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Cross-domain recommendation (CDR) aims to leverage the correlation of users’ behaviors in both the source and target domains
to improve the user preference modeling in the target domain. Conventional CDR methods typically explore the dual-relations
between the source and target domains’ behaviors. However, this may ignore the informative mixed behaviors that naturally reflect
the user’s global preference. To address this issue, we present a novel framework, termed triple sequence learning for cross-domain
recommendation (Tri-CDR), which jointly models the source, target, and mixed behavior sequences to highlight the global and target
preference and precisely model the triple correlation in CDR. Specifically, Tri-CDR independently models the hidden representations
for the triple behavior sequences and proposes a triple cross-domain attention (TCA) method to emphasize the informative knowledge
related to both user’s global and target-domain preference. To comprehensively explore the cross-domain correlations, we design a
triple contrastive learning (TCL) strategy that simultaneously considers the coarse-grained similarities and fine-grained distinctions
among the triple sequences, ensuring the alignment while preserving information diversity in multi-domain. We conduct extensive
experiments and analyses on six cross-domain settings. The significant improvements of Tri-CDR with different sequential encoders
verify its effectiveness and universality. The code will be released upon acceptance.
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1 INTRODUCTION

Personalized recommendation aims to capture user interests and provide appropriate items [20, 40]. Sequential rec-
ommendation (SR), which focuses on discovering user preferences from the essential information of users’ historical
behaviors, has attracted significant attention [14, 59]. However, real-world SR models usually face the data sparsity
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Fig. 1. Triple sequence learning on the source, target, and mixed behavior sequences in CDR.

problem, since users usually have few behaviors [43, 47]. In practice, making full use of user behaviors in other domains
under the user’s approval is a straightforward and effective solution to the data sparsity issue in a single domain.

Cross-domain recommendation (CDR) concentrates on transferring useful information from the source domain
to the target domain for performance gains in the target domain [12, 18, 52]. Existing CDR methods mainly focus
on modeling the relations between the source and target domains. EMCDR [25] and SSCDR [13] attempt to learn
a mapping function across the source/target domains via aligned objects. CoNet [12] and MiNet [27] adopt explicit
cross-domain information paths or attention mechanisms for knowledge transfer. Some CDR methods further build the
cross-domain connections via (multi-domain) global graphs [45, 54] or feature correlations [17, 46]. However, most
existing CDR models simply focus on the dual relations between the source and target behavior sequences, ignoring
the rich information of the natural mixed (i.e., source+target) behavior sequence.

We define themixed behavior sequence in CDR as a complete user behavior sequence containing behaviors in
both the source and target domains which are ordered chronologically. The left part of Figure 1 shows an example of
the source, target, and mixed behavior sequences in a cross-domain sequential recommendation (CDSR) scenario. The
mixed sequence can reflect a user’s complete behavioral pattern and preference evolution more comprehensively and
thus helps to better extract users’ global interests. For example, the sequential behaviors in domain book and movie are
not consistent and reasonable. Only through the complete mixed sequence containing sequential behaviors of [book:
AlphaGo] → [movie: AI] → [movie: AI Robot] → [book: Transformers] → [movie: Car] can we fully understand the
user’s sequential action logic. We firmly believe that jointly modeling the mixed behavior sequence with the original
two source/target sequences is beneficial to capture both inter-domain and intra-domain information in CDR.

In this work, we propose a new paradigm that jointly models source, target, and mixed behavior sequences in CDR.
The challenges are three-fold: (1) How to extract more informative knowledge from source and mixed sequences?
User behaviors in other domains may be good supplements, while it is also common that users have different preferences
in these domains. We should maximize the cross-domain information gain while alleviating the negative transfer from
possible noises. (2) How to model the triple correlations among source, target, and mixed sequences? The mixed
sequence is built by source and target behaviors. Both the coarse-grained similarities and fine-grained distinctions
among the three sequences should be carefully considered. The dual relation learning of conventional CDR models
cannot be directly transferred to the triple learning task with the additional mixed sequence. (3) How to construct a
universal CDR framework that could smoothly cooperate with different types of single-domain SR models?
Currently, lots of CDR models rely on complicated and customized networks for inter-domain interactions, which
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are hard to be directly adopted with other single-domain models. We aim to build a universal model-agnostic CDR
framework that could be beneficial with frequently updated single-domain models.

To address these issues, we propose a novel Triple sequence learning for cross-domain recommendation
(Tri-CDR), serving as a model-agnostic framework to jointly model the source, target, and mixed sequences in CDSR.
Specifically, we first build three sequence encoders for the source, mixed, and target domains, respectively, which model
the intra-domain behavior interactions to get three hidden sequence representations. Next, to alleviate the irrelevant
negative transfer, we design a triple cross-domain attention (TCA) method on three sequence representations to
capture the informative knowledge related to users’ target-domain preferences and global interests. These attention-
enhanced sequence representations are then combined and fed into a Multi-Layer Perceptron (MLP) to get the final
user representation. We further propose a triple contrastive learning (TCL) strategy to comprehensively model the
correlations among three sequences. TCL adopts three CL losses to capture the coarse-grained similarities between
any two sequence representations of the same user compared to other users’. More importantly, it further employs a
margin-based triple loss among three sequence representations to model their fine-grained distinctions, keeping the
information diversity in three domains. The advantages of Tri-CDR are: (1) the TCA enables an informative knowledge
transfer related to users’ target-domain preferences and global interests. (2) The TCL helps to better capture the
correlations among three domains in representation learning. (3) Tri-CDR is effective, universal, and easy-to-deploy,
which could be conveniently applied with different sequence encoders and additional objectives.

In experiments, we have conducted an extensive evaluation on six cross-domain settings with various base sequence
encoders. As a result, Tri-CDR achieves significant improvements on all settings. We also conduct various ablation
studies, universality analyses, parameter analyses, and visualization to verify the effectiveness of the proposed TCA
and TCL. The contributions are summarized as follows:
• We have verified the significance of the triple sequence modeling for comprehensive user interest understanding. To
the best of our knowledge, we are the first to present the triple sequence learning among source, target, and mixed
behavior sequences in CDR.

• We propose a triple cross-domain attention (TCA) method to enable more positive transfer of knowledge from the
source domain to the target one, which considers both the user’s target-domain preferences and global interest from
the source and mixed behavior sequences.

• We creatively design the triple contrastive learning (TCL) strategy, which not only models the coarse-grained similar-
ities among multi-domain sequence representations of the same user but also detects the fine-grained distinctions via
a margin-based triple loss.

• We conduct an extensive evaluation to verify the effectiveness of our Tri-CDR on multiple datasets with different
base models. The proposed model is effective, universal, and easy-to-deploy.

2 RELATEDWORK

Cross-domain Recommendation. Cross-domain recommendation (CDR) is a representative method to alleviate the
data sparsity problem in a single domain with auxiliary information from other domains [18, 25]. The basic assumption
is that users’ behaviors in different domains reflect the user’s personal preferences to a certain extent. Classical CDR
methods aim to model cross-domain knowledge transfer through directly mapping [13, 25], multi-domain interaction
modeling [1, 27], meta-learning [63, 64], and transformation matrix [12, 18]. Recently, some CDR methods also leverage
alignment constraint [22, 38] and adversarial learning [15] for cross-domain knowledge representation and fusion. CDSR
concentrates more on users’ multi-domain sequential behavior modeling in CDR [17, 21, 24, 58]. BiTGCF [21] designs a
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bi-directional transfer learning method to transfer users’ single-domain preferences across two domains. Lots of CDSR
methods focus on the shared-account CDSR scenario [24, 39]. 𝜋-Net [24] and PSJNet [34] utilize a shared account filter
unit and a cross-domain transfer unit to share information across both domains synchronously. MIFN [23] further
enriches the sequence representation with knowledge graphs based on 𝜋-Net. DDGHM [58] builds a global dynamic
graph to model source-target interactions directly, and jointly predicts via local and global information. CDHRM [39]
jointly captures users’ inter-session and intra-session behavioral dynamics from different domains. DAGCN [7] designs
a domain-aware graph convolution network to learn user-specific node representations on the global static graph.
DASL [17] proposes the dual embedding and dual attention strategies to model the correlations between source and
target domains’ sequences. DR-MTCDR [8] designs a unified disentanglement module to capture the domain-shared
and domain-specific information, with the aim to transfer the trustworthy information across domains. COAST [55]
introduces a unified cross-domain heterogeneous graph to capture user-item similarity and achieve user interest
alignment by exploring the user-user and user-item interest invariance. However, existing CDSR methods merely focus
on dual relations of source→target or global→local, ignoring directly modeling the natural mixed behavior sequence
with the correlations among source, target, and mixed domains. Our Tri-CDR is different from these works: (a) we
directly model three mixed, source, and target behavior sequences and use them for recommendations simultaneously.
(b) We emphasize the ternary relationship among three sequences for positive knowledge transfer. (c) Tri-CDR is
model-agnostic and easy-to-deploy that can be applied to different base sequence encoders and even intra-domain CL
tasks. By doing this, our work can not only learn both complete and independent preferences from mixed, source, and
target behavior sequences but also explain users’ sequential behavior comprehensively through their interactions.
Sequential Recommendation. Sequential Recommendation (SR) attempts to capture the user’s time-aware preferences
by modeling the sequential dependencies of the user’s historical behavior to recommend the next item that the user may
be interested in. Early works reason users’ short-term preference through the Markov Chains (MCs) [10, 32]. In recent
years, researchers have leveraged the Convolution Neural Network (CNN) [35, 49], Recurrent Neural Network (RNN)
[11, 16] and Transformer [14, 33] to capture users’ preference patterns from users’ historical behaviors. Among them,
GRU4Rec [11] leverages the Gate Recurrent Unit (GRU) as the sequential encoder to learn users’ long-term dependencies.
SASRec [14] introduces Transformer for behavior interaction modeling and is widely used in practice. S3Rec [60]
leverage the mutual information maximization principle to employ four self-supervised objectives among item, attribute,
sub-sequence, and sequence. DUVRec [50] encodes the sequential information with dual-view user representation
(item-view and factor-view) to achieve enhanced SR performance. CL4SRec [47] is one of the state-of-the-art SR models
that further enhance the sequential modeling with various intra-domain CL tasks. In this work, we have successfully
adopted Tri-CDR with different sequence encoders, including GRU4Rec, SASRec, and CL4SRec.
Contrastive Learning inRecommendation.As a common self-supervised learning (SSL) method, contrastive learning
(CL) has been widely used in fields of Computer Vision (CV) [4, 9], Natural Language Processing (NLP) [6, 44] and
Recommendation System (RS) [41, 45, 47]. In recommendation, CL is widely applied to session-based recommendation
[61], multi-behavior recommendation [43], sequential recommendation [30, 47, 60], and cross-domain recommendation
[2, 45]. C2-CRS [61] proposes a coarse-to-fine contrastive learning method to model user preference with multi-level
semantic fusion. MMCLR [43] designs three CL tasks to learn the correlations among different behavior types and
modeling views. DUORec [30] proposes a contrastive regularization with the model-level augmentation to reshape
and improve the embedding distribution and sequence representations. CL4SRec [47] proposes three sequence-based
augmentations to build positive pairs in SSL. CCDR [45] designs an intra-domain CL task and three inter-domain CL
tasks for cross-domain knowledge transfer in graph-based matching. C2DSR [2] conducts a cross-domain infomax
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Fig. 2. The overall structure of Tri-CDR. TCA highlights informative knowledge related to users’ target-domain preferences and
global interests, while TCL captures the triple correlations among three domains for better cross-domain knowledge transfer.

objective to enhance the correlation between global and local representations with domain-specific global augmentations.
Some recent works [29, 42, 43, 53] have conducted certain triplet losses for more precise representation learning in
recommendation. However, existing CL-based CDR models simply maximize the mutual information of representations
in different domains, ignoring their conflicts that may lead to negative transfer and model collapse. To the best of our
knowledge, we are the first to jointly model coarse-grained similarity and fine-grained distinction via CL in CDR.

3 METHOD

3.1 Problem Formulation

We first define the source behavior sequence 𝑆𝑆 = {𝒅𝑆1 , 𝒅
𝑆
2 , · · · , 𝒅

𝑆
𝑝 } in the source domain 𝑆 and the target behavior

sequence 𝑆𝑇 = {𝒅𝑇1 , 𝒅
𝑇
2 , · · · , 𝒅

𝑇
𝑞 } in the target domain 𝑇 for each user, where 𝑝 , 𝑞 are the source/target historical

behavior lengths, and 𝒅𝑆
𝑖
and 𝒅𝑇

𝑗
are behavior embeddings. In Tri-CDR, we propose a third mixed behavior sequence

𝑆𝑀 = {𝒅𝑀1 , 𝒅𝑀2 , · · · , 𝒅𝑀𝑝+𝑞} as a supplement to source/target sequences, which is the complete user behavior sequence
containing both source and target behaviors in chronological order. Given three behavior sequences 𝑆𝑆 , 𝑆𝑇 and 𝑆𝑀 ,
Tri-CDR tries to recommend the target item 𝑑𝑇

𝑞+1 that will be interacted by this user in the target domain.

3.2 Overall Framework

In this section, we describe the proposed model-agnostic Triple sequence learning for cross-domain recommendation
(Tri-CDR) framework, which jointly models source, target, and mixed behavior sequences to improve CDR. Specifically,
we first model the source, target, and mixed behavior sequences through three base sequence encoders separately to
generate their corresponding hidden sequence representations in three domains. Then we propose a triple cross-domain
attention (TCA) method to highlight informative knowledge related to the user’s target-domain preferences and global
interests in building three domains’ sequence representations, mitigating negative knowledge transfer. To better model
the correlations among multi-domain sequence representations, we design a novel triple contrastive learning (TCL)
strategy with two contrastive constraints: (a) Coarse-grained similarity modeling, which enables source/target/mixed
sequence representations from the same user to be more similar than other users’. (b) Fine-grained distinction modeling,
which recognizes users’ diversified preferences in different domains to keep the information gains brought by the source
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and mixed sequences. TCL helps to learn more informative and accurate multi-domain representations to capture user
preferences comprehensively.

The overall structure of Tri-CDR is illustrated in Fig. 2. In the following subsections, we first present the base
sequence encoder of the proposed Tri-CDR which is implemented with the self-attention module. Subsequently, we
introduce TCA, which emphasizes the user’s target-domain preferences and global interest in triple domains. And then,
we describe TCL to precisely model the user’s coarse-grained similarities and fine-grained distinctions among triple
sequences. Finally, we present the discussions on the proposed Tri-CDR.

3.3 Base Sequence Encoder

Inspired by the success of the self-attention mechanism in sequential recommendation, we apply SASRec [14] as our
sequence encoder for all domains. Without losing generality, for the target domain sequence 𝑆𝑇 , we build the input
matrix 𝑫𝑇 ∈ R𝑞×𝑑 , where each behavior embedding 𝒅𝑇

𝑖
consists of a learnable item ID embedding and a position

embedding, and 𝑑 is the embedding size. Then the sequence encoder transposes 𝑫𝑇 into three matrices by linear
projections, and feeds them into the attention method as query, key, and value, which can be defined as:

�̂�𝑇 = Attention(𝑸,𝑲 , 𝑽 ) = Softmax
(
𝑸𝑲𝑇
√
𝑑

)
𝑽 . (1)

where 𝑸 = 𝑫𝑇𝑾𝑄 ,𝑲 = 𝑫𝑇𝑾𝐾 , 𝑽 = 𝑫𝑇𝑾𝑉 , and𝑾𝑄 ,𝑾𝐾 ,𝑾𝑉 denote the linear projections respectively. Meanwhile,
we conduct a point-wise feed-forward network to get the hidden behavior matrix 𝑯𝑇 of the target domain, which is
measured as follows:

𝑯𝑇 = ReLU
(
�̂�𝑇𝒘1 + 𝒃1

)
𝒘2 + 𝒃2, 𝑯𝑇 ∈ R𝑞×𝑑 . (2)

where 𝒘1, 𝒘2, 𝒃1, 𝒃2 denote the weight matrices and bias vectors respectively. The hidden matrices of source/mixed
sequences 𝑯𝑆 , 𝑯𝑀 are similarly constructed with the intra-domain behavior interactions. Note that the same items
in different domains are allocated with different behavior embeddings for better representation capacity, avoiding
too homogeneous representations across different domains. It is also worth noting that we can conveniently adopt
other sequential models as our sequence encoder or even with other intra-domain CL tasks in Tri-CDR (we have tested
GRU4Rec [11] and CL4SRec [47], see the universality analysis in Sec. 4.6).

3.4 Triple Cross-domain Attention

We assume that different historical behaviors in three domains should have different importance for the target-domain
prediction. Precisely, We expect that the information emphasized in three sequences should be (a) relevant to the user’s
target-domain preferences, so as to fit the target-domain prediction task, and (b) relevant to the user’s global interests,
so as to understand the user’s comprehensive preferences and bring in more information gain. Hence, we propose a
Triple Cross-domain Attention (TCA) on three hidden behavior matrices to enable more positive transfer.

TCA functions when we aggregate the hidden behavior embeddings in 𝑯𝑆 , 𝑯𝑇 , 𝑯𝑀 to get three sequence representa-
tions 𝒔𝑆 , 𝒔𝑇 , 𝒔𝑀 of the source, target, and mixed domains. Specifically, for the source domain, given 𝑯𝑆 = {𝒉𝑆1 , · · · ,𝒉

𝑆
𝑝 }

and the target item 𝑑𝑇
𝑞+1, TCA calculates the attention weight 𝛼𝑆

𝑖
of the 𝑖-th behavior’s hidden embedding 𝒉𝑆

𝑖
in the

source sequence as follows:

𝛼𝑆𝑖 = f (𝒉𝑇𝑞 ,𝒉𝑀𝑝+𝑞,𝒉𝑆𝑖 ) = MLP𝑎
(
𝒉𝑇𝑞 ∥𝒉𝑆𝑖 ∥𝒉

𝑆
𝑖 −𝒉

𝑇
𝑞 ∥𝒉𝑆𝑖 ⊙𝒉

𝑇
𝑞 ∥𝒉𝑀𝑝+𝑞

)
. (3)
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Here, ⊙ performs element-wise vector product, ∥ denotes the concatenation operation, and MLP𝑎 (·) is a two-layer
fully-connected network where each layer is followed by a PReLU activation function. 𝒉𝑇𝑞 and 𝒉𝑀𝑝+𝑞 denote the last
hidden behavior embeddings in target and mixed domains. This attention setting is inspired by [59], while we adopt 𝒉𝑇𝑞
to indicate the user’s current target-domain preference instead of using different candidate target item’s embedding
𝒅𝑇
𝑞+1, since it is much more efficient in online serving. Moreover, we also highlight 𝒉𝑀𝑝+𝑞 in this attention, since we

assume the hidden embedding of the last mixed behavior implies the user’s global interests, which are good supplements
to the target-domain preference. Based on this, we aggregate different behavior hidden embeddings 𝒉𝑆

𝑖
to get the source

sequence representation 𝒔𝑆 as:

𝒔𝑆 =

𝑝∑︁
𝑖=1

Softmax
(
𝛼𝑆𝑖

)
𝒉𝑆𝑖 . (4)

Similarly, we also have 𝒔𝑀 =
∑𝑝+𝑞
𝑖=1 Softmax

(
f (𝒉𝑇𝑞 ,𝒉𝑀𝑝+𝑞,𝒉𝑀𝑖 )

)
𝒉𝑀
𝑖

and 𝒔𝑇 =
∑𝑞
𝑖=1Softmax

(
f (𝒉𝑇𝑞 ,𝒉𝑀𝑝+𝑞,𝒉𝑇𝑖 )

)
𝒉𝑇
𝑖
for the

mixed and target sequence representations. With TCA, we can not only directly focus on the information related to the
user’s target-domain preferences, but also keep aware of the user’s global interests for a more comprehensive positive
transfer from the three domains.

3.5 Triple Contrastive Learning

Compared to classical CDR models that learn dual relations, Tri-CDR faces a more challenging task to comprehensively
understand triple correlations among source, target, and mixed sequences. In this work, we propose a novel Triple
Contrastive Learning (TCL) to smartly model the correlations among three sequence representations. Precisely, we
design two CL tasks in TCL, including the coarse-grained similarity modeling and the fine-grained distinction modeling.
The former CL task is adopted to capture the coarse-grained similarities between any two sequence representations of
the same user compared to others. In contrast, the latter CL task is conducted to model the fine-grained distinctions
among a user’s multi-domain sequence representations, keeping the diversity across different domains to enhance
information gains.

3.5.1 Coarse-grained Similarity Modeling (CSM). It is natural that a user’s behavior sequences in different domains
should share common general preferences. Hence, we design a coarse-grained similarity modeling (CSM) to model
the coarse-grained similarities among three domains’ sequence representations of the same user. Specifically, we project
the sequence representations 𝒔𝑆 , 𝒔𝑇 , 𝒔𝑀 into their spaces via domain-specific projectors P𝑆 (·), P𝑇 (·), P𝑀 (·) (we build
these projectors via one-layer MLPs). After obtaining the projected sequence representations 𝒔𝑆 = P𝑆 (𝒔𝑆 ), 𝒔𝑇 = P𝑇 (𝒔𝑇 ),
𝒔𝑀 = P𝑀 (𝒔𝑀 ) of three domains, we calculate the contrastive loss L𝐶𝐿 with any two of them as positive instances in
CL. Formally, for 𝒔𝑆 and 𝒔𝑇 , we follow the classical InfoNCE [4] as:

L𝐶𝐿
(
𝒔𝑆 , 𝒔𝑇

)
= −

∑︁
𝑖∈𝐵

log
exp(sim

(
𝒔𝑆
𝑖
, 𝒔𝑇
𝑖

)
/𝜏)∑

𝑗∈𝐵\𝑖 exp(sim
(
𝒔𝑆
𝑖
, 𝒔𝑇
𝑗

)
/𝜏)

. (5)

𝐵 denotes the sampled batch, 𝒔𝑇
𝑗
denotes the randomly selected negative sample for 𝑖 in 𝐵, 𝜏 denotes the temperature

coefficient, and sim
(
𝒔𝑆
𝑖
, 𝒔𝑇
𝑖

)
=

(𝒔𝑆
𝑖
)𝑇 (𝒔𝑇

𝑖
)

∥𝒔𝑆
𝑖
∥ ·∥𝒔𝑇𝑖 ∥

denotes the cosine similarity. Finally, the CSM loss L𝐶𝑆𝑀 is formulated with
three positive pairs as:

L𝐶𝑆𝑀 =
∑︁
𝑢

(𝜆1L𝐶𝐿
(
𝒔𝑀 , 𝒔𝑆

)
+ 𝜆2L𝐶𝐿

(
𝒔𝑀 , 𝒔𝑇

)
+ 𝜆3L𝐶𝐿

(
𝒔𝑆 , 𝒔𝑇

)
), (6)
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where 𝜆1, 𝜆2, and 𝜆3 denote the loss weights respectively.

3.5.2 Fine-grained Distinction Modeling (FDM). CSM assumes that a user’s domain-specific preferences should be
more similar, and monotonously pulls the multi-domain representations of the same user closer. It functions well in
general, while there does exist fine-grained distinctions across the user’s preferences in triple domains. Over-optimizing
L𝐶𝑆𝑀 may inevitably cause the model to collapse to the proximal point, where the source and mixed sequences cannot
provide additional information gain for their too-similar target sequence, putting the cart before the horse.

To address this issue, we look back to the composition of the proposed mixed sequence, whose subsequences contain
both source and target sequences. Hence, it is intuitive that the source-mixed and target-mixed distances should be
smaller than the source-target distance. Under this intuition, we propose a new CL task named fine-grained distinction
modeling (FDM) based on a margin-based triplet loss. We intuitively assume the distance between 𝒔𝑆 and 𝒔𝑇 should
be larger than the distance between 𝒔𝑆 and 𝒔𝑀 by at least the margin 𝛾 . Formally, we define the FDM loss L𝐹𝐷𝑀 as:

L𝐹𝐷𝑀 =
∑︁
𝑢

max
{
𝑑

(
𝒔𝑆 , 𝒔𝑀

)
− 𝑑

(
𝒔𝑆 , 𝒔𝑇

)
+ 𝛾, 0

}
, (7)

where 𝑑
(̄
𝒔𝑆,𝒔𝑇

)
measures the similarity between 𝒔𝑆 and 𝒔𝑇 , which is calculated as the 𝐿2 distance. 𝛾 denotes the margin

to be controlled. Through jointly optimizing L𝐶𝑆𝑀 and L𝐹𝐷𝑀 , Tri-CDR could intelligently find a good balance in
ensuring the alignment among a user’s multi-domain preferences while keeping the fine-grained distinctions to bring
in more information gain from other domains.

3.6 Optimization Objectives

After TCA and TCL, we concatenate the triple sequence representations 𝒔𝑀 , 𝒔𝑆 , 𝒔𝑇 and feed them into the following
multi-sequence aggregation layer to generate the user final representation 𝒖𝑇 , which is formulated as follows:

𝒖𝑇 = MLP𝑓 (𝒔𝑀 ∥ 𝒔𝑆 ∥ 𝒔𝑇 ). (8)

MLP𝑓 (·) denotes a two-layer fully-connected network with the LeakyReLU activation. Finally, we calculate the predicted
probability 𝑦𝑇 = (𝒖𝑇 )⊤𝒅𝑇

𝑞+1 of the user 𝑢 on the target item 𝑑𝑇
𝑞+1 with the final user representation 𝒖𝑇 and the item

embedding 𝒅𝑇
𝑞+1. We formulate the binary cross-entropy loss L𝐶𝑇𝑅 as follows:

L𝐶𝑇𝑅 =−
∑︁

(𝑢,𝑑 ) ∈𝑅𝑇

[
𝑦𝑇
𝑢,𝑑

log𝑦𝑇
𝑢,𝑑

+
(
1−𝑦𝑇

𝑢,𝑑

)
log

(
1−𝑦𝑇

𝑢,𝑑

)]
(9)

where 𝑅𝑇 is the target-domain training set, 𝑦𝑇
𝑢,𝑑

=1 and 𝑦𝑇
𝑢,𝑑

=0 denote the positive and negative samples respectively,
and 𝑦𝑇

𝑢,𝑑
denotes the predicted probability of (𝑢,𝑑). To optimize across triple sequences in conjunction with CL tasks,

the overall objective function 𝐿 is a linear combination of L𝐶𝑇𝑅 , L𝐶𝑆𝑀 and L𝐹𝐷𝑀 as:

L = L𝐶𝑇𝑅 + 𝜆𝐶𝑆𝑀L𝐶𝑆𝑀 + 𝜆𝐹𝐷𝑀L𝐹𝐷𝑀 (10)

where 𝜆𝐶𝑆𝑀 and 𝜆𝐹𝐷𝑀 denote the loss weights of L𝐶𝑆𝑀 and L𝐹𝐷𝑀 .

3.7 Training Strategy of CDSR

Training Tri-CDR from scratch sometimes may incur the difficulty in model convergence in the early training stage,
leading to unstable and unsatisfactory performance. This is mainly caused by the feature space conflicts between the
source and target domains in CDR. We also observe the same phenomenon in other CDSR models. To address this
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Table 1. Comparison among representative cross-domain sequential recommendation algorithms.

Algorithms Domain utilization Contrastive Learning
Implementation

Sequence modeling
universalityMixed Domain Source Domain Target Domain

𝜋-Net [24] × ✓ ✓ × ×
DTCDR [62] × ✓ ✓ × ×
DDTCDR [18] × ✓ ✓ × ×
DASL [17] × ✓ ✓ × ×

DDGHM [58] ✓ × ✓ intra-CL ×
C2DSR [2] ✓ × ✓ inter-CL ×

Tri-CDR (ours) ✓ ✓ ✓ Both intra- and inter- CL ✓

issue, we conduct a two-step training strategy (i.e., single-domain pre-training + cross-domain fine-tuning) to achieve
more stable and satisfactory performances. Specifically, we first pre-train two source/target SASRec models with their
corresponding single-domain losses. Next, the pre-trained SASRec parameters are used as the initialization of Tri-CDR
(and other CDR baselines). All parameters are then tuned via 𝐿 in Eq. (10). Through this, CDR models could be trained
more effectively and stably.

3.8 In-depth Model Discussions

In this section, we undertake a comparison between the proposed Tri-CDR and the existing CDSR methods specifically
tailored for the domain utilization, CL implementation, sequence modeling universality and complexity analyses,
intending to analyze its novelty and effectiveness.

3.8.1 Comparison with Existing CDR Methods in Domain Utilization. CDSR aims to predict the next item that
the user will be consumed in the target domain by leveraging the historical behavior sequence in the source domain.
Therefore, the pioneer CDSRmethods primarily focus on exploring how to achieve meaningful information transfer with
the leverage of user’s behavior in the source domain [17, 18, 62]. With the profound advancement of CDSR, some studies
attempt to incorporate the mixed behavior sequence containing both source and target behaviors in chronological order
to model the user’s global interests. However, these studies are specifically designed for Cross-domain Session-based
Recommendation [39] and Cross-domain Share-account recommendation [24], and may not be directly applicable to
CDSR scenarios. Recently, DDGHM [58] and C2DSR [2] introduce the mixed behavior sequence into CDSR through
the utilization of the global graph, yielding promising performance. Nevertheless, the aforementioned approaches
typically model users’ global and local interests separately with the mixed and target behavior sequences to capture
their dynamic correlations. Despite the commendable performance of these methods, it overlooks the modeling of the
user’s preference in the source domain, which is the coherent sequence with its internal logic and equally critical for
CDSR. Consequently, it may result in sub-optimal performance.

In contrast, the proposed Tri-CDR jointly models the user’s dynamic preference from the source, mixed and target
domain, which facilitates the flexible and convenient integration of all available information into CDSR scenarios.
Meanwhile, Tri-CDR proposes the Triple Cross-domain Attentionmechanisms and Triple Contrastive Learning strategies
for negative filtering, enabling fine-grained inter-domain relationship modeling and precise cross-domain positive
knowledge transfer. The source, mixed and target domains are beneficial in CDR, while it is non-trivial to make full use
of them. More detailed experimental results and analyses of the domain utilization are described in Sec.4.7.

3.8.2 Comparison with Existing CDRMethods in CL Implementation. As a self-supervised learning strategy, CL
has been widely applied to collaborative filtering [19], multi-media recommendation [41], and sequential recommenda-
tion [30, 47]. Recently, some studies [2, 45, 58] have also introduced CL into CDR. DDGHM [58] designs an intra-domain
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contrastive metric with the random item augmentation operator to enhance representation learning and alleviate data
sparsity issues. However, despite employing random sequence-based CL augmentation for inferring informative repre-
sentation, DDGHM’s intra-CL method does not explicitly consider the knowledge transfer and inter-domain correlation
necessary for cross-domain modeling. C2DSR [2] is the most related CDR model, which develops an inter-domain
contrastive infomax objective to improve the correlation between the domain-aware prototype representations and
corresponding corrupted representations. However, its inter-CL objective over-maximizes the mutual information of
the individual representations between the mixed and target domain, disregarding the potential similarity conflicts
that may result in optimization collapse. Both coarse-grained similarity (refer to positive transfer) and fine-grained
distinction (refer to negative transfer) should be considered in inter-domain CL.

Rather than solely relying on inter-CL between two domains, Tri-CDR incorporates all three domains and carefully
model their triple relationships in contrastive tasks, ensuring that the optimization does not excessively collapse and
get sufficient and accurate training. Precisely, Tri-CDR creatively proposes the coarse-gained similarity modeling and
the fine-gained distinction modeling to comprehensively understand the triple correlations. The former captures the
coarse-gained similarities between any two single-domain sequences of the same user to enable effective representation
learning, while the latter maintains the robust cross-domain positive transfer through modeling the fine-gained
distinction among triple sequences (see Sec. 4.5). Moreover, as an effective and model-agnostic framework, Tri-CDR is
able to bring the SOTA CL-based SR models (intra-domain CL) into the sequence modeling and achieves significant
improvements in CDR by leveraging the combined interplay of both inter-CL and intra-CL strategies (see Sec. 4.6).

3.8.3 Comparison with Existing CDR Methods in Sequence Modeling Universality. Behavior sequence model-
ing is essential in SR. Lots of novel techniques such as attention mechanisms [5, 31], side information [31, 48], and
contrastive learning [47, 60] have been continuously proposed and verified to improve the performance of single-domain
SR models. Amounts of CDR experiments have revealed that more recent and powerful single-domain SR models are
able to outperform conventional CDSR algorithms [3, 8, 15, 58], which is also observed in our experiments (see Sec. 4.4).
However, most existing CDSR models commonly incorporate simple SR models as their sequence encoders to verify
their CDR strategies, or design complicated and customized networks to learn multi-domain interactions tailored to
their specific cross-domain settings, overlooking whether the proposed algorithm possess the flexibility to adapt to
different (current or future-updated) strong sequence encoders.

Different from them, we argue that the universality of a CDSR algorithm with different sequence encoders is a
crucial factor in guaranteeing the sustained effectiveness of the proposed framework, since real-world systems always
prefer simple and universal methods. In this work, we try our best to enhance the universality and maintain the
simplification of TCA and TCL without customized designs in the single-domain sequence modeling (see 4.6 for detailed
results). Therefore, Tri-CDR could leverage possible advancements in single-domain sequence modeling (including
model evolution in the future), thereby extending the lifecycle of our proposed CDSR algorithms.

3.8.4 Complexity Analyses. In this section, we analyze the complexity of Tri-CDR and compare it with classical
SR models (SASRec [14], CL4SRec [47]) and CDSR algorithms (DASL [17], C2DSR [2]). The space complexity of the
proposed Tri-CDR is largely determined by its sequence encoder. For example, apart from the mandatory space allocation
for training three SASRec models (for source, mixed and target domains respectively), Tri-CDR (SASRec) only requires
a limited number of MLPs (mentioned in Sec. 3.4 and 3.5) to be additionally trained. That is, Tri-CDR does not introduce
excessive trainable parameters, which renders the space complexity of Tri-CDR akin to its sequence encoder.
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Table 2. Statistics of three CDR datasets with six domains.

Dataset Amazon Toy & Game Amazon Book & Movie Douban Book & Music
Domain Toy Game Book Movie Book Music
Users 7,996 7,996 28,531 28,531 4,580 4,580
Items 37,868 11,735 239,042 38,185 64,340 57,586

Records 114,487 82,871 625,692 349,918 224,117 278,855
Density 0.0378% 0.0883% 0.0092% 0.0321% 0.0761% 0.1057%

As for the time complexity in model training, the base sequence encoders serve as the pivotal component of the
CDSR tasks, and dominate its time complexity. Since different sequence encoders have different time complexity, we
provide the time complexity of the used sequence encoders as follows: SASRec [14]: O((𝐿2 + 𝐿)𝑑 |𝑈 |), CL4SRec [47]:
O((𝐿2 + 𝐿 + 𝐵)𝑑 |𝑈 |), where 𝐿 denotes the length of the behavior sequence, |𝑈 | denotes the number of users, 𝐵 is the
size of mini-batch. Meanwhile, we also analyze the time complexity of the state-of-the-art CDSR algorithms which are
armed with dual-attention mechanism (DASL [17]), graph representation learning, and contrastive learning paradigm
(C2DSR [2]). That is, the time complexity of DASL and C2DSR is O((𝐿2 +𝐿)𝑑 |𝑈 |) and O((𝐿2 +𝐿 +𝐵 + |R𝑀 | + |R𝑇 |)𝑑 |𝑈 |)
respectively, where |R𝑀 | and |R𝑇 | denotes the number of nonzero entries in the Laplacian matrix in the mixed and
target domain respectively. In contrast, we performed a comprehensive analysis of the time complexity of Tri-CDR on
different sequence encoders, revealing that both Tri-CDR (SASRec) and Tri-CDR (CL4SRec) share the identical time
complexity as O((𝐿2 + 𝐿 + 𝐵)𝑑 |𝑈 |).

The aforementioned analyses indicate that Tri-CDR has asymptotic similar time complexity with CL4SRec in training.
It is worth noting that Tri-CDR does not conduct TCL in the inference phase. Therefore, its online inference item
complexity (which is the central metric considered in practical usages of recommendation models rather than the
training time complexity) is comparable with DASL in magnitude. These computational complexities make Tri-CDR
scalable on large cross-domain datasets. Therefore, the proposed Tri-CDR is able to employ cross-domain positive
transfer and obtain high-quality sequence representations with only tolerant additional time cost and space cost.

4 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following research questions: (RQ1): How does Tri-CDR
perform against the state-of-the-art SR and CDSR baselines (see Sec. 4.4)? (RQ2): How do different components of
Tri-CDR benefit its performance (see Sec. 4.5)? (RQ3): Is Tri-CDR still effective with other base sequence encoders (see
Sec. 4.6)? (RQ4): Does the introduction of additional domains lead to reasonable performance improvements? (see Sec.
4.7)?(RQ5): How do some important hyper-parameters affect the performance of Tri-CDR (see Sec. 4.8)? (RQ6): How
do the the coarse-grained similarity modeling and fine-grained distinction modeling contribute to the multi-domain
representation learning in CDR(see Sec. 4.9)?

4.1 Datasets

To verify the effectiveness and universality of Tri-CDR, we conduct extensive experiments on six real-world CDR
settings with four domains from Amazon [26] and two domains from Douban [57]. Following [17, 58], we select Amazon

Book & Movie, Amazon Book & Movie and Douban Book & Music to form six CDR tasks. Amazon Toy & Game, Amazon
Book &Movie and Douban Book &Music include the review records from October 2000 to October 2018, from December
1996 to September 2018 and from July 2005 to December 2011 respectively. These three cross-domain datasets are
pre-processed via the same method following classical CDR studies [15, 17]. Specifically, we build three user behavior
sequences on the source, target, and mixed domains in chronological order. We set the last interacted item of each user
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as the test set and the penultimate interacted item as the valid set based on the Leave-one-out splitting method [33, 56].
We randomly select the users that have behaviors in both domains, filter out users having less than 3 behaviors, and
treat all rating records as interacted behaviors [13, 28]. The detailed statistics are shown in Table 2.

4.2 Baselines

In this section, we compare Tri-CDR with three representative SR models and five cross-domain SR models as follows:

• GRU4Rec. GRU4Rec [11] is a classical session-based recommendation method encoding the item sequence via GRU.
• SASRec. SASRec [14] is a widely-used sequential recommendation model. It applies the self-attention mechanism to
model behavior interactions in sequential recommendation.

• CL4SRec. CL4SRec [47] is the SOTA CL-based SR model, which adopts three sequence augmentation approaches to
generate self-supervised signals via three intra-domain CL tasks.

Benefiting from the implementation of the self-attention mechanism, SASRec achieves a significant improvement
relative to RNN-based algorithms in SR. For fair comparisons, we use the same sequence encoder of Tri-CDR (i.e.,
SASRec) in all cross-domain SR baselines (noted as Model+). They also share the same features and historical behaviors:

• SASRec(S+T). SASRec(S+T) is a straightforward CDSR method based on SASRec. It first generates the source and
target sequence representations respectively, then concatenates and feeds them into an MLP for the final prediction.

• DTCDR+. DTCDR [62] is a pioneer dual-target CDR method, which proposes an adaptable embedding sharing
strategy to combine and share the user embeddings across domains based on the multi-task learning paradigm.

• DDTCDR+. DDTCDR [18] designs a latent orthogonal mapping function for extracting and transferring user
preferences between two related domains while preserving cross-domain relations across different latent spaces in
an iterative manner through a dual-transfer method.

• DASL+. DASL [17] constructs dual embeddings to extract the user’s independent preferences and captures the user’s
cross-domain preference through a dual-attention learning mechanism. With its inherent structural superiority,
DASL facilitates smooth incorporation of different sequence encoders. After replacing the sequence encoder from
GRU to SASRec, DASL further achieves the promising performance, establishing itself as a strong baseline in CDSR.

• C2DSR+. C2DSR [2] is the SOTA model in CDSR, which leverages a effective graph neural network to exploit the
inter-domain co-occurrence collaborative relationship and proposes an contrastive infomax objective to capture and
transfer the user’s cross- domain preferences via the mutual information maximization mechanism.

4.3 Experimental Settings

We implement the above methods using PyTorch with python 3.8.10. For fair comparisons, we take Adam as the
optimizing method and the learning rate is set as 0.0005. We initialize model parameters randomly using the Xavier
method. The batch size and the dimension of embedding size are set as 120 and 64. We adopt the same maximum
length of sequence for each model, which is 200 on all datasets. We conduct a grid search to select hyper-parameters.
Specifically, we select the 𝜆𝐶𝑆𝑀 and 𝜆𝐹𝐷𝑀 in {0.1, 0.5, 1, 4, 10}. For the Amazon dataset, which exhibits significant
disparities in sparsity between the two domains, we define the ratio between 𝜆1, 𝜆2 and 𝜆3 as 1:1:1 for the sparser
Amazon Toy and Amazon Book and 100:1:1 and 1000:1:1 for the denser Amazon Movie and Amazon Game respectively.
In contrast, we define the ratio between 𝜆1, 𝜆2 and 𝜆3 as 1:1:1 for the Douban dataset with similar sparsity of two
domains. The temperature coefficient 𝜏 is set to be 0.1. According to the average natural distribution of the behavior
data in Amazon dataset, we set 𝛾 to 4.0 in the sparser Amazon Toy and Amazon Book, 0.5 in the denser Amazon Game
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Table 3. Results on cross-domain recommendation on Amazon platform. All improvements are significant (p<0.05 with paired t-tests).

Datasets Algorithms N@5 N@10 N@20 N@50 HR@5 HR@10 HR@20 HR@50 AUC
GRU4Rec 0.1305 0.1551 0.1783 0.2172 0.1860 0.2624 0.3549 0.5533 0.5613
SASRec 0.1853 0.2097 0.2321 0.2633 0.2505 0.3260 0.4149 0.5734 0.5821
CL4SRec 0.1898 0.2143 0.2359 0.2673 0.2577 0.3338 0.4199 0.5795 0.5828

SASRec(S+T) 0.1948 0.2189 0.2397 0.2715 0.2610 0.3355 0.4184 0.5793 0.5815
DTCDR+ 0.1963 0.2191 0.2404 0.2724 0.2646 0.3351 0.4196 0.5812 0.5777
DDTCDR+ 0.1959 0.2185 0.2404 0.2723 0.2617 0.3316 0.4186 0.5800 0.5768
DASL+ 0.1976 0.2206 0.2418 0.2740 0.2624 0.3338 0.4183 0.5810 0.5788
C2DSR+ 0.1964 0.2213 0.2433 0.2744 0.2671 0.3442 0.4314 0.5883 0.5878

Tri-CDR(SASRec) 0.2069 0.2312 0.2528 0.2832 0.2797 0.3548 0.4405 0.5945 0.5913

Game
↓

Toy

Tri-CDR(CL4SRec) 0.2062 0.2313 0.2525 0.2836 0.2794 0.3576 0.4418 0.5989 0.5895
GRU4Rec 0.2682 0.3053 0.3366 0.3726 0.3697 0.4839 0.6079 0.7894 0.7510
SASRec 0.3304 0.3673 0.3962 0.4262 0.4405 0.5546 0.6691 0.8196 0.7841
CL4SRec 0.3317 0.3687 0.3969 0.4264 0.4434 0.5579 0.6695 0.8178 0.7835

SASRec(S+T) 0.3436 0.3803 0.4088 0.4380 0.4566 0.5702 0.6828 0.8295 0.7931
DTCDR+ 0.3315 0.3682 0.3964 0.4253 0.4423 0.5558 0.6676 0.8129 0.7803
DDTCDR+ 0.3355 0.3708 0.3989 0.4282 0.4473 0.5566 0.6677 0.8146 0.7832
DASL+ 0.3368 0.3734 0.4010 0.4299 0.4482 0.5613 0.6706 0.8155 0.7819
C2DSR+ 0.3292 0.3691 0.3985 0.4277 0.4475 0.5704 0.6868 0.8342 0.7951

Tri-CDR(SASRec) 0.3514 0.3892 0.4182 0.4458 0.4684 0.5854 0.7000 0.8383 0.8015

Toy
↓

Game

Tri-CDR(CL4SRec) 0.3562 0.3915 0.4205 0.4485 0.4712 0.5806 0.6954 0.8357 0.8004
GRU4Rec 0.2381 0.2695 0.2994 0.3421 0.3199 0.4173 0.5362 0.7521 0.7163
SASRec 0.2842 0.3160 0.3451 0.3839 0.3745 0.4728 0.5883 0.7844 0.7473
CL4SRec 0.3013 0.3340 0.3627 0.4001 0.3925 0.4937 0.6078 0.7971 0.7586

SASRec(S+T) 0.2963 0.3285 0.3576 0.3950 0.3877 0.4874 0.6029 0.7922 0.7549
DTCDR+ 0.3034 0.3353 0.3639 0.4012 0.3963 0.4952 0.6087 0.7968 0.7587
DDTCDR+ 0.3018 0.3339 0.3629 0.3995 0.3939 0.4935 0.6081 0.7937 0.7569
DASL+ 0.3027 0.3346 0.3635 0.4004 0.3946 0.4933 0.6080 0.7948 0.7576
C2DSR+ 0.3038 0.3359 0.3651 0.4015 0.3974 0.4966 0.6126 0.7967 0.7592

Tri-CDR(SASRec) 0.3186 0.3519 0.3811 0.4171 0.4152 0.5182 0.6339 0.8156 0.7752

Movie
↓

Book

Tri-CDR(CL4SRec) 0.3210 0.3533 0.3815 0.4171 0.4140 0.5142 0.6264 0.8063 0.7693
GRU4Rec 0.4123 0.4477 0.4735 0.5002 0.5338 0.6432 0.7448 0.8795 0.8401
SASRec 0.4492 0.4843 0.5096 0.5343 0.5712 0.6795 0.7796 0.9034 0.8629
CL4SRec 0.4578 0.4930 0.5177 0.5417 0.5812 0.6897 0.7872 0.9078 0.8677

SASRec(S+T) 0.4594 0.4944 0.5191 0.5430 0.5834 0.6913 0.7888 0.9090 0.8687
DTCDR+ 0.4508 0.4864 0.5115 0.5357 0.5779 0.6878 0.7869 0.9082 0.8671
DDTCDR+ 0.4590 0.4938 0.5187 0.5424 0.5827 0.6898 0.7883 0.9070 0.8674
DASL+ 0.4591 0.4939 0.5189 0.5425 0.5827 0.6899 0.7885 0.9072 0.8676
C2DSR+ 0.4587 0.4945 0.5189 0.5424 0.5869 0.6973 0.7936 0.9117 0.8713

Tri-CDR(SASRec) 0.4669 0.5015 0.5258 0.5491 0.5933 0.6999 0.7960 0.9128 0.8729

Book
↓

Movie

Tri-CDR(CL4SRec) 0.4667 0.5005 0.5244 0.5478 0.5923 0.6966 0.7914 0.9089 0.8694

and Amazon Movie. Regarding for the Douban dataset, we define the 𝛾 as 0.5 and 0.05 for Douban Book and Douban
Music respectively. We conduct five runs with different random seeds and report the average results of all models.

4.4 Performance Comparison on Cross-domain Sequential Recommendation (RQ1)

We conduct our experiments on six CDR tasks, adopting three typical evaluation metrics including NDCG@k (N@k),
Hit Rate@k (HR@k), and AUC with different 𝑘 = 5, 10, 20, 50. Following [14], we randomly sample 99 negative items
for each positive instance in testing phase. Table 3 and Table 4 shows the results on the Amazon platform and Douban
platform respectively, and we can observe that:

(1) Tri-CDR achieves the best performances on all metrics and datasets compared to all baselines, with the significance
level 𝑝 < 0.05. The NDCG@10 improvements of Tri-CDR over the best baseline are 4.52%/2.95%/5.18%/1.42% on

13



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Haokai Ma et al.

Table 4. Results on cross-domain recommendation on Douban platform. All improvements are significant (p<0.05 with paired t-tests).

Datasets Algorithms N@5 N@10 N@20 N@50 HR@5 HR@10 HR@20 HR@50 AUC

Music
↓

Book

GRU4Rec 0.4643 0.4944 0.5175 0.5441 0.5815 0.6746 0.7659 0.8998 0.8583
SASRec 0.5336 0.5632 0.5838 0.6048 0.6503 0.7414 0.8231 0.9281 0.8912
CL4SRec 0.5211 0.5514 0.5717 0.5927 0.6454 0.7386 0.8187 0.9244 0.8876
DTCDR+ 0.5413 0.5699 0.5898 0.6100 0.6600 0.7482 0.8269 0.9284 0.8927

SASRec(S+T) 0.5518 0.5813 0.6022 0.6206 0.6687 0.7598 0.8424 0.9348 0.8993
DDTCDR+ 0.5374 0.5671 0.5876 0.6074 0.6544 0.7461 0.8270 0.9268 0.8918
DASL+ 0.5501 0.5806 0.6015 0.6199 0.6664 0.7602 0.8427 0.9350 0.8993
C2DSR 0.5523 0.5823 0.6024 0.6205 0.6717 0.7641 0.8436 0.9346 0.8996

Tri-CDR(SASRec) 0.5625 0.5924 0.6118 0.6287 0.6815 0.7737 0.8503 0.9350 0.9028
Tri-CDR(CL4SRec) 0.5571 0.5860 0.6043 0.6232 0.6743 0.7635 0.8358 0.9301 0.8973

Book
↓

Music

GRU4Rec 0.5030 0.5338 0.5547 0.5757 0.6310 0.7258 0.8085 0.9136 0.8774
SASRec 0.5674 0.5973 0.6160 0.6331 0.6900 0.7818 0.8559 0.9413 0.9079
CL4SRec 0.5516 0.5815 0.5997 0.6174 0.6842 0.7761 0.8480 0.9371 0.9031
DTCDR+ 0.5689 0.5973 0.6163 0.6331 0.6937 0.7813 0.8561 0.9401 0.9082

SASRec(S+T) 0.5771 0.6062 0.6248 0.6409 0.7015 0.7913 0.8646 0.9449 0.9124
DDTCDR+ 0.5720 0.6005 0.6191 0.6360 0.6935 0.7814 0.8548 0.9398 0.9076
DASL+ 0.5788 0.6089 0.6272 0.6430 0.7012 0.7936 0.8658 0.9447 0.9130
C2DSR 0.5806 0.6101 0.6284 0.6440 0.7043 0.7949 0.8670 0.9449 0.9136

Tri-CDR(SASRec) 0.5891 0.6177 0.6354 0.6505 0.7140 0.8019 0.8717 0.9472 0.9165
Tri-CDR(CL4SRec) 0.5826 0.6112 0.6291 0.6447 0.7051 0.7934 0.8640 0.9421 0.9124

Amazon Toy/Game/Book/Movie, and the HR@10 improvements are 3.89%/2.63%/4.25%/0.37% on four Amazon datasets
consistently. Similarly, the NDCG@10 improvements of Tri-CDR over the best baseline are 1.73%/1.25% on Douban
Book/Music, and the HR@10 improvements are 1.26%/0.88%. It indicates that our triple sequence learning is beneficial
in CDR. Moreover, it also demonstrates that Tri-CDR can well model the correlations among users’ triple behavior
sequences, and successfully capture useful information related to the target-domain prediction from all domains.

(2) Tri-CDR outperforms all CDR baselines that also consider multi-domain behaviors. It confirms the significance
of (a) explicit triple sequence learning with the mixed behavior sequence that contains the user’s global interests,
and (b) our TCL and TCA that could better model triple correlations among three domains and combine them into
user representations. Comparing with SOTA CDSR models we can know that, DDTCDR and DASL focus on the dual
transfer between source and target domains. They perform worse than Tri-CDR due to the lack of triple sequence
learning. C2DSR also conducts contrastive infomax objectives to improve global-local dual correlations. However, it
does not consider the fine-grained distinctions in domain correlation modeling and triple cross-domain attention in
multi-domain combination. Sometimes the infomax loss is not well functioned, which may be caused by its unreal
negative sequences. Tri-CDR also outperforms different ablation versions besides baselines as shown in Sec. 4.5.

(3) Comparing the improvements among different domains, we find that Tri-CDR is more beneficial on Game→
Toy(sparse) and Movie→Book(sparse) settings. It not only confirms the effectiveness of Tri-CDR on different data
distributions, but also reflects that Tri-CDR functions well on relatively sparser target domains, where the positive
knowledge transfer from the source domain should bring in more essential information as supplements, implying the
practical usage of Tri-CDR.

(4) To confirm its universality with different application platforms, we have also evaluated Tri-CDR on the Douban
dataset (Book & Music) besides Amazon datasets. In combination with the statistics of CDR datasets in Table 4, we
discover that: (a) consistent with the conventional CDSR algorithms, Tri-CDR functions well on relatively sparser target
domains by transferring the positive knowledge from the denser source domain. (b) In contrast to the cross-domain
settings on the Amazon platform, Tri-CDR shows relatively similar improvements in the two cross-domain settings on
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Table 5. Results on ablation study of Tri-CDR(SASRec).

Datasets Models N@5 N@10 N@20 N@50 HR@5 HR@10 HR@20 HR@50 AUC

Game
↓

Toy

Tri-CDR w/o TCA and TCL 0.2005 0.2239 0.2470 0.2778 0.2720 0.3446 0.4364 0.5925 0.5833
Tri-CDR w/o TCA 0.2022 0.2274 0.2502 0.2807 0.2745 0.3522 0.4426 0.5971 0.5925
Tri-CDR w/o FDM 0.2030 0.2280 0.2503 0.2814 0.2757 0.3530 0.4416 0.5991 0.5915
Tri-CDR 0.2069 0.2312 0.2528 0.2832 0.2797 0.3548 0.4405 0.5945 0.5913

Toy
↓

Game

Tri-CDR w/o TCA and TCL 0.3258 0.3636 0.3937 0.4234 0.4408 0.5578 0.6770 0.8262 0.7866
Tri-CDR w/o TCA 0.3509 0.3871 0.4152 0.4430 0.4698 0.5816 0.6928 0.8322 0.7949
Tri-CDR w/o FDM 0.3485 0.3861 0.4153 0.4429 0.4673 0.5837 0.6990 0.8376 0.8017
Tri-CDR 0.3514 0.3892 0.4182 0.4458 0.4684 0.5854 0.7000 0.8383 0.8015

Movie
↓

Book

Tri-CDR w/o TCA and TCL 0.2959 0.3279 0.3577 0.3952 0.3874 0.4866 0.6047 0.7945 0.7554
Tri-CDR w/o TCA 0.3085 0.3399 0.3679 0.4048 0.3995 0.4967 0.6076 0.7941 0.7589
Tri-CDR w/o FDM 0.3088 0.3415 0.3706 0.4071 0.4044 0.5057 0.6211 0.8055 0.7667
Tri-CDR 0.3186 0.3519 0.3811 0.4171 0.4152 0.5182 0.6339 0.8156 0.7752

Book
↓

Movie

Tri-CDR w/o TCA and TCL 0.4379 0.4754 0.5008 0.5250 0.5706 0.6860 0.7865 0.9077 0.8658
Tri-CDR w/o TCA 0.4611 0.4953 0.5196 0.5433 0.5849 0.6902 0.7864 0.9054 0.8661
Tri-CDR w/o FDM 0.4505 0.4858 0.5106 0.5344 0.5830 0.6916 0.7895 0.9088 0.8683
Tri-CDR 0.4669 0.5015 0.5258 0.5491 0.5933 0.6999 0.7960 0.9128 0.8729

Book
↓

Music

Tri-CDR w/o TCA and TCL 0.5798 0.6092 0.6269 0.6427 0.7067 0.7970 0.8670 0.9461 0.9139
Tri-CDR w/o TCA 0.5868 0.6160 0.6339 0.6491 0.7099 0.7997 0.8703 0.9465 0.9152
Tri-CDR w/o FDM 0.5836 0.6138 0.6313 0.6468 0.7084 0.8014 0.8704 0.9480 0.9155
Tri-CDR 0.5891 0.6177 0.6354 0.6505 0.7140 0.8019 0.8717 0.9472 0.9165

Music
↓

Book

Tri-CDR w/o TCA and TCL 0.5532 0.5833 0.6031 0.6209 0.6721 0.7649 0.8433 0.9324 0.8991
Tri-CDR w/o TCA 0.5576 0.5881 0.6073 0.6254 0.6754 0.7693 0.8452 0.9361 0.901
Tri-CDR w/o FDM 0.5595 0.5902 0.6100 0.6271 0.6777 0.7728 0.8509 0.9368 0.9028
Tri-CDR 0.5625 0.5924 0.6118 0.6287 0.6815 0.7737 0.8503 0.9350 0.9028

Douban. This may be attributed to the fact that users have longer average interactions on Douban dataset (48.93 and
60.89 for Book and Music respectively). (c) The experimental results also demonstrate that some dual-modeling CDSR
methods can obtain promising performance on the Douban dataset. However, Tri-CDR outperforms these algorithms
on most metrics, which provides further evidence of Tri-CDR’s significant role in alleviating cross-domain negative
transfer and accurately modeling the correlations among the triple domains. We further conduct a universality analysis
on Tri-CDR adopted with different base sequence encoders in Sec. 4.6.

4.5 Ablation Study (RQ2)

In this section, we aim to find whether different components are effective in Tri-CDR. Thus we compare Tri-CDR with
Tri-CDR w/o TCA&TCL, Tri-CDR w/o TCA and Tri-CDR w/o FDM to verify the benefits of TCA, TCL and FDM. In
general, most components’ improvements are significant (the average error range ≤ 0.003). In Table 5 we have:

(1) Tri-CDR w/o TCA performs significantly better than Tri-CDR w/o TCA&TCL, verifying the effectiveness of TCL.
TCL takes full advantage of CL’s alignment and uniformity [37, 51] and extends it to triple domains, maximizing the
multi-domain mutual information while remaining necessary preference diversity in knowledge transfer.

(2) Tri-CDR further improves the results of Tri-CDR w/o TCA. Our TCA highlights the information related to the
target-domain preference learned from the current target-domain historical behaviors as well as the user’s global
interests learned from mixed behaviors via cross-domain attention, which enables more positive knowledge transfer
and is beneficial for CDR.

(3) Comparing Tri-CDR with and without FDM, we further demonstrate that the fine-grained distinction modeling
in TCL is indispensable. FDM keeps the domain diversity and significantly brings in additional 1.60%/0.78% average
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Fig. 3. Universality analysis on Tri-CDR. We show the results of different versions of Tri-CDR on GRU4Rec and CL4SRec.

NDCG@10/HR@10 improvements on six datasets. Besides, it not only helps Tri-CDR to learn better multi-domain
sequence representations, but also makes the model training more stable with different parameters.

4.6 Universality of Tri-CDR (RQ3)

Tri-CDR is a model-agnostic framework. We further evaluate its universality on Amazon datasets based on GRU4Rec
and CL4SRec. Fig. 3 illustrates Tri-CDR models on GRU4Rec and CL4SRec, and we can find that:

(1) In general, Tri-CDR still achieves consistent and significant improvements over different ablation versions on all
datasets with both GRU4Rec and CL4SRec, which confirms its universality when adopted with different sequential
models and even other CL tasks. The improvements are consistent with other metrics.

(2) Comparing with different Tri-CDR’s ablation versions, we reconfirm that (a) the mixed behavior sequence is
informative, while directly combining source, target, and mixed sequences may also bring in noises, and (b) the proposed
TCA and TCL with FDM are effective to make full use of information of three domains in CDR.

(3) We should highlight that CL4SRec also conducts intra-domain CL tasks based on some sequence augmentations.
The improvement brought by Tri-CDR implies that our inter-domain CL could cooperate well with various intra-domain
CL. We notice that CL4SRec(M) has comparable or even better results over Tri-CDR on the Book domain after careful
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Table 6. Results on different domain utilization of Tri-CDR (SASRec).

Datasets Models N@5 N@10 N@20 N@50 HR@5 HR@10 HR@20 HR@50 AUC

Game
↓

Toy

SASRec (T) 0.1853 0.2097 0.2321 0.2633 0.2505 0.3260 0.4149 0.5734 0.5821
SASRec (M) 0.1953 0.2200 0.2417 0.2744 0.2654 0.3420 0.4280 0.5941 0.6017
SASRec (S+T) 0.1948 0.2189 0.2397 0.2715 0.2610 0.3355 0.4184 0.5793 0.5815
SASRec (M+T) 0.1965 0.2210 0.2439 0.2745 0.2675 0.3434 0.4347 0.5893 0.5908
SASRec (S+T+M) 0.2005 0.2239 0.2470 0.2778 0.2720 0.3446 0.4364 0.5925 0.5833
Tri-CDR 0.2069 0.2312 0.2528 0.2832 0.2797 0.3548 0.4405 0.5945 0.5913

Toy
↓

Game

SASRec (T) 0.3304 0.3673 0.3962 0.4262 0.4405 0.5546 0.6691 0.8196 0.7841
SASRec (M) 0.3408 0.3780 0.4064 0.4359 0.4553 0.5706 0.6826 0.8310 0.7966
SASRec (S+T) 0.3436 0.3803 0.4088 0.4380 0.4566 0.5702 0.6828 0.8295 0.7931
SASRec (M+T) 0.3191 0.3576 0.3880 0.4180 0.4359 0.5549 0.6752 0.8256 0.7878
SASRec (S+T+M) 0.3305 0.3687 0.3988 0.4281 0.4463 0.5648 0.6836 0.8310 0.7904
Tri-CDR 0.3514 0.3892 0.4182 0.4458 0.4684 0.5854 0.7000 0.8383 0.8015

Movie
↓

Book

SASRec (T) 0.2842 0.3160 0.3451 0.3839 0.3745 0.4728 0.5883 0.7844 0.7473
SASRec (M) 0.2852 0.3183 0.3479 0.3868 0.3757 0.4783 0.5958 0.7925 0.7533
SASRec (S+T) 0.2963 0.3285 0.3576 0.3950 0.3877 0.4874 0.6029 0.7922 0.7549
SASRec (M+T) 0.3000 0.3326 0.3617 0.3985 0.3922 0.4930 0.6083 0.7948 0.7573
SASRec (S+T+M) 0.2959 0.3279 0.3577 0.3952 0.3874 0.4866 0.6047 0.7945 0.7554
Tri-CDR 0.3186 0.3519 0.3811 0.4171 0.4152 0.5182 0.6339 0.8156 0.7752

Book
↓

Movie

SASRec (T) 0.4492 0.4843 0.5096 0.5343 0.5712 0.6795 0.7796 0.9034 0.8629
SASRec (M) 0.4639 0.4988 0.5234 0.5470 0.5873 0.6949 0.7924 0.9103 0.8704
SASRec (S+T) 0.4594 0.4944 0.5191 0.5430 0.5834 0.6913 0.7888 0.9090 0.8687
SASRec (M+T) 0.4486 0.4849 0.5100 0.5336 0.5809 0.6927 0.7918 0.9105 0.8693
SASRec (S+T+M) 0.4469 0.4814 0.5062 0.5303 0.5749 0.6814 0.7792 0.9002 0.8611
Tri-CDR 0.4669 0.5015 0.5258 0.5491 0.5933 0.6999 0.7960 0.9128 0.8729

parameter selections. It is because that the intra-domain CL of CL4SRec on the mixed sequence (containing multi-domain
behaviors) works as certain inter-domain CL tasks. Nevertheless, Tri-CDR still achieves the best results in general.

4.7 Analyses on the domain utilization of Tri-CDR (RQ4)

To inspect the effectiveness of different domains on Tri-CDR, we use S, T, and M to represent using source, target,
and mixed sequences respectively, and compare Tri-CDR with five combinations. It is worth noting that SASRec (T)
and SASRec (M) denote the single-domain SR models with the user’s target behavior sequence and mixed behavior
sequence. On the other hand, SASRec (S+T), SASRec (M+T), and SASRec (S+M+T) refer to the cross-domain SR models
based on the user’s source and target domain [17, 18, 24, 62], mixed and target domain [2, 58], and mixed, source and
target domain (the proposed CDSR setting), respectively. From Table. 6, we can observe that:

(a) Comparing the first two versions, SASRec (M) significantly outperforms SASRec (T) on all metrics and datasets. It
is reasonable since the mixed sequence is the complete user chronological behavior sequence from both the source and
target domains. The sequential encoder on the mixed behavior sequence can be viewed as the cross-domain sequence
encoder to some extent, yielding cross-domain information gain.

(b) Dual-modeling CDR methods (SASRec (S+T) and SASRec (M+T)) do not always achieve consistent improvement
over the single-domain SR methods, and the simply triple-modeling CDR method (SASRec (S+T+M)) may even lead
to further performance deterioration in some cross-domain settings. It further reinforces that both source and mixed
sequences encompass cross-domain knowledge and noise information simultaneously and that simple dual- and triple-
modeling strategies may be insufficient to accurately distinguish and model the complex correlations and confounding
knowledge in multiple sequences.
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Fig. 4. Parameter analyses on loss weight 𝜆𝐶𝑆𝑀 of L𝐶𝑆𝑀 , 𝜆𝐹𝐷𝑀 of L𝐹𝐷𝑀 , margin 𝛾 of L𝐹𝐷𝑀 and temperature coefficient 𝜏 .
(a)-(h) shows the results of Game→Toy, and (i)-(p) shows the results of Toy→Game.

(c) Comparing SASRec (S+T+M) and Tri-CDR on four cross-domain settings, we further demonstrate the effectiveness
of the proposed TCA and TCL, which is primarily due to the fact that TCA highlights the users’ target-domain
preferences and comprehensive interests from the cross-domain knowledge transfer, and TCL precisely models the
correlation among triple behavior sequences.

4.8 Parameter Sensitivity Analyses (RQ5)

4.8.1 Analyses on CL loss weights 𝜆𝐶𝑆𝑀 , 𝜆𝐹𝐷𝑀 , margin 𝛾 and temperature coefficient 𝜏 . In Fig. 4, we conduct four
parameter analyses on the Game→Toy setting (the first two rows) and the Toy→Game setting (the last two rows) to
investigate the performance trends with different loss weight 𝜆𝐶𝑆𝑀 of L𝐶𝑆𝑀 , loss weights 𝜆𝐹𝐷𝑀 of L𝐹𝐷𝑀 , margin
𝛾 of L𝐹𝐷𝑀 and temperature coefficient 𝜏 in Eq. (6) and Eq. (7). We observe that: (1) Tri-CDR’s performance first
increases and then decreases as 𝜆𝐶𝑆𝑀 and 𝜏 gets larger. According to the behavior distribution characteristics, the loss
weight 𝜆𝐹𝐷𝑀 of L𝐹𝐷𝑀 differs for different cross-domain settings. 𝜆𝐶𝑆𝑀 = 0.1/4.0 achieves the best performance on
Game→Toy and Toy→Game settings, respectively. In contrast, Tri-CDR is insensitive to the temperature coefficient 𝜏 ,
so we set it as 0.1 for all CDSR settings with the purpose of simplifying the hyper-parameter tuning and obtaining the
promising performance. (2) Too smaller 𝜆𝐹𝐷𝑀 may weaken the power of FDM in TCL, while too larger 𝜆𝐹𝐷𝑀 may also
disturb the triple correlation learning in CSM. It is also natural that Tri-CDR is less sensitive to fine-grained 𝜆𝐹𝐷𝑀
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Table 7. Parameter analyses on the ratio among loss weights 𝜆1, 𝜆2 and 𝜆3

Datasets Models
Ratio among
𝜆1, 𝜆2 and 𝜆3

N@5 N@10 N@20 N@50 HR@5 HR@10 HR@20 HR@50 AUC

Game
↓

Toy

Tri-CDR
w/o FDM

1:1:0.1 0.2036 0.2272 0.2496 0.2807 0.2770 0.3501 0.4387 0.5954 0.5867
1:1:1 0.2030 0.2280 0.2503 0.2814 0.2757 0.3530 0.4416 0.5991 0.5915
10:1:1 0.2016 0.2258 0.2481 0.2791 0.2730 0.3479 0.4362 0.5934 0.5861
100:1:1 0.1992 0.2232 0.2453 0.2763 0.2682 0.3428 0.4307 0.5877 0.5835
1000:1:1 0.1978 0.2223 0.2444 0.2754 0.2666 0.3425 0.4304 0.5873 0.5833

Tri-CDR

1:1:0.1 0.2072 0.2320 0.2538 0.2840 0.2803 0.3568 0.4433 0.5961 0.5916
1:1:1 0.2069 0.2312 0.2528 0.2832 0.2797 0.3548 0.4405 0.5945 0.5913
10:1:1 0.2033 0.2275 0.2490 0.2793 0.2731 0.3479 0.4336 0.5868 0.5867
100:1:1 0.2008 0.2246 0.2457 0.2769 0.2689 0.3429 0.4266 0.5844 0.5831
1000:1:1 0.2003 0.2244 0.2461 0.2768 0.2676 0.3421 0.4282 0.5842 0.5832

Toy
↓

Game

Tri-CDR
w/o FDM

1:1:1 0.3276 0.3664 0.3971 0.4268 0.4449 0.5647 0.6866 0.8354 0.7959
10:1:1 0.3336 0.3722 0.4016 0.4309 0.4498 0.5688 0.6852 0.8324 0.7930
100:1:1 0.3423 0.3801 0.4092 0.4381 0.4566 0.5737 0.6887 0.8337 0.7949
1000:1:1 0.3485 0.3861 0.4153 0.4429 0.4673 0.5837 0.6990 0.8376 0.8017
1000:1:0.1 0.3476 0.3845 0.4143 0.4424 0.4655 0.5795 0.6975 0.8385 0.8010

Tri-CDR

1:1:1 0.3326 0.3708 0.4002 0.4302 0.4490 0.5671 0.6834 0.8339 0.7948
10:1:1 0.3437 0.3809 0.4101 0.4384 0.4602 0.5752 0.6907 0.8328 0.7951
100:1:1 0.3463 0.3842 0.4127 0.4406 0.4631 0.5807 0.6934 0.8330 0.7957
1000:1:1 0.3514 0.3892 0.4182 0.4458 0.4684 0.5854 0.7000 0.8383 0.8015
1000:1:0.1 0.3503 0.3877 0.4170 0.4444 0.4687 0.5843 0.6998 0.8375 0.8013

compared to coarse-grained 𝜆𝐶𝑆𝑀 . The optimal performance of Tri-CDR is observed when 𝜆𝐹𝐷𝑀 is set to 10.0 and 5.0
on Game→Toy and Toy→Game settings. (3) 𝛾 = 0 indicates that the model only wants the source-mixed distance to be
smaller than the source-target distance. When 𝛾 = 100, Eq. (7) is always active to broaden the fine-grained cross-domain
distance gap. Tri-CDR performs relatively poor under the extreme values of both sides, indicating the importance of an
appropriate margin in FDM (4.0 and 1.0 for the Game→Toy and Toy→Game settings).

4.8.2 Analyses on loss weights 𝜆1, 𝜆2, and 𝜆3 in CSM. We implement a series of experiments to investigate the effect
of different ratios among 𝜆1, 𝜆2, and 𝜆3 of L𝐶𝑆𝑀 in Tri-CDR. Table 7 shows the results of Tri-CDR(SASRec) with or
without FDM on the Game→Toy and Toy→Game settings. We observe that: (1) for Tri-CDR w/o FDM, larger loss
weights of 𝜆1 lead to better performance on the Toy→Game setting (the relatively denser target domains). It is natural
since the correlations between the source and mixed behavior sequences should be more highlighted to ensure learning
informative source sequence representations from the sparser source behavior sequences. For the Game→Toy setting
(the sparser target domains), we find that the loss weight ratio of 1:1:1 already achieves the best performance. (2) For
Tri-CDR, we also observe the same trend on the Toy→Game setting that the performances increase as 𝜆1 becomes
larger. Moreover, regardless of the ratio among 𝜆1, 𝜆2, and 𝜆3, Tri-CDR shows consistent improvements compared
to Tri-CDR w/o FDM. Enhanced by FDM, the results are relatively satisfactory even with imperfect loss weights
(average significant improvements of 1.17% and 0.51% on NDCG@10 and HR@10 respectively). It demonstrates that the
proposed FDM helps to improve the effectiveness as well as the robustness of triple contrastive learning, making it less
sensitive to different loss weights in CSM and more practical in real-world scenarios. (3) In comparing the different
performances of Tri-CDR with different ratios between 𝜆2, and 𝜆3 in two cross-domain settings, we notice that Tri-CDR
exhibited further improvements after reducing 𝜆3 (loss weight of L𝐶𝑆𝑀 between source and target domains) on the
Game→Toy setting. This improvement is interpretable as its underlying principle aligns with certain assumptions of
FDM. Specifically, Tri-CDR precisely controls the similarity between the source and target domains by constraining the
hyper-parameters, thereby modeling the fine-grained distinction among triple sequences. To mitigate the complexity of
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(a) SASRec (S+T+M) (b) Tri-CDR w/o FDM (c) Tri-CDR

(d) SASRec (S+T+M) (e) Tri-CDR w/o FDM (f) Tri-CDR

Mixed sequence representation Source sequence representation Target sequence representation

Fig. 5. Visualization of different Tri-CDR versions among triple domains, where the blue cross, green clubs, and red circle denote the
mixed sequence representation, source sequence representation and target sequence representation respectively.

model training while preserving its scalability, we maintain the balanced ratio of 𝜆2, and 𝜆3 as 1:1 when presenting the
performance of Tri-CDR. Experimental results also indicate that Tri-CDR achieves significant improvements over the
current state-of-the-art baseline, even without fine-grained tuning of the ratio between 𝜆2, and 𝜆3.

4.9 Estimation of User Preference Modeling in Tri-CDR (RQ6)

To intuitively show the impacts of both similarity and distinction modeling in TCL, we show the visualization of
randomly selected multi-domain sequence representations in SASRec (S+T+M), Tri-CDR w/o FDM, and Tri-CDR via
t-Distributed Stochastic Neighbor Embedding (t-SNE) [36]. Fig. 5 and Fig. 6 illustrate the distributions of three domains
and different users via different colors and shapes, respectively. In each figure, the first row refers to the visualization
on the Game→Toy setting, while the second row represents the visualization on the Toy→Game setting.

4.9.1 Visualization of the overall distribution across triple domains. We depict the overall distribution of the randomly
selected 100 users’ sequential representations across different domains via t-SNE in two cross-domain settings, as
illustrated in Fig. 5. We observe that: (1) As shown in Fig. 5 (a) and (d), most users’ multi-domain sequence representations
are naturally clustered via their domains rather than their users in SASRec (S+T+M). (2) Comparing Fig. 5 (b) and
(e) with Fig. 5 (a) and (d), the multi-domain sequence representations are converted from domain-based clustering
to the user-based, which indicates that the coarse-grained similarity modeling in TCL does make triple sequence
representations of a user to be similar. (3) In contrast to Fig. 5 (e), the target domain sequence representations in Fig. 5
(f) do not aggregate in the approximate location but rather distributed around user-specific cross-domain information.
This indicates that FDM enhances the discriminability of the target domain sequence representations in coarse-grained
comparisons, enabling precise modeling of the users’ target interests.

4.9.2 Visualization of the independent distribution among different users. In order to investigate the independent
distribution of different domain sequence representations among different users, we randomly select 10 users and
visualized the aforementioned representations with t-SNE. The observations are as follows: (1) Similar to Fig. 5(a) and

20



Triple Sequence Learning for Cross-domain Recommendation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

(a) SASRec (S+T+M) (b) Tri-CDR w/o FDM (c) Tri-CDR

(d) SASRec (S+T+M) (e) Tri-CDR w/o FDM (f) Tri-CDR

Mixed sequence representation Source sequence representation Target sequence representation

Fig. 6. Visualization of different Tri-CDR versions from the perspective of different users. We employ color differentials to distinguish
different users while utilizing shapes to differentiate the same user’s sequential representations across triple domains.

(d), the distances among the same user’s triple sequence representations are relatively large in 6(a) and (d). This leads to
a failure in building adequate cross-domain correlations, and thus cannot make full use of additional source/mixed
domains’ information. (2) In Fig. 6(b) and (e), irrespective of whether adjust the ratio hyper-parameters or not, the
association among triple sequence representations of the same user is consistently improved with CSM. This proves
the effectiveness of the information gain derived from coarse-grained similarity modeling. (3) In Fig. 6(b), some users’
multi-domain sequence representations are too close to form small acute triangles. Too homogeneous multi-domain
representations may weaken the additional information gains from source/mixed sequences, which will harm the
positive knowledge transfer. In contrast, armed with FDM, these users in Fig. 6(c) have more distinguishable sequence
representations forming obtuse triangles, and thus Tri-CDR could achieve better results. (4) Despite the employment of
sufficient tuning ratios among 𝜆1, 𝜆2, and 𝜆3 in CSM, Fig. 6(e) still exhibits unexpected deviations in the triple correlation.
In contrast, the visualization of triangles in Fig. 6(f) provides tangible evidence of the practical significance of FDM.

5 CONCLUSION

In this work, we propose a model-agnostic Triple sequence learning for Cross-Domain Recommendation (Tri-CDR)
framework. Conventional CDR methods mainly focus on modeling the dual-relations between the source and target
domains or the mixed and target domains, failing to explore the triple correlation among the source, mixed, and target
domains. Tri-CDR conducts a triple cross-domain attention method to highlight useful information and accelerate
positive knowledge transfer and enables a more accurate multi-domain sequence representation learning strategy
via both the coarse-grained similarity modeling and fine-grained distinction modeling. The extensive evaluation and
analyses on six benchmark cross-domain settings demonstrate that Tri-CDR is able to precisely model the similarity
while preserving the information diversity among triple domains, which reveals the underlying principles of its
effectiveness and universality. We believe that the triple sequence learning paradigm will provide a solid foundation for
researchers and practitioners to explore new directions in cross-domain recommendation.
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In the future, we will continue to explore the correlations among the source, target, and natural mixed behavior
sequences, as well as more sophisticated modeling on their representation learning and multi-domain aggregation.
We will also enhance Tri-CDR’s capability by incorporating more modality information of item contents as semantic
bridges in multi-domain recommendation.
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