.36%).

I. INTRODUCTION

As recent advances in sensors, algorithms, and hardware
crystallize the viability of Autonomous Driving (AD), concerns
shift toward how to make these systems more efficient. In this
context, improving hardware support for point cloud manip-
ulation is critical since Autonomous Vehicles (AVs) heavily
depend on point cloud-based algorithms [2], [24], [32]. Point
clouds contain a 3D representation of the environment (see
Figure 1), being richer than their 2D counterparts (e.g., images).
For this reason, point clouds are suitable for a multitude of
tasks, such as object detection, distance measurement, and
vehicle localization, which are vital for AD.

A crucial point cloud operation performed by AD algorithms
is radius search, whose goal is to return all points within a
distance r from a query point q (where q belongs to the point
cloud). Radius search is used, for example, when clustering
nearby points together (to infer shapes and objects around the
vehicle) [26], [40], [48], or when optimizing the localization
estimation of the vehicle [10], [11], [38], which are among the
most time- and energy-consuming tasks performed by AVs [8],
[59]. In fact, radius search accounts for more than half of the
execution time of these tasks, as depicted in Figure 2 . Likewise,
radius search is also used in 3D Convolutional Neural Networks

(CNNs) processing [35], [47], in order to fetch neighbors of
points to push them together through convolutions.

In this work we propose K-D Bonsai, a technique to compress
point clouds to reduce data movement during radius search
execution, improving its performance and energy efficiency. To
perform the compression, we first observe that sensors have a
physically limited range of operation, defining an upper-bound
value for the coordinates of the collected points. For example,
the Velodyne HDL-64E [56] - a typically employed LiDAR
sensor - has a maximum operation range in the order of 120 m.
This ultimately limits the values of the exponent fields in the
Floating-Point (FP) representation of all points in the sensed
point cloud. Second, we observe that k-d trees [9], [18], the
typical data structure used for efficient point cloud searches
(e.g., used by the prominent Point-Cloud Library (PCL) [49]),
intrinsically group points with similar values in the tree leaves.
As a consequence, the sign and exponent fields (in IEEE 754
FP representation [54]) are frequently repeated across different
points in the same leaf and can be merged. Third, we observe
that it is also possible to reduce the size of the mantissa field,
and still compute a large percentage of radius search without
losing radius search precision. More importantly, we show
how to cheaply identify any precision loss at run-time, and
re-issue full-precision computation to keep baseline accuracy
with minimal overheads.

The mechanism is implemented with minor hardware and
Instruction Set Architecture (ISA) extensions, which we named
Bonsai-extensions, into a traditional CPU. We use the Bonsai-
extensions to compress the k-d tree during build, and to read

Fig. 1. A point-cloud obtained with
LiDAR. Data from [23].

Euclidean Cluster
(Segmentation)

NDT Matching
(Localization)

0%

20%

40%

60%

80%

100%

Sh
ar

e 
of

 E
xe

cu
tio

n

61%
51%

Radius Search Other

Fig. 2. Radius search execution time
share in two Autoware.ai [6], [24]
tasks.
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and operate over compressed data during traversal. Since it
reduces the number of necessary bytes to perform radius
search, it reduces the number of memory accesses, energy
consumption, and execution time. The CPU modifications are
punctual, refining over already existing hardware. Moreover, our
solution has minimal programmability impact, since improve-
ments are exposed as new CPU instructions, and thus being
straightforward to be used in existing applications. This makes
it easy to adopt K-D Bonsai in today’s systems, in contrast to
expensive and hard-to-program out-of-core accelerators.

We validate our idea by extending ARM’s AArch64 ISA
on the gem5 simulator [12], [36]. We modify the PCL [49] to
make use of our new instructions and use it to improve the
execution of the euclidean cluster task on Autoware.ai [6], [24]
- a state-of-the-art and open-source software stack for AVs.
We demonstrate how K-D Bonsai effectively compress points,
reducing the number of necessary load instructions by 23%
and energy consumption by 10.84%, and improving end-to-end
performance by 9.26% on average and tail-latency by 12.19%.

In summary, this paper presents the following contributions:
• We identify redundancy on bit-fields of FP representation

in point cloud data stored in k-d trees.
• We verify that k-d tree radius search, a critical opera-

tion for point cloud-based algorithms in AVs, tolerates
reduction in format representation.

• We derive a mathematical equation to verify whether or
not the reduction in format representation could harm the
accuracy of the radius search operation, which will trigger
re-computation with baseline precision if necessary.

• We propose K-D Bonsai, a compression technique to
exploit data redundancy and reduction in format represen-
tation. K-D Bonsai reduces data movement during radius
search, improving performance and energy efficiency.

• We implement K-D Bonsai as new CPU instructions,
namely Bonsai-extensions, demonstrating that our scheme
could be easily adopted on next-generation processors
for AD. We also validate the proposed scheme using a
state-of-the-art and open-source software stack for AD.

The paper is organized as follows. Section II introduces
important background concepts such as point clouds, k-d trees,
and radius search. Section III explains how compression can be
applied to k-d tree data. Section IV discusses the design details,
including new instructions and necessary hardware. The results
are analyzed in Section V. Finally, we review related work in
Section VI and present final conclusions in Section VII.

II. BACKGROUND

In this section, we introduce important concepts to contex-
tualize our work. We explain i) point clouds; ii) how they are
used by modern AD software; iii) the k-d tree data structure,
used to search on point cloud data; and iv) the radius search
operation, used by different AD algorithms.

A. Point Cloud for Autonomous Driving

A point cloud is a set of points in a given coordinate system.
In the context of AD, point clouds are in the 3D space, where

each point has coordinates (x, y, z). Point clouds can be obtained
with sensors such as LiDAR, which sends laser beams around
and measures the time for them to reflect back to the sensor [32].
In the absence of sensing noise, each point in a point cloud
belongs to a surface in the real world (of a wall, a car, a tree,
etc.) within the sensor range, as depicted in Figure 1.

Given the 3D information held by point clouds, they are
commonly used by AD systems for perception and localization
tasks [24], [32]. When used for perception, LiDAR-based
algorithms serve to understand the surrounding environment.
This includes tasks such as object detection and recognition,
object tracking, and motion prediction [24], [32]. Typical
perception algorithms that use point cloud include points
clustering [26], [40], [48] and neural network classification [29],
[46], [47]. When used for localization, LiDAR-based algorithms
try to match the sensed point cloud with a previously existent
point cloud map [51], sometimes referred as High-Definition
(HD) map, in a process known as registration [10], [11], [38].
When the sensed point cloud overlaps an already mapped region,
localization can be derived with centimeter-level precision.

B. K-d Tree

Raw point cloud data obtained from sensors is unorganized.
Points are usually pushed back to an array as they are collected
by the sensor. For this reason, searching (a common operation
across different LiDAR-based algorithms) exhaustively on raw
point cloud data is prohibitive, especially in the context of AD
where latency deadlines are strict [34]. The solution is to use
a search-friendly data structure, such as a k-d tree [9].

A k-d tree is a binary tree that allows efficient search in
k dimensional data. In this work, we consider the k-d tree
implemented by the widely used PCL [49] and FLANN [17]
libraries, which are adopted by state-of-the-art AD software
stacks such as Autoware.ai [6], [24] and Baidu Apollo [7]. The
tree is created as follows. A root is created when all points are
still to be sorted. On each level, starting with the root, the k-d
tree selects one coordinate c (among k possible) to split the
data. In the 3D case c can be either the x, y, or z coordinate.
The median value in coordinate c across the set of points is
found. Points with c value less than the median go to the left
sub-tree, and points with c value greater than the median go to
the right sub-tree. On each sub-tree, a new splitting coordinate
is selected, and the process repeats. A common criterion (e.g.,
used by PCL) is to select the splitting coordinate whose data
is more spread out. This helps posterior search traversal to
quickly reach the nodes of interest.

Originally, each k-d tree node would hold a point [9] (e.g., the
median point of the splitting coordinate). Later, an optimized
k-d tree [18] proposed to store points on leaves only, up to a
maximum m number of points per leaf. Whenever a sub-tree
contains less than m points, the splitting process stops and
the node is defined as a leaf. Restricting points to the leaves
reduces the number of examinations while traversing the tree.
The optimal number of points per leaf depends on the data
and will impact the tree topology (e.g., the tree depth). PCL
has a default of 15 points per leaf.
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Notwithstanding, during the tree creation, each sub-tree has
its bounding box calculated (i.e., the maximum and minimum
values in all coordinates that can be found in that sub-tree).
The parent node uses this information to hold its distance to
each sub-tree, in the splitting coordinate. This will be used
when searching, as we explain in the next subsection. Overall,
non-leaf nodes on the tree serve to guide the tree traversal
during the search, to reach leaves that contain a set of points
that fits the search criteria.

C. Radius Search

The main goal of radius search is to return all points within
a distance r from a query point q. Formally, given a three-
dimensional point cloud P = {p1, p2, ..., pN}, pi ∈ R3, we
want to find the set of neighbor points

N (q,r) = {p ∈ P | dist(p,q)<= r}
of a query point q ∈ P,R3, within a distance r ∈ R. The

operation is used, for example, when clustering points from a
point cloud, to retrieve the shape of objects in the environment.
In that case, radius search is successively used to associate
nearby points in clusters: e.g., if point A is in the radius of
point B, and point B is in the radius of point C, then A, B, and
C are all parts of the same cluster [48].

To perform a radius search on a k-d tree one must provide a
query point q and the target radius r. The tree will be traversed
comparing the splitting coordinate value of the current node
with the correspondent coordinate of q. This comparison gives
a best-effort hint of which child sub-tree is closer, and thus
more likely to lead to a leaf where points within r can be
found. This descending process will lead to the leaf containing
q itself (along with other points in that leaf). When unwinding
the tree navigation, the alternative sub-tree (not taken when
descending) is also considered. If the distance in the splitting
coordinate from q to the sub-tree is smaller than r, the sub-tree
is visited, and the descending continues. Every time the search
finds a leaf, the distance between q and each point pi on the
leaf is calculated. The euclidean distance d is generally used.

d(q, pi) =
√
(qx − pix)2 +(qy − piy)2 +(qz − piz)2 (1)

To avoid performing the square root, a common optimization
is to calculate the squared euclidean distance.

d2(q, pi) = (qx − pix)2 +(qy − piy)2 +(qz − piz)2 (2)

Then we can compare d2 with the square radius r2 to classify
the point.

classi f ication2(q, pi) =

{
in radius, if d2 <= r2

not in radius, if d2 > r2 (3)

Whenever pi is in the radius of q, it is added to the radius
search result list.
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Fig. 3. Nearby points in space are often held by the same k-d tree leaf,
creating opportunity to compress data due to value similarity. Particularly, the
sign and exponent fields frequently repeat within each point’s coordinate.

III. COMPRESSING POINT CLOUDS ON K-D TREES FOR
RADIUS SEARCH

In this section, we explain how k-d-trees can be compressed
when used for radius search in AD tasks, reducing the number
of bytes needed to fetch the points during leaf inspection. We
discuss a twofold compression approach that uses both value
similarity and a smaller representation. Finally, we discuss the
errors introduced (by a smaller representation; value similarity
does not introduce any error) and our approach to detecting
and correcting them, guaranteeing the baseline accuracy.

A. Compression based on value similarity

When the k-d tree is built (as explained in section II), the
point cloud space is subdivided in a way that nearby points
end up together in the leaf nodes. Hence, the coordinates of
the points are similar to each other. This scenario is illustrated
in Figure 3, in two dimensions for simplicity.

Figure 3a exemplifies a situation where spatially close points
are held by the same k-d tree leaf node. The origin of the
coordinate system is in the vehicle (where the LiDAR sensor
is), and the distance to the points is given in meters. Figure
3b lists the coordinates of the points (x and y in this example),
exposing their internal FP representation (in 32-bit IEEE 754
[54]). We depict the sign (s), exponent (e), and mantissa (m)
fields of FP representation separately. Following the IEEE 754
standard, the stored value is given by the following equation.

value =−1sign ×1.mantissa×2exponent−bias (4)

When points are close in space, their coordinates are likely
to have the same sign (i.e., they all belong to the same quadrant
in the coordinate system), and exponent (i.e., values are within
the same power of 2). For example, all points in Figure 3 have
their x coordinate between 8.0 and 16.0, hence yielding the
same exponent field value of 1301.

To check the applicability of this observation, we verified
how often sign and exponent fields are the same for a given
coordinate across all points in a leaf node (as it is the case for
coordinate x in Figure 3a). We inspected a set of point clouds
spanning more than 37 million points that feed the euclidean
cluster node in Autoware.ai [6], [24] (details about data-set
can be found in Section V). We identified that 78% of leaf

1For 32-bit, the bias is 127, resulting in a final exponent of 130−127 = 3.
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TABLE I
CLASSIFICATION ERROR OF RADIUS SEARCH FOR EUCLIDEAN CLUSTERING

USING SMALLER FLOATING-POINT REPRESENTATIONS.

# of bits Misclassified points
Sign Exponent Mantissa

IEEE-754 32-bits 1 8 23 0% (baseline)
IEEE-754 16-bits 1 5 10 0.076%
bfloat 16 1 8 7 0.61%
Custom float 24 1 5 18 0.0003%

nodes have the same exponent and sign for the x coordinate,
and 83% for the y coordinate.

Therefore, value similarity in internal fields of FP representa-
tion of point clouds is very common and a suitable compression
source for k-d tree data. If the sign and exponent are the same
in a coordinate across all points in a leaf, we can store them
only once, and reconstruct the values inside the CPU, only
when computation takes place (details in Section IV).

B. Compression via a smaller representation

Compressing the sign and exponent of FP representation
fields (Section III-A) yields a maximum compression ratio of 9
out of 32 bits per coordinate when 32-bit is used - the default
in Autoware.ai and PCL, and the baseline considered in this
work. To improve the compression ratio further, we need to
work over the remaining 23 bits of the FP representation which
belongs to the mantissa.

The problem here is that the mantissa field hardly repeats
across the points in a leaf. Therefore, compression due to value
similarity will not be fruitful for the mantissa bits. We can,
however, reduce the size of the FP representation at the cost of
precision. Table I depicts the error in classification (Eq. 3) using
different FP formats with less than 32-bits. We use the same
set of point clouds as in Section III-A. We experimented with
two common 16-bit FP representations: IEEE-754 16-bit (IEEE
half-precision format [54]), the bfloat 16 (used for machine
learning applications, and e.g., supported by CUDA [43]); and
also a custom 24-bit representation, for a midway reference in
our comparison.

Overall, we found that both 16-bit and 24-bit FP represen-
tations yield less than 1% classification error. This is a good
indication that reducing the representation can be effective
for compression, introducing few mistakes. Notice that for
IEEE-754 16-bit and the Custom float (24 bits) representations
the exponent field size is also reduced, affecting the range of
representable numbers. However, point cloud data obtained
from sensors such as LiDAR have limited range. For example,
the Velodyne HDL-64E [56] (a typically employed LiDAR
sensor) has a maximum cover range of 120 m. Indeed, none
of the errors depicted in Table I are due to the lack of range to
represent numbers. Hence, reducing exponent bits in our case

is not a problem, but something to take advantage of2.
Going further, we evaluate the involved trade-offs of the

different representations to select a good fit for our compression
scheme. We noticed that IEEE-754 16-bit has the same size as
bfloat, but balances better the use of exponent bits (for range)
and mantissa bits (for precision), being more accurate by an
order of magnitude. Also, the 8 extra bits in our Custom (24
bits) float for increased precision do not pay off since the 16-bit
formats already hold decent (<1% error) accuracy. Finally, the
IEEE-754 16-bit is already partially supported by nowadays
CPUs (e.g., for storage on ARM [5]) hence being less intrusive
on existing architectures than a new custom format. For these
reasons, we choose the IEEE-754 16-bit to represent the points
of k-d tree leaves, and over that apply compression due to
value similarity (Section III-A).

Our main conclusions about using a smaller representation
in k-d tree radius search are two-fold: i) the mantissa bits can
be reduced with low accuracy loss; ii) AD algorithms consume
points that are near the vehicle, hence the exponent bits can
be reduced and still represent the point cloud values.

C. How to keep accuracy despite a smaller representation

So far, we have discussed two different ways to reduce the
size of points searched by k-d trees, with the side effect of
introducing classification errors. However, since AD systems
are safety-critical, introducing mistakes is not desirable [22]
and pose consequences which are hard to test [27]. Hence, we
propose an approach to detect possible mistakes in classification,
and re-compute them with baseline accuracy. For this, we
assume to have access to both the original points and the
compressed points. The idea is to use the compressed points,
alleviating memory usage, and exceptionally lookup for the
original 32-bit values if a possible misclassification is detected.

Let B be a number in 32-bits IEEE-754 format that we want
to represent in the 16-bit IEEE-754 format, at the cost of an
error δB associated with the loss of precision. Let B′ denote
the resulting value of B in 16-bit representation.

B′ = B+δB (5)

For the default rounding mode in the IEEE-754 Standard,
the Least Significant Bits (LSBs) of the mantissa are dropped,
and the resulting number is rounded up or down, towards
the nearest number. For values whose exponent can be stored
equally in both representations (our case, see Section III-B),
the rounding in the mantissa is the single source of error. In
this case, the 11th to 23rd mantissa bits will be used to round
the number to its nearest value, adjusting the 10th bit of the
16-bit resultant number.

2Lack of range representation due to fewer exponent bits could be a problem
when the coordinate system of the point cloud does not have the origin on
the sensor itself and is, otherwise, far away. For example, when point cloud
maps [51], [52] are created, several point clouds are combined to represent a
region. Hence, points can be more distant to the origin than the sensor range.
A possible solution for this case is to translate the origin to a more convenient
position. This could be done offline or when the map of the region is loaded.
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Since we can round up or down to the nearest number, the
maximum mantissa error will be half the value of the 10th
bit, while the maximum value error will also depend on the
exponent, since 2exponent−bias multiplies the mantissa to form
the FP number (Eq. 4). In these conditions, the maximum error
δ for rounding a number B when converting it from 32-bit to
16-bit IEEE-754 FP is given by:

max(δB) = 2exponent−bias × 2−10

2
= 2exponent−bias ×2−11 (6)

The takeaway here is that using only the exponent one can
infer the maximum rounding error. Thus, with B′ at hand, there
is no need to lookup B, as the exponent value is representable
in both B′ and B according to our assumptions.

Now, let’s proceed to find the error in the squared difference
between a value A, in 32-bit, and a value B′, in 16-bit. We
start looking at the subtraction, applying Eq. 5.

A−B′ = (A)− (B+δB) = (A−B)−δB (7)

Where −δB is the associated error. We can proceed and
evaluate the error for the square operation (A−B′)2 applying
Eq. 5, Eq. 7, and Newton’s binomial theorem.

(A−B′)2 = [(A−B)−δB]2

= (A−B)2 −2(A−B)δB+δB2

= (A−B)2 −2[A− (B′−δB)]δB+δB2

= (A−B)2 −2(A−B′+δB)δB+δB2

= (A−B)2 −2[(A−B′)δB+δB2]+δB2

= (A−B)2 −2(A−B′)δB−2δB2 +δB2

= (A−B)2 −2(A−B′)δB−δB2

(8)

Where −2(A−B′)δB−δB2 is the associated error of the square
of the differences operation (εsd). Notice that δB can be either
positive or negative, depending if the number was rounded
up or down. At run-time, however, we will not know which
case it was because that would require fetching and inspecting
the LSBs of the original value, which we are trying to avoid.
Instead, we can be pessimistic and calculate the worst case
magnitude of εsd , using the max(δB) (Eq. 6) instead of δB.

max(εsd) = 2 · |A−B′| · |max(δB)|+max(δB)2 (9)

Again, notice that the max(δB) and max(δB)2 can be directly
obtained with the exponent of B′. Finally, we can compute
the approximate square differences of form (A−B′)2 for each
coordinate, and sum to get the approximate euclidean distance
squared d′2.

d′2(q, p′i) = (qx − p′ix)
2 +(qy − p′iy)

2 +(qz − p′iz)
2 (10)

Likewise, we can sum the maximum error of the squared
differences in each coordinate and get a total error T εsd

T εsd = max(εsd)x +max(εsd)y +max(εsd)z (11)

r-Tεsd
r+Tεsd

r

q

inside radius

outside radius
unkown, re-compute
 with 32-bit

Fig. 4. Visual representation of Equation 12.

We can finally use Eqs. 10 and 11 to perform the classifica-
tion (with p′i instead of pi).

classi f ication′2(q, p′i)=


in radius, if d′2 <= r2 −T εsd

not in radius, if d′2 > r2 +T εsd

use Eq. 3, otherwise
(12)

In other words, we can use the worst-case error T εsd to
confirm the correctness of the classification with p′i. We do
so by defining a shell around r2 with values r2 −T εsd and
r2 +T εsd , as depicted in Figure 4. Whenever d′2 falls outside
the shell, the classification is the same as the baseline, computed
by Eq. 3. For instance, a point inside the radius but outside
the shell cannot be outside the radius even if we add T εsd
to d′2. On the other hand, when d′2 falls inside the shell, the
error could be large enough to change the classification, and
cannot be guaranteed to be the same as the baseline. In this
case, we propose to fetch the original point pi, and re-do the
classification with the full-precision, using Eq. 3.

IV. PROPOSED DESIGN

In this section, we motivate and explain the design decisions
of K-D Bonsai. We explain the hardware structures and how
to use them through new instructions, the Bonsai-extensions.

A. Hardware support for k-d tree compression

After deriving a compression scheme (Section III), hereby
referred to as K-D Bonsai, it is of our interest to use it in
tasks that perform radius search. A naı̈ve approach would
be to (de)compress points with a software-only solution.
However, iteratively inspecting and re-ordering bits in software
slows down radius search in the order of 7× (data-set and
experimentation platform in Section V-A), undermining the
compression benefits. Alternatively, it is possible to add
hardware to support K-D Bonsai effectively.

Two main options arise to implement K-D Bonsai in
hardware: i) with an out-of-core accelerator; or ii) in the
CPU through ISA-extensions. In this work, we stand with
the latter as we justify next. First, the CPU would have to
transfer data in and out to communicate with the accelerator.
However, the leaf processing done by K-D Bonsai is a fine
grain task, requiring only a handful of cycles to complete
(implementation details in Section IV-B). Thus, using proper
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Fig. 5. The new components added to the baseline CPU and how they interact
with pre-existing ones.

hardware inside the CPU to perform (de)compression and
classify points avoids communication costs [53]. Alternatively,
(de)compression operations could be coalesced to amortize
communication costs. However, accelerators are likely to be
more expensive (see Section VI). At the same time, leaf
processing is only a fraction of the point cloud handling,
limiting the maximum performance improvement (Ahmdal’s
law), and jeopardizing accelerator adoption. Nevertheless,
industry favors less experimental approaches to accelerate tasks
in their real-life solutions, rarely employing accelerators [44].

On the other hand, while new instructions yield more con-
servative performance gains, they are a much simpler solution
from the hardware standpoint. Additionally, ISA-extensions are
easier to integrate and to program, facilitating K-D Bonsai
implementation in existing platforms. For example, ARM
releases new (sometimes optional) ISA-extensions yearly [4].
Also, some ARM processors support to-be-defined custom
instructions [13]. Both alternatives exemplify the use of ISA-
extensions to specialize CPUs for relevant scenarios, such as
AD. Support for custom instructions is also a key feature of the
RISC-V ISA [57]. This set of reasons motivates us to propose
specific instructions in the CPU to implement K-D Bonsai
effectively.

B. Changing the CPU

A main advantage of the ideas discussed in Section III is
how easily and cheaply they can be carried out in the hardware.
Indeed, the set of new functionalities required is small: i) we
need to compress the data; ii) decompress the data; and iii)
support computation of the squared differences (and associated
error) in the form (A−B′)2 (Eq. 8).

Figure 5 depicts the two components that we add to the
CPU, and how they interact with the existing hardware.
The first added component we discuss is the Compres-
sion/Decompression unit, at the top of the figure. The unit
is divided into two parts: a buffer, named ZipPts Buffer, and a
Compress/Decompress Logic.

ZipPts Buffer. The ZipPts Buffer is designed to hold both
compressed and uncompressed 16-bit points, being the source
and destination operand for compression and decompression
operations. In our implementation, we restrict the ZipPts Buffer
size to hold a maximum of 16 points (the number of points per
leaf in the PCL is 15 by default). We also reserve space for 3

bits in the buffer, to encode whether x, y, and z coordinates
are compressed.

The buffer has two 128-bit ports to interface with the Vector
Register File and one 128-bit port to interface with the Load
Store Unit. Hence, data is exchanged in chunks of 128-bit,
which we refer to as a ZipPts Buffer slice. When less than 128-
bits must be transferred (e.g., the last chunk of a compressed
data), we pad data with zeroes. The width of the ports equals
the ones that already exist in our baseline CPU (see Section
V), for example in the Vector Register File. Hence, we can
load and store data from/to memory directly to the ZipPts
Buffer. In summary, we can load points into the buffer to be
compressed, store the compressed data back in the memory, and
load compressed data to be decompressed. Also, we can write
values from the ZipPts Buffer into the Register File, exposing
them to the Functional Units (FUs). The ZipPts Buffer is
tightly coupled with the Compress/Decompress Logic, which is
responsible for re-arranging the data bits, discussed as follows.

Compress/Decompress Logic. This unit re-arranges the data
in the ZipPts Buffer compressing and decompressing points
from a k-d tree leaf. In both cases, the number of points must
be provided to the logic. During compression, this unit reads
and compares the tuple < sign,exponent > on each coordinate
of the points in the ZipPts Buffer, see Figure 6. If they are the
same across all points, only one copy of < sign,exponent > will
appear in the resulting compressed data. Each coordinate has
a compression bit flag (cX , cY , cZ) to indicate whether or not
its < sign,exponent > is compressed. During decompression,
this unit reads the compression bit flags, re-organizing the data
and re-creating the multiple instances of the single copy of
< sign,exponent > across all values.

To exemplify, Figure 6 details the compression flow and the
organization of the compressed data. First, the mantissa values
are directly bypassed to the buffer as they are not compressed.
Then, the compressed tuples of < sign,exponent > are placed
in the ZipPts Buffer, followed by the remaining non-compressed
tuples of < sign,exponent >. The three compression bits are
placed at the very beginning of the buffer.

Approximate Square of Differences Functional Unit.
When compressed points are fetched from memory and
decompressed into 16-bit values, they can be moved from the
ZipPts Buffer to the Vector Register File. At this point, the FU
for the square difference with error computation can take place.
The unit implements Eq. 8, and can be used successive times
(for each coordinate) to compute Eq. 10 and 11 to perform
the classification. Figure 7 details the internal scheme of the
FU. It has two input operands, A is a 32-bit value (e.g., a
coordinate of the query point), and B’ is a 16-bit value (e.g.,
the same coordinate of one of the points in the leaf), which is
then extended to 32-bit (without changing the value of B′) so
computation takes place in 32-bit hardware, preventing 16-bit
errors to be magnified. The square of the differences proceeds
with conventional subtraction and square operations.

The calculation of the worst case error (max(εsd), Eq. 9)
has more operations than the square of the differences itself.
Fortunately, we can take advantage of some observations to
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Fig. 7. Details of the FU for square of the difference with error computation.

simplify its computation. First, since the max(δB) depends only
on the exponent of B′, and there are only 25 = 32 possible
exponents, we can pre-compute the values of 2 · |max(δB)|
and |max(δB)|2 and store them in a small (32 lines) lookup
table. This small table (named part error mem in Figure 7)
is looked up with the exponent of B′ in the beginning of the
operation. Also, the term |A−B′| computed for the square of
the differences can be borrowed to compute the worst-case
associated error max(εsd).

Since decompression outputs multiple points at once, they
are simultaneously available for computation. To leverage this,
we instantiate multiple approximate squares of difference FUs
(Figure 8), to compute them in a vector manner. In each FU we
compute the square of the differences and the associated error
at the same time, each working on a part of the input vectors
vA and vB′. For the radius search classification, a coordinate
of the query q is loaded into all indices of vA, while the same
coordinate of multiple points is loaded into vB′.

C. Software impact

Now we discuss how to use the new hardware from
the software. We expose the new hardware functionalities
mentioned in Section IV-B as new CPU instructions. The set
of new instructions, which we refer to as Bonsai-extensions, is
described in Table II. We divide the Bonsai-extensions into three
instruction categories: compress, decompress, and computation.
Some instructions trigger multiple micro-operations, as we
explain together with their usage following.

When the leaf node is created during the k-d tree construction,
we can use the compress instructions over the leaf points
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Fig. 8. Vector square of the differences FUs.

we have at hand (Figure 6). For such we have to load the
points, one by one, into the ZipPts Buffer using the LDSPZPB
instruction. The load converts the original 32-bit into 16-bit
before placing the coordinates in the buffer. We can further
compress the data in the ZipPts Buffer, looking for sign and
exponent sharing, with the CPRZPB instruction. At this point,
we have a compressed structure in the ZipPts Buffer and the
resulting size in bytes (length). We can proceed and store the
compressed data with the STZPB instruction, indicating the
amount of ZiptPts Buffer slices that must be stored in memory.
The decoder will generate one store micro-operation for each
slice, storing them in consecutive addresses.

In our modified PCL code, we create an extra array of
bytes, cmprsd strct array, to store the compressed structures
consecutively as we visit and compress leaf nodes during
the tree construction. Also, we keep track of the starting
address and length of the compressed structure placed in the
cmprsd strct array in the k-d tree, so that we can fetch the
compressed data later, during the radius-search (tree traversal).
We use C unions to re-use fields of the tree that are not used
on leaf nodes (e.g., the splitting coordinate and distances to
children), to store this information. Hence, we hold auxiliary
compression information without increasing the size of the k-d
tree. In the PCL code, we also keep track of the next free index
in the array, to be occupied by the next compressed structure.

Later, when we do the radius search we can use the LDDCP
instruction to load and decompress the compressed structure
into registers, whenever we reach a tree leaf. This instruction
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TABLE II
THE PROPOSED BONSAI-EXTENSION INSTRUCTIONS

Instruction Description

C
om

pr
es

s

LDSPZPB r index, [r addr] LoaD Single-float Point into ZipPts Buffer - Loads one 3D point in single-float from address [r addr],
converts it to 16-bit, and place it on the ZipPts Buffer at position [r index].

CPRZPB r size, r num pts ComPRess ZipPtsBuffer - Compress the 16-bit points from the ZipPts Buffer, exploiting the value similarity
concept (Section III-A). The number of points is informed in r num pts. The result of the compression is the
ZipPts Buffer itself. The size in bytes of the resulting compressed structure is placed in r size.

STZPB [r addr], #ZipPtsSlices STore ZipPtsBuffer - Stores the ZipPts Buffer in the memory. Due to port size limitations, the ZipPts Buffer
will be stored in slices through several store micro-operations (in a total of #ZipPtsSlices).

D
ec

om
pr

es
s LDDCP v base, r num pts,

[r addr], #ZipPtsSlices
LoaD Decompressing Compressed Points - Load the compressed structure from memory into the ZipPts
Buffer, in slices, through several load micro-operations (in a total of #ZipPtsSlices). Decompress the ZipPts
Buffer on itself with one micro-operation. Writes-back the points to vector registers, per coordinate, from
v base up to v base + 5, with 3 micro-operations. Since two 128-bit registers can hold up to sixteen 16-bit
values (enough for one coordinate), we write-back to six (two at a time) 128-bit registers to hold forty-eight
16-bit values (enough for three coordinates).

C
om

pu
ta

tio
n SQDWEL v sq diff, v error, vA,

vB’
SQuare Difference With Error Low part - Performs a vector operation in the form (Ai −B′

i)
2 with error

calculation (see Eq. 8). The four values in the low part of vB’ will be extended from 16-bit to 32-bit when
pushed in the units (see Figures 7 and 8). The square difference will be placed in v sq diff, and the associated
error in v error.

SQDWEH v sq diff, v error, vA,
vB’

SQuare Difference With Error High part - Same as SQDWEL, but using the high part of vB’.

is broken down by the decoder into a sequence of micro-
operations. First it loads the compressed structure into the
ZipPts Buffer. For this we need the address and size of the
compressed data in the cmprsd strct array, which is kept in
the tree leaf, to indicate how many slices (chunks of 128-bits)
must be brought from memory, starting from the provided
address. The decoder use the indicated number of slices to
generate an equivalent number of load micro-operations from
memory to the ZipPts Buffer. Once the whole compressed
structure is inside the ZipPts Buffer, a decompression micro-
operation takes place, reading the compression encoding and
reordering the bits into 16-bit points accordingly. Finally, write-
back micro-operations are issued to move the value of the points
into the vector register file. In this case, we write back the
decompressed points from the ZipPts Buffer into six vector
registers. We need two vector registers for each coordinate
since each vector register can hold up to eight 16-bit values,
and we support up to sixteen 16-bit values per coordinate.

Finally, when we have decompressed the 16-bit values of the
coordinates in the vector arrays, we can use the square of the
differences FUs (Figure 8). For such, we perform instructions
SQDWEL and SQDWEH, calculating the square of differences
for points with a vector of the query point, for each coordinate.
The coordinate values of the query point can be loaded into
vector registers using existing vector instructions. Since we have
four 32-bit lanes in the baseline CPU SIMD unit (ARM NEON,
details in Section V-A), but eight values on each coordinate (16-
bit computed in 32-bit in the FUs, Figure 7), we split the values
in two groups of four values, the low part and the high part,
and compute them one at a time in the four lanes (details in
Figure 8). The result, per point index, is available in two vector
registers, one holding the calculated square of the differences,
and another one with the maximum error (max(εsd)). Thereafter,
it is possible to accumulate the distances for each index on

each coordinate, using existing instructions, and compare it
with r2, performing the classification (Eq. 12). If the result
is inconclusive (inside the white shell in Figure 4), one can
proceed with the baseline code, i.e., read the 32-bit point and
compute the 32-bit distance. This should be rare to guarantee
good performance, otherwise compression/decompression will
consume time with no real benefit.

Finally, we highlight that, for AD tasks, the tree is generally
built once for each frame, in the beginning, and then searched
multiple times, during the frame processing. This is important
because compressing the leaf node points represents an over-
head during tree creation. However, the compression benefits
will appear during the search, when we load fewer data from
the memory. For example, we verified an average of 52 visits
for each created leaf node during the radius search for one
of the input frames. Thus, the expectation is that loading less
data, multiple times, amortizes the initial overhead.

V. RESULTS

In this section, we explain the evaluation methodology and
obtained results for K-D Bonsai.

A. Evaluation Methodology

From the software perspective, we rely on Autoware.ai [24]
to experiment with our idea. Autoware is a state-of-the-art and
open source software stack for AD, built with contributions
from both academia and industry companies [6]. It has
several algorithms to perform AD, from sensor processing and
perception to actuation. In this work, we choose a representative
algorithm from Autoware, namely euclidean cluster [48] to
verify the benefits of our proposal in k-d tree radius search,
although other algorithms are also subject to our optimizations
(e.g., Autoware’s localization algorithm [38]).
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TABLE III
SUB-SAMPLING ERROR

Mean Standard
Error for Latency

IPC Relative
Error

L1- D Cache Miss
Ratio Difference

Branch Mispred.
Difference

2.94% 4.68% 0.10% 0.03%

The euclidean cluster algorithm is a vital part of the
perception pipeline of Autoware.ai. The algorithm clusters
points of a source point cloud, useful for inferring objects’
shape, geometry, and distance. Notably, it has been reported
by previous works as one of the tasks with higher latency in
the Autoware.ai pipeline [8]. Importantly, the euclidean cluster
extensively performs the radius search operation to find nearby
points that should belong to the same cluster.

We stimulate the euclidean cluster algorithm with a subset
of point cloud frames from an eight-minute car driving
sequence [23]. Because our cycle-accurate simulator (details
next) executes several orders of magnitude slower than real
hardware, we used systematic sub-sampling (fixed-size samples
equally spaced in time) to select the subset of point cloud
frames. The idea was inspired by previous work [3] and yields
good results if the parameters (interval amount and length)
are properly chosen. We experimented with several parameters
finally settling on 20 samples of 300 milliseconds each – adding
up to six seconds of real-life data and handling a total of 60
frames. Table III details sub-sampling errors, evidencing it as
a fast and accurate proxy to the code behavior.

We implemented the Bonsai-extensions (Table II) in the
gem5 simulator [12], [36], targeting an Out-of-Order (OoO)
CPU with the ARM’s AArch64 ISA. We base our model (see
Table IV) on the pre-defined big CPU in gem5, adjusting
parameters such as the frequency to match technology scaling,
to replicate an ARM Cortex A72 behavior. Although our
solution is ISA-agnostic, we used ARM as a representative ISA
for AD (e.g., used by NVIDIA DRIVE [42]). We modified the
PCL [33] version 1.10 and its auxiliary library FLANN [17]
version 1.9.2, using our instructions during the radius search,
as explained in Section IV-C. We did not modify the compiler
but instead wrote our instructions directly with byte-code using
the .inst directive in ARM asm inside the library. We expose
a Boolean variable in PCL so that users can activate the use
of the new instructions for radius search. When the variable
is true, the code uses the Bonsai-extensions, otherwise, it uses
the baseline code. The search result is the same in both cases.

We execute Autoware’s euclidean cluster algorithm in gem5,
running in Full System mode (Ubuntu 18.04). We use gem5 fast-
forwarding capabilities with KVM hardware virtualization [20],
[50] to reach the regions of the sub-sampled frames. For energy
results, we model the CPU in McPAT [28], [31] in a 32 nm
technology, and use gem5 reported statistics to feed the McPAT
power model. We estimate the area and power of the new FUs
(compression/decompression, and square of the differences
with associated error) synthesizing Verilog descriptions on
Synopsys Design Compiler [14] with a 14 nm technology [37].
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Fig. 9. (a) Hardware metrics during the execution of the extract kernel of
euclidean clustering considering the baseline code and the proposed Bonsai-
extensions. Average across all executed frames. (b) Number of loaded bytes to
fetch points from the first frame of the data-set during radius search (traversal).

To unify results in a single technology we scale the baseline
CPU data reported by McPAT using the methodology described
by Stillmaker et al. [55] (from 32 nm to 14 nm technology).

B. Performance Analysis

Figure 9a presents key performance metrics for the execution
of the extract kernel of euclidean clustering, both for the
baseline with and without the Bonsai-extensions. This is the
main kernel of the algorithm and accounts for 90% of its
execution time (measured with Valgrind [39]), and where both
k-d tree build and search are performed. Since each metric has
different scales, we normalized each of them w.r.t. the baseline
code. We can see that the Bonsai-extensions reduce the number
of memory instructions, by 23% for loads and 18% for stores.

Figure 9b gives intuition for this improvement, depicting a
great reduction in the number of required bytes to bring the
points from memory during the search on one frame. When
we load compressed points using the Bonsai-extensions, we
load a fraction (37%) of the bytes we would normally need in
the baseline code. Although this value is for the first frame of
the data set, the behavior is similar across all frames.

This reduction in memory usage converts into several benefits.
First, it decreases the number of committed instructions by
16%, ultimately indicating that our Bonsai-extensions cut
computation costs and increase efficiency on radius search
processing. Second, it reduces accesses to L1 D-cache by
14%, making the application less memory-bound, which also
increases efficiency in the use of the CPU. Third, due to

TABLE IV
BASELINE CPU MODEL USED

Parameter Value

CPU OoO ARM v8 64-bit @3GHz, Fetch Width: 3,
Issue Width: 8, Int Physical Reg.: 90, Float/Vector
Physical Reg.: 256, ARM v8 NEON (128-bit
SIMD operations)

Memory
System

L1: 32KB (I) 2-way + 32KB (D) 2-way, L2: 1MB
16-way, Main Memory: 8GB DDR3-1600
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Fig. 10. Accesses on different levels of the memory hierarchy.

both former reasons, it decreases the execution time of the
extract kernel by 12%. Latency, as we further discuss, is a
major concern for AD algorithms [34]. Nevertheless, this is
particularly significant when we observe that benefits come
from the addition of only five new instructions to the ISA.

Figure 9a also indicates K-D Bonsai increases L1 D-cache
misses. Although the Bonsai-extensions load compressed points
from the cmprsd strct array, which is contiguous in memory,
it also accesses the original list of points when classification
is inconclusive (white shell in Figure 4). These infrequent
accesses to another data structure are the main cause for
misses in higher levels of the memory hierarchy. In absolute
numbers, however, this is not a concern. Since the L1 cache
is accessed 47× more than L2 and 300× more than main
memory we still see the benefits in execution time. Figure 10
puts the number of memory accesses in perspective, according
to the different memory hierarchy levels. This phenomenon
highlights the importance of choosing the appropriate reduced
FP representation, as we discussed in Section III-B, Table I,
to minimize overheads of issuing 32-bit re-computation. In
our experimentation, only 0.37% of the classifications had to
rely on the baseline computation. If we were not careful in
selecting the representation, errors would not be as infrequent,
and the K-D Bonsai benefits could be compromised.

Next, we evaluate end-to-end latency for euclidean cluster
processing of frames. This is important because the extract
kernel, evaluated so far, is a subset of the algorithm’s work.
Other tasks such as point cloud pre-processing and labeling
the points into their respective clusters must also be performed.
Figure 11 depicts two box plots with the distribution of the
euclidean cluster end-to-end processing time for all sub-sample
frames. As in any standard box plot, the boxes contain 50%
of the values. We indicate the mean value of each distribution
(not the median, typical of box plots) with a white circle and
auxiliary dashed lines. The use of Bonsai-extensions speeds
up the average end-to-end latency by 9.26%. In the context of
AD, reducing the end-to-end latency translates into reducing
the reaction time of the vehicle, hence actuating faster, and
increasing overall safety. At this point, we recall that K-D
Bonsai benefits come with the same baseline accuracy (Section
III-C). Also, since the euclidean cluster is generally a perception

Baseline Bonsai-extensions
40
45
50
55
60
65
70
75
80
85

En
d-

to
-e

nd
 la

te
nc

y 
tim

e 
[m

s] Baseline
Bonsai-extensions

Fig. 11. The distribution of the end-to-end latencies for the euclidean cluster
algorithm. The dashed line indicates the mean value. Half the values are within
the box limits.

TABLE V
AREA AND POWER FOR BASELINE CPU AND K-D BONSAI

Area (mm²) Dynamic
Power (W)

Static
Power (W)

Processor (L2 included) 14.26 1.86 1.15

K-D
Bonsai

Compression
Decompression
FU

0.0191 0.0095 6.29E-06

4x (A-B’)² FU 0.0320 0.0144 4.55E-06

Total 0.0511 0.0240 1.08E-05

Relative change 0.36% 1.29% 0.001%

bottleneck [8], [25], [59] K-D Bonsai improvements are directly
converted into overall AD improvements.

Another important aspect for AD algorithms is their end-to-
end tail latency. Different from the average, the tail latency
assesses the performance of the algorithm in situations where
computation takes the most (e.g., in the euclidean cluster, when
point clouds have a higher number of points to be processed).
K-D Bonsai again proves to be advantageous considering the
99th percentile tail latency, speeding it up by 12.19%. Hence,
K-D Bonsai improves performance when it is needed the most.

C. Area and Power Analysis

Let us now examine the hardware costs of implementing our
technique. Table V presents area and power overheads intro-
duced to support K-D Bonsai, according to the methodology
explained in V-A. Overall, the hardware to support the new
instructions is simple, increasing area by 0.051 mm², which
represents an increase of 0.36% w.r.t the baseline. Likewise,
supporting K-D Bonsai increases dynamic power by 24 mW
(+1.29% w.r.t the baseline). These results reinforce how non-
intrusive our solution is. In the context of AD, introducing
minimal overheads in power and area are particularly important
for meeting cooling constraints [34] and design of small
autonomous vehicles (e.g., for delivery [41]), respectively.

D. Energy Analysis

Finally, we go through K-D Bonsai energy consumption
results in the extract kernel of the euclidean cluster. Figure 12
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depicts a box-plot (in the same fashion we did for end-to-end
latency, Figure 11). The reduction in energy consumption is
driven by a reduction in execution time, number of instructions
and number of memory accesses, which pays off the small
increase in dynamic power (Table V). On average, the use
of Bonsai-extensions reduces energy consumption by 10.84%.
K-D Bonsai successfully improves energy efficiency, which
is a concern on AV so the computational platform does not
reduce driving range [34] (e.g., on battery-powered vehicles).

VI. RELATED WORK

Recent advances in LiDAR technology and AV motivated
previous works on improving point cloud processing. Heinzle
et al. propose specific hardware to improve radius and nearest-
neighbor search in k-d tree point clouds [21]. Their main idea
is to search slightly more points than necessary (e.g., asking for
a larger radius), and use the extended result-set for subsequent,
spatially closed queries. They implement it in an FPGA and,
compared to a CPU, it improves query throughput by 68%,
ignoring CPU-FPGA transfer costs. The work claims the used
platform lacks an efficient CPU-FPGA interface, resulting in
half of the baseline CPU performance if communication costs
are taken into account. This highlights an important challenge
for accelerator integration. Since K-D Bonsai is implemented as
part of the CPU, there is no overhead to transfer data in and out
of the core. Also, while their work focuses on speeding up the
traversal, K-D Bonsai improves leaf processing, reducing the
total number of loads to bring the data (via (de)compression
in the CPU) after the traversal is performed, hence being
orthogonal to their technique.

A more recent work introduces Tigris [58], an accelerator
to speed up radius and nearest-neighbor search for point cloud
registration (a major application for k-d tree search, see Section
I). Tigris divides traversal and leaf processing in a front-
end/back-end fashion. Multiple queries are traversed in parallel,
offloading leaf data to the back-end, where multiple FUs will
perform distance checks. To exploit higher performance, Tigris
also has a scheme to search on previously obtained result-
sets, causing their search to be approximate. The accelerator
improves end-to-end latency for registration w.r.t a CPU by

86.6% but requires a total area of 15.57 mm2 (more than our
Baseline CPU, see Table V). The work does not report the
cost to offload queries to the accelerator. QuickNN [45] also
accelerates nearest-neighbor search on k-d tree-based point
clouds. In their target application, point cloud frames are used
as references for new frames. They exploit this behavior in the
accelerator architecture, overlapping execution and sharing data
of tree build and tree traversal. Moreover, they propose a gather-
read and gather-write cache, coalescing accesses to off-chip
memory. Like Tigris, their work processes multiple queries in
parallel and performs an approximate search. Accelerators for
nearest-neighbor search on high-dimensional spaces were also
proposed [1], [30], but the problem properties and requirements
differ from 3D data used by AD.

The Mesorasi [16] accelerator for point cloud based CNNs
(e.g. PointNet++ [47]) proposes delayed-aggregation, allowing
neighbor search and feature computation to be overlapped
in time, hiding latency. In their proposal, point cloud search
time stays roughly the same, and most of the benefits come
from faster feature computation. A more recent work [15]
improves over Mesorasi by limiting the backtracking step
of the k-d tree search to a sub-tree at the cost of accuracy.
Additionally, in case of bank conflicts their solution re-
uses similar points or completely ignores traversal paths if
necessary. This approximate scheme has most of its accuracy
corrected during training, restricting it to machine learning
scenarios. Similarly to Mesorasi, PointAcc [35] also accelerates
point cloud-based CNNs, proposing a ranking-based generic
accelerator unit. They also increase the number of mapping
operations over Mesorasi [16], e.g., supporting radius search,
and farthest point sampling to fetch inputs in the point cloud.

Some works exploited GPUs to improve point cloud pro-
cessing. The Buffer k-d tree [19] proposes nearest-neighbor
search using a buffer to delay the processing of queries of
the same leaf until enough work is gathered. RTNN [60]
proposes to formulate neighbor search into a ray tracing
problem. It then exploits contemporary ray tracing hardware
in GPUs to improve the search. The work, however, shows to
be effective on point clouds orders of magnitude (hundreds of
thousands to millions of points) bigger than those generally
processed in one LiDAR frame (thousands of points), as data
transfer overhead shows to be increasingly relevant as the
point cloud size decreases. Nguyen et al. [40] focuses on the
software perspective, implementing the euclidean cluster task
with different data structures and observing their efficiency
in the GPU hardware. Nonetheless, evaluation of Autoware.ai
algorithms had shown that using the GPU for the euclidean
clustering performs similarly to an OoO CPU due to the
GPU communication overheads [25]. Indeed, Autoware.ai uses
the CPU instead of the GPU to run the euclidean cluster
by default [6]. The GPU is reserved for image-based object
detection CNNs where its benefits are much less debatable [25].
At the same time, adding a GPU just for point cloud processing
incurs orders of magnitude more area and power overheads
than K-D Bonsai, both critical aspects to be minimized in
AVs [34].
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In summary, the majority of previous works propose the use
of accelerators, implying communication overheads, high area
costs, and lack of programmability. Moreover, many works
introduce approximation to achieve effective solutions. On the
other hand, K-D Bonsai proposes a small set of new instructions
implemented inside a CPU, while also guaranteeing baseline
accuracy. This fundamental difference places K-D Bonsai as a
programmable and easy-to-be-adopted solution in nowadays
systems. Our solution is modest performance-wise, but orders
of magnitude cheaper regarding area and power. Nevertheless,
our (de)compression scheme aims for better data fetching for
leaf processing, an orthogonal concept unexploited by previous
works. The techniques presented here, we recall, are also
applicable in platforms other than a CPU, as it only depends
on the algorithm (radius search) and the input (point clouds).

VII. CONCLUSIONS

In this work, we proposed K-D Bonsai, a novel approach to
improve leaf processing during k-d tree radius search, a key
operation in modern point cloud processing algorithms for AVs.
K-D Bonsai reduces memory operations with a (de)compression
scheme that takes advantage of value similarity and precision
reduction tolerance in the points of k-d tree leaves, without
harming baseline accuracy. Differently from previous works that
rely on out-of-core accelerators, K-D Bonsai is implemented
in the form of ISA-extensions (Bonsai-extensions) in an OoO
CPU, and validated with state-of-the-art software for AV in
a cycle-accurate simulator in full-system mode. Our solution,
K-D Bonsai, proved to be very efficient in reducing both
end-to-end latency and energy consumption while incurring
minimal overheads in area and power. Besides, it requires only
incremental hardware modifications on commodity CPUs while
being simple to be used by the programmer (setting a flag in
PCL), hence being a hands-down solution for next-generation
AV systems.
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