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Figure 1: The proposed method takes (a) sparsely sampled multi-view images under different directional lights as input. After
modeling the scene with the proposed Relit-NeuLF, our system can perform simultaneous novel view synthesis and relight
with both (b) novel directional lights and (c) HDR light probes.

ABSTRACT
In this paper, we address the problem of simultaneous relighting and
novel view synthesis of a complex scene from multi-view images
with a limited number of light sources. We propose an analysis-
synthesis approach called Relit-NeuLF. Following the recent neural
4D light field network (NeuLF) [23], Relit-NeuLF first leverages a
two-plane light field representation to parameterize each ray in
a 4D coordinate system, enabling efficient learning and inference.
Then, we recover the spatially-varying bidirectional reflectance
distribution function (SVBRDF) of a 3D scene in a self-supervised
manner. A DecomposeNet learns to map each ray to its SVBRDF
components: albedo, normal, and roughness. Based on the decom-
posed BRDF components and conditioning light directions, a Ren-
derNet learns to synthesize the color of the ray. To self-supervise
the SVBRDF decomposition, we encourage the predicted ray color
to be close to the physically-based rendering result using the mi-
crofacet model. Comprehensive experiments demonstrate that the
proposed method is efficient and effective on both synthetic data
and real-world human face data, and outperforms the state-of-the-
art results. We publicly released our code on GitHub. You can find
it here: https://github.com/oppo-us-research/RelitNeuLF
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1 INTRODUCTION
Novel view synthesis of real-world objects under different light-
ing conditions has been an important research topic for computer
vision and computer graphics. A system that can perform simulta-
neous relighting and free-viewpoint rendering, thereby integrating
a real-world object into a digital environment, has numerous com-
mercial applications, especially when combined with real-time light
estimation techniques [14, 26].

Traditional methods [8, 18, 22, 24, 63], solve the free-viewpoint
rendering problem based on the geometric reconstruction pipeline,
which assumes the objects are mostly Lambertian. Since these meth-
ods do not fully model the complex surface reflection properties,
the rendered results may be unsatisfactory. Taking human faces
as an example, these methods do not model the spatially varying
reflectance characteristics, such as diffuse and specular reflections.
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To overcome these limitations, Light Stage [11] are used to cap-
ture the reflectance field of objects. With synchronized LED lights
and cameras, a “One-Light-at-A-Time” (OLAT) image set can be
obtained. Then, an input environment map can be decomposed into
a linear combination of these OLAT images to relight the object in
a photorealistic manner. This approach has a profound impact on
the visual effects industry and inspires numerous follow-up works.
To accurately capture the reflectance field, many light sources are
required. However, due to physical constraints, only about one
hundred light sources are usually installed on a light stage. There-
fore, the system cannot produce sharp shadows and high-frequency
details due to under-sampling. To solve this problem, Sun et al. [47]
propose a learning-based method to perform high-precision resam-
pling of the under-sampledOLAT image set. However, simultaneous
novel view synthesis during relighting remains unsolved.

For image-based novel view synthesis, great progress has been
made with the neural radiance field [31] (NeRF), based on a volu-
metric representation. One of the limitations of NeRF is that the
color and density of sample points along each ray must be inte-
grated. Therefore, rendering with NeRF is time consuming. A few
works [12, 17, 41, 57] have attempted to accelerate NeRF by either
using much more memory or a geometric prior. While there has
been substantial progress in novel view synthesis, relatively less
effort has been spent in free-viewpoint rendering with relighting.

In this paper, given sparsely sampled images illuminated by
sparse LED light sources (as shown in Fig. 1), we present a two-
stage analysis-synthesis MLP neural network for free-viewpoint
rendering and relighting. Our model takes the camera ray direction
and light direction as the input. We first analytically recover reliable
normal, albedo, and roughness in a self-supervisedmanner (analysis
stage), and then simulate the process of physically-based rendering
to output the ray color (synthesis stage).

Motivated by the recent work NeuLF [23], we use two-plane
representation to parameterize a ray in space into a 4D coordinate.
The analysis stage involves a DecomposeNet, whose inputs are rays
and the outputs are the decomposed surface normal, albedo, and
roughness. The synthesis stage is a RenderNet. With the predicted
SVBRDF components from the DecomposeNet and a light direction,
RenderNet is trained to generate the color for the input ray. The
entire network is trained end-to-end and is supervised with both
photometric loss and an SVBRDF rendering loss (using a microfacet
model, e.g., [20]). The SVBRDF parameters are self-supervised. We
found that the SVBRDF decomposition of a ray makes it easier for
the network to learn the implicit rendering process.

Compared to NeRF’s volumetric representation [31], our method
utilizes a 4D light field representation [23]. By directly mapping a
ray and a light direction to a color value, we achieve efficient in-
ference and low memory consumption. While this approach limits
rendering to front views, it suffices for most free-viewpoint re-
lighting applications, such as remote 3D video calls with changing
backgrounds. Our contributions are:

• We propose a two-stage analysis-synthesis MLP network for
efficient relighting and novel view synthesis, which maps
ray and light direction to a color value directly.

• Our proposed DecomposeNet can recover the SVBRDF (sur-
face normal, albedo, and roughness) of a 3D scene in a self-
supervised manner using a set of camera viewpoints and a
limited number of light sources as inputs.

• We created a multi-identity multi-view OLAT dataset of
real human faces and a synthetic multi-view multi-lighting
dataset. We plan to release our dataset to facilitate future
research on relighting and novel view synthesis.

2 RELATEDWORKS
Our method simultaneously synthesizes novel views and upsam-
ples the sparse light sources. These two problems subsume many
computer vision and graphics-related tasks and have been key top-
ics for decades. Below we briefly review the related work on light
angular up-sampling and novel view synthesis, as well as recent
efforts on these using neural rendering.

Light angular upsampling: Traditional methods upsample
discrete light source input using geometric modeling, a technique
distinct from light stage data upsampling [11]. Such methods under-
take geometric and photometric stereo reconstruction of objects,
revealing albedo, normal, and specular normal [28, 52, 53], and
subsequently employ predefined BRDFs for different lighting condi-
tions. Tunwattanapong et al.employ parametric models [49]. Deep
learning adaptations, distinct from traditional light stage data, have
been applied for single-image human relighting [19, 33, 45]. Shu
et al.presented a human face illumination transfer, with some lim-
itations in compatibility [37]. Challenges persist with predefined
BRDFs, especially when interpreting complex facial features. Meth-
ods from both Masselus et al. [29] and Rainer et al. [34, 35] seek
to address these challenges, but results may lack detail. Sengupta
et al.highlight challenges in expressing objects with complex ma-
terials, pointing out issues with predefined analytic BRDFs [36].
Xu et al.introduced a neural network for image-based relighting,
although shadow accuracy remains problematic [54]. Our approach
accentuates shadow accuracy and includes novel view synthesis.
Lastly, Sun et al. [47] provided a method for relighting faces, albeit
without supporting novel view synthesis.

Novel view synthesis: For generating novel views from a set
of images, traditionally, multi-view stereo algorithms [13, 63] can
be used to reconstruct a textured mesh. To achieve higher photo re-
alism, this approach requires more vertices and high-resolution tex-
ture maps. It does not model view-dependent effects either. Image-
based rendering, such as light field [21] and lummigraph [15], can
render view-dependent effects by reducing the 5D radiance field in
space to a 4D light field, but the quality of the novel view synthesis
is affected by the sampling density of the input [7]. Subsequent
works use geometry proxy for better view interpolation [6, 51],
but the results also depend on the accuracy of the proxy and are
sensitive to occlusions. Recently, deep learning has been applied
to generate novel views from sparse images. Neural networks are
typically used to generate an implicit intermediate representation,
and a rendering algorithm is developed based on the represen-
tation [30, 39, 40, 48, 66]. A recent seminal work NeRF [31, 50]
generate unprecedented results. It uses an MLP network to regress
5D coordinates (location in space and view direction) to the view-
dependent radiance and density volume. Nevertheless, it requires
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Figure 2: An overview of our proposed Relit-NeuLF. The input is the 4D coordinate of a ray and a light direction. The output is
the RGB radiance of the ray under the light direction. Our DecomposeNet first takes the 4D coordinate as input and outputs
SVBRDF parameters. Next, the SVBRDF parameters together with the light direction are fed into an implicit rendering network
(RenderNet) to synthesize the target color. The network is trained end-to-end with photometric loss and self-supervised
rendering loss.

aggregating the samples along each ray during rendering, which is
time-consuming. Although there are recent solutions to accelerate
NeRF [12, 17, 57], they typically need to consumemore memory. On
the other hand, neural light field approaches [1, 23, 38, 42, 44, 46] use
a neural network to directly establish the mapping between ray di-
rection and color; therefore, no complicated ray marching is needed.
These methods improve the rendering speed while maintaining low
memory consumption. But none of these methods model envi-
ronment lighting and thus cannot relight the scene under unseen
illumination.

Simultaneous free-viewpoint rendering and relighting:
To render novel views with relighting effects simultaneously, an
effective method is to sample sufficient reflection fields from multi-
ple viewpoints and under multi-directional point lights and then
upsample across viewpoints and illumination. A pioneer work of
Debevec et al. [11] built a light stage to collect One-Light-at-A-Time
(OLAT) data, and then linearly combine reflectance fields to relight
the subject. Although the light stage can collect reflectance fields
from hundreds of light directions, the sampling rate is still limited.
It can only be applied to low-resolution environment maps for
re-lighting, so high-frequency lighting effects are not supported.
Moreover, the light stage can only perform relighting in a few fixed
viewing angles.

A recent work models texture maps to achieve relighting ef-
fects with known subject geometry [61]. Zhang et al.and Boss et
al.propose methods to decompose the shape and reflectance of the
subject to achieve new perspective rendering and relighting with-
out known lighting conditions [2–5, 32, 56, 59, 60, 62, 64]. However,
both methods can only leverage a relatively low-resolution environ-
ment lightingmap, hence the results have no high-frequency details.
NeRV [43] and PS-NeRF [55] improve on NeRF and decomposes
shape and reflectance in the case of known multi-illumination. Our
method is based on the light field representation [23] and proposes
a two-step network for simultaneous novel view synthesis and
relighting. With internet image collections, Zhang et al. [58] recon-
struct both the geometry and material appearance of the object,
however, it can only model the genus-zero topology. Our method
does not require a geometry proxy for high-frequency relighting

and achieves fast free-viewpoint rendering with less memory con-
sumption.

3 PROPOSED METHOD
In this paper, we present a simple yet efficient framework that can
generate novel views under novel directional, given sparse multi-
view One-Light-at-A-Time(OLAT) images as input. To achieve this,
we extend a neural 4D light field representation NeuLF [23] (Sec-
tion 3.1) with relighting capability by using SVBRDF decomposition.
Given the set of (ray, color) pairs from known views, to guide the
network with physically based rendering, we first design a Decom-
poseNet that disentangles each ray’s intrinsic SVBRDF components
(albedo, normal, and roughness). We then use a RenderNet to use
albedo, normal, roughness, and ray direction as input with light
direction as conditioning to regress ray color (Section 3.2). Fig. 2
shows our pipeline.

3.1 NeuLF Overview
We review the NeuLF representation in this section. As the radiance
along a ray is constant if viewing from outside the convex hull of
the scene, a 3D scene can be represented as a 4D light field using
two plane parameterization [21]. Each ray 𝑟 from a camera with
known camera poses will intersect with both the 𝑢𝑣 and the 𝑠𝑡
plane and can be uniquely represented using the coordinate of the
intersections 𝑟 = {𝑢, 𝑣, 𝑠, 𝑡}.

NeuLF [23] formulates a mapping function 𝑓𝑐 with a multi-
layer perceptron (MLP). Given a set of 𝑁 calibrated input images
{𝐼1, 𝐼2, ..., 𝐼𝑛}, it extracts the 4D ray parametrization of each pixel
and its corresponding color:

(
𝑢𝑘
𝑖
, 𝑣𝑘
𝑖
, 𝑠𝑘
𝑖
, 𝑡𝑘
𝑖

)
→ 𝑐𝑘

𝑖
, (𝑘 = 1...𝑁 , 𝑖 =

1...𝑁𝑘 ), where 𝑐𝑘𝑖 is the color of the 𝑖-th pixel in the 𝑘-th image.
𝑁𝑘 is the total number of pixels in the 𝑘-th image. The goal of the
network 𝑓𝑐 is to learn the mapping from the 4D coordinate of a ray
to the corresponding color value. The MLP network parameters Θ
can be learned by minimizing the following photometric loss L𝑝 :

L𝑝 =

𝑀∑︁
𝑘=1

𝑁𝑘∑︁
𝑖=1




𝑓𝑐 (𝑢𝑘𝑖 , 𝑣𝑘𝑖 , 𝑠𝑘𝑖 , 𝑡𝑘𝑖 | Θ
)
− 𝑐𝑘𝑖





2
. (1)
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To render a novel view, NeuLF simply queries the network for
each ray in the novel view.

3.2 Relit-NeuLF
The NeuLF representation does not consider the changes of incident
light direction. In other words, NeuLF is only able to represent a
scene under a fixed baked-in illumination. Given a set of OLAT input
images {𝐼 𝑙

𝑖
, 𝑖 = 1, ..., 𝑁 , 𝑙 = 1, ..., 𝐿}, we have 𝑁 different viewpoints

and each viewpoint is illuminated by 𝐿 different directional lights. In
total, we have 𝑁 × 𝐿 images. To perform lighting interpolation and
novel view synthesis simultaneously, one straightforward approach
is to extend NeuLF to take lighting direction as input. Instead of
only mapping 4D coordinate to color value as in Eq. 1, we can
train a mapping 𝑓 𝑙𝑐 ((𝑢𝑘 , 𝑣𝑘 , 𝑠𝑘 , 𝑡𝑘 ), 𝑙) → 𝑐𝑙

𝑘
for each input view 𝑖 .

With this, we can simulate the light transport (LT) of a given 4D
coordinate ray, i.e., how color value changes with varying lighting
direction.

However, this vanillamethod simply regresses a light-conditioned
ray to a color value. Without implicitly modeling the scene rep-
resentation, synthesis results obtained by such a method lacks
high-frequency detail and are unable to recover complex reflec-
tion and refraction effects (see Sec. 4.4 for details). We hence pro-
pose a two-stage network designed with principles inspired by
physically-based rendering techniques. In the first stage, we cre-
ate a DecomposeNet that analyzes a ray 𝑟 ’s SVBRDF components,
including normal, albedo, and roughness. Then, these SVBRDF com-
ponents are fed into a second network named RenderNet to learn
the inverse rendering function. The SVBRDF components can be re-
covered without ground truth by self-supervision. We will describe
each network in detail.

DecomposeNet: Given the input 𝑁 × 𝐿 images (Fig. 4 shows
sample images), we build a MLP network that takes 4D coordinate
𝑟 = {𝑢, 𝑣, 𝑠, 𝑡} for each pixel as input, and outputs SVBRDF parame-
ters: surface normal (𝑁 ), diffuse albedo (𝐴) and specular roughness
(𝑅). Considering that the SVBRDF components are closely corre-
lated, the DecomposeNet first extracts a shared feature and then
uses three decoders for three different components. Compared with
using a completely separate branch for each SVBRDF component,
this shared structure improves efficiency and reduces the risk of
over-fitting. It is also worth nothing that our method can recover
SVBRDF components in a self-supervised fashion without know-
ing the ground truth. We will illustrate our self-supervised loss
later in the following paragraph. The network DecomposeNet(·) is
represented as:

𝑁,𝐴, 𝑅 = 𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑁𝑒𝑡 (𝑟 | Θ𝑑 ), (2)

where 𝑟 ∈ {𝐼 𝑙
𝑖
, 𝑖 = 1, ..., 𝑁 , 𝑙 = 1, ..., 𝐿}.

RenderNet: Prior works leverage predefined SVBRDF compo-
nents to analytically render the scene [25]. However, using pre-
defined SVBRDF (e.g., microfacet renderer [20]) is not a universal
rendering solution. It cannot model complex objects and materials
at the same level of fidelity as real photos, such as human faces’
subsurface scattering and specularity distribution. Failing to model
them will compromise the photorealism of the rendering results.
We propose to train a network to implicitly model the real-world

Final Rendering 
w Novel View & LightingAlbedoNormal Roughness

Figure 3: Our SVBRDF decomposition results. From left to
right: surface normal map, surface albedo, surface rough-
ness, and rendering results under novel viewpoint and light
direction.

rendering process, using the microfacet renderer and ground truth
for weak supervision. The RenderNet takes the estimated SVBRDF
components (albedo (𝐴), normal (𝑁 ), and roughness (𝑅)) as inputs.
To render a ray under specific light direction l, we train a fully
connected network:

𝑐𝑝𝑟𝑒𝑑 = 𝑅𝑒𝑛𝑑𝑒𝑟𝑁𝑒𝑡 (𝑁,𝐴, 𝑅, 𝑟, 𝑙 | Θ𝑟 ), (3)
where 𝑟 ∈ {𝐼 𝑙

𝑖
, 𝑖 = 1, ..., 𝑁 , 𝑙 = 1, ..., 𝐿}.

Loss function: We train both DecomposeNet and RenderNet
in an end-to-end manner. For each ray in camera view 𝑖 and light
direction 𝑙 , we can compute the predicted color 𝑐𝑝𝑟𝑒𝑑 as follows:

𝑐𝑝𝑟𝑒𝑑 = 𝑅𝑒𝑛𝑑𝑒𝑟𝑁𝑒𝑡 (𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑁𝑒𝑡 (𝑟 | Θ𝑑 ), 𝑟 , 𝑙 | Θ𝑟 ). (4)
During training, we leverage two data loss terms L𝑝 and L𝑚 ,

and one normalization term L𝑛 . We use L𝑝 to minimize the multi-
view photometric loss. To self-supervise the SVBRDF decompo-
sition, we use L𝑚 to enforce the network output to be close to
the physically-based microfacet rendering result. We choose the
microfacet model [20] instead of the Phong model because the mi-
crofacet model can produce more realistic rendering results. To
regularize the normal vector to be physically plausible, we use L𝑛

to encourage the normal 𝑁 to have a norm of 1.

L𝑝 =


𝑐𝑝𝑟𝑒𝑑 − 𝑐




2 , (5)

L𝑚 =


𝑐𝑝𝑟𝑒𝑑 −𝑀 (𝑁,𝐴, 𝑅, 𝑣, 𝑙)




2 , (6)

L𝑛 =




1 − 𝑁𝑇𝑁





2
, (7)

where 𝑀 is the microfacet BRDF rendering model [20], 𝐴 is the
diffuse albedo, and 𝑣, 𝑙 denote the view direction and light direction
respectively. Let ℎ = 𝑣+𝑙

∥𝑣+𝑙 ∥ be the half vector, then we have

𝑀 (𝑁,𝐴, 𝑅, 𝑣, 𝑙) = 𝐴

𝜋
+ 𝐷 (ℎ, 𝑁, 𝑅)𝐹 (𝑣, ℎ)𝐺 (𝑙, 𝑣, 𝑁 , 𝑅)

4(𝑁 · 𝑙) (𝑁 · 𝑣) , (8)

where 𝐷 (ℎ, 𝑁, 𝑅) = 𝑎2

𝜋 ( (𝑁 ·ℎ)2 (𝑎2−1)+1)2 is normal distribution func-
tion (NDF), 𝐹 (𝑣, ℎ) = 𝐹0 + (1 − 𝐹0)2(−5.55473(𝑣 ·ℎ)−6.98316) (𝑣 ·ℎ) is
Fresnel term [27], and 𝐺 (𝑙, 𝑣, 𝑁 , 𝑅) = 𝑁 ·𝑣

(𝑁 ·𝑣) (1−𝑘 )+𝑘 · 𝑁 ·𝑙
(𝑁 ·𝑙 ) (1−𝑘 )+𝑘

is geometry term. The extra variables in the equations are 𝐹0 = 0.05,
𝑎 = 𝑅2, and 𝑘 =

(𝑅+1)2
8 .

Fig. 3 shows an example of our decomposition and rendering re-
sults. It can be seen that DecomposeNet successfully decomposes
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the BRDF components with the self-supervision of the microfacet
model, and can generate rendering results under unseen light di-
rection.

3.3 Implementing Details
We train the networks using a combination of the photometric loss,
microfacet rendering loss, and normal regularization loss:

L = 𝜆𝑚L𝑚 + 𝜆𝑝L𝑝 + 𝜆𝑛L𝑛 . (9)

The weight coefficients for the three losses are 𝜆𝑚 = 0.1, 𝜆𝑝 = 1
and 𝜆𝑛 = 0.01. We conduct experiments on both synthetic data
and real captured data. For real data, to estimate camera poses, we
adopt [65] and use the planar pattern to calibrate the intrinsic and
extrinsic parameters of each camera. To calibrate the directions
of light sources, we capture images of a chrome ball under all
the lighting conditions and use the brightest spot to identify the
direction of each light.

We normalize the input 4D coordinate (𝑢, 𝑣, 𝑠, 𝑡 ) to the range
[−1, 1], and then go through the 8 layers of fully connected ReLU
in DecomposeNet to obtain the 256-dimensional shared feature vec-
tor. Then the feature vector is split into three SVBRDF parameter
branches: 𝑁 (Normal), 𝐴 (Albedo), 𝑅 (Roughness), each of which
contains 1 fully-connected layer. The Normal and Albedo branches
have 3-dimensional outputs and use ReLU activation, while the
Roughness branch has a 1-dimensional output and uses sigmoid ac-
tivation. Thenwe concatenate𝑁 ,𝐴,𝑅 with ray coordinate {𝑢, 𝑣, 𝑠, 𝑡}
as the input to the RenderNet, which uses 8 layers of fully connected
and ReLU to encode its input into a 128-dimensional feature vector.
The feature vector is concatenated with 3-dimensional light direc-
tion 𝑙 , then goes through two fully-connected layers with sigmoid
activation, and finally outputs 3-channel RGB radiance. In terms of
training details, we set the batch size of each iteration to 8192 and
use Adam optimizer [9]. The initial learning rate is set to 3 × 10−4
and decays 0.995 per epoch. In the real data experiment, we use
an input of 13 camera views with 500 × 750 resolution and 40 LED
light sources. The training takes 5 hours to complete on 1 NVIDIA
RTX 3090 graphics card, while the inference takes 150ms per frame
under the same resolution.

4 EXPERIMENT
To demonstrate the effectiveness of the proposed framework for
high-quality relighting and novel view synthesis, we conduct ex-
periments on both rendered synthetic data and captured real-world
datasets. We first discuss the acquisition of real data and synthetic
data in Section 4.1. Then we show both quantitative and qualitative
results of novel view synthesis and relighting in Section 4.2. We
report rendering speed and quality with comparison to an extended
NeRF-based method in Section 4.3. We also show our SVBRDF de-
composition results and perform an ablation study to illustrate its
importance in Section 4.4. We refer readers to our supplemental
video, which showcases our results on dynamic relighting and view
synthesis.
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Figure 4: Our multi-camera & multi-light capture system,
with sample captured images. The system contains 13 syn-
chronized DSLR cameras and 40 LED lights. We use an Ar-
duino microcontroller to control the cameras and lights.

4.1 Real and Synthetic Data Setup
Real data acquisition Obtaining multi-view images under differ-
ent lighting directions is not an easy task. To the best of our knowl-
edge, there is no such dataset publicly available. Similar to [16], we
built a hemisphere multi-view OLAT (one light at a time) image
acquisition system. As shown in Fig. 4, our system consists of 13
synchronized Canon 850D DSLR cameras and 40 LED light sources.
We have shown 4 subjects in our experiments. For each subject, we
acquire 13×40 OLAT images. These OLAT images sparsely collected
the reflectance data on the front hemisphere of the subject.

During data collection, we require all subjects to remain approx-
imately still. It takes 5 seconds to complete the OLAT acquisition
of 13 viewing angles and 40 LED light sources. From the collected
data of each subject, we randomly selected 1 out of 13 views and
3 out of 40 light conditions for testing, and use the rest for model
training.

Synthetic data rendering Additionally, we used Blender’s
physically based path tracer renderer and rendered 3 textured ob-
jects: synthetic face, wood train, and face mask. We set up 5×5 cam-
era views on the front hemisphere, set 105 directional light sources
around the full sphere, and render at a resolution of 800×800 pixels.
Each camera differs by 10 degrees and each light source differs by
25 degrees on the sphere. We randomly select 2 out of 25 views and
6 out of 105 lights for testing, and the rest for model training.

4.2 Relighting and View Synthesis Results
Relighting Our Relit-NeuLF model can generate rendering results
under novel viewpoints and novel lighting directions. As shown in
Fig. 5, we show qualitative relighting results for different synthetic
data. We compared our method with two state-of-the-art solutions:
InvRender [64], which generates novel view synthesis and relight-
ing under unknown illumination, and Deep relighting [54], which
presents an image-based relighting method using sparse predefined
directional lights. In addition, we implement two baseline solu-
tions for comparison: barycentric blending and nearest light in the
training set. Compared to the hold-out GT validation image, our
results surpass the other methods in terms of shadow shape and
clarity (e.g., the nose shadows in the zoom-in figures of the first
row). Although the barycentric blending and nearest light methods
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Figure 5: Qualitative results of relighting with an unseen light direction under fixed viewpoints. From left to right: Ground
truth, our method, InvRender [64], Deep Relighting [54], barycentric blending, and nearest light image.

Table 1: Metrics on relighting (averaged across test lights) for each scene in the Synthetic/Real dataset.

PSNR↑ SSIM↑ LPIPS↓
Nearest Barycentric Deep Relighting InvRender Ours Nearest Barycentric Deep Relighting InvRender Ours Nearest Barycentric Deep Relighting InvRender Ours

Toy train 32.79 33.60 33.43 33.82 34.40 0.914 0.918 0.879 0.919 0.930 0.078 0.082 0.084 0.086 0.075
Face Cover 28.03 28.16 27.34 27.96 28.79 0.793 0.801 0.763 0.804 0.810 0.150 0.163 0.203 0.160 0.130
Face 32.65 32.48 31.42 32.88 33.14 0.820 0.808 0.754 0.827 0.833 0.071 0.062 0.068 0.081 0.075
Real 27.49 27.07 27.23 27.86 28.33 0.732 0.745 0.708 0.747 0.771 0.143 0.162 0.155 0.141 0.132

can maintain a high-frequency appearance, their shadows have
largely incorrect coverage. This demonstrates that these methods,
although widely adopted for relighting, have high requirements
on the denseness of input lighting directions and are not suitable
when the input is sparse. Compared with Deep Relighting, our
method produces more accurate shadow shapes, more natural spec-
ular highlights, and much fewer appearance artifacts, leading to
more realistic results. While InvRender produces relatively good
results, the outputs are slightly blurry and exhibit less accurate
shadows, potentially due to the method’s inability to generalize to
single point light illuminations.

For quantitative evaluation, we use three metrics: PSNR (Peak
Signal-to-Noise Ratio, higher is better), SSIM (Structural Similarity
Index Measure, higher is better), and LPIPS (Learned Perceptual Im-
age Patch Similarity, lower is better). The first three rows of Table. 1
shows the metrics on the synthetic data. Our method consistently
outperforms the other three with noticeable margins. The last row
compares the metrics on real captured human faces, where our
method also has the highest performance.

HDRI relightingAs shown in Fig. 7, we demonstrate the ability
of our method to synthesize visually pleasing relighting under arbi-
trary HDRI environment maps. Because our method can recover the

reflectance under novel lighting directions with a high angular res-
olution, we can relight the object by treating an HDRI environment
map as a collection of OLAT lighting conditions. Unlike ordinary
light stage which can only sample hundreds of OLAT images, we
use our trained model to generate 3096 OLAT images, each corre-
sponding to a different lighting direction. Then these OLAT images
are linearly superimposed to produce the final relighting result,
where the linear combination weights are computed based on the
HDRI environment map. We have shown four HDRI relighting re-
sults across different human identities using the light probe images
from [10]. Note that for each row in Fig. 7, we rotate the light probe
images by different angles. Our relighting results are physically
natural, and the specular highlights on the faces correctly reflect
the color and position of the highlights in the light probe images.
Meanwhile, the cast shadows are also visually plausible. Please see
our supplemental video for more dynamic relighting results.

Simultaneous view synthesis and relighting As shown in
Fig. 6, we qualitatively show our rendering results of two real
human subjects under simultaneous novel view synthesis and re-
lighting. In the figure, the x-axis is different novel viewpoints while
the y-axis is different lighting directions. The lighting effects (e.g.,
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Figure 6: Qualitative results on simultaneous novel view syn-
thesis and relighting. We show results on real data. The x-
axis is different novel viewpoints while the y-axis is different
lighting directions
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Figure 7: Our HDRI relighting results. Each subject is relit
by two different environment maps. Note that the subject’s
appearance correctly reflects the dominant light source in
the environment map.

shadows and diffuse reflection) are consistent across different view-
points. At the same time, high-frequency details (e.g., specular
highlights on the foreheads) are successfully recovered and natu-
rally move in accordance with viewpoint and lighting direction. We
reason that this is because our RenderNet implicitly learns the light
transport properties of the scene with the help of self-supervised
SVBRDF components from our DecomposeNet.

For recent NeRF-based methods such as NeRFactor [62], InvRen-
der [64], NeRD [2] and Neural-PIL [4], although they target for

View b

View a
Ground Truth Ours NeRF + light

Figure 8: Qualitative comparison on simultaneous relight-
ing and view synthesis. For each row, we showed a synthe-
sis view with unseen lighting from ground truth, ours, and
NeRF+light. Our results exhibit a more natural looking and
are less blurry than NeRF+light.

simultaneous novel view synthesis and relighting same as our ap-
proach, their inputs have fixed illumination which is different from
our method. Therefore, for a fair comparison, we extend the vol-
umetric rendering method NeRF [31] with relighting capability,
denoted as “NeRF+light". To implement NeRF+light, we condition
the NeRF’s output radiance on the lighting direction. As shown
in Fig. 8, we compare our method with NeRF+light on two novel
views with novel light directions. It can be seen that our method pro-
duces more natural-looking and less blurry synthesis results than
NeRF+light (e.g., the wrinkles on the cloth, and the facial details in
the close-up insets). This is because our SVBRDF decomposition
module enables the model to better understand the scene and main-
tain geometry/texture/material details under viewpoint/lighting
variation.

4.3 Speed Analysis
Our pipeline is based on the light field based neural networks [23,
38]. Compared with the volumetric NeRF-based method, we di-
rectly regress ray color rather than aggregate radiance with time-
consuming ray marching. Hence, as shown in Table. 2, our method
is significantly faster than NeRF+light, while still having higher
rendering PSNR.

Table 2: Comparison of rendering speed and quality with
NeRF+light. We compute average PSNR across all real data.

method Input Viewpoint range second/frame PSNR ↑
Ours 4D + light front views 0.151 28.33
NeRF+light 5D + light 360◦ 22.143 26.12

4.4 SVBRDF Decomposition Results
Fig. 9 shows the decomposition results on the synthetic toy train,
face cover, and real human face scene. The results show that our
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Normal Roughness Albedo Light interpolation

Figure 9: Qualitative results on SVBRDFdecomposition. From
left to right: surface normal map, surface roughness, surface
albedo, and our rendering under a novel light direction.

DecomposeNet can generate reasonable view-independent normal,
albedo, roughness field by using self-supervised microfacet ren-
dering loss. We can see that in these three subjects, the estimated
normal map is in line with the object geometry and contains shape
details such as the wrinkles on the mask and cloth, and the bumpy
surface on the wood train. The estimated roughness map plausibly
represents the roughness of the object’s surface. And the estimated
albedo restores the intrinsic color of the objects. Although the
albedo still contains a small amount of baked-in lighting effects due
to inter-reflection, it has little impact on our final rendering quality.
Rather, with such reasonable decomposition results, our RenderNet
can already learn a good balance between the microfacet model
and out-of-model effects. The last column of Fig. 9 is the relight-
ing result given a novel lighting direction. The results are realistic,
where the shadows correctly depict the geometry and lighting.

GT Ours w/o roughness Vanilla baselineOurs

Figure 10: Ablation study on SVBRDF Decomposition. From
left to right: ground truth, ours, ours w/o roughness, and our
baseline. The bottom row shows close-up views for easier
comparison.

Ablation study on SVBRDF decomposition To demonstrate
the importance of the SVBRDF decomposition from DecomposeNet,
we conduct the following ablation study. We compared our full
method with the vanilla baseline method described in Sec 3.2 (our

baseline) and a baseline method that only decomposes normal and
albedo without considering roughness (our w/o roughness). This
ablation is conducted on both real and synthetic datasets, where
Table 3 shows the average metrics. Fig. 10 shows the novel view
relighting results on an example data. In particular, compared with
ground truth, we observe that ours w/o roughness and our base-
line exhibit more over-smoothing effects than ours, such as the
highlight details on the face and the pattern on the cloth. Our full
solution outperforms the other two baselines both quantitatively
and qualitatively. This is because, with SVBRDF parameters as a
prior, our RenderNet implicitly learns a more physically-correct
rendering process.

Table 3: Ablation study on SVBRDF Decomposition. The met-
rics are averaged over the test views and light directions in
both real and synthetic datasets.

method PSNR↑ SSIM↑ LPIPS↓
Ours baseline 30.88 0.921 0.067
Ours w/o roughness 31.15 0.917 0.042
Ours 31.84 0.932 0.038

5 CONCLUSIONS
In summary, we have presented Relit-NeuLF, a two-stage MLP
network that simultaneously achieves highly-detailed relighting
and novel view synthesis with weak supervision. Our method em-
ploys DecomposeNet to decompose SVBRDF components with
self-supervision, based on sparse camera views and limited light
directions. By utilizing the decomposed SVBRDF components, our
implicit RenderNet generates high-fidelity novel view synthesis and
relighting results, trained end-to-end with self-supervised render-
ing loss and photometric loss. Our approach achieves high render-
ing quality with fast rendering speed and low memory cost, thanks
to the 4D light field representation. Although our method has limi-
tations, such as requiring hard-to-acquire inputs and being unable
to perform non-frontal view synthesis, we suggest future work to
extend our method with a more flexible light field representation,
explore light field network-based relighting with unconstrained
input illumination, and investigate alternative spatial or frequency
embedding approaches that generalize well in light field represen-
tation.
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