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ABSTRACT

Towards sufficient music searching, it is vital to form a complete set
of labels for each song. However, current solutions fail to resolve it
as they cannot produce diverse enough mappings to make up for
the information missed by the gold labels. Based on the observation
that such missing information may already be presented in user
comments, we propose to study the automated music labeling in an
essential but under-explored setting, where the model is required
to harvest more diverse and valid labels from the users’ comments
given limited gold labels. To this end, we design an iterative frame-
work (DiVa) to harvest more Diverse and Valid labels from user
comments for music. The framework makes a classifier able to form
complete sets of labels for songs via pseudo-labels inferred from
pre-trained classifiers and a novel joint score function. The experi-
ment on a densely annotated testing set reveals the superiority of
the DiVa over state-of-the-art solutions in producing more diverse
labels missed by the gold labels. We hope our work can inspire
future research on automated music labeling.

CCS CONCEPTS

« Information systems — Music retrieval; « Computing method-
ologies — Information extraction.
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1 INTRODUCTION

Towards sufficient music searching, especially at the industrial scale,
an ideal solution is to hire experts to annotate the complete set of
all possible labels for a song. As shown in Figure 1, an expert is
hired to select the gold labels for a song (i.e., We Are The World)
from the gold label vocabulary. However, such gold labels only take
part of all possible labels of the song. The information missed by
the gold labels exists in two scenarios. First, there lack of mappings
to labels out of the gold label vocabulary (OOV labels), e.g., “unity”.
This is because we can never provide the annotator with a complete
vocabulary covering all music characteristics and user searching
preferences [22]. Second, even with a complete vocabulary, the
mappings to some labels may also be missed by the expert (missed
supervisions), e.g., “hope”. This is because the expert can never be
serious and careful enough to pinpoint all the right labels from thou-
sands or more candidate labels in the vocabulary [28]. Therefore,
to form the complete set of labels for a song, it is needed to obtain
more diverse mappings to OOV labels and missed supervisions.

However, current multi-label classifiers [13, 14], including recent
extreme multi-label learning methods [23, 26], fail to resolve the
above challenge. Because they target to approach a vocabulary-
size vector, where the elements indicating gold labels are set to 1
and other elements are set to 0. A few studies try to obtain more
mappings using generative models [22], self-training methods [27,
28, 32], etc. However, such new mappings are not diverse enough to
make up for the missing information. Because these newly mapped
labels are either semantically similar to the gold labels or are copied
from instances with similar features. To our best knowledge, it
remains an open question how to automatically obtain the complete
set of labels for instance given a small number of gold labels.


https://doi.org/10.1145/3581783.3613750
https://doi.org/10.1145/3581783.3613750

MM °23, October 29-November 3, 2023, Ottawa, ON, Canada

| Singer  USA ForAfrica >
Gold Label "
Album ‘We Are The World Jocabulary ..~
. Year 1985

>l

There comes a time

inspiring @ b
When we heed a certain call \
When the world must come together as one A
classic ©
So let's start giving
choral €

There's a choice we're making

We're saving our own lives .
Gold Labels

(a) We Are The World

Missing Labels

(b) Complete set of labels

Liang, et al.

ooV
Labels

/ll/is such a Ioﬂching and traditional
/ song that shows power 0

touching
User 1
e It is a classic song that has a melodious

tune  and  tells  stories  about L 1

hu itarian ./“ﬂhu itarian a.ud

— User 2

Missed -
Supervisions R .
It is an inspiring and choral song that
. X))
&3

hope features many musicians.

User 3

(¢) User Comments

Figure 1: Illustration of (a) a song titled We Are The World, (b) the complete set of labels for the song, and (c) the user comments
on the song. The gold labels annotated by the expert only occupy part of all possible labels of the song. There lack of mappings
to labels out of the gold label vocabulary (OOV labels, e.g., “touching”) and some labels in the gold label vocabulary (missed
supervisions, e.g., “hope”). Fortunately, all possible labels for the song are already presented in the user comments.

Fortunately, there is a good chance to solve this question with
the help of users. A helpful observation is that users themselves
are “experts” in music searching. Specifically, the vocabulary the
users used to comment on a song naturally matches the vocabu-
lary they used to search for the song [5]. Besides, the user com-
ments are continuously updated along with the changing of user’s
feelings and the latest Internet buzzwords, so they can reflect the
dynamic changes in user searching preferences [16]. As such, the
complete set of OOV labels, missed supervisions, and gold labels
for a song may already be presented in the user comments of the
song, cf., Figure 1 (c). This observation inspires us to harvest more
labels from user comments. We believe such “user-generated” labels
can largely enrich the expert-generated gold labels and support
more sufficient music searching. Specifically, towards sufficient
music searching, the newly generated labels should have two ba-
sic advantages. First, they should be adequately valid to serve as
a label (e.g., “touching” vs. “that”) and to benefit music search-
ing (e.g., “touching” vs. “melodious”). Second, they should be
diverse enough to semantically distinguish from the gold ones (e.g.,
“classic” vs. “traditional”). This encourages us to study automated
music labeling in a vital but under-explored setting — given the
limited gold labels of a song, the model is required to harvest more
diverse and valid labels from the user comments for the song.

To this end, we propose DiVa, which is an iterative framework
for harvesting more Diverse and Valid labels for music. It consists
of two key components, i.e., a binary classifier and a joint score
function. The binary classifier takes the concatenation of user com-
ments and a candidate label as input and outputs a confidence score
indicating how likely the candidate label is a suitable label for the
song. In the beginning, the binary classifier, which has been trained
on the gold labels, has trouble predicting more diverse mappings
than the gold ones. Inspired by Xie et al. [27], we use the pre-trained
classifier to infer the pseudo-mappings to missed supervisions. In
addition, we design a novel joint score function, which comprehen-
sively measures the diversity and validness of a candidate label to
infer the pseudo-mappings to OVV labels. In this way, the binary
classifier can be fine-tuned on more diverse and valid labels than
the gold ones. We repeat this process several iterations until the
classifier can infer a complete set of labels for a song, namely, the
classifier can barely infer any new pseudo-labels. We further collect

a corpus! from a Chinese online music platform?. It consists of
16,372 songs, each of which consists of user comments and gold
labels. Towards data-driven evaluation, we also develop a testing
set of label 1,000 songs, which have been densely annotated by
experts based on the user comments. Experiment results show that,
compared with state-of-the-art methods, the DiVa framework is
more powerful in harvesting more diverse and valid labels for music
than the state-of-the-art methods. We hope our work can provide
insights into automated music labeling and advance the research
on finding the complete set of labels in real-world applications. In
summary, we highlight our contributions as follows.

e We call attention to the information missed by the gold labels
and study the automated music labeling in a challenging setting,
where the model is required to produce more diverse and valid
labels based on a small number of gold labels.

e We propose an iterative framework (DiVa) to harvest more di-
verse and valid labels from user comments. It makes a classifier
infer more diverse and valid labels for music gradually with the
help of a novel joint score function.

e The experiment reveals the superiority of DiVa in producing
more diverse and valid mappings to OOV labels and missed
supervisions as well as more complete sets of labels for songs.

2 PROBLEM FORMULATION

Let {d;, Xi, in, yi}f\il denote a dataset of N songs, where d;, Xj,
ylG , and UY; are the user comments, the set of words tokenized from
user comments, gold labels, and the complete set of labels for the
ith song, respectively. We assume U; is a proper superset of yIG
and a proper subset of Xj, cf., Figure 2. Besides, Y; is unknown both
at the training and testing phases. Let YO = Uf\il in denote the
gold label vocabulary. The OOV labels in Figure 1 can be express
as yio = Ui — YS and the missed supervisions can be expressed
as yf =Y;NYC - in. The task of harvesting more labels from
the user comments is to find the ;" C X; satisfying the following

The corpus and our codes are available at https://github.com/jingyaolliu/DiVa.
2For convenience and saving spaces, all presented examples in this paper have been
translated into English.
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Figure 2: Venn diagram for the labels of the i!” song and the
words in the user comments of the song
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In other words, U/} is required to cover as much as information

missed by the gold labels (i.e., yl.o v yf) using as few as labels. Note
that, semantically similar labels (e.g., “classic” and “traditional”)
are treated as the same label in this task.

1)

3 THE DIVA FRAMEWORK

As shown in Figure 3, the DiVa framework starts from a binary
classifier trained on paired user comments (d;) and gold labels (in ).
The classifier is then used to infer the possibility distribution on
candidate labels and select those with high confidence scores as
pseudo-labels. Further, we design a joint score function to infer
the possible distribution of the remaining candidates. All pseudo-
labels are used to fine-tune the previous classifier. This process will
repeat several iterations until the classifier can barely infer any
new pseudo-labels or reach the maximum iterations. In the testing
phase, we can harvest labels from user comments directly from the
optimized binary classifier.

3.1 Binary Classifier

The multi-label classifier is limited to a close set of labels as it
is required to fit a fixed-size multi-hot vector. To overcome this
limitation, we lay our foundation on a binary classifier, which is
required to fit a scalar-value label. Specifically, we pair the user
comments (d;) and a candidate label (denoted as y) of the ith song
as a new instance. If the candidate label is a gold label to the i’ h
song, we label the new instance as 1; otherwise, the new instance
is labeled as 0. At this moment, the binary classifier is equivalent
to the conventional multi-label classifier.

To make it different, we make two changes to the binary classifier.
First, we change the candidate labels for the i*” song from labels in
the gold label vocabulary to the words from user comments plus its
gold labels (ylG ). As such, we enrich the label vocabulary without
increasing the number of candidate labels for the ith song. Second,
to better correlate document-level user comments with word-level
labels, we use a contextual language model (i.e., XLNet [29]) to
represent the user comments and use the improved static word
embeddings (i.e., X2Static [8]) to represent the labels. We then con-
catenate the representations of user comments (div) and a candidate
label (gc) and use the concatenations as the input of the binary
classifier, which is defined as

F (di, ye) = sigmoid(d; ® ), )
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where @ is the concatenate operation. The output of the F (d;, y.)
is a confidence score indicating how likely y. is a gold label for the
ith song. The objective of the classifier is to minimize the sum of
the binary cross entropy between these confidence scores and the
ground truth values (0 or 1).

3.2 Binary Classifier Inference

We then utilize the pre-trained classifier to infer the possibility
distribution on the candidate labels, which involves the remain-
ing labels of the gold vocabulary (Y) and the remaining words
tokenized from the user comments (X;). Specifically, the candidate
labels for the i song are defined as YO U X; — yIG . The candidates
with high confidence scores are picked out as pseudo-labels for the
following fine-tuning. Note that, such pseudo-labels (e.g., “hope”)
can barely contribute to OOV labels missed by the annotation. This
is because the classifier always assigns pseudo-labels to an instance
by borrowing gold labels from other instances with similar features.
This also explains why the candidates not in the vocabulary of-
ten get very low scores. An exception is the OVV candidate label
“traditional”, which gets a relatively high score. This is because
“traditional” is semantically similar to the gold label “classic”. As
a result, though the inferred pseudo-labels contribute to missed
supervision, they cannot virtually form a complete set of labels for
a song.

3.3 Joint Score Function

We believe the above limitation will be largely mitigated if we
“teach” the classifier what has not been acquired by it before, namely,
fine-tuning the classifier on more diverse labels that are unknown
at the previous training phase. Specifically, given the remaining
candidate labels (e.g., X; — yl.G —{*hope”}), we design a joint score
function to measure the diversity (statistical importance and se-
mantic novelty) and validness (practical value and discrimination
ability) of a candidate label. This function computes a joint value
of the following scores.

Statistical importance score (SI) Following the tradition of in-
formation searching, we use TF-IDF to measure the statistical im-
portance score of a candidate label. The higher the SI score, the
more important the candidate label is to a song from the view of
data distribution.

Semantic novelty score (SN) If only an expert says a given can-
didate label is semantically different from the existing ones, it may
be subjective. However, if many other experts also agree with that,
the candidate label is most likely to be a semantic novel label. The
analogy to this, we conduct m groups of K-means clustering on the
labels to compute the semantic novelty score of a candidate label
against the existing ones. In this way, we get m “experts”, each of
which has its own taxonomy and opinions about the labels. The
confidence of y. being a semantic novel label is defined as

U 1- min [®(y& Cll): ®(y0’ c12)3 sees ®(y(): CF)]

m

SN = , (3)

N | =
*

i=1

where C{< means the K" cluster of the i* “expert” and @ (y,, CIK )
calculates the cosine similarity between y. and the center of ClK .
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Figure 3: The proposed iterative framework (DiVa). It consists of two key components, i.e., a binary classifier and a joint score
function. The binary classifier is first trained on user comments and gold labels and then fine-tuned on pseudo-labels inferred
from the pre-trained classifier and a novel joint score. This process continues until the classifier can barely produce any new
pseudo-labels. During testing, the labels for a song are directly inferred from user comments via the optimized classifier.

Practical value score (PV) Similar to SN, if all experts agree
that a candidate label is not suitable to be used as a label, then
we think this candidate label is not valid enough from the point
of practical values. Here, we treat the songs as the “experts” and
aim to penalize candidates with low practical values (e.g., below
a pre-defined threshold 7). Specifically, the practical value score
depends on the confidence scores of the candidate label predicted
on all songs and is defined as
1, yN Teu) 5 o

Z1—1 N ( 4)

F (X,
0, Zﬁ\il (I\z[yc)

PV =
<T.

Discrimination ability score (DA) We believe a valid label, even
presented in many songs, should be able to distinguish different
songs. As such, we want to penalize candidates with low discrim-
ination ability. Specifically, we use the coefficient of variation to
describe the discrimination ability of a candidate label and define

the DA score as

1, a(ye) > 1,

DA = H(ye) )
0 U(yc) <
> p(ye) ’

where 7 is the same threshold used in PV, o(y.) and p(y.) computes
the standard deviation and mean of the number of y. appearing in
songs, respectively.

Intuitively, we define the joint score function of the candidate
label y. based on the above scores as

9 (yc) = SI = SN = PV = DA. (6)

The joint score function describes a unified objective to harvest
labels with high semantic novelty and semantic novelty and avoid
those with low practical value and discrimination ability. The can-
didate labels that get high joint scores are then selected as pseudo-
labels, which involve OOV labels (e.g., “touching”) and a few new
supervisions missed before. These pseudo-labels, together with
those selected by the pre-trained classifier, are used to fine-tune

the classifier.

3.4 Iteration

Towards fast and stable optimization, we adopt the negative sam-
pling strategy at the training/fine-tuning phase of the binary classi-
fier. To construct a negative sample for a given song, we randomly
select a label from the candidate labels except for the gold and
pseudo ones and pair it with the user comments on the song. Note
that, even if a candidate label, which may be a suitable label for
a song, is accidentally used as a negative sample in the current
iteration of training, the bad effect can be ignored as it will be se-
lected as a pseudo-label via the following inference and be used to
fine-tune the classifier. Besides, to balance the importance of rare
and frequent pseudo-labels, we further leverage the subsampling
strategy [17].

Besides reaching the maximum, the iterations stop when the
classifier can barely infer any new pseudo-labels. A straightforward
solution is to define a threshold (e.g., 50) — if the number of new
labels inferred by the binary classifier is below the threshold, we
stop the iterations. However, it is hard to find a perfect threshold
for different datasets, for example, 50 may be too large for datasets
with a small-sized label vocabulary and too small for datasets with a
large-sized label vocabulary. As a remedy, we estimate the stopping
condition by evaluating the classifier’s ability to infer new labels
on long-tail labels, e.g., the performance on the PSP and PSnDCG
metrics [10]. This is reasonable as the tail labels hold a big part of
the labels missed by the gold ones.

4 EXPERIMENT

4.1 Experiment Settings

Dataset To perform a systematic data-driven study, we gather a
corpus of 16,372 songs, each of which consists of user comments and
gold labels summarized by experts from the information retrieval
department of a Chinese online music platform. The statistics are
shown in Table 1. We then randomly select a testing set of 1000
songs with more than 10 user comments. Three senior experts from
the same department are hired to annotate the testing set. At each
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Table 1: The number of labels w.r.t., the original corpus, training set and two testing set

Dataset label labels / song user comments / song words / user comment
(Number of songs) vocabulary size Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.
Corpus (16,372) 820 5.82 1 31 38.83 6 60 44.05 9 335
Training (15,372) 816 5.82 1 31 38.84 6 60 44.04 9 335
test-1(1,000) 425 5.78 1 27 38.76 11 60 44.15 9 303
test-2 (1,000) 3312 19.41 4 44 38.76 11 60 44.15 9 303

time, a worker will be shown a song with its metadata (title, artist,
etc), user comments, and candidate labels (stopwords are removed
in advance), he is required to select proper labels for the song from
the candidates after carefully go through the metadata and read
the user comments. If needed, he can also use his own knowledge
and searching necessary information online. We give a training
session to the workers to help them fully understand our annotation
requirements. The annotation tasks are released to the workers via
an in-house website. On average, it takes about 20 minutes for a
worker to annotate a song. Each song is randomly assigned to two
workers. For the " song, we calculate the Kappa coefficient score
between the different workers’ annotations. If the score is higher
than 75%, all selected candidates together with the gold labels are
used as the complete set of labels U;. Otherwise, we let the two
workers discuss their disagreements and come up with the agreed
results. After the annotation, we get two testing sets — one has gold
labels for every song (denoted as test-1) and the other one has
the complete set of labels for every song (denoted as test-2). On
average, there are about 5.8 gold labels for every song and about
19.4 labels for a song in test-2.

Evaluation Metrics Following the tradition, we evaluate DiVa
on the commonly used multi-label classification metrics, which in-
volve precision (P), recall (R), F1, and nDCG, and extreme multi-label
learning metrics, which involve normalized PSP and PSnDCG [10].
The PSP and PSnDCG scores are not applicable for test-2 as we
assume that each song in test-2 has a complete set of labels. In-
spired by Tandon et al. [24] and Simig et al. [22], to eliminate the
inaccurate mismatch caused by synonym labels, we also employ
the soft matching metrics. Given the predicted labels (denoted as

;= yj}jzl)an the gold labels (denoted as U;” = {y },” ) for
the ith song, the soft precision is defined as
Uil max [D (g5, y1). .. Dy}, ypyy0))]
SP = TR , (7)
4 V7]

where CD(y}’f, Y1), with the same definition in EQ. (3), returns the
cosine similarity between ﬁ;‘ and y. The soft recall is defined as

V| max [D (yg, y1), - D (Y, yrwl)]
SR= " — i
(7
Z*SP*SR. Note

k=1

Accordingly, the soft F1 score is defined as SF1 = 555

that, the soft matching metrics are not suitable for methods that
have represented labels via their own models. In line with EQ. (1),
we also want to measure whether the predicted label can sufficiently
make up for the information missed by the gold labels. As such,
we design a coverage score on test-2, which is defined as Jaccard
similarity between predicted labels and the complete set of labels,

®

i.e., Coverage = ﬁ * Zﬁl YL}*SYL} . The coverage score for the gold

labels in test-2 is 0.284. For all metrics, higher values indicate
better performances. Particularly, we place emphasis on the F1/SF1
and coverage scores, which are directly related to our ultimate goal,
i.e., the ability to obtain a complete set of labels for each song.

Baselines Towards a thorough comparison, we compare DiVa
with the following baseline methods.

e TF-IDF, which identifies labels based on the statistic features
of the candidate label. It also contributes to the statistical im-
portance score (SI) in our novel joint score function defined in
EQ. (6).

e Multi-label Classification (MLC), which takes user comments as
input and outputs a label vocabulary-sized vector.

e LightXML [11], which is a tree-based extreme multi-label learn-
ing method that uses dynamic negative sampling to boost the
model performance on massive labels.

o Our binary classifier, which is define by EQ. (2).

e nnPU [12], which avoids biased noises in binary classification
via a non-negative risk estimator. We deploy this strategy based
on our binary classifier.

e GROOV [22], which labels songs through a generative model.

e ChatGPT [19], which can be instructed to annotate text data via
prompts [9].

o Noisy Student Training (NST) [27], which trains a classifier itera-
tively using pseudo-labels predicted on unlabeled instances. We
deploy the NST framework on both MLC and binary classifiers,
denoted as NST w/ MLC and NST w/ (EQ. 2), respectively.

e Two variants of DiVa: DiVa-static, which, before starting the
iterations, combines the pseudo-labels inferred from the ini-
tialized binary classifier and the joint score function as labels;
DiVa-light, which only uses the pseudo-labels inferred from the
current iteration to fine-tune the binary classifier.

Implementation Details The DiVa framework and the neural
baselines are trained/fine-tuned on 8 Nvidia A6000 GPUs using
Adam optimizer with a learning rate=0.001. We use the pre-trained
XLNet-base model provided by Yang et al. [29]) to represent the
user comments. As for candidate labels, following Gupta and Jaggi
[8], we get the X2Static embeddings based on the XLNet-base model
and CBOW model. All hyperparameters are tuned on the training
set. Each baseline is optimized to gain its best performance.

4.2 Results and Observations

As mentioned in Sec. 2, our ultimate goal is to predict the complete
set of labels for a song. Table 2 demonstrates that the proposed
DiVa framework is the most desired solution to the goal. Because
it obtains superior results (best F1 score, best coverage score, and
second best SF1 score) on test-2, suggesting that DiVa, compared
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Table 2: Performances of all methods on test-1/test-2 w.r.t., precision (P), recall (R), F1, nDCG, normalized PSP [10], normalized
PSnDCG [10], soft precision (SP), soft recall (SR), soft F1 (SF1), and the coverage score. We mark the values indicating the best
performance in bold and the values indicating the second-best performance with underlines.

Method MLC XML Soft matching Coverage
P R F1 nDCG PSP PSnDCG SP SR SF1

TF-IDF 0.015/0.082  0.090/0.346  0.021/0.119  0.046/0.247 0.061/- 0.057/- 0.064/0.245  0.164/0.415  0.081/0.282 0.139
MLC 0.044/0.063  0.013/0.007  0.018/0.012  0.044/0.062 0.152/- 0.137/- 0.050/0.071 0.019/0.012  0.025/0.020 0.283
LightXML [11] 0.405/0.819  0.488/0.271  0.411/0.396  0.539/0.834 0.449/- 0.418/- 0.441/0.877  0.521/0.316  0.449/0.454 0.395
EQ. (2) 0.443/0.836  0.691/0.360  0.510/0.492 0.686/0.858 0.653/- 0.594/- 0.475/0.893  0.713/0.404  0.544/0.546 0.420
nnPU [12] w/ EQ. (2)  0.070/0.189  0.980/0.737  0.128/0.298  0.654/0.690 0.931/-  0.513/- 0.126/0.318  0.982/0.766  0.220/0.446 0.178
GROOV [22] 0.512/0.844 0.412/0.200  0.426/0.310  0.295/0.244 0.327/- 0.203/- - - - 0.206
ChatGPT [19] 0.128/0.270  0.141/0.098  0.110/0.129  0.130/0.177 0.105/-  0.105/- - - - 0.239
NST [27] w/ MLC 0.096/0.155  0.022/0.013  0.034/0.024  0.098/0.155 0.189/- 0.185/- 0.105/0.184  0.029/0.021  0.044/0.037 0.286
NST [27] w/EQ.(2)  0.337/0.775  0.746/0.483  0.444/0.584  0.603/0.802 0.645/-  0.462/- 0.378/0.841  0.765/0.521  0.487/0.633 0.484
DiVa-static 0.175/0.566  0.897/0.811 0.281/0.657  0.462/0.703 0.835/- 0.404/- 0.222/0.707  0.906/0.831  0.344/0.757 0.517
DiVa-light 0.231/0.694  0.722/0.629  0.331/0.648  0.564/0.753 0.644/-  0.451/- 0.274/0.784  0.745/0.663  0.383/0.709 0.550
Diva 0.239/0.727  0.716/0.631  0.341/0.665  0.569/0.782 0.643/-  0.444/- 0.282/0.819  0.739/0.665  0.392/0.724 0.570

to other methods, can cover more diverse information using fewer test-1 . test-2

labels. We believe this is achieved by the iterative training/fine- 07 r |

tuning of the gold labels and pseudo-labels inferred from the pre- 06 | |

trained binary classifier and the novel joint score function. We also |

make the following observations. 05 |
e When evaluating on test-1, EQ. (2) obtains better F1 and SF1 04 | |

scores yet much worse PSP score than of DiVa-static. These |

results indicate that if we equip EQ. (2) with the joint score
function, it is more powerful to handle an incomplete set of la-
bels. This assumption is further demonstrated by the evaluation
on test-2, where DiVa-static has higher F1, SF1, and coverage
scores than EQ. (2).
The DiVa-light method gets worse worse F1, SF1, coverage
scores than DiVa. We conjecture this is because only using
pseudo-labels to fine-tune the classifier makes the classifier over-
fit to pseudo-labels during the iterations. As a result, though
the binary classifier learned from DiVa-light has the ability to
produce new information missed by the gold labels, it loses the
ability to produce gold labels.

e From the comparison between NST [27] and DiVa, we notice
that NST always works better than DiVa on test-1 but works
worse than DiVa on test-2. This is because the goal of self-
training methods is to approach the mappings to gold labels and
thus these methods, including NST, are good at handling missed
supervision. Whereas, the DiVa framework forces the classifier
to learn mappings to OOV labels as well as missed supervisions
and thus is better at forming complete sets of labels for songs.

e Compared with DiVa and other methods, nnPu [12] w/ EQ. (2)
gets the best PSP scores on test-1. Thus, it has a big chance
to get a good performance on test-2. However, its coverage
score is only slightly better than the worst one (TF-IDF) and
much worse than the best one (DiVa). This is because the labels
produced by nnPu contain too much noise. Another piece of
evidence is that nnPu gets very high R and SR scores but rather
low P and SP scores on test-1 and test-2.

o We further observe that a better understanding of labels can
greatly improve performance. Specifically, the methods using
indexes to represent labels (MLC and NST w/ MLC) always work

F1 PSP SF1 F1 SF1

Coverage

mDiVa =w/o EQ.(6) mw/oSI “w/oSN ®w/o PV =wloDA

Figure 4: Performances w.r.t., different scores of EQ. (6) on
test-1 (left) and test-2 (right)

worse than those using tree (lightXML [11]) or embeddings to
represent labels (GROOV [22] and DiVa).
To better instruct ChatGPT [19], we have tried all off-the-shelf
prompts that are designed for text annotation and utilize the
prompt with the best performances [6, 9, 18] to predict labels for
songs from user comments. However, ChatGPT doesn’t produce
promising results as it has done in other tasks. We find a possible
explanation in Gupta and Jaggi [8] that contextual language
models are not always welcome by word-level interpretability.
e Compared to conventional MLC, our binary classifier defined
by EQ. (2) performs well not only on test-1 but also test-2.
This is because instead of using the labels in the gold label
vocabulary, we use words from use comments as candidate
labels, the number of which is less than the gold vocabulary size.
So it can learn more reliable mappings in a lower-dimensional
space. Besides, we use X2Static [8] to encode labels into vectors.
So the labels have a better correlation with each other and user
comments. This is also why EQ. (2), as a supervised method, can
produce some labels beyond the gold label vocabulary.

4.3 Ablation Study on different scores of EQ. (6)

As shown in Figure 4, we perform an ablation study to investigate
the effect of the novel joint score function (EQ. (6)) and the effect
of SI, SN, PV, DA scores in measuring a candidate label. Note that,
if we remove the novel joint score function from DiVa during the
iterations, we will get NST [27] w/o EQ. (6). Figure 4 presents the
performances with different joint score functions on test-1 and
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Figure 5: Performances of (a) DiVa on the training set, (b) DiVa on test-2, (c) DiVa-light on the training set, and (d) DiVa-light on

test2 over iterations.

test-2, respectively. From the comparisons between DiVa against
DiVa w/o SI, w/o SN, w/o PV, and w/o DA, we can see that any
one of the scores has little impact on DiVa. However, when these
scores are assembled in the joint score function, there presents a
strong influence on DiVa. Specifically, we see a big rise (about 0.1)
of F1 and SF1 scores when comparing DiVa and DiVa w/o EQ. (6)
on test-1. Conversely, we see a big drop (about 0.08) of all metrics
when comparing two methods on test-2. This is because EQ. (6) is
designed to find more diverse and valid pseudo-labels beyond gold
labels to fine-tune the binary classifier. Thus, these pseudo-labels
are “noises” for the ground truth values in test-1 but the right
answers for the ground truth values in test-2, resulting in the rise
and drop in Figure 4.

4.4 Performance over iterations

We set the iteration number of DiVa and DiVa-light based on their
results, mainly the PSP and PSnDCG scores, on the training set. Note
that, the classifier at the 0% h iteration is only trained on gold labels.
As we can see from Figure 5 (a) and Figure 5 (c), the best iteration
number for DiVa is 4 and that for DiVa-light is 1. For example,
the results of DiVa shown in Table 2 are obtained from the binary
classifier fine-tuned at the 4" iteration. For auxiliary analysis, we
also report the results of DiVa and DiVa-light on test-2 produced
by the binary classifier optimized in every iteration in Figure 5 (b)
and Figure 5 (d). In keeping with the training set, DiVa also gets its
best performance at the 4'" iteration. We observe a trend that the
precision scores are becoming smaller gradually with the increase of
iterations on test-1 and test-1. This is because, at each iteration,
the classifier is fine-tuned on more pseudo-labels, many of which are
regarded as “noises” by the gold ones. These “noises” has a negative
effect on the precision scores. However, the decrease presented in
Figure 5 (c) is much sharper than that presented in Figure 5 (a).
This is because, as mentioned in Sec. 4.2, the classifier, only fine-
tuned on pseudo-labels, is overfitting to the pseudo-labels and loses
the ability to predict gold labels. Accordingly, it cannot get good
performances on test-2, as shown in Figure 5 (d).

4.5 Case Study

We present two examples of two songs (The Last Of The Mohicans
and Mermaid) with gold labels, complete set of labels and labels
produced by different methods in Table 3. Among all methods,
our DiVa framework can cover most labels of the complete set
with the least bad labels. As explained in Sec. 4.2, the supervised
methods (lightXML, our binary classifier EQ. (2), and NST w/ EQ. (2))

have the ability to infer missed supervision because of their extra
attentions on labels. Surprisingly, although nnPU w/ EQ. (2) and
GROOV have produced many labels, most of them are bad ones.
We also have an interesting observation that, ChatGPT, even with
carefully designed prompts, tends to model the automated music
labeling as a summarization task and tends to produce phrases
rather than words.

5 RELATED WORK

Extreme Multi-label Learning The widely used XML meth-
ods can be divided into three types [15, 26]: the embedding-based
methods try to map both the features and the labels into a joint
low-dimensional space [7, 23], the tree-based methods partition
labels or instances into a tree [4, 11, 30], and one-vs-all methods
learns a binary classifier for each label separately [2, 31]. Although
such XML methods can learn more reliable mappings from massive
labels, they require full label coverage and full supervision to train
the classifiers. Note that the binary classifier used in DiVa differs
from the one-vs-all XML methods in two aspects. First, instead
of learning a classifier for each label, we only design one binary
classifier for all the concatenation of user comments and candidate
labels. This largely reduces the number of parameters that need to
be learned. Second, instead of using the full label set as candidates,
we only use the gold labels and the words from user comments as
the candidate labels of the song in the training phase. This largely
reduces the number of candidates that need to be estimated.

Open Vocabulary Classification Simig et al. [22] introduces
the open vocabulary XML classification for the first time. It also
proposes GROOV, a generative model that can tag textual context
with a set of labels from an open vocabulary. Although the GROOV
model can enlarge the number of labels, the newly generated labels
share a lot of similarities with the gold ones in the semantic space.
Another work on open vocabulary classification is Xiong et al. [28],
which is also the only work, as far as we know, that concerns both
incomplete label coverage and incomplete supervision. However,
this approach is more suitable for instances with a small number of
labels and can hardly apply to automated music labeling. Because
it trains the model on too many noise pseudo labels that could lead
the user searching to wrong songs with big chances. It also has a
strict assumption that all instances must have label-like (e.g., title)
phrases. This is not always satisfied in real-world scenarios.

Self-training The self-training methods work by training a classi-
fier iteratively by assigning pseudo-labels to unlabeled instances [1,
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Table 3: Examples of two songs with gold labels,
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and labels produced by different methods.

Title: The Last of The Mohicans

Artist: Alexandro Querevala

Gold labels

soul-touching, aesthetic, trouble, passionate, sad

Complete set of labels

LightXML [11]

aesthetic, passionate, single, s N s

EQ. (2)

passionate, sad, single, s s s s N , aesthetic

nnPU [12] w/ EQ. 2

passionate, . , sad, single, , story, cry, s , future, video, s

eat, pure, hope, , scared, profit, street, trouble, remember, poor, the Orient

, witness, peace,

GROOV [22]

healing, peaceful, memory, classic, love song, love, affectionate, single, , galaxy, youth, sunshine, self-improvement,
enthusiasm, aesthetics, light music, adoration, bgm, soul-touching, archaic rhyme

ChatGPT [19]

original ecological music, folk music, humanistic concern, historical significance, reflection on human civilization,

cultural diversity, tragic, struggle and frustration

NST [27] w/ EQ. (2) ,

, single, sad, passionate,

, aesthetic

s s

DiVa , sad, single, s , passionate, aesthetic, s s R , Spanish,
play wind instruments, , soul-stirring, shock, good faith, sad, , democratic,
soul-touching, s s

Title: Mermaid Artist: Skott

Gold labels meet

Complete set of labels

LightXML [11] , >

EQ. (2) s 3 >

nnPU [12] w/ EQ. 2 s , video, , share, s s , hope, , vocal
cords, style, worth, anticipation, tone colour, meet, clean, treasure, wish, collect, human heart

GROOYV [22] healing, galaxy, memory, , love song, s , sad, classic, youth, sunshine, meet, single, bgm,

rhythm, passionate, soul-touching

ChatGPT [19]

famous singer Thunder sister, mermaid, sea monster, Skott, Bjork, Huawei, Edited video of Ice and Snow 2

NST [27] w/ EQ. (2) , love, ,

s s s s

Diva » , >

, on the road,

s s s s

25, 32]. For example, Noisy Student Training [27] has three steps:
train a teacher classifier on labelled instances, predict the pseudo-
labels on unlabeled instances, and train a student classifier on both
labelled and pseudo-labelled data. However, the self-training classi-
fier tends to assign similar labels to instances with similar features.
This is not helpful to capture the complete picture of user searching
preferences on a single song.

Positive-Unlabeled (PU) Learning The incomplete supervision
issue can be also found in the PU learning setting, where only some
of the positive instances are labeled [3]. One of the most popular
PU learning methods is nnPU [12], which treats the unlabeled
instances as negative instances and weights the unlabeled data via
a non-negative risk estimator to avoid biased noises. Generally,
such methods are designed for binary classification settings. In
this paper, we can change the multi-label classification task to
a binary classification task by pairing the user comments and a
candidate label as an instance. This makes it possible to apply the
PU learning methods in multi-label classification settings. However,
this doesn’t mean that such methods are suitable for the proposed
task. Because these methods aim to get better performances on the
seen supervision instead of digging the unseen supervision. Besides,
they require the prior class distribution to optimize the classifier.

Active learning The proposed iterative framework (DiVa) is also
slightly relevant to active learning, which selects instances for
annotating and training in an interactive process [20, 21]. However,
instead of reducing the cost during the annotation stage, our work
aims to make the best of the labelled data after the annotation
stage. Besides, instead of hiring experts for annotation, we obtain
pseudo-labels from a joint score function.

6 CONCLUSION

In this paper, we call attention to the information missed by the
gold labels and highlight the importance of the complete set of la-
bels for a song towards sufficient music searching. After a detailed
investigation of the missing labels, user comments, and current
studies, we’d like to take a step forward and study automated music
labeling in an essential yet under-exploring setting — given limited
gold labels, the model is required to harvest more diverse and valid
labels from the user comments to form a complete set of labels
for the song. Further, we develop an iterative framework (DiVa) to
learn a desired classifier for the proposed automated music labeling
task. We also design a novel joint score function that can offer more
diverse and valid pseudo-labels to fine-tune the classifier. Experi-
ments on two testing sets reveal the superiority of DiVa in covering
as much information with as few labels. Besides, the comparison
with other iterative methods demonstrates the effectiveness of the
novel joint score function in harvesting more diverse and valid
labels. We hope our work can inspire future research on automated
music labeling and shed light on multi-label learning with missing
information in real-world scenarios.
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A IMPLEMENTATION DETAILS

A.1 Baselines
TF-IDF We deploy the classic TF-IDF, which is defined as
Yc N

u
TF-IDF(y,, d;) = X lo s
(v ) Zuy, ¥ 1) e e dyL|

©

uy, and 3 uy, denote the number of occurrences of y. in the current
user songl comments d; and the total number of occurrences of all
words tokenized from the comments, respectively. The left side of
* indicates the relative frequency of the candidate label y. within
the current song comments, and the right side of * is related to the
number of songs with y, in their user comments.

Multi-label Classification (MLC) We use the user comments
of a song to predict a vector, whose dimension is equal to the size
of gold label vocabulary. Each element of the vector indicates the
probability of y. being an accurate label for the i* song. The multi-
label classifier is formulated as

F(d;, YO) = sigmoid(dj),
where 07, is encoded from XLNet [29]. The objective of the classifier

is to minimize the sum of the binary cross entropy between the
predicted and ground truth vectors.

(10)

LightXML [11] We use the codes released by the original paper
https://github.com/kongds/LightXML.

nnPU [12] w/ EQ. (2) The original loss function of EQ. (2 is
defined by the binary cross entropy, i.e.,

N
L= Z Z BCE(y*, F (di, ye))

i=1 Yc

N
== > > y'log(F (diye)) + (1 - y*) x log(1 - F (di, o)),

i=1 Yc
(11)
where y* = 1 if y. is the gold label of the i song, y* = 0 if y,
is a sampled negative label of the ith song. We replace this loss
function with the nnPU loss [12], which is defined as

Rpu(F) = mpRpy(F) + max{0, R, (F) — mpR, (F)},

A 1
Ry ()=~ ), BCE(LT (dyo))
Xp di’yce)(p
_ 1
Ry () = > BCE(0. 5 (di. ye)). (12)
[ xul i, Yo € Xu
RS (F) = — BCE(0, ¥ (dy, y¢)),
P ol ,, y;e)(p ne

where ), and y, represent the positive and unlabeled samples,
respectively. Besides, the nnPu loss is deployed following the im-
plementation of https://github.com/kiryor/nnPUlearning.

GROOV [22] We use the codes released by the original paper
https://github.com/facebookresearch/GROOV. Particularly, for a
fair comparison, we have fine-tuned the generative model on our
training set.
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ChatGPT [19] We have tried the prompts provided by Gilardi
et al. [6], Huang et al. [9], Moller et al. [18]. To better instruct
ChatGPT to perform the task, all prompts are translated into Chi-
nese with minor changes. The results in Table 2 are obtained from
the best-performing prompt, which is “I& MEK #1718 {} FHREX
H ZHE AT AR, 61 40{} format(user comments, gold labels)”
(“Please select diverse labels from the user comments of song {},
for example , {} .format(user comments, gold labels)”).

Noisy Student Training (NST) [27] The codes released by the
original paper https://github.com/google-research/noisystudent are
based on image classification. In this paper, we replace the image
classifier with MLC and EQ. (2).

A.2 Metrics

Besides the metrics (P, SR, SF1, and Coverage scores) defined Sec. 4.1.
We use the scikit-learn tool (https://scikit-learn.org/stable/modules/
classes.html#module-sklearn.metrics) to compute the precision, re-
call, F1, and nDCG scores. Moreover, we use the implementation
of https://github.com/kunaldahiya/pyxclib to compute the propen-
sity scored precision (PSP) and propensity scored nDCG (PSnDCG)
scores. Specifically, the propensity score of a label is estimated via
label priors 7y« := P[y* = 1]:
_ 1

1+ (Iog N — 1) X (b + 1)@ x e~ @108(N7y=+b)”
where a = 0.55 and b = 1.5, as recommended by Jain et al. [10].

(13)

Py

B CHINESE VERSION OF EXAMPLES IN
SEC. 4.5

Tabel 4 presents the original Chinese version of the examples used
Sec. 4.5.


https://github.com/kongds/LightXML
https://github.com/kiryor/nnPUlearning
https://github.com/facebookresearch/GROOV
https://github.com/google-research/noisystudent
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
https://github.com/kunaldahiya/pyxclib
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Table 4: Chinese version of the examples in Section 4.5.

Title: The Last Of The Mohicans Artist: Alexandro Querevala

Gold labels

REL, MER, B, B, O

Complete set of labels

LightXML [11]

MESR, WE, —1A, : : :

EQ. (2) W, R, — 1A, : : : : : , MERE
nnPU [12] w/ EQ. 2 wiE, : i — AN , W, SR, , . K&, W
7 : . WAE, AF, &, 4, HE, , E, Flaw, K,

iofE, A, RT3

GROOV [22]

B, THL B, 2 G 2, ®E DA
BhA, BRI, MESS, BEER, A%, bgm, R, HH)

. B, BE, M,

ChatGPT [19]

JRASER, RIEESR, AJCRW, RES, REAERIH, UZHME, EBHHE
&, PS5

NST [27] w/ EQ. (2) , ;AL R, U, , , . PSR

DiVa , R, — A , : , WUE, MESE, , NI, , ,
PIT, WZE, , , . HAREY, B, OHE, , RE, R
B, . ,

Title: Mermaid Artist: Skott

Gold labels FHIL

Complete set of labels

LightXML [11] , ,

EQ. (2) , , , ,

nnPU [12] w/ EQ. 2 , . TS, , , A, , , . HHE, ,
%, Xg, EE, B, w6, ML, TE, FE BE, WO, A0

GROOV [22] AR, B, EIZ, , TEAR , , ik, 2 FE, ML, M, —

A, bgm, T1ZE, B, R

ChatGPT [19]

ZHCTITEE, RS, #IK, Skott, Bjork, £y, IKE2BIHAINT

NST [27] w/ EQ. (2)

5 ) ) ’ ’ s ) )

Diva

, , , , , , , , -
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