Abstract
In this paper, we provide several methods to construct nonlinear resilient functions with multiple good cryptographic properties, including high nonlinearity, high algebraic degree, and non-existence of linear structures. Firstly, we present an improvement on a known construction of resilient S-boxes such that the nonlinearity and the algebraic degree will become higher in some cases. Then a construction of highly nonlinear t-resilient Boolean functions without linear structures is given, whose algebraic degree achieves n-t-1, which is optimal for n-variable t-resilient Boolean functions. Furthermore, we construct a class of resilient S-boxes without linear structures, which possesses the highest nonlinearity and algebraic degree among all currently known constructions.