
PSNE: Efficient Spectral Sparsification Algorithms for Scaling
Network Embedding

Longlong Lin

College of Computer and

Information Science,

Southwest University

Chongqing, China

longlonglin@swu.edu.cn

Yunfeng Yu

College of Computer and

Information Science,

Southwest University

Chongqing, China

YunfengYu817@outlook.com

Zihao Wang

College of Computer and

Information Science,

Southwest University

Chongqing, China

zihaowang@outlook.com

Zeli Wang

Chongqing University of

Posts and

Telecommunications

Chongqing, China

zlwang@cqupt.edu.cn

Yuying Zhao

Vanderbilt University

Nashville, USA

yuying.zhao@vanderbilt.edu

Jin Zhao

Huazhong University of

Science and Technology

Wuhan, China

zjin@hust.edu.cn

Tao Jia
∗

College of Computer and

Information Science,

Southwest University

Chongqing, China

tjia@swu.edu.cn

Abstract
Network embedding has numerous practical applications and has

received extensive attention in graph learning, which aims at map-

ping vertices into a low-dimensional and continuous dense vector

space by preserving the underlying structural properties of the

graph. Many network embedding methods have been proposed,

among which factorization of the Personalized PageRank (PPR for

short) matrix has been empirically and theoretically well supported

recently. However, several fundamental issues cannot be addressed.

(1) Existing methods invoke a seminal Local Push subroutine to

approximate a single row or column of the PPR matrix. Thus, they

have to execute 𝑛 (𝑛 is the number of nodes) Local Push subrou-

tines to obtain a provable PPR matrix, resulting in prohibitively

high computational costs for large 𝑛. (2) The PPR matrix has lim-

ited power in capturing the structural similarity between vertices,

leading to performance degradation. To overcome these dilemmas,

we propose PSNE, an efficient spectral sParsification method for

Scaling Network Embedding, which can fast obtain the embedding

vectors that retain strong structural similarities. Specifically, PSNE

first designs a matrix polynomial sparser to accelerate the calcula-

tion of the PPR matrix, which has a theoretical guarantee in terms

of the Frobenius norm. Subsequently, PSNE proposes a simple but

effective multiple-perspective strategy to enhance further the rep-

resentation power of the obtained approximate PPR matrix. Finally,

PSNE applies a randomized singular value decomposition algorithm

on the sparse and multiple-perspective PPR matrix to get the target

∗
Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’24, October 21–25, 2024, Boise, ID, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0436-9/24/10

https://doi.org/10.1145/3627673.3679540

embedding vectors. Experimental evaluation of real-world and syn-

thetic datasets shows that our solutions are indeed more efficient,

effective, and scalable compared with ten competitors.

CCS Concepts
• Computing methodologies→ Learning latent representations.

Keywords
Network Embedding; Spectral Graph Theory

ACM Reference Format:
Longlong Lin, Yunfeng Yu, Zihao Wang, Zeli Wang, Yuying Zhao, Jin Zhao,

and Tao Jia. 2024. PSNE: Efficient Spectral Sparsification Algorithms for

Scaling Network Embedding. In Proceedings of the 33rd ACM International
Conference on Information and Knowledge Management (CIKM ’24), October
21–25, 2024, Boise, ID, USA. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3627673.3679540

1 Introduction
Graphs are ubiquitous for modeling real-world complex systems,

including financial networks, biological networks, social networks,

etc. Analyzing and understanding the semantic information behind

these graphs is a fundamental problem in graph analysis [2, 17, 24,

25, 49]. Thus, numerous graph analysis tasks are arising, such as

node classification, link prediction, and graph clustering. Due to

their exceptional performance, network embedding is recognized as

an effective tool for solving these tasks. Specifically, given an input

graph𝐺 with𝑛 nodes, network embeddingmethods aim at mapping

any node 𝑣 ∈ 𝐺 to a low-dimensional and continuous dense vector

space 𝑥𝑣 ∈ R𝑘 (𝑘 is the dimension size and 𝑘 << 𝑛) such that the

embedding vectors can unfold the underlying structural properties

of graphs. Thus, the obtained embedding vectors can be effectively

applied to these downstream tasks mentioned above [16, 48].

Many network embedding methods have been proposed in the

literature, among which matrix factorization has been empirically

and theoretically shown to be superior to Skip-Gram based random

walk methods and deep learning based methods [33, 44, 46], as

stated in Section 2. Specifically, matrix factorization based solutions

ar
X

iv
:2

40
8.

02
70

5v
1

 [
cs

.L
G

]
 5

 A
ug

 2
02

4

https://doi.org/10.1145/3627673.3679540
https://doi.org/10.1145/3627673.3679540
https://doi.org/10.1145/3627673.3679540

CIKM ’24, October 21–25, 2024, Boise, ID, USA Longlong Lin et al.

first construct a proximity matrix 𝑆 according to their correspond-

ing applications, in which 𝑆 (𝑖, 𝑗) represents the relative importance

of node 𝑗 with respect to (w.r.t.) node 𝑖 . Then, the traditional sin-

gular value decomposition algorithm is executed on 𝑆 or some

variants of 𝑆 to obtain the target embedding vectors. Thus, different

proximity matrices were designed and the Personalized PageRank

(PPR) matrix emerges as a superior choice due to its good perfor-

mance [46, 47, 51]. In particular, given two nodes 𝑖, 𝑗 ∈ 𝐺 , the PPR

value Π(𝑖, 𝑗) is the probability that a random walk starts from 𝑖

and stops at 𝑗 using 𝑘 steps state transition, in which 𝑘 follows the

geometric distribution. Therefore, the PPR values can be regarded

as the concise summary of an infinite number of random walks,

possessing nice structural properties and strong interpretability for

network embedding.

Despite their success, most existing methods suffer from the

following several fundamental issues: (1) They either have high
costs to achieve provable performance, or hard to obtain em-
pirical satisfactory embedding vectors for downstream tasks.
Specifically, the state-of-the-art (SOTA) methods, such as STRAP

[47] and Lemane [51], applied the seminal Local Push subroutine

[3] to approximate a single row or column of the PPR matrix, re-

sulting in that have high overheads, especially for massive graphs.

For example, Ref. [23] reported that the current fastest Local Push

algorithm takes about 2 seconds on a million-node YouTube graph.

Thus, the Local Push algorithm takes over 23 days to compute the

PPR matrix, which is infeasible even for a powerful computing

cluster. For reducing computational costs, NRP [46] integrated the

calculation and factorization of the PPRmatrix in an iterative frame-

work. However, NRP has unsatisfactory theoretical approximation

errors and poor empirical performance because it loses the nonlin-

ear capability, as stated in our experiments. (2) Existing methods are

highly dependent on the assumption that the PPR matrix can reflect

the structural similarity between two nodes [30]. Namely, larger

PPR values, denoted as Π(𝑖, 𝑗), correspond to the higher structural

similarity between nodes 𝑖 and 𝑗 . However, the original PPR
matrix has limited power in capturing the structural simi-
larity between vertices, leading to performance degradation.
Take Figure 1 as an example, we can see that Π(𝑣1, 𝑣3) (= 0.054)
is almost three times as many as Π(𝑣1, 𝑣7) (= 0.140). Thus, 𝑣1 is

more similar to 𝑣7 than 𝑣3 according to the PPR metric. However,

𝑣1 and 𝑣7 have no common neighbors, and their walking trajec-

tories are not similar. On the contrary, 𝑣1 and 𝑣3 share their only

neighbor 𝑣2 and have almost the same walking trajectories, which

is a key property used to characterize whether nodes are in the

same cluster[6, 45]. Specifically, let P(𝑢) be all walking trajectories
starting with 𝑢, we have P(𝑣1) = {{𝑣1, 𝑝 (𝑣2)}|𝑝 (𝑣2) ∈ P(𝑣2)} and
P(𝑣3) = {{𝑣3, 𝑝 (𝑣2)}|𝑝 (𝑣2) ∈ P(𝑣2)}. Thus, P(𝑣1) and P(𝑣3) are
identical except for the starting vertex. As a result, by the PPR met-

ric, the classifier tends to mistakenly assign 𝑣1 and 𝑣7 to the same

class even though 𝑣1 and 𝑣3 belong to the same community and have

stronger structural similarities. So, exploring alternative methods

for overcoming these limitations remains a huge challenge.

To this end, we propose a novel and efficient spectral sParsification
method for Scaling Network Embedding (PSNE). Specifically, PSNE

first non-trivially utilizes the theories of spectral sparsification and

random-walk matrix polynomials [9, 35] to directly construct a

sparse PPR matrix with a theoretical guarantee in terms of the

v1

0.054

0.204

0.319

0.078

0.078

0.078

0.140

0.023

0.023

Source Node Destination Node PPR Value

Figure 1: 𝑣1 is the source node and 𝛼 = 0.15 is the decay param-
eter in PPR. The PPR values Π(𝑣1, 𝑣3) and Π(𝑣1, 𝑣7) are 0.054
and 0.140, respectively. The proposed multiple-perspective
PPR values𝑀 (𝑣1, 𝑣3) and𝑀 (𝑣1, 𝑣7) are 0.142 and 0.095, respec-
tively (see Table 1 for details).

Frobenius norm (Theorem 4.6), which avoids repeatedly comput-

ing each row or column of the PPR matrix, reducing greatly the

computational overheads. Then, a simple yet effective multiple-

perspective strategy (Section 4.2) is proposed to further enhance

the representation power of the approximate PPR matrix, which

can alleviate the inherent defects of the original PPR metric. Finally,

PSNE employs a randomized singular value decomposition algo-

rithm to efficiently factorize the sparse and multiple-perspective

PPR matrix and obtain high-quality target embedding vectors. In a

nutshell, we highlight our contributions as follows.

• We are the first to adopt the spectral sparsification theory to

directly approximate the whole PPR matrix, circumventing the

expensive costs for a single row or column of the PPR matrix in

existing push-based methods.

• We devise a simple but effective multiple-perspective strategy

to further enhance the representation power of the approximate

PPR matrix. A striking feature of the strategy is that it also can

be generalized to improve the qualities of SOTA baselines.

• Empirical results on real-world and synthetic datasets show that

our proposed PSNE outperforms the quality by at least 2% than

ten competitors in most cases. Besides, PSNE is also more efficient

than existing PPR-based methods without sacrificing accuracy,

showing a better trade-off between efficiency and accuracy.

2 Related Work
2.1 RandomWalk Based Network Embedding
Random walk based methods are inspired by the Skip-Gram model

[27]. The high-level idea is to obtain embedding vectors by keeping

the co-occurrence probability of the vertices on the random walks.

The main difference between these methods is how to generate

positive samples by different random walk strategies. For exam-

ple, DeepWalk [31] utilized truncated random walks. Line [36] and
Node2vec [14] extended DeepWalk with more complicated higher-

order random walks or DFS/BFS search schemes. APP [53] and

VERSE [38] adopted the 𝛼-discounted random walks to obtain posi-

tive samples. However, a shared challenge of these methods is high

computational costs due to the training of the Skip-Gram model.

PSNE: Efficient Spectral Sparsification Algorithms for Scaling Network Embedding CIKM ’24, October 21–25, 2024, Boise, ID, USA

2.2 Deep Learning Based Network Embedding
Deep learning provides an alternative solution to generate embed-

ding vectors. For example, SDNE [41] utilized multi-layer auto-

encoders to generate embedding vectors. DNGR [8] combined ran-

dom walk and deep auto-encoder for network embedding. PRUNE
[21] applied the Siamese Neural Network to retain both the point-

wise mutual information and the PageRank distribution.GraphGAN
[42] andDWNS [11] employed generative adversarial networks [10]

to capture the probability of node connectivity in a precise manner.

AW [1] proposed an attention model that operates on the power

series of the transition matrix. Note that although the Graph Neural

Network (GNN) with feature information [20] has achieved great

success in many tasks, network embedding, which only uses the

graph topology like our paper, is still irreplaceable. Specifically,

(1) obtaining the rich node feature information is very expensive

and even is not always available for downstream tasks, resulting in

limited applications [12]. (2) Existing GNNs are typically end-to-

end and need different training processes for different downstream

tasks, leading to inflexibility. On the contrary, by focusing on the

graph topology, network embedding provides a structure feature for

each node, which is independent of downstream tasks [37]. Thus,

network embedding provides a trade-off between the accuracy of

downstream tasks and the training cost. In short, the main bottle-

necks of these deep learning methods are high computational costs

and labeling costs, which fail to deal with massive graphs.

2.3 Matrix Based Network Embedding
Other popular methods are to factorize a pre-defined proximity

matrix that reflects the structural properties of the graph. For exam-

ple, GraRep[7] performs SVD on the 𝑘-th order transition matrix.

NetMF [33] demonstrated the equivalence between random walk

based methods and matrix factorization based methods. NetSMF
[32] combined NetMF with sparsification techniques to further im-

prove efficiency of NetMF. However, NetSMF cannot effectively

capture the non-uniform higher-order topological information be-

cause NetSMF inherits the defects of DeepWalk, resulting in poor

practical performance in most cases, as stated in our empirical

results. ProNE [50] utilized matrix factorization and spectral propa-

gation to obtain embedding vectors. STRAP [47] adopted the PPR

matrix as the proximity matrix for improving the performances of

NetMF and NetSMF. However, STRAP applied the seminal Local

Push subroutine [3] to approximate a single row or column of the

PPR matrix, resulting in prohibitively high time&space overheads.

HOPE [29], AROPE [52], NRP [46], FREDE[39], and SketchNE[44]

derived embedding vectors by implicitly computing the proximity

matrix. Thus, they abandoned nonlinear operations on proximity

matrices, which limits their representation powers. Lemane [51]
considered the decay factor 𝛼 in PPR should not be fixed but learn-

able, resulting in more flexibility. However, this learning process

brings high overheads for Lemane.

3 Preliminaries
We use𝐺 (𝑉 , 𝐸) to denote an undirected graph, in which𝑉 and 𝐸 are

the vertex set and the edge set of 𝐺 , respectively. Let 𝑛 = |𝑉 | (resp.,
𝑚 = |𝐸 |) be the number of vertices (resp., edges). 𝑨 is the adjacency

matrix with 𝐴𝑖 𝑗 as the element of 𝑖-th row and 𝑗-th column of 𝑨,

𝑫 = 𝑑𝑖𝑎𝑔(𝑑1, ..., 𝑑𝑛) is the degreematrixwith𝑑𝑖 =
∑

𝑗𝐴𝑖 𝑗 , 𝑳 = 𝑫−𝑨
be the Laplacian matrix, 𝑷 = 𝑫−1𝑨 be the state transition matrix.

Personalized PageRank (PPR) is the state-of-the-art proximity

metric, which can measure the relative importance of nodes [3, 26].

The PPR value Π(𝑢, 𝑣) is the probability that an 𝛼-decay random

walk from 𝑢 stops at node 𝑣 , in which an 𝛼-decay random walk

has 𝛼 probability to stop at the current node, or (1 − 𝛼) probability
to randomly jump to one of its neighbors. Thus, the length of 𝛼-

decay random walk follows the geometric distribution with success

probability 𝛼 . The PPR matrix Π are formulated as follows:

𝚷 =

∞∑︁
𝑟=0

𝛼 (1 − 𝛼)𝑟 · P𝑟 (1)

Problem Statement. Given an undirected graph 𝐺 (𝑉 , 𝐸), the net-
work embedding problem aims to obtain a mapping function 𝑓 :

𝑉 −→ R𝑘 , in which 𝑘 is a positive integer representing the embed-

ding dimension size and 𝑘 << 𝑛. An effective network embedding

function 𝑓 unfolds the underlying structural properties of graphs.

4 PSNE: Our Proposed Solution
Here, we introduce a novel and efficient spectral sParsification al-

gorithm PSNE for Scaling Network Embedding. PSNE first applies

non-trivially the spectral graph theories to sparse the PPR matrix

with theoretical guarantees. Subsequently, PSNE devises multiple-

perspective strategies to further enhance the representation power

of the sparse PPR matrix. Finally, a random singular value decom-

position algorithm is executed on the refined sparse PPR matrix to

obtain target embedding. Figure 2 is the framework of PSNE.

4.1 Spectral Sparsification for PPR Matrix
Definition 4.1 (Random-Walk Matrix Polynomials). For an undi-

rected graph 𝐺 and a non-negative vector 𝜷 = (𝛽1, ..., 𝛽𝑇) with∑𝑇
𝑖=1 𝛽𝑖 = 1, the matrix

L𝜷 (𝐺) = D −
𝑇∑︁
𝑟=1

𝛽𝑟D
(
D−1A

)𝑟
(2)

is a 𝑇 -degree random-walk matrix polynomial of 𝐺 .

Theorem 4.2. [Sparsifiers of Random-Walk Matrix Polyno-
mials] For any undirected graph 𝐺 and 0 < 𝜖 ≤ 0.5, there exists
a matrix �̃� with 𝑂 (𝑛 log𝑛/𝜖2) non-zeros entries such that for any
𝑥 ∈ R𝑛 , we have

(1 − 𝜖)𝒙⊤L̃𝒙 ≤𝒙⊤𝐿𝜷 (𝐺)𝒙 ≤ (1 + 𝜖)𝒙⊤L̃𝒙 (3)

The matrix �̃� satisfying Equation 3 is called spectrally simi-

lar with approximation parameter 𝜖 to 𝐿𝜷 (𝐺), which can be con-

structed by the two-stage computing framework [9]. In the first

stage, an initial sparsifier with 𝑂 (𝑇𝑚 log𝑛/𝜖2) non-zero entries is

found. In the second stage, a standard spectral sparsification algo-

rithm [35] is applied in the initial sparsifier to further reduce the

number of non-zero entries to 𝑂 (𝑛 log𝑛/𝜖2). Note that the second
stage requires complex graph theory to understand and consumes

most of the time of the two-stage computing framework. Thus, in

this paper, we first non-trivially utilize the first stage to obtain the

coarse-grained sparsifier quickly. Then, we propose an effective

multiple-perspective strategy to enhance the representation power

CIKM ’24, October 21–25, 2024, Boise, ID, USA Longlong Lin et al.

Embedding

2

5

1

6

8

10

3
4

7
9 RSVD

Network

Step1. Construct Sparsifier to Approximate PPR Matrix

2

1 2

3 9

6 7

2

4 7

10

2

5

1

6

8

10

3
4

7
9

Weight

Max

Min

10

Proximity Matrix

K dimensions

Step3.

N

2

5

1

6

8

10

3 4

7
9

5

1

6

3

9

10

8 7

4

2

Step2.
Multiple-Perspective

Strategy

Figure 2: The design of PSNE framework. In Step 1 (i.e., Section 4.1), PSNE first constructs the sparsifier �̃� by sampling 𝑁 paths
and assigning weights to the newly sampled edges. Then, Equations 4-9 and �̃� are applied to directly approximate the PPR
matrix, avoiding repeatedly computing each row or column of the PPR matrix in the traditional Local Push method. In Step 2
(i.e., Section 4.2), PSNE devises a multiple-perspective strategy to further enhance the representation of the coarse-grained and
sparse PPR matrix obtained by Step 1. In Step 3 (i.e., Section 4.3), a randomized singular value decomposition (RSVD) algorithm
is executed on the sparse and multiple-perspective PPR proximity matrix to obtain the target embedding matrix.

of the coarse-grained sparsifier in the next subsection. Specifically,

the 𝑇 -truncated PPR matrix is given as follows:

𝚷
′ = 𝚷 −

+∞∑︁
𝑟=𝑇+1

𝛼 (1 − 𝛼)𝑟P𝑟 =

𝑇∑︁
𝑟=0

𝛼 (1 − 𝛼)𝑟P𝑟 (4)

where 𝑇 is the truncation order (𝑇 is also 𝑇 in Definition 4.1). By

combining Equation 2 and Equation 4, we have

𝚷
′ = 𝛼 𝑰 +

𝑇∑︁
𝑟=1

𝛼 (1 − 𝛼)𝑟P𝑟 (5)

= 𝛼 𝑰 + 𝑫−1 ·
𝑇∑︁
𝑟=1

𝛼 (1 − 𝛼)𝑟𝑫P𝑟 (6)

= 𝛼 𝑰 + 𝛼𝑠𝑢𝑚𝑫−1 ·
𝑇∑︁
𝑟=1

𝛼 (1 − 𝛼)𝑟 /𝛼𝑠𝑢𝑚𝑫P𝑟 (7)

= 𝛼 𝑰 + 𝛼𝑠𝑢𝑚𝑫−1 · (𝑫 − L𝜷 (𝐺)) (8)

= 𝛼 𝑰 + 𝛼𝑠𝑢𝑚 · (𝑰 − 𝑫−1L𝜷 (𝐺)) (9)

Where 𝛼𝑠𝑢𝑚 =
∑𝑇
𝑖=1 𝛼 (1−𝛼)𝑖 . Therefore, we establish a theoret-

ical connection between the (truncated) PPR matrix and random-

walk matrix polynomials. Based on this connection, we devise a

novel sparsifier to obtain the approximate PPR matrix (Algorithm

1), reducing greatly the prohibitively high computational cost of

existing local push-based embedding methods. Specifically, Algo-

rithm 1 first initializes an undirected graph G̃ = (𝑉 , ∅), in which 𝑉

is the vertex set of the input graph 𝐺 (Line 1). Subsequently, Lines

2-7 of Algorithm 1 adds 𝑂 (𝑁) edges to G̃ by executing iteratively

the Path_Sampling Function (Lines 11-18). Finally, Algorithm 1

applies Equations 4-9 to get an approximate PPR matrix �̃� with

𝑂 (𝑁) non-zeros entries (Lines 8-10).
Remark. The path length 𝑟 in Line 4 is selected with the probability
𝛼 (1 − 𝛼)𝑟 /∑𝑇

𝑖=1 𝛼 (1 − 𝛼)𝑖 for satisfying the condition of Definition

4.1, that is 𝛼𝑟 = 𝛼 (1 − 𝛼)𝑟 /∑𝑇
𝑖=1 𝛼 (1 − 𝛼)𝑖 and

∑𝑇
𝑟=1 𝛼𝑟 = 1. As a re-

sult, Algorithm 1 can obtain a sparse PPR matrix with a theoretical

guarantee in terms of the Frobenius norm, which will be analyzed

theoretically later. Besides, Algorithm 1 also leverages the intuition

Algorithm 1 Sparsifier of the PPR Matrix

Input: An undirected graph 𝐺 (𝑉 , 𝐸); the truncation order 𝑇 ;

the number of non-zeros 𝑁 in the sparsifier; the decay factor 𝛼

of PPR

Output: A sparse PPR matrix �̃�

1: Initializing an undirected graph G̃ = (𝑉 , ∅)
2: for 𝑖 = 1 to 𝑁 do
3: Uniformly pick an edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸
4: Pick an integer 𝑟 ∈ [1,𝑇] with a probability of 𝛼 (1 −

𝛼)𝑟 /∑𝑇
𝑖=1 𝛼 (1 − 𝛼)𝑖

5: 𝑢′, 𝑣 ′, 𝑍𝑝← Path_Sampling(𝑒, 𝑟)
6: Add weight 2𝑟𝑚/(𝑁𝑍𝑝) to the edge (𝑢′, 𝑣 ′) of G̃
7: end for
8: L̃← the Laplacian matrix of G̃
9: �̃� ← 𝛼 𝑰 + 𝛼𝑠𝑢𝑚 (𝑰 − 𝑫−1�̃�)
10: return �̃�

11: Function Path_Sampling(𝑒 = (𝑢, 𝑣), 𝑟) :
12: Uniformly pick an integer 𝑗 ∈ [1, 𝑟]
13: Perform (𝑗 − 1)-step random walk from 𝑢 to 𝑛0
14: Record anonymous trajectory from 𝑢 to 𝑛0 (𝐴𝑛𝑜𝑇𝑟𝑎𝑢)

15: Perform (𝑟 − 𝑗)-step random walk from 𝑣 to 𝑛𝑟
16: Record anonymous trajectory from 𝑣 to 𝑛𝑟 (𝐴𝑛𝑜𝑇𝑟𝑎𝑣)

17: Calculate pattern similarity via 𝐴𝑛𝑜𝑇𝑟𝑎𝑢 and 𝐴𝑛𝑜𝑇𝑟𝑎𝑣 for

the multiple-perspective strategy of Section 4.2

18: return 𝑛0, 𝑛𝑟 ,
∑𝑟
𝑖=1

2

A(𝑛𝑖−1,𝑛𝑖)

that closer nodes exhibit a higher propensity for information ex-

change. Therefore, the shorter the random walk, the greater the

probability of being selected to promote local interactions, enabling

more effective capture non-uniform high-order structural proximi-

ties among vertices for obtaining high-quality embedding vectors,

which is verified in our experiments.

4.2 From PPR to Multiple-Perspective PPR
As depicted in Figure 1, the original PPR metric cannot effectively

capture the structural similarity between vertices. Besides, if we

PSNE: Efficient Spectral Sparsification Algorithms for Scaling Network Embedding CIKM ’24, October 21–25, 2024, Boise, ID, USA

Table 1: Illustration of the original PPR and Multiple-Perspective PPR (MP-PPR) values on Figure 1.

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9

PPR 0.204 0.319 0.054 0.078 0.078 0.078 0.140 0.023 0.023

MP-PPR 0.142 0.180 0.142 0.145 0.145 0.145 0.095 0.062 0.062

directly take the approximate PPR matrix obtained by Section 4.1

as the input to matrix factorization, there will also be performance

degradation. To overcome these issues, we propose a simple yet

effective multiple-perspective strategy to achieve the following

goals: (1) Alleviating the inherent defects of the original PPR metric;

(2) Enhancing the representation power of the coarse-grained and

sparse PPR matrix obtained in Section 4.1.

Through deep observation as shown in Figure 1, we found that

the original PPR measures node pair proximity from a single per-
spective and ignores pattern similarity. For example, in a social

network with users 𝐴, 𝐵, and 𝐶 . 𝐶 is the close friend of 𝐴, and 𝐴’s

assessment of 𝐵 is not only influenced by𝐴’s subjective impression

of 𝐵 but also indirectly influenced by𝐶’s impression of 𝐵. However,

the original PPR metric only considers 𝐴’s impression of B. On top

of that, the original PPR fails to illustrate that node 𝑣1 exhibits a

structural pattern more similar to nodes 𝑣3 rather than 𝑣7.

Based on these intuitions, we propose a novel metric of Multiple-

Perspective PPR (MP-PPR) to effectively compute the structural

proximity between destination nodes and the source node with

pattern similarity. Since considering the perspective of all nodes is

computationally expensive with little performance improvement,

we integrate only the perspectives of the one-hop neighbors of the

source node. Consequently, the multiple-perspective proximity of

destination node 𝑗 w.r.t. the source node 𝑖 is stated as follows.

𝑀 (𝑖, 𝑗)𝑆 =
∑︁

ℎ∈N(𝑖)
𝜆ℎ𝑖𝑆ℎ𝑗 + 𝜆𝑖𝑖𝑆𝑖 𝑗 (10)

where 𝑆 is any proximity matrix (e.g., the PPR matrix) and N(𝑖)
represents the neighbor set of 𝑖 . 𝜆ℎ𝑖 (resp., 𝜆𝑖𝑖) is the multiple-

perspective coefficient of node ℎ (resp., 𝑖) to node 𝑖 . In this paper,

we take 𝜆ℎ𝑖 = 𝑤𝑝ℎ𝑖/(
√︁
(𝑑ℎ + 1)

√︁
(𝑑𝑖 + 1)) and 𝜆𝑖𝑖 = 1/(𝑑𝑖 + 1)

where𝑤𝑝ℎ𝑖 is pattern similarity between (𝑣ℎ, 𝑣 𝑗). To characterize

the pattern similarity between nodes, we introduce the well-known

anonymous walk [19] as follows.

Definition 4.3 (Anonymous Walk). If 𝐴 = (𝑣1, 𝑣2, ..., 𝑣𝑛) is a ran-
dom walk trajectory, then its corresponding anonymous walk is

the sequence of integers𝐴𝑛𝑜𝑇𝑟𝑎𝐴 = (𝑓 (𝑣1), 𝑓 (𝑣2), .., 𝑓 (𝑣𝑛)), where
𝑓 (.) is a mapping that maps nodes to positive integers.

Different nodes on the same trajectories are mapped to different

positive integers, which may coincide on different paths. For exam-

ple, trajectories 𝑃𝐴 = (𝑣1, 𝑣2, 𝑣3, 𝑣2, 𝑣3) and 𝑃𝐵 = (𝑣3, 𝑣4, 𝑣2, 𝑣4, 𝑣2)
share the common anonymous trajectory (1, 2, 3, 2, 3). We utilize

the anonymous walk for pattern similarity calculation, which de-

mands extensive trajectory sampling, limiting scalability. However,

we have identified specific features in Equation 10 and Algorithm 1

as follows. (1) Equation 10 focuses on pattern similarity of neigh-

boring nodes within one hop, reducing initial sampling needs. (2)

Algorithm 1 already includes extensive path sampling, allowing for

reduced sampling in anonymous random walks through strategic

design (Lines 14 and 16 of Algorithm1).

Algorithm 2 PSNE

Input: An undirected graph 𝐺 (𝑉 , 𝐸); the truncation order 𝑇 ;

the number of non-zeros 𝑁 used in the PPR matrix sparsifier;

the decay factor 𝛼 of PPR; the filter parameter 𝜇; the embedding

dimension size 𝑘

Output: The network embedding matrix

1: Obtaining a sparse PPR matrix �̃� by executing Algorithm 1

2: Obtaining the multiple-perspective PPR 𝑴
�̃�
by Equation 10

3: 𝑀Π̃ ← 𝜎𝜇 (𝑀Π̃) // 𝜎𝜇 is a non-linear activation function

4: 𝑈 , Σ,𝑉 ← Randomized SVD (�̃�Π̃, 𝑘)
5: return 𝑈

√
Σ as the network embedding matrix

After obtaining the anonymous trajectories, we utilize the Longest

Common Subsequence [40] to ascertain the similarity between the

two trajectories.

Theorem 4.4. [Longest Common Subsequence(LCSS)] For
two trajectories 𝑃𝐴 = (𝑎1, 𝑎2, ..., 𝑎𝑛) and 𝑃𝐵 = (𝑏1, 𝑏2, ..., 𝑏𝑚) with
lengths n and m respectively, where the length of the longest common
subsequence is:

LCSS(𝑃𝐴, 𝑃𝐵) =
{

0 if 𝑃𝐴 = ∅ or 𝑃𝐵 = ∅
1 + LCSS (𝑎𝑡−1, 𝑏𝑖−1) , if 𝑎𝑡 = 𝑏𝑖
max (LCSS (𝑎𝑡−1, 𝑏𝑖) , LCSS (𝑎𝑡 , 𝑏𝑖−1)) , otherwise

(11)

where 𝑡 = 1, 2, ..., 𝑛 and 𝑖 = 1, 2, ...,𝑚 and ∅ is empty trajectory.

Therefore, the pattern similarity𝑤𝑃𝑎𝑡𝑡𝑒𝑟𝑛 in Equation 10 is de-

fined via anonymous walk paths and LCSS as follows:

𝑤𝑝𝑖 𝑗 =
1

𝑠

𝑠∑︁
1

𝐿𝐶𝑆𝑆 (𝐴𝑛𝑜𝑇𝑟𝑎𝑖 , 𝐴𝑛𝑜𝑇𝑟𝑎 𝑗)/𝑙𝑒𝑛𝑡ℎ(𝐴𝑛𝑜𝑇𝑟𝑎𝑖) (12)

where𝐴𝑛𝑜𝑇𝑟𝑎𝑖 and𝐴𝑛𝑜𝑇𝑟𝑎 𝑗 are anonymous randomwalk trajecto-

ries starting from nodes 𝑖 and 𝑗 , respectively. 𝑙𝑒𝑛𝑡ℎ(.) is a function
of trajectory length and 𝑠 is the sampling numbers node pair (𝑖, 𝑗).

As shown in Table 1, 𝑣3 exhibits a higher MP-PPR value than

𝑣7. Thus, MP-PPR captures more reasonable proximity for network

embedding from multiple perspectives without compromising the

proximity between different nodes as reflected in the original PPR.

4.3 Our PSNE and Theoretical Analysis
Based on the above theoretical backgrounds, we devise an effi-

cient spectral sparsification algorithm for scaling network embed-

ding (Algorithm 2). Firstly, Algorithm 2 obtains a sparse PPR matrix

with a theoretical guarantee in terms of the Frobenius norm (Line 1).

Subsequently, it obtains the multiple-perspective PPR matrix 𝑴
�̃�

(Line 2). Finally, Lines 3-5 obtain the network embedding matrix

by executing the randomized singular value decomposition (RSVD)

algorithm [15]. Here, 𝜎𝜇 is a non-linear activation function (e.g.,

𝜎𝜇 (𝑥) = 𝑚𝑎𝑥 (0, log(𝑥𝑛𝜇)) [44, 47, 51]) with the filter parameter

𝜇. Next, we analyze the time&space complexities of the proposed

PSNE and the corresponding approximation errors.

CIKM ’24, October 21–25, 2024, Boise, ID, USA Longlong Lin et al.

Theorem 4.5. The time complexity and space complexity of Algo-
rithm 2 are𝑂 (𝑚 log𝑛 +𝑚𝑘 +𝑛𝑘2) and𝑂 (𝑚 log𝑛 +𝑛𝑘), respectively.

Proof. PSNE (i.e., Algorithm 2) has three main steps as follows:

• Step 1 (i.e., Algorithm 1): Random-Walk Molynomial Sparsifier

for PPR matrix. Lines 1-7 of Algorithm 1 sample 𝑂 (𝑁) paths
to construct 𝑂 (𝑁) edges for the sparse graph �̃� . The expected

value of 𝑟 (𝑟 is the length of sample path), denoted as E(𝑟), is
given by

∑𝑇
𝑖=1 𝑖 (𝛼 (1 − 𝛼)𝑖/∑𝑇

𝑖=1 𝛼 (1 − 𝛼)𝑖) ≤ 1/𝛼 . As a result,

Lines 1-7 of Algorithm 1 consume 𝑂 (𝑁E(𝑟)) = 𝑂 (𝑁 /𝛼) time.

In Lines 8-9, Algorithm 1 consumes 𝑂 (𝑁) time to compute the

spare PPR matrix Π̃. Thus, the time complexity of Algorithm 1

is 𝑂 (𝑁 /𝛼). For space complexity, Algorithm 1 takes 𝑂 (𝑁) extra
space to store graph G̃ and matrix Π̃. So, the space complexity of

Algorithm 1 is 𝑂 (𝑁 + 𝑛 +𝑚).
• Step 2 (i.e., Lines 2-3 of Algorithm 2): Multiple-Perspective strat-

egy. In particular, according to Equation 10, we can know that this

step consumes 𝑂 (𝑚𝑥𝑎𝑣𝑔) time to obtain MP-PPR matrix 𝑴
�̃�
, in

which 𝑥𝑎𝑣𝑔 = 𝑁
𝑛 is the average number of non-zero elements per

row of �̃�. Thus, the time complexity of step 2 is 𝑂 (𝑚 +𝑚𝑁
𝑛). In

most real-life graphs,𝑚 = 𝑂 (𝑛 log𝑛), thus, the time complexity

of step 2 can be further reduced to 𝑂 (𝑚 + 𝑁 log𝑛). The space
complexity of step 2 is 𝑂 (𝑚 + 𝑁 log𝑛 + 𝑛).
• Step 3 (i.e., Lines 4-5 of Algorithm 2): Randomized Singular Value

Decomposition. By [15], we know that this step needs 𝑂 (𝑁𝑘 +
𝑛𝑘2+𝑘3) time and𝑂 (𝑁 +𝑛𝑘) space to get the network embedding

matrix.

In a nutshell, the time (resp., space) complexity of PSNE is𝑂 (𝑁 /𝛼+
𝑚 + 𝑁 log𝑛 + 𝑁𝑘 + 𝑛𝑘2 + 𝑘3) (resp., 𝑂 (𝑚 + 𝑁 log𝑛 + 𝑛𝑘)). Follow-
ing the previous methods [35, 46], 𝛼 is a constant and 𝑁 = 𝑂 (𝑚),
thus, the time (resp., space) complexity of PSNE can be reduced

to 𝑂 (𝑚 log𝑛 +𝑚𝑘 + 𝑛𝑘2) (resp., 𝑂 (𝑚 log𝑛 + 𝑛𝑘)). Thus, we have
completed the proof of Theorem 4.5. □

Missing proofs are deferred to our Appendix Section.

Theorem 4.6. Let Π be the exact PPR matrix (i.e., Equation 1) and
Π̃ be the approximate sparse matrix obtaind by Algorithm 1, we have
∥Π − Π̃∥𝐹 ≤

√
𝑛((1 − 𝛼)𝑇+1 + 4𝜖 · 𝛼𝑠𝑢𝑚).

Theorem 4.7. Let𝑀
𝚷
(resp.,𝑀

�̃�
) be theMP-PPRmatrix by execut-

ing Equation 10 on Π (resp., Π̃), we have ∥𝝈 (𝑀
𝚷
, 𝜇) − 𝝈 (𝑀

�̃�
, 𝜇)∥

𝐹

≤ 𝑛((1 − 𝛼)𝑇+1 + 4𝜖 · 𝛼𝑠𝑢𝑚).

5 Empirical Results
In this section, we answer the following Research Questions:

• RQ1: How much improvement in effectiveness and efficiency is

our PSNE compared to other baselines?

• RQ2: Whether the multiple-perspective strategies can be inte-

grated into other baselines to improve qualities?

5.1 Experimental Setup
Datasets.We evaluate our proposed solutions on several publicly-

available datasets (Table 2), which are widely used benchmarks

for network embedding [39, 44, 46, 51]. BlogCatalog, Flickr, and

YouTube are undirected social networks where nodes represent

users and edges represent relationships. The Protein-Protein Inter-

action (PPI) dataset is a subgraph of the Homo sapiens PPI network,

Table 2: Dataset statistics.

Dataset |𝑉 | |𝐸 | #labels

PPI[50] 3,890 76,584 50

Wikipedia[50] 4,777 184,812 39

BlogCatalog[50] 10,312 333,983 39

Flickr[47] 80,513 5,899,882 195

Youtube[50] 1,138,499 2,990,443 47

with vertex labels from hallmark gene sets indicating biological

states. TheWikipedia dataset is a word co-occurrence network from

the first million bytes of a Wikipedia dump, with nodes labeled by

Part-of-Speech tags.

Baselines and parameters. The following ten competitors are

implemented for comparison: DeepWalk [31], Grarep [7], HOPE

[28], NetSMF [32], ProNE [50], STRAP [47], NRP [46], Lemane [51],

FREDE [39], and SketchNE [44]. Note that STRAP, NRP, and Le-

mane are PPR-based embedding methods. For the ten competitors,

we take their corresponding default parameters. The detailed pa-

rameter settings of the proposed PSNE are summarized in Table 3.

All experiments are conducted on a Ubuntu server with Intel (R)

Xeon (R) Silver 4210 CPU (2.20GHz) and 1T RAM.

5.2 Effectiveness Testing
We apply node classification to evaluate the effectiveness of our

solutions. Node classification aims to accurately predict the labels

of nodes. Specifically, a node embedding matrix is first constructed

from the input graph. Subsequently, a one-vs-all logistic regression

classifier is trained using the embedding matrix and the labels of

randomly selected vertices. Finally, the classifier is tested with the

labels of the remaining vertices. The training ratio is adjusted from

10% to 90%. To be more reliable, we execute each method five times

and report their Micro-F1 and Macro-F1 in Figure 4
1
. As can be

seen, we can obtain the following observations: (1) Under different

training ratios, our PSNE consistently achieves the highest Micro-

F1 scores on four of the five datasets, and the highest Macro-F1

scores on PPI, BlogCatalog, and YouTube. For example, on YouTube,

PSNE is 1.5% and 0.9% better than the runner-up in Micro-F1 and

Macro-F1 scores, respectively. (2) The Micro-F1 and Macro-F1 of all

baselines vary significantly depending on the dataset and training

ratio. For example, DeepWalk outperforms other methods on Flickr

(PSNE is the runner-up and slightly worse than DeepWalk) but

has inferior Micro-F1 scores on other datasets. HOPE achieves the

highest Macro-F1 score on Wikipedia but performs poorly on the

Micro-F1 metric. (3) PSNE outperforms other PPR-based methods,

including STRAP, NRP, and Lemane, with a margin of at least

2% in most cases. Specifically, for the Micro-F1 metric, our PSNE
achieves improvements of 6%, 3%, 8%, 7%, and 2% over NPR on

PPI, Wikipedia, BlogCatalog, Flickr, and Youtube, respectively. For

example, for Flickr with more than a few million edges, our PSNE
achieves 41% while NPR is 34% in the micro-F1 metric. For the

Macro-F1 metric, PSNE surpasses all other PPR-based algorithms,

achieving a notable lead of 0.5%, 0.6%, 2%, 4%, and 2% over the

1
For Youtube, since FREDE, GraRep, and HOPE cannot obtain the result within 48

hours or out of memory, we ignore their results.

PSNE: Efficient Spectral Sparsification Algorithms for Scaling Network Embedding CIKM ’24, October 21–25, 2024, Boise, ID, USA

Table 3: Parameter settings of our proposed PSNE.

Datasets Parameters

PPI 𝛼=0.35, 𝑇=10, 𝑐=25, 𝜇=10

Wikipedia 𝛼=0.50, 𝑇=10, 𝑐=25, 𝜇=0.2

BlogCatalog 𝛼=0.35, 𝑇=10, 𝑐=35, 𝜇=25

Flickr 𝛼=0.35, 𝑇=5, 𝑐=25, 𝜇=1

Youtube 𝛼=0.35, 𝑇=5, 𝑐=30, 𝜇=1

runner-up PPR-based algorithm on these five datasets, respectively.

These results show that PSNE’s multi-perspective strategy indeed

can enhance the representation power of the original PPR matrix.

Besides, these results give clear evidence that our PSNE has high

embedding quality compared with the baselines.

5.3 Efficiency Testing
For efficiency testing, we do not include non-PPR-based algorithms

because all of them are outperformed by Lemane and NRP, as re-
ported in their respective studies. On top of that, our proposed

PSNE is a PPR-based method, so we test the runtime of other PPR-

based methods (i.e., STRAP, NRP, and Lemane) for comparison.

Table 4 presents the wall-clock time of each PPR-based method

with 20 threads. As can be seen, NRP outperforms other methods

(but it has poor node classification quality and improved by 2% ∼
25% by PSNE, as stated in Figure 4), and PSNE is runner-up and

slightly worse than NRP. The reasons can be explained as follows:

NRP integrates the calculation and factorization of the PPR matrix

in an iterative framework to improve efficiency but lacks the non-

linear representation powers for node embedding. However, our

PSNE devises the sparsifiers of random-walk matrix polynomials

for the truncated PPR matrix, avoiding repeatedly computing each

row or column of the PPR matrix in the push-based methods (e.g.,

STRAP, Lemane). These results show that PSNE achieves significant

speedup with high embedding quality compared with the baselines,

which is consistent with our theoretical analysis (Section 4.3).

5.4 Scalability Testing on Synthetic Graphs
We use the well-known NetworkX Python package [4] to generate

two types of synthetic graphs ER [13] and BA [5] to test the scala-

bility of our PSNE. Figure 3 only presents the results of Deepwalk,

STRAP, HOPE, and our PSNE, with comparable trends across other

methods. By Figure 3, we can know that when the number of nodes

is small, the DeepWalk and HOPE have a runtime comparable to

PSNE and STRAP. However, as the number of nodes increases, the

runtime of DeepWalk and HOPE significantly rises, surpassing that

of PSNE by an order of magnitude. Additionally, the increase in

STRAP’s runtime is greater than that of PSNE. These results indi-

cate that our PSNE has excellent scalability over massive graphs

while the baselines do not.

5.5 Ablation Studies
To illustrate the impact of the multiple-perspective strategy on

PSNE and other baselines, we report the results of the ablation

study in Table 5. As can be seen, on PPI, both GraRep and HOPE

have a 2%-3% improvement, while NetSMF, STRAP, ProNE, and

Table 4: Runtime (seconds) of different PPR-based methods.

Dataset STRAP NRP Lemane PSNE

PPI 4.8e1 2e0 1.9e2 2.4e1

Wikipedia 1.1e2 3e0 5.3e2 4.4e1

BlogCatalog 3.7e2 1.1e1 7.4e3 2.6e2

Flickr 5.0e3 2.0e2 1.8e4 2.3e3

Youtube 2.1e4 1.8e2 >24h 7.0e3

103 104 105 106

n
0

10000
20000
30000
40000

Ru
nt

im
e(

se
co

nd
s) PSNE

Deepwalk
STARP
HOPE

(a) ER

103 104 105 106

n
0

5000
10000
15000
20000
25000
30000
35000
40000

Ru
nt

im
e(

se
co

nd
s) PSNE

Deepwalk
STARP
HOPE

(b) BA

Figure 3: Scalability testing on synthetic graphs.

Table 5: Ablation studies. MP (resp., NMP) is the correspond-
ing method with (resp., without) multiple-perspective strat-
egy. The best result is marked in bold.

Model PPI Wikipedia BlogCatalog

NMP MP NMP MP NMP MP

GraRep 20.57 22.93 50.51 53.60 33.67 37.21

HOPE 20.72 23.73 52.23 53.46 34.25 38.63

NetSMF 23.1 23.64 43.4 44.75 39.33 41.86

STRAP 23.51 24.31 51.87 52.78 40.33 41.41

ProNE 23.84 24.11 50.87 51.32 40.73 41.23

PSNE 24.07 24.52 52.19 53.99 41.02 43.14

PSNE exhibit more modest gains of 0.3%-0.8%. On the Wikipedia

and BlogCatalog datasets, all methods benefit significantly from

the multiple-perspective strategy, with HOPE achieving the high-

est improvement on BlogCatalog (approximately 4.38%) and other

methods averaging around 1.2% improvements. All experimental

results were presented with a 50% training rate.

5.6 Sampling Quality Analysis
We also observed that both PSNE and NetSMF use similar but

completely different
2
path sampling strategies to derive the node

proximity matrix. Therefore, we will closely examine their differ-

ences. In particular, Figure 4 has revealed that NetSMF exhibits

lower accuracy than PSNE. In addition, NetSMF requires signif-

icantly more path sampling to achieve acceptable accuracy. To

illustrate this point, we compare the impact of sampling size on the

2
New sampling probabilities and anonymous random walks are used in our solutions.

CIKM ’24, October 21–25, 2024, Boise, ID, USA Longlong Lin et al.

Figure 4: The performance of different network embedding methods

F1 scores of NetSMF and PSNE. Following the previous methods

[9], we also set the number of samples to 𝑐𝑇𝑚 (𝑇 is the path length)

and vary 𝑐 to adjust the number of samples. As shown in Figure 5,

under the same sampling scale, PSNE outperforms NetSMF, with

a maximum difference of approximately 8%. On top of that, when

𝑐 = 30, PSNE essentially meets the sampling quantity requirement,

whereas NetSMF requires nearly 10 times (i.e., 𝑐 = 300) the sampling

quantity of PSNE to achieve comparable performance. We believe

there are two main reasons for this phenomenon: (1) NetSMF treats

distant nodes and nearby nodes equally, missing the non-uniform

higher-order structure information (Table 1). To this end, we use

the 𝛼-decay random walk (i.e., the PPR matrix in Equation (1)) to

measure node proximity such that nearby nodes receive more at-

tention. (2) NetSMF obtains proximity information of node pair (𝑣𝑖 ,

𝑣 𝑗) only by sampling path {𝑣𝑖 ...𝑣 𝑗 }, which requires more than 𝑛2

paths to calculate the proximity of all node pairs. On the contrary,

by the proposed multi-perspective strategy, 𝑣 ′
𝑖
𝑠 one-hop neighbors

propagate their PPR values (w.r.t 𝑣 𝑗) to 𝑣𝑖 to restore the PPR values

(Equation 10), allowing us to greatly reduce the number of samples

while obtaining high-quality when compared to NetSMF.

5.7 Parameter Analysis
Following the previous methods [9], we also set 𝑁 = 𝑐𝑇𝑚. Figure 6

only shows the effect of different parameter settings on Micro-F1

of PSNE in BlogCatalog and PPI, with comparable trends across

Macro-F1 and other datasets. We have the following results: (1) By

Figure 6(a), Mirco-F1 increases first and then decreases with increas-

ing 𝛼 . This is because the parameter 𝛼 controls how much of the

graph is explored by our PSNE. Thus, when 𝛼 is close to 1, the prox-

imity matrix focuses on one-hop neighbors and thus preserves the

adjacency information. As 𝛼 approaches 0, the proximity matrix in-

corporates more information coming from multi-hop higher-order

neighbors, resulting in good performance. (2) By Figure 6(b) and

6(c), we observe that Mirco-F1 increases first and then decreases

Figure 5: Sampling quantity analysis (orange line and blue
line represent NetSMF and PSNE, respectively).

with increasing 𝑐 or 𝑇 , and the optimal result is taken when 𝑐 = 50

or 𝑇 = 10. The reasons can be explained as follows: Although the

larger 𝑐 or 𝑇 , the closer the obtained �̃� by Algorithm 1 is to the

exact PPR matrix 𝚷, the gain they bring leads to overfitting due to

the small-world phenomenon [43] (e.g., numerous redundant and

valueless neighbors lead to noise [22]). (3) By Figure 6(d), we know

that both excessively large and small values of 𝜇 result in perfor-

mance degradation. This observation suggests that small entries in

the proximity matrix may introduce noise and impede the qualities

of embedding vectors (Line 3 of Algorithm 2).

6 Conclusion
This paper presents an efficient spectral sparsification algorithm

PSNE that first devises a matrix polynomial sparser to directly ap-

proximate the whole PPR matrix with theoretical guarantee, which

avoids repeatedly computing each row or column of the PPR matrix.

PSNE: Efficient Spectral Sparsification Algorithms for Scaling Network Embedding CIKM ’24, October 21–25, 2024, Boise, ID, USA

(a) vary decay factor 𝛼 (b) vary sample size 𝑐 (c) vary truncation order𝑇 (d) vary filter parameter 𝜇

Figure 6: The performance of our proposed PSNE with varying parameters

Then, PSNE introduces a simple yet effective multiple-perspective

strategy to enhance further the representation power of the ob-

tained sparse and coarse-grained PPR matrix. Finally, extensive

empirical results show that PSNE can quickly obtain high-quality

embedding vectors compared with ten competitors.

7 ACKNOWLEDGMENTS
The work was supported by (1) Fundamental Research Funds for

the Central Universities under Grant SWU-KQ22028, (2) University

Innovation Research Group of Chongqing (No. CXQT21005) (3)

the Fundamental Research Funds for the Central Universities (No.

SWU-XDJH202303) (4) the Natural Science Foundation of China

(No. 72374173) (5) the High Performance Computing clusters at

Southwest University.

8 Appendix
8.1 Approximate Error Analysis

Lemma 8.1. Let L = 𝐷−1/2𝐿𝛽 (𝐺)𝐷−1/2 and the corresponding
sparsifier L̃ = 𝐷−1/2�̃�𝐷−1/2, in which �̃� is the Laplacian matrix of
𝐺 (Line 8 of Algorithm 1). Then, all the singular values of L̃ − L are
less than 4𝜖 .

Proof. According to Theorem 1, we have

1

(1+𝜖) ·𝒙
⊤𝐿𝜷 (𝐺)𝒙 ≤𝒙⊤L̃𝒙 ≤ 1

(1−𝜖) ·𝒙
⊤𝐿𝜷 (𝐺)𝒙

Let 𝑥=𝐷−1/2𝑦, we have

− 𝜖
(1+𝜖) ·𝒚

⊤L𝒚≤𝒚⊤(L̃−L)𝒚≤ 𝜖
(1−𝜖) ·𝒚

⊤L𝒚

Since 𝜖 ≤ 0.5, we have

|𝒚⊤(L̃−L)𝒚 | ≤ 𝜖
(1−𝜖) ·𝒚

⊤L𝒚 ≤ 2𝜖𝒚⊤L𝒚

By Courant-Fisher Theorem [34], we have

|𝜆𝑖 (L̃−L)| ≤ 2𝜖𝜆𝑖 (L) < 4𝜖

where 𝑖 ∈ [𝑛], 𝜆𝑖 (𝐴) is i-th largest eigenvalue of matrix 𝐴. This is

because L is a normalized graph Laplacian matrix with eigenvalues

in the interval [0, 2). □

Lemma 8.2. [18] If 𝐵,𝐶 be two 𝑛 × 𝑛 symmetric matrices, for the
decreasingly-ordered singular values 𝜆 of 𝐵,𝐶 and 𝐵𝐶 ,

𝜆𝑖+𝑗−1 (𝐵𝐶) ≤ 𝜆𝑖 (𝐵) × 𝜆 𝑗 (𝐵𝐶)

where 𝑖 ≤ 𝑖, 𝑗 ≤ 𝑛 and 𝑖 + 𝑗 ≤ 𝑛 + 1.

Based on these lemmas, we give the detailed proofs of Theorem

4 and Theorem 5 as follows.

The Proof of Theorem 4. According to Equation 4, we have

∥Π − Π′∥𝐹 = ∥𝛼
∑︁∞

𝑖=𝑇+1 (1 − 𝛼)
𝑖 (𝐷−1𝐴)𝑖 ∥𝐹 (13)

= 𝛼
∑︁∞

𝑖=𝑇+1 (1 − 𝛼)
𝑖

√︄ ∑︁
𝑗∈[𝑛]

𝜆2
𝑗
((𝐷−1𝐴)𝑖) (14)

≤ 𝛼
∑︁∞

𝑖=𝑇+1 (1 − 𝛼)
𝑖

√︄ ∑︁
𝑗∈[𝑛]

𝜆2
𝑗
(𝐷−1𝐴) (15)

≤
√
𝑛(1 − 𝛼)𝑇+1 (16)

This is because 𝜆 𝑗 ((𝐷−1𝐴)𝑖) ≤ 𝜆 𝑗 (𝐷−1𝐴)∗𝜆1 (𝐷−1𝐴)∗...∗𝜆1 (𝐷−1𝐴) ≤
𝜆 𝑗 (𝐷−1𝐴) by Lemma 8.2 and 𝜆𝑠 (𝐷−1𝐴) ∈ [0, 1] for any 𝑠 ∈ [𝑛]. Fur-
thermore, by Lemma 8.1 and Lemma 8.2, we can know thatΠ′ − Π̃ =

𝛼𝑠𝑢𝑚𝐷−1 (L̃ − 𝐿𝜶 (𝐺)) = 𝛼𝑠𝑢𝑚𝐷−1/2𝐷−1/2 (L̃ − 𝐿𝜶 (𝐺))𝐷−1/2𝐷1/2
.

Thus, 𝜆𝑖 (Π′ − Π̃) ≤ 𝛼𝑠𝑢𝑚𝜆1 (𝐷−1/2)𝜆𝑖 (L̃−L)𝜆1 (𝐷1/2) ≤ 4𝜖 ·𝛼𝑠𝑢𝑚 .

As a result, ∥Π′ − Π̃∥𝐹 =

√︃∑
𝑖∈[𝑛] 𝜆

2

𝑖
(Π′ − Π̃) ≤ 4𝜖 · 𝛼𝑠𝑢𝑚

√
𝑛.

Based on these analyses, we have

∥Π − Π̃∥𝐹 ≤ ∥Π − Π
′
∥𝐹 + ∥Π

′
− Π̃∥𝐹 (17)

≤
√
𝑛(1 − 𝛼)𝑇+1 + 4𝜖 · 𝛼𝑠𝑢𝑚

√
𝑛 (18)

Therefore, we have completed the proof of Theorem 4.

The Proof of Theorem 5. To simplify the proof, let’s assume

that 𝜆ℎ𝑖 = 1/(
√︁
(𝑑ℎ + 1)

√︁
(𝑑𝑖 + 1)) and 𝜆𝑖𝑖 = 1/(𝑑𝑖 + 1). Therefore,

by Definition 10, we can know that 𝑀
𝚷

= �̃�−1/2�̃��̃�−1/2
𝚷 and

𝑀
�̃�
= �̃�−1/2�̃��̃�−1/2

�̃�, in which �̃� = 𝐴+ 𝐼 (I is the identify matrix)

and �̃� is degree matrix of �̃�. Since𝑚𝑎𝑥 (0, log(𝑥𝑛𝜇)) is l-Lipchitz
w.r.t Frobenius norm, we have

∥𝝈𝜇 (𝑀𝚷
) − 𝝈𝜇 (𝑀

�̃�
)∥

𝐹
(19)

= ∥𝝈𝜇 (�̃�−1/2�̃��̃�−1/2
𝚷) − 𝝈𝜇 (�̃�−1/2�̃��̃�−1/2

�̃�)∥
𝐹

(20)

≤ ∥�̃�−1/2�̃��̃�−1/2
(𝚷 − �̃�)∥𝐹 (21)

≤ 𝑛((1 − 𝛼)𝑇+1 + 4𝜖 · 𝛼𝑠𝑢𝑚) (22)

Therefore, we have completed the proof of Theorem 5.

Since (1 − 𝛼)𝑇+1 + 4𝜖 · 𝛼𝑠𝑢𝑚 is a constant due to 0 < 𝜖 ≤ 0.5,

𝛼𝑠𝑢𝑚 ≤ 1 − 𝛼 , and (1 − 𝛼)𝑇+1 ≤ 1, we have ∥Π − Π̃∥𝐹 = 𝑂 (
√
𝑛),

∥𝝈 (𝑀
𝚷
, 𝜇) − 𝝈 (𝑀

�̃�
, 𝜇)∥

𝐹
= 𝑂 (𝑛).

CIKM ’24, October 21–25, 2024, Boise, ID, USA Longlong Lin et al.

References
[1] Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, and Alexander A. Alemi. 2018.

Watch Your Step: Learning Node Embeddings via Graph Attention. In NIPS.
9198–9208.

[2] Charu C. Aggarwal and Haixun Wang. 2010. An Introduction to Graph Data. In

Managing and Mining Graph Data. Vol. 40. 1–11.
[3] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. 2006. Local Graph Partitioning

using PageRank Vectors. In FOCS. 475–486.
[4] Daniel A. Schult Aric A. Hagberg and Pieter J. Swart. 2008. Exploring Network

Structure, Dynamics, and Function using NetworkX. In Proceedings of the 7th
Python in Science Conference 2, 1 (2008), 11–15.

[5] Albert-Laszlo Barabasi and Reka Albert. 1999. Emergence of Scaling in Random

Networks. science (1999).
[6] Yuchen Bian, Yaowei Yan, Wei Cheng, Wei Wang, Dongsheng Luo, and Xiang

Zhang. 2018. On Multi-query Local Community Detection. In 2018 IEEE Interna-
tional Conference on Data Mining (ICDM). 9–18.

[7] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. GraRep: Learning Graph Repre-

sentations with Global Structural Information. In CIKM. ACM, 891–900.

[8] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2016. Deep neural networks for

learning graph representations. In AAAI.
[9] Dehua Cheng, Yu Cheng, Yan Liu, Richard Peng, and Shang-Hua Teng. 2015. Spec-

tral Sparsification of Random-Walk Matrix Polynomials. CoRR abs/1502.03496

(2015).

[10] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa

Sengupta, and Anil A. Bharath. 2018. Generative Adversarial Networks: An

Overview. IEEE Signal Processing Magazine 35, 1 (2018), 53–65.
[11] Quanyu Dai, Xiao Shen, Liang Zhang, Qiang Li, and DanWang. 2019. Adversarial

Training Methods for Network Embedding. In WWW. 329–339.

[12] Xinyu Du, Xingyi Zhang, Sibo Wang, and Zengfeng Huang. 2023. Efficient Tree-

SVD for Subset Node Embedding over Large Dynamic Graphs. Proc. ACM Manag.
Data 1, 1 (2023), 96:1–96:26.

[13] Paul Erdos, Alfréd Rényi, et al. 1960. On the evolution of random graphs. Publ.
Math. Inst. Hung. Acad. Sci 5, 1 (1960), 17–60.

[14] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In KDD. 855–864.
[15] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. 2011. Finding structure

with randomness: Probabilistic algorithms for constructing approximate matrix

decompositions. , 217–288 pages.

[16] William L. Hamilton. 2020. Graph Representation Learning. Morgan & Claypool

Publishers.

[17] Yue He, Longlong Lin, Pingpeng Yuan, Ronghua Li, Tao Jia, and Zeli Wang. 2024.

CCSS: Towards conductance-based community search with size constraints.

Expert Syst. Appl. 250 (2024), 123915.
[18] Roger A. Horn and Charles R. Johnson. 1991. Topics in Matrix Analysis.
[19] Sergey Ivanov and Evgeny Burnaev. 2018. Anonymous Walk Embeddings.

arXiv:1805.11921 [cs.LG]

[20] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In ICLR.
[21] Yi-An Lai, Chin-Chi Hsu, Wen-Hao Chen, Mi-Yen Yeh, and Shou-De Lin. 2017.

PRUNE: Preserving Proximity and Global Ranking for Network Embedding. In

NIPS. 5257–5266.
[22] Haoyang Li and Lei Chen. 2023. EARLY: Efficient and Reliable Graph Neural

Network for Dynamic Graphs. Proc. ACM Manag. Data 1, 2 (2023), 163:1–163:28.
[23] Meihao Liao, Rong-Hua Li, Qiangqiang Dai, Hongyang Chen, Hongchao Qin,

and Guoren Wang. 2023. Efficient Personalized PageRank Computation: The

Power of Variance-Reduced Monte Carlo Approaches. Proc. ACM Manag. Data 1,
2 (2023), 160:1–160:26.

[24] Longlong Lin, Tao Jia, Zeli Wang, Jin Zhao, and Rong-Hua Li. 2024. PSMC:

Provable and Scalable Algorithms for Motif Conductance Based Graph Clustering.

CoRR abs/2406.07357 (2024).

[25] Longlong Lin, Ronghua Li, and Tao Jia. 2023. Scalable and Effective Conductance-

Based Graph Clustering. In AAAI. 4471–4478.
[26] Longlong Lin, Pingpeng Yuan, Rong-Hua Li, Chun-Xue Zhu, Hongchao Qin, Hai

Jin, and Tao Jia. 2024. QTCS: Efficient Query-Centered Temporal Community

Search. Proc. VLDB Endow. 17, 6 (2024), 1187–1199.

[27] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

Estimation of Word Representations in Vector Space. In ICLR.
[28] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-

metric Transitivity Preserving Graph Embedding. In KDD. 1105–1114.
[29] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-

metric transitivity preserving graph embedding. In KDD. 1105–1114.
[30] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The

PageRank Citation Ranking : Bringing Order to the Web. In The Web Conference.
[31] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In KDD. 701–710.
[32] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and Jie

Tang. 2019. Netsmf: Large-scale network embedding as sparse matrix factoriza-

tion. In WWW. 1509–1520.

[33] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE,

and Node2vec. In WSDM. 459–467.

[34] Daniel A. Spielman. 2007. Spectral Graph Theory and its Applications. In FOCS.
29–38.

[35] Daniel A. Spielman and Nikhil Srivastava. 2011. Graph Sparsification by Effective

Resistances. SIAM J. Comput. 40, 6 (2011), 1913–1926.
[36] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. Line: Large-scale information network embedding. In WWW. 1067–1077.

[37] Mingyue Tang, Pan Li, and Carl Yang. 2022. Graph Auto-Encoder via Neighbor-

hood Wasserstein Reconstruction. In ICLR.
[38] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. 2018.

Verse: Versatile graph embeddings from similarity measures. InWWW. 539–548.

[39] Anton Tsitsulin, Marina Munkhoeva, Davide Mottin, Panagiotis Karras, Ivan V.

Oseledets, and Emmanuel Müller. 2021. FREDE: Anytime Graph Embeddings.

Proc. VLDB Endow. 14, 6 (2021), 1102–1110.
[40] M. Vlachos, G. Kollios, and D. Gunopulos. 2002. Discovering similar multi-

dimensional trajectories. In Proceedings 18th International Conference on Data
Engineering. 673–684. https://doi.org/10.1109/ICDE.2002.994784

[41] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network embed-

ding. In KDD. 1225–1234.
[42] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng

Zhang, Xing Xie, and Minyi Guo. 2017. GraphGAN: Graph Representation

Learning with Generative Adversarial Nets. CoRR abs/1711.08267 (2017).

[43] Duncan J. Watts and Steven H. Strogatz. 1998. Collective dynamics of ‘small-

world’ networks. Nature 393 (1998), 440–442.
[44] Yuyang Xie, Yuxiao Dong, Jiezhong Qiu, Wenjian Yu, Xu Feng, and Jie Tang. 2023.

SketchNE: Embedding Billion-Scale Networks Accurately in One Hour. IEEE
Transactions on Knowledge and Data Engineering (2023), 1–14. https://doi.org/10.

1109/TKDE.2023.3250703

[45] Renchi Yang and Jieming Shi. 2024. Efficient High-Quality Clustering for Large

Bipartite Graphs. Proc. ACM Manag. Data 2, 1, Article 23 (2024), 27 pages.
[46] Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, and Sourav S. Bhowmick.

2020. Homogeneous Network Embedding for Massive Graphs via Reweighted

Personalized PageRank. Proc. VLDB Endow. 13, 5 (2020), 670–683.
[47] Yuan Yin and Zhewei Wei. 2019. Scalable graph embeddings via sparse transpose

proximities. In KDD. 1429–1437.
[48] Yunfeng Yu, Longlong Lin, Qiyu Liu, Zeli Wang, Xi Ou, and Tao Jia. 2024. GSD-

GNN: Generalizable and Scalable Algorithms for Decoupled Graph Neural Net-

works. In ICMR. 64–72.
[49] Pingpeng Yuan, Longlong Lin, Zhijuan Kou, Ling Liu, and Hai Jin. 2019. Big RDF

Data Storage, Computation, and Analysis: A Strawman’s Arguments. In ICDCS.
1693–1703.

[50] Jie Zhang, Yuxiao Dong, Yan Wang, Jie Tang, and Ming Ding. 2019. ProNE: Fast

and Scalable Network Representation Learning.. In IJCAI. 4278–4284.
[51] Xingyi Zhang, Kun Xie, Sibo Wang, and Zengfeng Huang. 2021. Learning Based

Proximity Matrix Factorization for Node Embedding. In KDD. 2243–2253.
[52] Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Xuanrong Yao, and Wenwu Zhu.

2018. Arbitrary-Order Proximity Preserved Network Embedding. In KDD. ACM,

2778–2786.

[53] Chang Zhou, Yuqiong Liu, Xiaofei Liu, Zhongyi Liu, and Jun Gao. 2017. Scalable

graph embedding for asymmetric proximity. In AAAI.

https://arxiv.org/abs/1805.11921
https://doi.org/10.1109/ICDE.2002.994784
https://doi.org/10.1109/TKDE.2023.3250703
https://doi.org/10.1109/TKDE.2023.3250703

	Abstract
	1 Introduction
	2 Related Work
	2.1 Random Walk Based Network Embedding
	2.2 Deep Learning Based Network Embedding
	2.3 Matrix Based Network Embedding

	3 Preliminaries
	4 PSNE: Our Proposed Solution
	4.1 Spectral Sparsification for PPR Matrix
	4.2 From PPR to Multiple-Perspective PPR
	4.3 Our PSNE and Theoretical Analysis

	5 Empirical Results
	5.1 Experimental Setup
	5.2 Effectiveness Testing
	5.3 Efficiency Testing
	5.4 Scalability Testing on Synthetic Graphs
	5.5 Ablation Studies
	5.6 Sampling Quality Analysis
	5.7 Parameter Analysis

	6 Conclusion
	7 ACKNOWLEDGMENTS
	8 Appendix
	8.1 Approximate Error Analysis

	References

