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Ideally, accelerator development should be as easy as software development. Several recent design languages/tools are working
toward this goal, but actually testing early designs on real applications end-to-end remains prohibitively difficult due to the costs of
building specialized compiler and simulator support. We propose a new first-in-class, mostly automated methodology termed “3LA”
to enable end-to-end testing of prototype accelerator designs on unmodified source applications. A key contribution of 3LA is the
use of a formal software/hardware interface that specifies an accelerator’s operations and their semantics. Specifically, we leverage
the Instruction-Level Abstraction (ILA) formal specification for accelerators that has been successfully used thus far for accelerator
implementation verification. We show how the ILA for accelerators serves as a software/hardware interface, similar to the Instruction
Set Architecture (ISA) for processors, that can be used for automated development of compilers and instruction-level simulators.
Another key contribution of this work is to show how ILA-based accelerator semantics enables extending recent work on equality
saturation to auto-generate basic compiler support for prototype accelerators in a technique we term “flexible matching.” By combining
flexible matching with simulators auto-generated from ILA specifications, our approach enables end-to-end evaluation with modest
engineering effort. We detail several case studies of 3LA, which uncovered an unknown flaw in a recently published accelerator and
facilitated its fix.
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1 INTRODUCTION

Hardware specialization is the main technique for improving power-performance efficiency in emerging compute
platforms. By customizing compute engines, memory hierarchies, and data representations [11, 21, 40], hardware
accelerators provide efficient computation in various application domains like artificial intelligence, image processing,
and graph analysis [15, 24–26, 60, 84]. However, despite significant recent progress in design languages and tools for
custom accelerators [39, 54], many difficulties remain in developing domain-specific accelerators.

A particularly challenging aspect of accelerator development is validating early design prototypes on real applications.
Such validation is critical, as errors can arise from some of the techniques used to achieve maximum power-performance
efficiency in accelerators, such as the use of custom numeric representations or reformulated operators. In domains like
deep learning (DL), signal processing or graphics, an application-level result (like a DL-based classification) can remain
within acceptable range even if the numerical results of individual operations change slightly, presenting an opportunity
to trade numerical accuracy for efficiency. However, these changes need to be carefully validated at the application
level—even small changes in numerical accuracy of individual operators have the potential to cascade throughout an
application, making the application-level results unacceptable [85]. Early end-to-end application level validation is
essential for avoiding expensive and complex late stage hardware design changes.

1.1 Challenges and Goals for Application-level Validation

Testing accelerators under development on complete applications requires two critical components: compiler support
and application-level testing support.

• Custom compiler support: An application (likely written in a domain-specific language, or DSL) must be
adapted to offload computations to an accelerator, which entails writing DSL compiler passes or manual mod-
ification of the source program. In common practice, invoking accelerator operations from software requires
engineering effort, such as developing custom drivers to invoke accelerators via memory-mapped I/O (MMIO)
interfaces. Such drivers are opaque to the compiler, difficult to debug, and often rely on low-level architectural
details. The compilation tasks would be simplified through greater automation in: (1) identifying acceleration of-
fload opportunities in the application, and (2) generating the low-level code that invokes the requisite accelerator
operations.

• Application-level testing support: This goal poses several difficulties with existing techniques. Register-
transfer level (RTL) designs (and thus RTL simulation) are not available in the early stages when the proposed
end-to-end-testing is most useful. Even when prototype RTL designs are available, RTL simulation is only
practically feasible for individual operations, being too slow for full applications. FPGA-based emulation requires
significant engineering effort and is typically not done until late design stages. Faster high-level simulation (e.g.,
using SystemC) is feasible, but requires manually writing detailed simulation models and verifying later that
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they are sound with respect to the RTL implementation. The ideal for application-level testing is to automatically

generate a sound high-level simulation model for the accelerator that can be co-simulated with an application.

Note that the support components outlined above are specialized to a particular accelerator, and need to be updated
every time an accelerator design is modified. In current practice, large industrial teams invest substantial resources to
develop bespoke infrastructure [35, 36], while smaller teams often do not pursue end-to-end evaluation, as illustrated
by our literature survey in Fig. 1.

Fig. 1. Gap in end-to-end evaluation of accelerators for neural
network applications:Our survey of 79 papers in recent conferences
(ISCA,MICRO, VLSI, and ISSCC in 2021 and ICCAD, DAC in 2020) that
introduced new DL accelerator designs/methodologies, comparing
how the accelerators were evaluated. Only 41% of the works reported
end-to-end evaluation on non-synthetic applications, of which 68%
(28% of the total) were from industrial teams.

28%

13%
59%

Industry

Academia

No end-to-end eval:
Synthetic workloads 
or operator-level only End-to-end eval:

Full applications 
or benchmarks 
(e.g., MLPerf)

1.2 Novel Contributions of our 3LA Approach

We present a first-in-class methodology that supports end-to-end evaluation of accelerators on unmodified full applica-

tions, which includes the ability to compile to and run simulations of accelerator designs still in flux. As a practical
capability, this provides hardware designers with a feedback loop similar to that of software debugging and testing.

Our methodology, termed “3LA,” aims to reduce the manual engineering required for this feedback loop by effectively
treating accelerator operations as extensions of processor instructions. A novel contribution of 3LA is the use of a formal

software/hardware (SW/HW) interface that specifies an accelerator’s operations and their semantics. Specifically, we
leverage the Instruction-Level Abstraction (ILA), a formal specification for accelerators, that has been successfully used
thus far for accelerator implementation verification [31] but not for compilation. In this work, we show how the ILA for
accelerators serves as a SW/HW interface, similar to the Instruction Set Architecture (ISA) for processors, effectively
serving as a “single source of truth” to drive various tasks required for compilation and end-to-end application testing.
(The same high-level ILA model can then be used in a late-stage ILA/RTL validation step using existing techniques.)
While the ISA has wide applications in computer architecture/compilers, there is no existing framework that uses an
ISA-like formal SW/HW interface for accelerators: 3LA provides an existence proof that this is feasible both conceptually
and as a practical framework.

Our work makes the following novel contributions:

• Use of a formal SW/HW interface for the accelerator: We use the ILA accelerator specification to automate key
tasks required for compilation and instruction-level simulation (§3.1). Thus far, the ILA had only been used for
accelerator implementation and firmware verification.

• Design of “flexible matching” (§3.3): This new semantics-guided term rewriting technique specialized to accel-
erators adds custom rewrite rules for accelerators (§3.2), and uses them in combination with generic compiler
intermediate representation (IR) rewrites. This allows identifying, for the first time, semantically equivalent
accelerator operations even without a direct syntactic match and significantly automates sophisticated operation
offloading to accelerators without manually rewriting applications.

• 3LA methodology and prototype: Combining the above techniques to achieve end-to-end mapping of unmodified
applications to accelerators is another contribution. No existing tool (e.g., MLIR/CIRCT, PyMTL; see §1.3) has
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attempted, much less achieved, the capabilities offered by the 3LA prototype (§4) at such a level of automation.
Our evaluation (§5) demonstrates automatic identification of multiple acceleration opportunities in off-the-shelf
DL models imported from publicly available implementations and benchmarks. We evaluated these models end-
to-end in simulation for three different accelerators; this was the first time that full applications were evaluated
for two of the accelerators, and the tests exposed a flaw in one design related to numerical representations, which
the developers were able to correct.

The 3LA methodology requires two main inputs from the user: (1) ILA models: a formal ILA specification for
accelerator operations (which can be reused for separate RTL verification), and (2) IR-to-accelerator mapping rules:
rewrite rules from the compiler IR to the accelerator operations (“mappings,” for short). Note that both of these are
one-time efforts per accelerator. Furthermore, this approach greatly lowers the effort after hardware design revisions, as
it requires modifying only the accelerator operation specifications and rewrite rules, if necessary, and obviates the need
for certain additional work, like updating the high-level simulators, which are generated automatically in 3LA.

1.3 Comparison with Existing Approaches and Tools

Although there have been many efforts in compiler flows to support accelerators [5, 14, 16, 32, 39, 41, 44, 50, 58, 73],
none of them provides automated support for end-to-end testing of unmodified applications at the same level as 3LA.
We start by providing a high-level comparison summarized in Table 1 and provide a detailed comparison with specific
tools at the end.

1.3.1 Task-based Comparison. Existing approaches use different techniques for three critical tasks: accelerator operation
selection, code generation, and software-hardware co-simulation. We compare them against 3LA for each task.

Task 1: Accelerator Operation Selection. A common practice is for the software developer to manually insert API
calls for accelerator invocations, or to use syntactic patterns to identify possible matches (e.g., using BYOC [16]).
Bespoke compilation efforts, possibly built on top of tools like BYOC and frameworks like MLIR [41] or Exo [32], make
sophisticated compilation passes to identify operations for offloading, but require compiler expertise. In contrast, 3LA
overcomes the limitations of purely syntactic matching to find semantically-equivalent matches in an automated way,
without requiring the expertise and cost of bespoke compiler infrastructure.

Task 2: Code Generation. This task involves emitting the actual instructions, i.e., the MMIO loads/stores, from the
application program to invoke accelerator operations. A common practice is to emit MMIO code in implementations of
the API calls that invoke accelerator operations, often referred to as the “device driver” for the accelerator. However,
these API calls are opaque, in that a compiler has no built-in knowledge of the semantics of the accelerator operations
or the MMIO code. Alternatively, in bespoke compilation efforts, this knowledge is built into the compiler but requires
significant expertise and does not use a formal hardware semantics. In contrast, in 3LA this code generation task
is trivial following the operation selection step: each ILA instruction in the IR-to-accelerator mapping corresponds
one-to-one with an MMIO instruction and is replaced accordingly. Moreover, the compiler has complete knowledge of
their semantics via the formal SW/HW interface.

Task 3: Software-Hardware Co-Simulation. Co-simulation is needed to validate the results of the computation being
done by the accelerator offloads (the hardware) and the host processor (the software) for application-level testing.
Manuscript submitted to ACM
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A common practice is to use frameworks like QEMU [9], which integrate RTL simulation calls (e.g., via Verilator [76])
with host processor execution. However, this is too slow for full-application testing. Higher-level system models in
languages like SystemC [3] provide faster simulation but require significant effort for creating simulation models, and
these models are difficult to validate against the RTL design. In contrast, the ILA model in 3LA supports automatic

generation of instruction-level simulation models using the ILAng toolchain [30]. The ILA also allows separate verifi-
cation against the RTL implementation, thereby ensuring soundness between the high-level simulation and the RTL
implementation.

Table 1. Comparison of the 3LA methodology against existing approaches for three critical tasks. Approaches discussed:
TVM with BYOC [16], Glenside [66], MLIR with various dialects [41], Halide with various extensions [23, 37, 42, 45, 57, 64, 67, 77],
Exo [32], Verilator [76] with QEMU [9], SystemC [3] with QEMU, PyMTL [8], and Catapult HLS [65].

Approach Pros and Cons Related Works
Task 1: Accelerator operation selection
Manual selection Simple, but tedious and error-prone common practice
Syntactic pattern matching Simple, but may miss accelerator offloads BYOC, MLIR
Custom flow Flexible, but high effort to design (e.g., schedules of rewrites) BYOC, MLIR, Halide, Exo
3LA: ILA and mapping rules One-time effort (ILA + mapping rules) for Task 1-3 Glenside (rewrite rules)
Task 2: Code generation
High-level API No formal SW/HW interface, error-prone common practice, BYOC
Bespoke codegen No formal SW/HW interface, error-prone, high effort BYOC, MLIR, Halide, Exo
3LA: auto-gen. MMIO code Formal SW/HW interface, verifiable against RTL
Task 3: Software-hardware co-simulation
RTL simulation Late-stage, very slow, operation-level only Verilator with QEMU
High-level software model Early-stage, end-to-end, not validated w.r.t. RTL SystemC, PyMTL, Catapult
3LA: auto-gen. ILA simulator Early-stage, end-to-end, validated w.r.t. RTL

1.3.2 Detailed comparison with closely related tools. We discuss details of some specific tools.

MLIR [41]. MLIR is a framework for building compiler IRs (as “dialects”) in a structured, reusable manner. Some MLIR
dialects address tasks related to hardware design; these include CIRCT, which supports high-level synthesis (HLS) and
hardware simulation but not compilation of applications to accelerators. To the best of our knowledge, there is no SW/HW
interface in MLIR that enables compiling applications to accelerators via CIRCT. Other dialects are intended to interface
with specific accelerators (e.g., the TPU) and deep learning frameworks (e.g., ONNX). However, compilation using these
dialects still entails mapping between IRs at different granularities and other challenges, which are addressed by 3LA.

HLS tools (e.g., Catapult [65]) and PyMTL [8]. These tools/frameworks allow for describing hardware designs with
a high-level software-like interface, which is useful for designing accelerators and high-level hardware simulation.
However, the hardware design specifications in these frameworks do not address accelerator operation selection and
code generation during compilation—two of the three tasks in Table 1, which are significantly automated by 3LA.

Exo [32]. Exo also addresses the problem of compiling applications to accelerators. It uses a notion similar to high-
level instructions for interfacing with accelerators, but, unlike 3LA, relies on manually specified sequences of rewrites

and other bespoke compiler passes, to expose instances of those instructions and compile them to the devices using
exact syntactic matching. 3LA introduces flexible matching to automatically discover accelerator offload opportunities
in the applications, given a few rules relating the behavior of accelerator operations to the compiler IR (as in Exo).
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Additionally, Exo does not provide a formal SW/HW interface or any means to verify its accelerator instructions against
the RTL implementation.

1.4 Paper organization

We first provide the background (§2) on ILA [31] and equality saturation [34, 71]. The techniques in 3LA are described
in detail next (§3), followed by a description of the 3LA prototype1 (§4). We present detailed evaluation using our
prototype (§5), and end with a discussion on more broadly related work (§6) and conclusions (§7).

2 BACKGROUND

2.1 ILA Software/Hardware Interface Specification

The ILA is an ISA-like formal model for specifying the functional behavior of accelerators. It generalizes the ISA to
accelerators, where each instruction of an accelerator ILA corresponds to a command at the accelerator interface, i.e., an
MMIO load or store from a host processor. Like processor ISAs, the ILA captures a formal semantics of the accelerator
behavior, by specifying how each instruction reads or updates software-visible (viz., architectural) state variables in the
accelerator, while abstracting out implementation details.

Fig. 2 shows an example ILA specification for one of the instructions of FlexASR [68] (one of the three accelerators
used in our evaluation studies). The ILA models are written in ILAng, a DSL embedded in C++. The figure caption
points out the per-instruction modular specification, where each instruction is specified by defining its decode condition
(i.e., when the instruction is triggered) and state update functions (i.e., how it updates the architectural state variables).

Thus far, the ILA has been used only for accelerator implementation verification and co-verification of firmware [29,
31]. In this work, we use ILA as a formal SW/HW interface that drives the key tasks in compilation and application-level
testing for accelerators.

Fig. 2. ILA model (snippet) for Flex-
ASR accelerator. Lines 3-11 define the
inputs and architectural state variables.
Lines 14-22 show an example ILA instruc-
tion “pe_0_cfg_mngr.” Its decode condi-
tion (lines 16-17) specifies that this in-
struction is triggeredwhen there is a write
command to the processing element’s
(PE) management configuration register.
Its state update functions (lines 19-22)
specify that this instruction stores ar-
guments from the interface inputs into
the corresponding configuration regis-
ters. The state update functions of in-
structions such as for linear layer (elided
here) encode their operational semantics.
This snippet highlights: (1) similarity of
ILA with ISA, and (2) the formal seman-
tics based on how each instruction read-
s/writes the architectural state variables.

1 auto m = ilang::Ila("flexasr-ila");

2 // declare inputs at the interface

3 auto wr = m.NewBvInput("top_if_wr", TOP_IF_WR_BITS);

4 auto rd = m.NewBvInput("top_if_rd", TOP_IF_RD_BITS);

5 auto addr = m.NewBvInput("top_addr_in", TOP_ADDR_IN_BITS);

6 auto data = m.NewBvInput("top_data_in", TOP_DATA_IN_BITS);

7 // declare architectural states

8 m.NewBvState("pe_0_is_valid", PE_VALID_BITS);

9 m.NewBvState("pe_0_is_bias", PE_IS_BIAS_BITS);

10 m.NewMemState("gb_large_buffer", TOP_ADDR_IN_BITS, TOP_DATA_IN_BITS);

11 // ... (some code)

12 // ILA instruction for configuring pe_cfg_mngr

13 auto instr = m.NewInstr("pe_0_cfg_mngr");

14 // define decode condition for this instruction

15 auto is_write = (wr == 1) & (rd == 0);

16 instr.SetDecode(is_write & (addr == PE_0_CFG_MNGR_ADDR));

17 // define state update functions for this instruction

18 auto is_valid = ilang::SelectBit(data, PE_IS_VALID_BIT_IDX);

19 instr.SetUpdate(m.state("pe_0_is_valid"), is_valid);

20 auto is_bias = ilang::SelectBit(data, PE_IS_BIAS_BIT_IDX);

21 instr.SetUpdate(m.state("pe_0_is_bias"), is_bias);

22 // ... (more code)

1Our prototype, benchmarks, and evaluation infrastructure will be open-sourced under a permissive license.
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Accelerated AppCompiler

ILAng

ILA 
Spec

call acc_op_1
...
call acc_op_2
...
call acc_op_3

IR→ILA 
Rewrites

3.2
Flexible 

Matching

3.3

Accelerator 
Simulator

3.5

App 
Src

Fig. 3. 3LA methodology flow. §3.2: the developer provides one IR-to-accelerator mapping for each accelerator operator, §3.3: a
compiler extended with flexible matching automatically maps unmodified source application fragments to accelerator calls, §3.5: the
ILAng platform generates fast simulators, enabling end-to-end co-simulation. These features enable a mostly automated workflow for
end-to-end testing of prototype accelerator designs on unmodified applications.

2.2 Term Rewriting with Equality Saturation

Term rewriting is a well-known technique for program transformations, with some compiler optimizations being
implemented as term-rewriting systems [4, 10, 19, 47]. Given a set of syntactic rewrite rules (ℓ → 𝑟 ) that also preserve
semantic equality, a term-rewriting system rewrites instances of pattern ℓ in the input program with semantically
equivalent pattern 𝑟 where applicable.

In traditional term rewriting, applying one rewrite rule may prevent using other, potentially profitable, rewrite rules;
this is referred to as the phase-ordering problem [79]. Equality saturation avoids phase-ordering issues by searching
over many equivalent rewritings of the same program [34, 71]. Given an input program 𝑝 , equality saturation repeatedly
applies the given rewrite rules to explore all equivalent ways to express 𝑝 using an e-graph data structure to efficiently
represent an exponentially large set of equivalent program expressions [51, 53]. Upon reaching a fixed point, i.e., when
no application of any rewrite rule can introduce a new program expression, or upon hitting a predetermined resource
limit, the optimal rewritten program can be extracted from an e-graph according to a given cost function.

In 3LA, we extend equality saturation to support accelerators. Specifically, we create custom rewrite rules for
accelerators (§3.2), and specialize the cost function to maximize the number of accelerator offloads (§3.3) or consider cost
of data movement (§3.4). Our prototype uses the egg library [80] for its efficient implementation of equality saturation.

3 3LA METHODOLOGY

We now describe technical details of the 3LA methodology, along with illustrative examples that demonstrate its various
components. The important steps in the 3LA flow are shown in Fig. 3, and described in the related subsections. Our
examples and prototype (§4) pertain to deep learning, but the 3LA techniques based on a formal SW/HW interface and
flexible matching are general and can apply to other domains.

We consider the following two examples: (1) an LSTM word language model (LSTM-WLM), a text generation
application consisting of an LSTM recurrent neural network (RNN) followed by a linear layer [22, 81], and (2) ResNet-20,
a widely used image classification model featuring 2D convolutions and residual connections [27]. Since the LSTM RNN
comprises most of the computation in LSTM-WLM, it is desirable to accelerate this application using FlexASR [68], a
natural language processing accelerator that includes support for both LSTM RNNs and linear layers in hardware. Thus,
FlexASR can also be used to accelerate the linear layers in ResNet-20. In addition, ResNet-20 can also be accelerated
with HLSCNN [78], an accelerator for 2D convolutions exclusively; hence, the two accelerators can be used in concert.
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However, compiling DL applications like these from a high-level DSL (e.g., PyTorch for LSTM-WLM) to coarse-grained
accelerators like FlexASR and HLSCNN poses several challenges highlighted below:

(1) Specialized accelerator interfaces. These accelerators, like many others, are invoked using MMIO instructions
over AXI interfaces, to configure the accelerator’s state and signal when to begin operations, thus requiring a
thorough knowledge of both the accelerator architecture and functions of the MMIO instructions.

(2) Granularity mismatch. The compiler must relate the accelerator operations’ coarse-grained semantics (e.g., an
LSTM RNN) with the possibly fine-grained corresponding representations in the compiler IR.

(3) Numerical representations. Accelerators often use specialized numerical representations for improved per-
formance or reduced hardware costs. For example, FlexASR uses a custom format called AdaptivFloat [69] and
HLSCNN uses a mixed 8/16-bit fixed-point representation. One must check that these data types do not cause
inaccuracies at the full application level, particularly when values are cast between data types.

In the descriptions of various 3LA techniques in this section, we will emphasize how they address these challenges.

3.1 The ILA as a Formal SW/HW Interface in 3LA

The first step in the 3LA methodology is to develop the ILA formal models for accelerators (§2.1). We follow the
techniques proposed in prior work [30, 31], where each instruction of an accelerator ILA corresponds to a command at
the accelerator interface. Some instructions are simple instructions that configure the accelerator, while others may
trigger complex operations, e.g., FlexASR’s linear layer operator.

The ILA for accelerators serves as a formal software/hardware interface in 3LA, similar to the Instruction Set
Architecture (ISA) for processors, and effectively drives the following tasks required for compilation and end-to-end
application testing with accelerators.

• Accelerator Operation Selection: A formal instruction representation for accelerator operations enables adapting
existing instruction selection techniques to identify acceleration opportunities and output the ILA instructions
that correspond to functionally equivalent parts of the compiler IR representation.

• Code Generation: The ILA instructions correspond one-to-one with the MMIO commands that operate the
accelerator. Thus, the selected ILA instructions can be directly lowered to MMIO commands for invoking
accelerator operations from the application code running on a host processor.

• SW/HW Co-Simulation: The ILAng toolchain [30] can automatically generate a functional simulator given an
ILA specification—this can be done in the early design stages, even without an RTL implementation.

Further, note that a revision to the accelerator design can easily be tested simply by making changes to the comparatively
high-level ILA specification.

The ILA model size is about 10-20% of the size of the RTL implementation [31]. Although writing the ILA model can
be a significant one-time effort, it carries benefits beyond the context of the 3LA methodology. The ILA specification has
been used for checking the accelerator RTL implementation, both using formal verification [31] and simulation-based
validation [30]. Thus, ILA-based accelerator simulations in 3LA can be made sound with respect to RTL.

3.2 Compiler IR-to-Accelerator Mapping

To support compilation to accelerators, we require some means of mapping from the compiler IR to the ILA instructions
that specify the accelerator operations. This is accomplished by specifying an IR-to-accelerator mapping rule (“mapping,”
in short). In general, this is a many-to-many mapping, i.e., where a program fragment with many instructions in the
Manuscript submitted to ACM
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/*------------------------------------ (a) Compiler IR fragment ------------------------------------------*/

%1 = nn.dense(%data, %weight)

%2 = nn.bias_add(%1, %bias)

/*------------------------------------ (b) FlexASR ILA program fragment ----------------------------------*/

// configure accelerator states

FlexASR_ILA.pe_cfg_rnn_layer %is_zero %is_cluster %is_bias %num_mngr %num_v_out

FlexASR_ILA.pe_cfg_mngr %mngr_idx %is_zero %bias_w %bias_b %bias_i %num_v_in %base_w ...

FlexASR_ILA.pe_cfg_act_mngr %is_zero %bias %num_insn %num_v_out %buf_base %out_base

FlexASR_ILA.pe_cfg_act_v %is_zero %insn_0 %insn_1

FlexASR_ILA.gb_cfg_mmngr_gb_large %base_0 %num_v_0 %base_1 %num_v_1

FlexASR_ILA.gb_cfg_gb_control %mode %is_rnn %mem_id_in %mem_id_out %num_v_in %num_v_out %num_ts

// trigger accelerator function

FlexASR_ILA.fn_start %fn_id

/*------------------------------------ (c) FlexASR MMIO commands -----------------------------------------*/

// configure accelerator states

Write, Addr=0xA4400010, Data=0x0010101000001

Write, Addr=0xA4400020, Data=0x0000000010000000102020200

// ...

// trigger accelerator function

Write, Addr=0xA3000010, Data=0x1

Fig. 4. An example IR-to-accelerator mapping for the FlexASR linear layer operation. The compiler IR fragment (a) is mapped
to a sequence of FlexASR ILA instructions (b) that configure the accelerator states and trigger the computation. The ILA instructions
correspond one-to-one to the accelerator’s MMIO commands (c). This example illustrates how the ILA instructions are used in
mapping rules and code generation.

compiler IR are rewritten to a program fragment with many ILA instructions on the accelerator side. This provides
a general way to handle different granularities in compiler IR intrinsics (e.g., dot products and convolutions) and in
accelerator operations (e.g., fine-grained operations in VTA [50] and coarse-grained operations in HLSCNN, FlexASR).
Furthermore, the ILA instructions in the mapping provide a verifiable abstraction of the hardware accelerator operation
in terms of updates to software-visible architectural state.

Writing the IR-to-accelerator mapping rule is a one-time effort per accelerator operation and is reusable across
applications. Further, the mapping rule can be validated by comparing the results of the compiler IR fragment on the
host device and the ILA-based simulation results.

Examples. In our prototype, we use the Relay IR [62] in the TVM DL compiler stack [14] as the compiler IR. TVM
supports importing models from other DL frameworks by converting them into Relay, thus allowing our prototype to
support these front-ends as well. Further, it enables leveraging the Bring Your Own Codegen (BYOC) [16] library for
code generation (discussed later). For LSTM-WLM on FlexASR, we provide a mapping from an LSTM RNN (a large
construct in Relay if “unrolled”) to a short sequence of FlexASR ILA instructions, and another mapping for a linear layer,
which we illustrate in Fig. 4. ResNet-20 also uses the same mapping for linear layer and a straightforward mapping
from a single 2D convolution operator to a sequence of HLSCNN ILA instructions for performing a convolution.

3.3 Flexible Matching for Accelerator Operator Selection

Given compiler IR-to-accelerator mapping rules, we can identify all potential offloads to an accelerator by finding
portions of an application that match the given compiler IR fragments, syntactically or semantically.

3.3.1 Difficulties due to syntactic matching. Searching the application for exact syntactic matches for the given compiler
IR fragments (referred to as “exact matching”) is simple to implement (e.g., this is done by the BYOC library in TVM [16]).

Manuscript submitted to ACM



10 Huang and Lyubomirsky, et al.

However, exact matching faces difficulties as there is often no canonical way to represent an operation, necessitating
either the addition of more patterns or manual modifications to the input program to match the expected patterns.
Developing a canonicalization for each given IR may be possible, but would require careful design per IR and further
effort to prove that the program transformations preserve the canonicalization [52]. Application code can vary greatly
in structure, particularly in the case of compiler IRs, which may be produced after several iterations of program
transformations (as with TVM, its model importers may translate equivalent expressions from various frameworks into
different Relay expressions).

Examples. In our LSTM-WLM, the compiler IR pattern for a linear layer is (as an S-expression [46]):

(bias_add (nn_dense %a %b) %c).

However, in ResNet-20, which was imported from MxNet, linear layers are equivalently expressed as:

(add (reshape (nn_dense %a %b) %s) %c)

when %c is a vector, for certain shapes %s. The former pattern would fail to match it, thus missing an opportunity to
invoke FlexASR’s linear layer operation.

3.3.2 Semantic matching via term rewriting. Rather than attempt to enumerate all semantically equivalent patterns (a
task that is tedious, error-prone, and likely to result in an incomplete enumeration), or expect users to modify their
application code to expose expected patterns (demanding knowledge of the model and patterns as well as engineering
effort), 3LA aims to maximize the degree of automation by utilizing term-rewriting and equality saturation techniques
to transform programs to expose the most matching opportunities for accelerator operation selection. We call this process
“flexible matching”, and describe how it is specialized for accelerators.

Flexible matching uses two kinds of rewrite rules:

• Compiler IR rewrite rules: These are general-purpose rules, independent of the accelerator, and are reusable
and composable for various applications. We have developed a general set in 3LA including rules for, e.g.,
merging/splitting tensors, commutativity, associativity, and identities for common operators.

• IR-to-accelerator mapping rules: These rewrite rules are accelerator-specific. Recall (§3.2) that these mappings are
many-to-many, providing a general way to handle different granularities in compiler IR intrinsics and accelerator
operations. When targeting new accelerators, accelerator designers are expected to provide these mappings. For
our evaluation, we created these mappings for the operations supported by the accelerators.

All rewrites in 3LA are polymorphic over tensor size, which requires specifying relationships between the input
and output sizes for operations that merge, split, or broadcast over tensors. This also makes a given IR-to-accelerator
mapping more general and provides support for applications using different block sizes, strides, etc., without changing
any rules.

One benefit of separating the two kinds of rewrite rules in flexible matching is that this allows the compiler IR
rewrites to use purely functional IRs, without requiring bespoke compilation steps for state/effect analysis during
those rewrites, while stateful effects are limited to mappings, where they are formally specified by ILA instructions.
Another benefit is that mappings for multiple accelerators can be simultaneously included, thereby searching over all
opportunities to invoke all available accelerators in concert.

In the extraction phase of equality saturation, the rewritten program optimizing the cost function is chosen. This
provides flexibility in the criteria for selection among functionally equivalent candidates for accelerator offloads. In our
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evaluations where we focused on end-to-end functional testing, we used a simple cost function that maximizes the
number of accelerator invocations. More sophisticated cost functions can incorporate information about performance
or data movement costs, and thereby result in different offloads.

Examples. In our prototype, we compile programs in Relay into another IR called Glenside [66], which uses the
egg library [80] to implement equality saturation for tensor programs. In addition to matching the compiler IR-to-
accelerator mapping by adding them as rewrite rules in Glenside, this approach also facilitates additional matches
through the inclusion of general-purpose rewrite rules within Glenside, such as tensor shape transformations and
algebraic manipulations of combinators. These general-purpose rules allow the term-rewriting system to conclude that
different variations of an expression (like the linear layer examples above) are, in fact, equivalent. In our examples,
using the rewrite rules in Glenside exposed acceleration opportunities in both the LSTM-WLM and ResNet-20 programs
through specifying only a single IR-to-accelerator mapping rule for each accelerator operator.

It was not clear a priori whether flexible matching would be performant for accelerators with complex IR-to-
accelerator mapping rules needed for available accelerator designs. Our evaluation results (§5) show that powerful
compiler IR rewrites can be combined effectively with a few IR-to-accelerator mapping rewrites in flexible matching,
which finds more matches than exact matching in reasonable time.

3.4 3LA support for additional optimizations

The following 3LA design features provide support for additional optimizations: (1) IR-to-accelerator mapping: Recall
that our mappings are polymorphic over tensor size, i.e., we parameterize these mappings with arguments such as
sizes of the input/output data. On the accelerator side, the maximum sizes supported by a single accelerator offload are
limited by the accelerator-controlled hardware resources (e.g., buffer sizes, memory layout, internal/external memory,
etc.). (2) Flexible matching: Our technique provides optimization capabilities by including performance or other criteria
in the cost function, which is optimized for instruction selection.

In ongoing 3LA work, these features have supported the design of a “scheduler” that decomposes applications with
oversized layers to accelerator operations; i.e., it determines loop orders, tile sizes, etc., based on a specification of
the accelerator-controlled memory/hardware resources. For our current set of accelerators, our scheduler generates a
guaranteed optimal schedule with the least data movement between the host and accelerator for mapping single layers
in an application. It includes several novel techniques to prune the large search space (beyond the scope of this paper).
Importantly, it is fast enough (a few seconds in our experiments) to be used for cost estimation during flexible matching.

In future work, we plan to integrate this scheduler with flexible matching, thereby enabling optimization of data
movement or for considering possible tradeoffs with other costs. Another optimization opportunity we have identified
is in removing redundant intermediate data transfers in back-to-back offloads to accelerator operations. This can be
done in a pass after flexible matching and before code generation.

3.5 Co-Simulation for Application-Level Results

After the acceleration operation selection is done and specific portions of the application are marked as offloaded to an
accelerator, we can co-simulate the results at the full-application level rather than for only individual operators. Namely,
the portions of the applications that are not marked are directly executed on the host (generally a CPU) and the marked
portions converted into their corresponding ILA instruction sequences are simulated via an ILAng-generated simulator.
Note that the ILAng-generated simulators faithfully simulate the custom numerics, either using semantics formally
modeled in the ILA specification or by accepting trusted software libraries that implement custom numerical data types.
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Fig. 5. Prototype implementation of the 3LA flow. The green boxes represent additional inputs needed for the 3LA flow. The
blue boxes represent the mostly automated capabilities added by the flow. The ILA specification model can also be used to formally
verify the accelerator RTL implementation (as demonstrated in prior work [31]). The compiler IR rewrite rules and IR-to-accelerator
mapping rules can support other compiler optimization and verification tasks.

Examples. In §5, we examine the application of the 3LA methodology on several DL applications. In the process,
upon identifying a numerical accuracy issue with HLSCNN in ResNet-20 and MobileNet-V2, we rapidly explored
revisions to the design by changing the ILA specification—a much simpler task than modifying the RTL.

4 3LA PROTOTYPE IMPLEMENTATION

As a demonstration of the 3LA methodology, we have implemented an end-to-end compilation and simulation flow
for DL applications by integrating with existing compiler frameworks and the ILAng platform [30], as shown in
Fig. 5. Specifically, our prototype is integrated into the TVM DL compiler and uses Relay as the representation for
DL applications [14, 62]. We convert Relay programs into Glenside, and then perform flexible matching via equality
saturation on tensor programs using egg [66, 80]. Finally, we use ILAng for co-simulating the compiled applications.

DSL Front-End. TVM is a compiler framework for DL applications. We make use of TVM’s model importer as the
front-end for DSL programs. The importer takes programs written in common DL DSLs (e.g., ONNX [43], PyTorch [55],
and TensorFlow [1]) and translates them into Relay.

Flexible Matching. As described earlier (§3.3), we implement flexible matching by translating input programs from
Relay into Glenside. Given both compiler IR rewrites and IR-to-accelerator mappings via Glenside, egg explores the
space of acceleration opportunities using equality saturation.

Code Generation. Once flexible matching completes, the extracted rewritten program is translated back to Relay
where accelerator operations are specially annotated. In our prototype, we use TVM’s BYOC library [16] to implement
code generation (i.e., MMIO instructions and data movement code) for these accelerator operations.

5 EVALUATION

In this section, we evaluate our prototype for end-to-end testing with six applications and three accelerator designs. We
focus especially on (1) automated identification of acceleration opportunities, and (2) application-level validation using
automated co-simulation. Note that other tools provide very little automated support (if any) for these two capabilities,
thus precluding any head-to-head comparisons. We also report on operator-level evaluation (accuracy and performance)
and FPGA-based deployment.
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5.1 Target Accelerators

We added support for three DL accelerators that provide hardware operators at different levels of granularity:

(1) FlexASR is an accelerator for speech and natural language processing (NLP) tasks that supports various RNNs [68].
It uses a custom numeric data type called AdaptivFloat for boosting the accuracy of quantized computations [69].

(2) HLSCNN is an accelerator optimized for 2D convolutions [78]. It operates on mixed 8/16-bit fixed point data (8 bits
for storing weights and 16 bits for computations).

(3) VTA is a parameterizable accelerator for tensor operations featuring a processor-like design [50]. It supports
element-wise arithmetic operations as well as generalized matrix multiplication, operating on 8-bit integer data.

For each accelerator, we defined an ILA model and a set of IR-to-accelerator mapping rules. The ILA models for
FlexASR, HLSCNN, and VTA are approximately 5600, 1600, and 2100 lines of ILAng code (C++), respectively. The
high-level synthesis (HLS) implementations of the accelerators are about 9300 (SystemC), 5100 (SystemC), and 6900
(Chisel) LoC, respectively; the ILA specifications are thus of modest size, compared even to the relatively compact
HLS implementations. For each IR-to-accelerator mapping rule, we represent the compiler side in Glenside IR, and the
accelerator side as a program composed of ILA instructions (in a Python-embedded DSL). The total size of mapping
rules (both the compiler and accelerator sides) for FlexASR (5 mappings), HLSCNN (1 mapping), and VTA (1 mapping)
was 186, 22, and 49 LoC, respectively. Recall that these mappings are polymorphic over tensor size on both sides,
leading to general and compact representations. Additionally, the BYOC-based code generators and runtimes for these
accelerators are approximately 450, 300, and 900 LoC of C++, respectively. These indicate the implementation of the
code generation module in our prototype, as well as reusable utilities for data movement, handling custom numerics,
and emitting the low-level MMIO code for each selected accelerator offload for end-to-end simulation of the application.

5.2 Target Applications

We considered six DL applications corresponding to common neural network models for language and vision tasks that
contain operators supported by the three target accelerators. We selected applications with reasonable size for human
inspection and in-depth analysis.

(1) EfficientNet is a recent convolutional neural network (CNN) designed for image classification [70]. It has convolu-
tions that are supported by VTA and HLSCNN.

(2) LSTM-WLM is a text generation application [81] implemented using an LSTM recurrent neural network architec-
ture [22]. The LSTM layer in this model is supported by FlexASR.

(3) MobileNet-V2 is a common CNN designed for mobile applications [28, 63]. We chose MobileNet-V2 due to its wide
use, especially on embedded devices.

(4) ResMLP is a recent residual network for image classification, comprised only of multi-layer perceptrons [72]. Its
linear layers could be accelerated by VTA and FlexASR.

(5) Transformer is an NLP model comprised primarily of attention mechanisms [75]. We chose Transformer as a
representative of recent popular NLP models.

(6) ResNet is a popular CNN designed for image classification [27]. Besides ResNet-20, which we use in most of
the evaluation, in §5.3, we additionally compare various implementations of ResNet-50 from MLPerf [49] for its
availability of different reference implementations.

All applications were mapped to accelerators without any manual modifications.
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Table 2. End-to-end compilation statistics. The total number of Relay operators (row 3) is given as a proxy for program complexity.
In rows 4-6, we include rewrites for only one accelerator at a time; we do not offload to multiple accelerators at once like in §5.5.
Flexible matching identifies significantly more offloads than exact matching. Abbreviations: MN: MobileNet, Trans.: Transformer, and
TF: TensorFlow.

Application Statistics
1 Application EfficientNet LSTM-WLM MN-V2 ResMLP Trans. ResNet-20 ResNet-50
2 Source DSL MxNet PyTorch PyTorch PyTorch PyTorch MxNet PyTorch ONNX TF
3 #Relay Ops 232 578 757 343 872 494 709 194 609

Number of Static Accelerator Offloads Identified Using Exact Matching/Flexible Matching
4 FlexASR 0/35 1/1 0/41 0/38 0/66 2/22 0/54 0/54 0/54
5 HLSCNN 35/35 0/0 40/40 0/0 0/0 21/21 53/53 53/53 0/53
6 VTA 0/35 36/36 1/41 38/38 66/66 0/22 0/24 0/24 0/24

5.3 Identifying Acceleration Opportunities

We took the six DL applications, developed by different teams in different DSLs, and compiled them for the three target
accelerators. Our compiler successfully generated code that exploits the accelerators for supported computations.

Table 2 shows the compilation statistics of using exact matching and flexible matching. Note that some accelerator
operators correspond to multiple Relay operators; in particular, the LSTM RNN in LSTM-WLM corresponds to 566
Relay operators and maps to one FlexASR operator, which shows 3LA effectively overcoming a dramatic granularity
mismatch between the compiler IR and accelerator operators.

Our results demonstrate 3LA’s viability across a range of DL applications and accelerators with the successful
identification of acceleration opportunities and provide evidence for the utility of flexible matching. For example, the
linear layer rewrite (§3.3) resulted in 66 invocations of FlexASR’s linear layer in Transformer and 38 in ResMLP, in
comparison to exact matching that produced no match. Furthermore, certain Glenside rewrites [66] that implement the
im2col optimization [12] rewrite 2D convolutions into matrix multiplications; for VTA, this resulted in additional 35
invocations in EfficientNet, 22 in ResNet-20, and 40 in MobileNet-V2. Hence, flexible matching allowed us to support 2D
convolutions on VTA even when there is no IR-to-accelerator mapping that maps 2D convolutions to VTA instructions.
Another rewrite that turns lone matrix multiplications into linear layers (by a zero-vector bias) works in concert
with the im2col rewrites, resulting in offloads of 2D convolutions onto FlexASR in EfficientNet, MobileNet-V2, and
ResNet-20—thus allowing an accelerator for NLP applications to also accelerate vision applications. Note that these
additional acceleration opportunities were identified automatically and are examples of emergent effects resulting from
simple, reusable (accelerator-agnostic) compiler IR rewrite rules.

We additionally evaluate the robustness of flexible matching by comparing the three implementations of ResNet-50
from MLPerf [61] in Table 2, right. Their Relay representations differed in subtle ways (such as in reshaping operators)2

and are reflected in the difference in results of exact matching. Flexible matching found the same (increased) number of
matches for each accelerator, regardless of its source DSL.

5.4 Per-Operator Evaluation

Although evaluating individual operators does not suffice to characterize how an accelerator performs on a full
application, it is a basic first step and provides insights on the identified acceleration opportunities. Here, we discuss
functional validation and performance evaluation at the operator level.

2For example, the TensorFlow implementation takes data in NHWC format rather than NCHW; Glenside can rewrite convolutions to use NCHW.
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Table 3. Simulation-based validation results for checking IR-to-accelerator mappings (partial). The average relative error
(Avg. Err.) and the standard deviation (Std. Dev.) of errors are measured over 100 test inputs. For VTA, there was no error because the
host supports 8-bit integer operations.

Accel. Operation Avg.Err. Std.Dev.
1 VTA All ops 0.00% 0.00%
2 HLSCNN Conv2D 1.78% 0.16%
3 FlexASR LinearLayer 0.84% 0.29%
4 FlexASR LSTM 1.21% 0.19%
5 FlexASR LayerNorm 0.27% 0.20%
6 FlexASR MaxPool 0.00% 0.0%
7 FlexASR MeanPool 1.79% 0.28%
8 FlexASR Attention 4.22% 0.09%

5.4.1 Functional Validation. The 3LA methodology readily enables operator-level validation through auto-generated
ILA simulators. In our experiments, we compared the outputs of the accelerator ILA simulator and those of TVM’s
runtime on host. The accelerator ILA simulators precisely model the data types used by the accelerators. For the
reference results (TVM’s runtime), we use 8-bit integer for comparing against VTA and 32-bit floating point for the
other accelerators, as these are the closest host processor data types to those used by the accelerators. We measure
the relative errors by using the standard Frobenius Norm [2] for the tensors based on the reference and accelerator
generated output values as follows: 𝐸𝑟𝑟𝑜𝑟 = ∥𝑂𝑢𝑡𝑟𝑒 𝑓 −𝑂𝑢𝑡𝑎𝑐𝑐 ∥𝐹 /∥𝑂𝑢𝑡𝑟𝑒 𝑓 ∥𝐹 .

Table 3 shows a selected subset of the validation results: four IR-to-accelerator mappings (Rows 1-4) that are used
in the full application compilation (Table 2) and four additional mappings for non-trivial operations (Rows 5-8). Note
that some mappings introduce no numerical differences; e.g., the TVM runtime supports 8-bit integer execution, so
the results for VTA match perfectly. For other mappings, we see deviations caused by the custom numerics, especially
for complex operators such as the attention operator on FlexASR. Such deviations should be carefully assessed in the
context of application-level validation, as even small deviations could accumulate and affect the final accuracy.

5.4.2 Performance Evaluation. We also evaluated the performance gain of offloading operations from the host to
accelerators using cycle counts as the performance metric, since we did not have clock frequencies for an SoC containing
the host and accelerators. For accelerators, we derived the cycle counts based on their cycle-accurate models (VTA’s
Chisel model and FlexASR’s and HLSCNN’s SystemC models). For the host, we measured averaged cycle counts (1000
random inputs) in TVM’s runtime on one pinned EPYC-7532 core.

Fig. 6 shows the performance gains (ratio of host to accelerator cycles) of all identified acceleration opportunities in
ResNet-20 and MobileNet-V2 when operations are offloaded from the host to VTA, HLSCNN, and FlexASR, respectively.
Overall, as expected, all offloads resulted in performance gains relative to the host; we also see that accelerators
providing coarser-grained operators (e.g., FlexASR), supported with higher parallelism, achieve higher performance
gain per operator compared to finer-grained accelerators like VTA.

5.5 Application-Level Validation Through Co-Simulation

We performed application-level co-simulation by using the ILAng-generated simulators for accelerator computations
and the host CPU for the rest of the computation. We considered three applications, which between them provide
opportunities to use each of the three accelerators: (1) LSTM-WLM, where we accelerate linear layer and LSTM
operations on FlexASR; (2) ResNet-20, where we accelerate convolutions on HLSCNN and linear layers on FlexASR;
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Fig. 6. Cumulative distribution of per-operator performance gains of all identified acceleration opportunities in ResNet-20
(RN20) and MobileNet-V2 (MNv2) on the three accelerators. Each point represents an operation offloaded from the host to the
accelerator (as identified by flexible matching, Table 2). The 𝑥-axis shows the host-to-accelerator cycle count ratio of each offloaded
operation and the 𝑦-axis shows the cumulative distribution of offloaded operations. Points and plots more to the right are better;
e.g., coarse-grained operators, supported with higher parallelism in FlexASR, offer greater speedup compared to the fine-grained
operators in VTA.

and (3) MobileNet-V2, where we accelerate convolutions and linear layers as in ResNet-20 and additionally accelerate
both these operations on VTA (due to the im2col rewrites). In ResNet-20 and MobileNet-V2, we were able to explore

using HLSCNN and FlexASR together and separately, simply by varying which IR-to-accelerator mappings we included
in flexible matching.

We trained and validated the LSTM-WLM model using the WikiText-2 dataset [48]. The image classification models
(MobileNet-V2 and ResNet-20) were trained and validated using the CIFAR-10 dataset [17].

Table 4 shows the application-level co-simulation results. For LSTM-WLM, the application-level results using the
accelerators did not differ greatly from the reference results. In the case of FlexASR, this was the first time it had been
run end-to-end on a full application—this provided validation for its AdaptivFloat data type. For VTA on MobileNet-V2,
there was a small decrease in accuracy that may be attributed to quantization error.3

However, the initial results for ResNet-20 and MobileNet-V2 using HLSCNN revealed a large loss in accuracy. We
noticed that the linear layers accelerated by FlexASR did not impact the final accuracy, suggesting the issue stemmed
from HLSCNN (for which this was also the first time it was run in an end-to-end application). We then instrumented our
3LA prototype to record additional information for each accelerator invocation, such as input and output ranges. This
helped the accelerator developers determine that the loss of accuracy was due to a lack of dynamic range in the data
type: weight data values in HLSCNN’s 2D convolutional layers were heavily quantized due to the narrow value range
of their 8-bit fixed point representation. After we updated the ILA specification (a much easier task than modifying the
RTL implementation) based on the developers’ suggestion to expand the fixed point representation to 16 bits and adjust
the binary points in inputs’ and accumulators’ fixed point data types, the accuracy recovered. This case study readily
demonstrates how the 3LA methodology facilitates debugging and improving accelerator designs with rapid turnaround.

The overall results in Table 4 reaffirm the need for application-level validation, especially for accelerators utilizing
custom numerics. Thanks to formal ILA models, 3LA provides quick design space exploration and numerics tuning

3We apply a form of uniform quantization [33], which involves scaling the results based on the floating point reference results.
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Table 4. Application-level co-simulation results. In each test, we evaluated 2000 CIFAR-10 images (for vision tasks) or 100
WikiText-2 sentences (for text generation) that were evenly sampled from the corresponding dataset. The reference results were
obtained by running tasks in the original frameworks (MxNet for ResNet-20, PyTorch for the rest). The original results are for the
initial accelerator designs, modeled in ILA. The updated results, where provided, were obtained by modifying the ILA specifications
according to design revisions suggested by the accelerator developers. We measured the accuracy for image classification tasks
(ResNet-20, MobileNet-V2) and perplexity for text generation (LSTM-WLM).

Application Processing Platform Reference Result∗ Original Result Updated Result Avg. Sim. Time†

LSTM-WLM FlexASR 122.15 121.97 N/A 22.4s
ResNet-20 FlexASR 91.55% 91.50% N/A 11.6s

HLSCNN 91.55% 29.75% 92.10% 7min 3s
FlexASR & HLSCNN 91.55% 29.15% 91.85% 7min 6s

MobileNet-V2 VTA 92.40% 89.40% N/A 20min 15s
FlexASR 92.40% 92.30% N/A 18.1s
HLSCNN 92.40% 10.35% 91.50% 20min 33s

FlexASR & HLSCNN 92.40% 10.35% 91.20% 21min 01s

∗ The reference result does not represent the best achievable accuracy/perplexity of the model on the given dataset.
This table is intended for comparing the application-level results on different processing platforms.
† Average simulation time of running one data point (e.g., an image or a sentence) on an AMD EPYC-7532 core.

without hardware engineering overhead in each design iteration. Further, it provides handy debugging information and
efficient simulation—for FlexASR, the ILA simulator yields a 30× speedup on average compared to RTL simulation.

5.6 System Deployment and FPGA Emulation

As an additional demonstration of 3LA, we explored its use in compiling workloads to a real hardware platform.
Specifically, we used our prototype to compile workloads to an FPGA emulation of FlexASR.4 We configured our
prototype to lower FlexASR ILA instructions to the corresponding MMIO commands for FlexASR, passing them to
the FPGA using the Xilinx SDK [82]. Next, we compiled and executed synthetic workloads in which LSTM layers and
linear layers were offloaded to the FlexASR accelerator. The results matched those of the ILAng-generated simulator bit
for bit, providing validation for the custom numerics. This is a proof of concept for utilizing the 3LA methodology for
an actual deployment, above and beyond simulation-based testing.

6 RELATEDWORK

Software/Hardware Co-Design. Recent work on accelerator generation and integration [5, 73] has explored adding
support in the Halide [58] compiler flow for specialized Coarse-Grained Reconfigurable Array (CGRA) accelerators.
That work composes an impressive array of custom tools to generate and verify specialized CGRA accelerators and
also map Halide program fragments down to accelerator invocations. HeteroCL [39] also provides a similar custom
flow. By contrast, the 3LA methodology supports software/hardware co-design by mitigating impedance mismatches
between the granularity of high-level DSLs and near-arbitrary accelerators; because of the flexibility of the ILA, the
3LA methodology is applicable to a broader class of compilers and accelerators.

Pattern Matching Accelerator Calls. The most closely related work to flexible matching is from (1) TVM BYOC [16],
which only provides exact syntactic matching as discussed in §2, and (2) Glenside [66], which, prior to this work, had
not been integrated into a compilation pipeline nor used to target custom accelerators. Past work has also explored
4We synthesized and placed-and-routed the FlexASR accelerator on a Xilinx Zynq ZCU102 FPGA, which consumed 86% of the available LUT resources.
Due to the significant engineering overhead of FPGA emulation, FlexASR is the only accelerator we deployed on an FPGA.
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rewrite-based techniques for automatically inferring instruction selection passes between ISAs [20, 59] and in the
context of superoptimization [6, 7]. Rewriting in 3LA instead operates on a high-level IR to expose opportunities to
invoke code generators, rather than performing low-level code generation directly. Equality saturation has been used in
the context of ML and DSP compilers for optimization [38, 74, 83]. There has also been significant work on ML and HPC
compiler frameworks with varying degrees of support for targeting custom accelerators [14, 41, 44, 50, 58]. To the best
of our knowledge, none of these frameworks provides support for testing prototype accelerators designs end-to-end on
unmodified source applications.

Validating and Verifying Accelerator Calls. Tools like Verilator [76] and Cuttlesim [56] enable cycle-accurate RTL
simulation, but are too slow to enable application-level co-simulation. Co-simulation using faster high-level SystemC [3]
models partially address this gap; however, the SystemC models need to be independently written and, unlike ILA
models, do not have a clear formal verification path to RTL. Further, general SystemC models do not target MMIO
interfaces and may have arbitrary levels of detail. Other work has targeted formal verification of code generation for
accelerators [32, 44], but does not have a path to RTL design verification that is possible with ILAs.

Support for Diverse DSLs. Our 3LA prototype supports importing from various DL frameworks (including MxNet [13],
PyTorch [55], TensorFlow [1], ONNX [43], and CoreML [18]) via TVM’s importers to the Relay IR. Similar to Relay,
MLIR [41] now also supports importing models from various frameworks; the 3LA approach complements such flows
as demonstrated in our prototype. In contrast, Exo [32] presently has no support for importing other representations.

7 CONCLUSIONS

In this work we address the key gaps hindering application-level evaluation of accelerator designs, especially during
early design stages. We propose the 3LA methodology that contributes (1) the use of a formal software/hardware
interface for specifying accelerator operations, which enables identifying acceleration opportunities and automatically
generating correct high-level simulators, and (2) compiler rewrites and equality saturation for flexible matching, which
facilitates automatically searching through a large space of equivalent programs to find acceleration opportunities. We
provide a 3LA prototype implementation for DL applications using the TVM and ILAng frameworks and evaluate it
through automated compilation of six applications on three different accelerator platforms.
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