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Family-Personalized Dietary Planning with Temporal Dynamics

Pedro Hespanhol and Anil Aswani

Abstract— Poor diet and nutrition in the United States has
immense financial and health costs, and development of new
tools for diet planning could help families better balance their
financial and temporal constraints with the quality of their diet
and meals. This paper formulates a novel model for dietary
planning that incorporates two types of temporal constraints
(i.e., dynamics on the perishability of raw ingredients over time,
and constraints on the time required to prepare meals) by ex-
plicitly incorporating the relationship between raw ingredients
and selected food recipes. Our formulation is a diet planning
model with integer-valued decision variables, and so we study
the problem of designing approximation algorithms (i.e, algo-
rithms with polynomial-time computation and guarantees on
the quality of the computed solution) for our dietary model.
We develop a deterministic approximation algorithm that is
based on a deterministic variant of randomized rounding, and
then evaluate our deterministic approximation algorithm with
numerical experiments of dietary planning using a database of
about 2000 food recipes and 150 raw ingredients.

I. INTRODUCTION

Poor diet and nutrition in the United States costs an

estimated $700 billion per year [1], [2] due to increases in

diseases like type 2 diabetes and cardiovascular disease. Diet

quality is also important for managing body weight [3], [4].

Given the importance of diet in maintaining good health,

clinically-supervised programs [5]–[7] provide nutritional

counseling to encourage participants to improve their diet.

Since such counseling is costly, clinicians are studying

how the sensing, computation, and communication capabil-

ities of mobile devices can be integrated into the design

of clinically-supervised programs in order to reduce costs

[4], [7]. More recently, adaptive control [8], [9] has been

used to personalize the physical activity goals and scheduling

of counseling sessions in weight loss programs. However,

the control problem of designing personalized dietary plans

that consider the temporal constraints imposed by ingredient

purchasing and perishability has been less well-studied.

A. Dietary Planning

Diet planning was one of the first optimization problems

to be formulated [10]. Existing formulations have focused

on the problem of selecting a set of raw food ingredients

subject to a financial budgetary constraint and bounds on

the nutrients of the selected ingredients. The earliest formula-

tions focused on linear programs (LP’s) in which continuous

quantities of ingredients are selected [10]. More recent
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formulations (including those used for governmental policy

decision-making) focus on minimizing convex functions of

continuous quantities of ingredients [11] or selecting discrete

(i.e., integer-valued) quantities of menu items [12].

However, a substantial weakness [13] of these formula-

tions is they do not include constraints for time required to

prepare meals from the raw ingredients. Furthermore, these

formulations do not consider that raw ingredients leftover

from a previous time period could be used to prepare meals

in the current time period. One contribution of this paper is

to formulate a new model for dietary planning that includes

these two types of temporal constraints: constraints for the

amount of time to prepare meals, and constraints to describe

how raw ingredients can be used over multiple time periods.

Our formulation for dietary planning includes the two

types of temporal constraints by explicitly including the

joint choices of deciding which raw ingredients to purchase

at each time period and which recipes/meals to prepare at

each time period. And the goal is to choose these two

sets of integer-valued quantities in order to maximize the

quality of the selected meal plans. This paper does not

study how to estimate preferences, but instead assumes that

preferences are already known; however, in principle inverse

optimization or other learning-based approaches [8], [14]–

[17] could potentially be used to estimate the preferences of

meal plans with different sets of raw ingredients and meals.

B. Approximation Algorithms for Integer Packing

Because the model for designing dietary plans involves

integer optimization, numerical solution requires develop-

ment of algorithms that can scale to large time horizons and

large numbers of instances (for each family). Approximation

algorithms for integer optimization provide some possible

insights. Let U ∈ [0, 1]d1×m, u ∈ [1,∞)d1 , and c ∈ [0, 1]m

with ‖c‖∞ = 1. Then a packing integer problem (PIP) is

max{cTx | Ux ≤ u, x ∈ Z
m
+ }. (1)

Approximation algorithms (i.e., polynomial-time compu-

tation with a bound on the suboptimality of computed

solutions) based on randomized rounding [18] or pessimistic

estimators [19], [20] have been developed for PIP’s. Un-

fortunately, these algorithms cannot handle the constraints

Ax1 ≤ Bx2, where matrices A,B have nonnegative entries

and x1, x2 is a partition of the decision variable x, which is

necessary to constrain the relationship between selected food

recipes and purchased raw ingredients. A second contribution

of this paper is to develop approximation algorithms using

randomized rounding and pessimistic estimators for a more

general formulation with constraints of the form Ax1 ≤ Bx2.
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C. Outline

We first present a new formulation of dietary planning with

temporal dynamics. This formulation includes the problem

of selecting both raw ingredients and food recipes, and in

this way allows inclusion of two temporal constraints that

limit the time required to prepare meals and capture the

dynamics of perishability of raw ingredients over time. This

formulation is a diet planning model that involves integer

optimization, and we define an abstract optimization prob-

lem we call a generalized packing integer program (GPIP)

that includes our model as a special case. We construct a

randomized approximation algorithm to solve GPIP, and then

we extend this algorithm in order to construct a deterministic

approximation algorithm. The deterministic approximation

algorithm provides solutions of the same quality as the

randomized approximation algorithm; but whereas the ran-

domized algorithm does not always return a feasible solution,

the deterministic algorithm always returns a feasible solution.

(This is a general feature of comparison between determin-

istic and randomized approximation algorithms [19], [20].)

Finally, we conclude with a simulation study to evaluate the

computational scaling and solution quality of dietary plans

produced by our approximation algorithms.

II. DIETARY PLANNING AND PACKING PROBLEMS

This section first describes our approach for dietary plan-

ning with temporal constraints to model the perishability of

ingredients. By changing the coefficients in this formulation,

our dietary plans can be personalized to accommodate dif-

ferent food preferences and dietary restrictions. Next, we

describe an abstract problem that we call a generalized

packing integer program (GPIP), and we briefly explain how

our dietary planning problem is a special case of GPIP.

A. Dietary Planning Model with Temporal Dynamics

Let [r] = {1, . . . , r}. We propose performing dietary

planning by solving the following optimization problem:

max
xn,yn

∑N
n=1 v

Txn + wTyn

s.t. zn = yn + yn−1 − Pxn−1, for n ∈ [N ]

Pxn ≤ zn, for n ∈ [N ]

Fxn ≤ h, for n ∈ [N ]
∑N

n=1 xn,r ≤ fr, for r ∈ [R]

tTxn ≤ T, bTyn ≤ B, for n ∈ [N ]

xn ∈ Z
m, yn ∈ Z

k, zn ∈ R
k for n ∈ [N ]

(2)

The intuition of this optimization problem is as follows:

The xn,r ∈ Z denotes the quantity of recipe r selected at

time period n. Similarly, the yn,i ∈ Z indicates the number

of packages of ingredient i purchased at the n-th time period,

while the zn,i ∈ R are the portions of packages i available for

cooking at the n-th time period. The goal is to select recipes

and ingredients that maximize a linear utility function.

The dynamics zn = yn + yn−1 − Pxn−1 say the portion

of packages at n is equal to the the number of packages

purchased at n plus the portion of packages remaining from

the last time period n−1. This model incorporates the notion

of perishability of ingredients, and for simplicity we assume

ingredients expire after two time periods; however, these

dynamics could be suitably modified to model that different

ingredients will have different time horizons of perishability.

The constraint Pxn ≤ zn ensures sufficient portions of

ingredient packages are available to prepare the recipes that

have been selected, while Fxn ≤ h ensures that appropriate

nutrition (e.g., calories, vitamins, fat content) is obtained

from the chosen recipes. The
∑N

n=1 xn,r ≤ fr inequalities

place a limit on the number of times particular recipes

are selected over the entire planning horizon N . (Note that

fr = 0 ensures that no amount of recipe r is selected.) The

tTxn ≤ T inequality constrains the total time to prepare all

the recipes at n to be within the time budget T , and the

bTyn ≤ B inequality ensures that the total cost of ingredient

packages purchased at n is less than a financial budget B.

B. Generalized Packing Integer Program (GPIP)

Next we describe a general class of optimization problems.

Let A ∈ [0, 1]n×m, B ∈ [0, 1]n×k, U ∈ [0, 1]d1×m, V ∈
[0, 1]d2×k, u ∈ [1,∞)d1 , v ∈ [1,∞)d2 , c1 ∈ [0, 1]m, and

c2 ∈ [0, 1]k with ‖c1‖∞ = 1 and ‖c2‖∞ = 1. Then we

define a general packing integer problem (GPIP) as

max cT1x+ cT2 y

s.t. Ax ≤ By

Ux ≤ u, V y ≤ v

x ∈ Z
m
+ , y ∈ Z

k
+

(3)

This is closely related to our dietary planning model (2) with

temporal constraints, since we can replace zn in the con-

straint Pxn ≤ zn by its dynamics zn = yn+yn−1−Pxn−1;

this leads to the GPIP structure after rearranging the terms of

the resulting inequality. Though GPIP only contains integer

variables, our approximation algorithms generalize naturally

to the case where some variables in GPIP are continuous.

III. RANDOMIZED ALGORITHM FOR GPIP

This section designs a randomized approximation algo-

rithm to solve the GPIP problem. To simplify the exposition,

we will assume without loss of generality that the decision

variables in GPIP are binary: x ∈ {0, 1}m and y ∈ {0, 1}k.

Recall that (x̂, ŷ) is a solution to the LP relaxation of (3) if it

solves the modified optimization problem that consists of (3)

but with the last constraints replaced with x ∈ R
m
+ , y ∈ R

k
+.

Our general approach (similar to the approach of [18] in

approximating PIP) is to first solve the LP relaxation of

(3) and then strategically round this solution. Algorithm 1

summarizes our randomized approximation algorithm.

The key technical challenge is finding an appropriate

rounding strategy that allows us to bound the quality of the

resulting solution. In order to round the solution, we will

construct two random vectors X and Y such that a single

sample from these two vectors provides a good solution to

GPIP. Define (x′, y′) = (x̂/α, ŷ/γ) where pγ = α, p > 1,

and γ > 1. Let Xi ∈ {0, 1}m be a vector of independent



Bernoulli random variables where the success probability of

the i-th component is x′

i. Similarly, let Yi ∈ {0, 1}k be a

vector of independent Bernoulli random variables where the

success probability of the i-th component is y′i.

A. Deviation Bounds for Single Events

We consider undesirable events that correspond to con-

straints being violated by the randomized solution or to the

objective function value with the rounded solution being

small. Let the first subscript on a matrix be the row, and

let the second subscript be the column. For example Ai is

the i-th row of matrix A, while Aij is the ij-th entry of A.

With this notation, undesirable events are given by

Ei := (AT

i X > BT

i Y )

Qi := (UT

i X > µ1
i (1 + δ1i ))

Ri := (V T

i Y > µ2
i (1 + δ2i ))

En+1 := (cT1X + cT2Y < µn+1(1− δn+1))

(4)

where for a constant β we have that

µ0
i = E(AT

i X)

µ1
i = E(UT

i X) δ1i = ui/µ
1
i − 1

µ2
i = E(V T

i Y ) δ2i = vi/µ
2
i − 1

µn+1 = E(cT1X + cT2Y ) δn+1 =
cT1 x̂+ cT2 ŷ

αβµn+1

(5)

Without loss of generality, we assume µ0
i , µ1

i , µ2
i are strictly

positive because we can eliminate any decision variables xi

with x′

i = 0 or yi with y′i = 0 by setting them to zero and

then considering GPIP with those variables eliminated.

Let (xn)min = min{xn,i | xn,i > 0}. Our first step is to

quantify the likelihood of undesirable events occurring.

Proposition 1: We have the following probability bounds

P(Qi) ≤ G(ui/α, α− 1), ∀i ∈ [d1]

P(Ri) ≤ G(vi/γ, γ − 1), ∀i ∈ [d2]

P(En+1) ≤ H(z∗/α, 1− 1/β)

P(Ei) ≤ P(BT

i Y = 0) · P(AT

i X > 0)+

P(BT

i Y > 0) ·G((Bi)min/α, α− 1), ∀i ∈ [n]

(6)

where we have that G(µ, δ) = (exp(δ)/(1 + δ)(1+δ))µ and

H(µ, δ) = exp(−µδ2/2).
Proof: The first three inequalities follow by combining

the Chernoff-Hoeffding bound [19], [21] with the inequalities

from [20] that:

G(µ1
i , δ

1
i ) ≤ G(ui/α, α− 1), ∀i ∈ [d1]

G(µ2
i , δ

2
i ) ≤ G(vi/γ, γ − 1), ∀i ∈ [d2]

H(µn+1, δn+1) ≤ H(z∗/α, 1− 1/β).

(7)

Proving the fourth inequality requires additional work. We

condition on whether or not the random variable BT

i Y is

equal to the zero. If BT

i Y > 0 and AT

i X > BT

i Y , then

AT

i X is bigger than (Bi)min. Hence we get the bound

P(Ei) ≤ P(BT

i Y = 0) · P(AT

i X > 0)+

P(BT

i Y > 0) · P(AT

i X > (Bi)min). (8)

Algorithm 1 Randomized Rounding Algorithm for GPIP

Require: Constants α, γ
Require: LP Relaxation Solution x̂, ŷ

1: choose xi = 1 (resp., xi = 0) with probability x̂i/α
(resp., with probability 1− x̂i/α)

2: choose yi = 1 (resp., yi = 0) with probability ŷi/γ
(resp., with probability 1− ŷi/γ)

3: return (x, y)

Next define δ0i = (Bi)min/(µ
0
i )− 1. If (Bi)min ≥ E(BT

i Y ),
then δ0i ≥ 0 and we can use the Chernoff-Hoeffding bound

[19], [21]. On the other hand, we need to ensure that

(Bi)min ≥ µ0
i in order to get a deviation of the random

variable AT

i X above its mean. This requires α be multiplied

by the constant factor of ‖Ai‖1/(Bi)min. And so we have:

P(AT

i X > (Bi)min) ≤
P(AT

i X > µ0
i (1 + δ0i )) ≤ G(µ0

i , δ
0
i ) (9)

Since µ0
i ≤ (Bi)min/p and α > 1, the above bounds from

[20] give the fourth inequality.

B. Deviation Bound for Union of Events

To prove that Algorithm 1 is an approximation algorithm,

we need to next quantify the likelihood of the above de-

scribed undesirable events occurring. The following propo-

sition provides needed bounds for unions of undesirable

events:
Proposition 2: If α = Ω(m/k+(n+d1)

1/([B,u])min), β =

1−
√
2/

√
3, and γ = Ω(d

1/(v)min

2 ); then we have that

P(
⋃d1

i=1 Qi) < 1/5 P(
⋃d2

i=1 Ri) < 1/5

P(
⋃n

i=1 Ei) < 1/5 P(En+1) < 2/5
(10)

whenever (cT1 x̂+ cT2 ŷ)/α > 5.
Proof: Let x(S) be such that x(S)i = 1 if and only if

i ∈ S, and let y(T ) be such that y(T )j = 1 if and only if

i /∈ T . Next define the sets

F0
i = {S ⊆ [n], T ⊆ [k] : AT

i x(S) ≤ BT

i y(T )}
F1

i = {S ⊆ [n] : UT

i x(S) ≤ µ1
i (1 + δ1i )}

F2
i = {T ⊆ [k] : V T

i y(S) ≤ µ2
i (1 + δ2i )}

(11)

The F0
i and F1

i are monotone decreasing, while the F2
i are

monotone increasing. (A set F is monotone increasing if

S ⊆ T with S ∈ F implies T ∈ F , and F is monotone

decreasing if S ⊆ T with T ∈ F implies S ∈ F .)
Hence the Fortuin-Kasteleyn-Ginibre (FKG) inequality

[22] gives

P(
⋃d1

i=1 Qi) ≤ 1−∏d1

i=1(1 − P(Qi))

P(
⋃d2

i=1 Ri) ≤ 1−∏d2

i=1(1− P(Ri))
(12)

Proposition 1 implies we have P(
⋃d1

i=1 Qi) < 1/5 whenever

1 − (1 − exp((u)min − (u)min log(α)))
d1 < 1/5. If α ≥ 3,

then log(α) − 1 > 0 and there exists k′ > 0 such that

1− exp((u)min − (u)min log(α))) ≥
exp(−k′ exp(−(u)min log(α)− 1)). (13)



So we require the two inequalities:

exp(k′ exp(−(u)min log(α − 1)) > d1

√

4/5

− k′ exp((u)min)α
−(u)min > log( d1

√

4/5)
(14)

Let K2 = k′ exp((u)min) and K3 = −K2/ log(4/5), and

note that K2,K3 > 0. We have that

α > −(K2/ log
d1

√

4/5)1/(u)min , (15)

and so we require that α > (K3d1)
1/(u)min in order to

ensure P(
⋃d1

i=1 Qi) < 1/5. The same argument shows

P(
⋃d2

i=1 Ri) < 1/5 when we have that γ > p(K4d2)
1/(v)min

for a constant K4 > 0.

We next study P(
⋃n

i=1 Ei). Note we can decompose these

events as: Ei = E1
i

⋃

E2
i , where

E1
i := (AT

i X > BT

i Y ∧BT

i Y = 0)

E2
i := (AT

i X > BT

i Y ∧BT

i Y > 0)
(16)

The union bound gives

P(
⋃n

i=1 Ei) ≤ P(
⋃n

i=1 E
1
i ) + P(

⋃n
i=1 E

1
i ), (17)

and so P(
⋃n

i=1 Ei) < 1/5 whenever P(
⋃n

i=1 E
1
i ) < 1/10

and P(
⋃n

i=1 E
2
i ) < 1/10.

Applying the FKG inequality means we need

1−
∏n

i=1(1 − P(E1
i )) < 1/10

1−∏n
i=1(1 − P(E2

i )) < 1/10.
(18)

But note

P(E1
i ) = P(BT

i Y = 0) · P(AT

i X > 0) =

P(BT

i Y = 0) · (1−∏

j:Aij>0(1 − x′

j/α)) (19)

For any γ > 1 we have

maxi P(B
T

i Y = 0) = maxi(
∏

j:Bij>0(1−y′j)) ≤ Kk
5 (20)

where K5 := maxj(1− y′j) is a constant. We also have

(1−
∏

j:Aij>0(1 − x′

j/α)) ≤ 1− (1− ‖x′‖∞/α)m (21)

So P(E1
i ) ≤ Kk

5 · (1 − (1− ‖x′‖∞/α)m), and we require

1−∏n
i=1(1− P(E1

i )) ≤
1− (1−Kk

5 · (1− (1− ‖x′‖∞/α)m))n < 1/10 (22)

or equivalently that

(1− ‖x′‖∞/α)m > (Kk
5 − 1 + n

√

9/10)/Kk
5 . (23)

But Kk
5 − 1 < 0 and ‖x′‖∞ < 1 by construction, and so we

want

α > ‖x′‖∞/(1− (Kk
5 − 1 + n

√

9/10)1/m/K
k/m
5 ) ≥

(1− (Kk
5 − 1 + n

√

9/10)1/m/K
k/m
5 )−1 = O(m/k) (24)

where we have used the expansion

K
(1/m)
5 = O(1 + (K5 − 1)/m). (25)

Next define

K7 = min
i
(P(BT

i Y = 0)), (26)

and note that we have

P(E2
i ) ≤ (1 −K7) ·G((Bi)min/α, α− 1) (27)

by Proposition 1. So we get

P(E2
i ) ≤ (1−K7) · exp((Bi)min − (Bi)min log(α)), (28)

and we require

1−∏n
i=1(1− P(E2

i )) ≤
−(1−(1−K7) exp((Bi)min−(Bi)min log(α)))

n < 1/10.
(29)

Since α = pγ, for sufficiently large fixed k′′ we have

(1−K6) exp((Bi)min − (Bi)min log(α)) ≥
exp(−k′′ exp(−(Bi)min · (log(α)− 1))) (30)

for a constant K6. This means:

1−∏n
i=1(1− P(E2

i )) ≤
1− (exp(−k′′ exp(−(Bi)min(log(α)− 1))))n < 1/10

(31)

holds when p > (K8n)
1/(Bi)min for another constant K8.

This choice implies P(
⋃n

i=1 Ei) < 1/5 since pγ = α.

We lastly examine P(En+1). Using Chebyshev’s inequal-

ity and some algebra gives

P(cT1X + cT2Y < (cT1 x̂+ cT2 ŷ)/αβ) ≤
P(|cT1X + cT2Y − (cT1 x̂+ cT2 ŷ)/γ| >

√
2 · (cT1 x̂+

cT2 ŷ)/
√
3γ) ≤ 3/2 · (cT1 x̂+ cT2 ŷ)/γ < 3/10 (32)

when we have α > γ and (cT1 x̂+ cT2 ŷ)/α > 5. This implies

P(En+1) = P(cT1X+cT2Y < (cT1 x̂+cT2 ŷ)/αβ) < 2/5, (33)

which is the desired bound that was to be shown.

We can now prove our first theorem, which follows by

combining the above results.

Theorem 1: The parameters α, β, γ from Proposition 2 are

such that a feasible solution to GPIP generated by Algorithm

1 is an O(m/k+(n+d1+d2)
1/([B,u,v])min)-approximation.

Proof: If (cT1 x̂+ cT2 ŷ)/α ≤ 5, then Algorithm 1 gives

an O((n+d1+d2)
1/([B,u,v])min)-approximation. So we focus

on the case (cT1 x̂+ cT2 ŷ)/α > 5. Then by Proposition 2 and

the union bound we have:

P

(

⋃n+1
i=1 Ei

⋃d1

i=1 Qi

⋃d2

i=1 Ri

)

≤ P(
⋃n

i=1 Ei)+

P(En+1) + P(
⋃d1

i=1 Qi) + P(
⋃d2

i=1 Ri) < 1 (34)

This means a feasible solution generated by Algorithm 1 is

an O(m/k + (n+ d1 + d2)
1/([B,u,v])min)-approximation.



Algorithm 2 Deterministic Rounding Algorithm for Pes-

simistic Estimator
Require: Pessimistic Estimator U

1: for i = 1, . . . , ℓ do

2: if U(x1, . . . , xi−1, 1, pi+1, . . . , pℓ) < 1 then

3: choose xi = 1
4: else

5: choose xi = 0
6: end if

7: end for

8: return x

IV. DETERMINISTIC ALGORITHM FOR GPIP

We have constructed a randomized approximation algo-

rithm for GPIP, but randomized algorithms are not guaran-

teed to produce a feasible solution [19], [20]. In this section,

we construct a deterministic approximation algorithm that

always returns a feasible solution to GPIP. Let X be a vector

of independent Bernoulli random variables, where pi is the

probability Xi equals one. If L is a set with P(X ∈ L) < 1,

then we can find an x such that x /∈ L using Algorithm 2 that

uses a pessimistic estimator to upper bound the probability

of undesirable events. Our algorithm is more aggressive than

the approach from [19], [20], which rounds in order to reduce

the value of the pessimistic estimator; however, correctness

of our algorithm follows from the same proof in [19].

Definition 1 (Pessimistic Estimator [19]): The function

U : [0, 1]ℓ → R+ is a pessimistic estimator for set L and

Bernoulli random variables (X1, . . . , Xℓ) with probability

(p1, . . . , pℓ) of being one, if it satisfies the three properties:

1) U(p1, . . . , pℓ) < 1;

2) U(w1, . . . , wi, pi+1, . . . , pl) ≥
min{U(w1, . . . , wi, k, pi+2, . . . , pℓ) | k ∈ {0, 1}};

3) U(w1, . . . , wi, pi+1, . . . , pℓ) ≥ P[X ∈ L|Xk = w for

k ∈ [i]], for all i ∈ {0, . . . , ℓ} and w ∈ {0, 1}ℓ.

A. Constructing a Pessimistic Estimator for GPIP

To construct a deterministic approximation algorithm

for GPIP, we need to build a pessimistic estimator for

P

(

⋃n+1
i=1 Ei

⋃d1

i=1 Qi

⋃d2

i=1 Ri

)

. Natural candidate functions

are upper bounds to the probabilities of these events. Before

we provide these bounds, we define some notation: If w is

a binary vector, then X(j) = w indicates we fix the first

j components of the vector X to match w. We will use

u, Y similarly. With this convention, consider the following

functions that are used as pessimistic estimators for each

individual probability:

h1
i (j, w) = E[(1 + δ1i )

UT

i X−µ1
i (1+δ1i )|X(j) = w]

f1
i (j, w) = E[(1 + δ1i )

UT

i X−µ1
i (1+δ1i )|X(j + 1) = (w, 0)]

g1i (j, w) = E[(1 + δ1i )
UT

i X−µ1
i (1+δ1i )|X(j + 1) = (w, 1)]

(35)

and

h2
i (j, u) = E[(1 + δ2i )

V T

i Y −µ2
i (1+δ2i )|Y (j) = u]

f2
i (j, u) = E[(1 + δ2i )

V T

i Y −µ2
i (1+δ2i )|Y (j + 1) = (u, 0)]

g2i (j, u) = E[(1 + δ2i )
V T

i Y −µ2
i (1+δ2i )|Y (j + 1) = (u, 1)]

(36)

And we define the terms in (38). But the functions

h0, h1, h2, f1, f2, g1, g2, f0
x , f

0
y , g

0
x, g

1
y can be bigger than

one, and so we define:

h′0 = min{h0, 1}
h′1 = min{h1, 1} h′2 = min{h2, 1}
f ′1 = min{f1, 1} f ′2 = min{f2, 1}
g′1 = min{g1, 1} g′2 = min{g2, 1}
f ′0
x = min{f ′0

x , 1} f ′0
y = min{f0

y , 1}
g′0x = min{g0x, 1} g′0y = min{g0y, 1}.

(37)

With these definitions, we next construct (and prove its

correctness) a pessimistic estimator in Theorem 2.

Theorem 2: The parameters α, β, γ from Proposition 2 are

such that

3−∏n
i=1(1− h′0

i (j, u, w, l))−
∏d1

i=1(1− h′1
i (j, w))+

−∏d2

i=1(1− h′2
i (u, l)) + h0

n+1(j, u, w, l) (39)

is a pessimistic estimator for GPIP of the probability of

P

(

⋃n+1
i=1 Ei

⋃d1

i=1 Qi

⋃d2

i=1 Ri

)

. Furthermore, Algorithm 2

is an O(m/k + (n+ d1 + d2)
1/([B,u,v])min)-approximation.

Proof: The proof follows the approach of [20], though

one major difference is that we fix the order in which we

round the variables. More specifically, we first round the Y

variables, and then we round the X variables. The first step is

to prove some relations between the functions defined above:

0 ≤ f ′1(j, w) ≤ g′1(j, w) ≤ 1

(1 − pj+1)f
′1(j, w) + pj+1g

′1(j, w) ≤ h′1(j, w)
(40)

These relations also hold for h′2, f ′2, g′2. To see why they

hold we omit the superscript and proceed to prove both rela-

tions. Note that by fixing f ′(j, w) we see that it has the same

value of g′(j, w) except for the element xj+1 (or yj+1) which

has a nonnegative coefficient on either function. So by setting

it equal to one we do not increase the function value. The

first relation follows from this observation. To see the second

relation, note that h(j, w) = (1 − pj)f(j, w) + pjg(j, w)
by definition of conditional expectation. But if hi < 1 and

gi ≤ 1, then fi < 1; so the second relation follows. If hi < 1
and gi > 1, then fi < 1; so the second relation follows as

well. Lastly if hi ≥ 1, so h′

i = g′i = 1, and the second

relation follows again.

For h′0, f ′0
x , f ′0

y , g′0x , g
′0
y note that

h′0(j, u, w, l) = (1− qj) · f ′0
y (j, u, w, l)+

qj · f ′0
y (j, u, w, l). (41)

But when we condition on Y , then the terms associated with

X remain constant. So the relationship holds directly from



h0
i (j, u, w, l) = (

∏

k=1(1 − Yk|Y (u) = l))× (
∏

k=1(1−Xk|X(j) = w)) + (1 −∏

k=1(1−Xk|X(j) = w))×
E[(1 + δ0i )

AT

i X−µ0
i (1+δ0i )|X(j) = w]

f0
xi(j, u, w, l) = (

∏

k=1(1− Yk|Y (u) = l))× (
∏

k=1(1−Xk|X(j + 1) = (w, 0))) + (1−
∏

k=1(1− Yk|Y (u) = l))×
E[(1 + δ0i )

AT

i X−µ0
i (1+δ0i )|X(j + 1) = (w, 0)]

g0xi(j, u, w, l) = (
∏

k=1(1− Yk|Y (u) = l))× (
∏

k=1(1−Xk|X(j + 1) = (w, 1))) + (1−∏

k=1(1− Yk|Y (u) = l))×
E[(1 + δ0i )

AT

i X−µ0
i (1+δ0i )|X(j + 1) = (w, 1)]

f0
yi(j, u, w, l) = (

∏

k=1(1 − Yk|Y (u + 1) = (l, 0)))(
∏

k=1(1−Xk|X(j) = w))+

(1 −∏

k=1(1− Yk|Y (u+ 1) = (l, 0)))× E[(1 + δ0i )
AT

i X−µ0
i (1+δ0i )|X(j) = w]

g0yi(j, u, w, l) = (
∏

k=1(1− Yk|Y (u+ 1) = (l, 1)))(
∏

k=1(1−Xk|X(j) = w))+

(1 −
∏

k=1(1− Yk|Y (u+ 1) = (l + 1)))× E[(1 + δ0i )
AT

iX−µ0
i (1+δ0i )|X(j) = w]

h0
n+1(j, u, w, l) = E[(1− δn+1)

(cT1X+cT2Y )−µn+1(1−δn+1)|X(j) = w, Y (u) = l]
(38)

conditional probability. Next we condition on X . Observe

there are two cases. The first case is all BT

i Y are equal to

zero: Then

h′0(j, u) ≥ (1− pj)f
′0
x (j′, w, u) + pjf

′0
x (j′, w, u) (42)

since the only term present is (
∏

k=1(1 −Xk|X(j) = w)).
So the expression follows from the definition of conditional

probabilities. The second case is at least one Y is equal to

one; this case is similar to h′1, f ′1, g′1. So we have

h′0(j, u, w, l) ≥ (1− pj)f
′0
x (j, u) + pjf

′0
x (j, u)

= (1− qj)f
′0
y (j, u) + qjf

′0
y (j, u) (43)

and 0 ≤ f ′0
x (j, u, w, l) ≤ g′0x(j, u, w, l) ≤ 1 for all (j, u).

Next we prove (39) is a pessimistic estimator. Our α, β, γ
choice ensures the unconditional estimator is less than one,

and that it upper bounds the failure probability. So the result

follows if we prove the first two properties in Definition 1.

We show this by proving

U(w1, . . . , wi, pi+1, . . . , pℓ) ≥
pi+1 · U(w1, . . . , wi, 0, pi+2, . . . , pℓ)

+ (1− pi+1) · U(w1, . . . , wi, 1, pi+2, . . . , pℓ) (44)

conditioned on X , and by proving

U(w1, . . . , wi, pi+1, . . . , pℓ) ≥
qi+1 · U(w1, . . . , wi, 0, pi+2, . . . , pℓ)

+ (1− qi+1) · U(w1, . . . , wi, 1, pi+2, . . . , pℓ) (45)

conditioned on Y . Let pj and qj′ be the probability Xj, Yj′

equal one, respectively. Then:

E[(1 − δn+1)
ω(X,Y )|X(j) = w, Y (u) = ℓ] =

(1− pj+1) ·E[(1− δn+1)
ω(X,Y )|X(j) = (w, 0), Y (u) = ℓ]+

pj+1 · E[(1− δn+1)
ω(X,Y )|X(j) = (w, 1), Y (u) = ℓ] =

(1 − qj+1) · E[(1 − δn+1)
ω(X,Y )|X(j) = w, Y (u, 1) = ℓ]+

qj+1 · E[(1− δn+1)
ω(X,Y )|X(j) = w, Y (u, 1) = ℓ] (46)

where ω(X,Y ) = (cT1X + cT2Y )− µn+1(1 − δn+1).
There are now two cases, where we either fix Xj+1 or

fix Yj+1. The proofs are identical and so we consider the

first case where we fix Xj+1, which gives that
∏d2

i=1(1 −
h′2
i (j, w, u)) remains the same (since it only depends on the

values of Y . Thus it is sufficient to show that

∏d1

i=1(1− h1
i (j, w)) ≤

(1− pj+1)
∏d1

i=1(1 − f ′1
i (j, w))+

pj+1

∏d1

i=1(1− g′1i (j, w)) (47)

and

∏n
i=1(1− h′0

i (j, u, w, l)) ≤
(1 − pj+1)

∏n
i=1(1− f ′0

x,i(j, u, w, l))+

pj+1

∏b
i=1(1− g′0x,i(j, u, w, l)). (48)

This holds trivially for n = 1 by our choice of α, γ. Let

pj = p, and we omit the subscript for brevity. Next we

proceed by induction to show (51) (The proof for (50) is

analogous and is therefore ommitted): Assuming the above

holds for n− 1, we need to show that

∏n−1
i=1 (1 − h′0

i ) ≤
∏n−1

i=1 (1 − (1− p)f ′0
i − pg′0i ) ≤

∏n−1
i=1 (1 − p)f ′0

i +
∏n−1

i=1 pg′0i =

(
∏n−1

i=1 (1− p)f ′0
i +

∏n−1
i=1 pg′0i )(1− (1 − p)f ′0

n − pg′0n ) ≤
(
∏n

i=1(1− p)f ′0
i +

∏n
i=1 pg

′0
i ) (49)

Distributing and simplifying we get that

p(1− p)(g′0n − f ′0
n )(

∏n−1
i=1 (1− f ′0

i )+
∏n−1

i=1 (1− g′0i )) ≥ 0. (50)

The same holds for h1
i . This shows

U(x(j), y) ≥ (1− pj+1)U(X(j + 1), Y |Xj+1 = 0)+

pjU(X(j + 1), Y |Xj+1 = 1) (51)



TABLE I

OPTIMALITY GAP OF APPROXIMATE SOLUTIONS

Instance Size
Horizon (N ) Small Medium Large

1 35% (11%) 52% (9%) 55% (9%)
3 36% ( 7%) 48% (5%) 57% (5%)
5 35% ( 5%) 51% (4%) 68% (6%)
7 35% ( 5%) 53% (4%) 71% (5%)

10 34% ( 4%) 56% (4%) 74% (3%)

TABLE II

COMPUTATION TIME OF APPROXIMATE SOLUTIONS

Instance Size
Horizon (N ) Small Medium Large

1 0.01 (0.01) 0.02 (0.01) 0.09 (0.02)
3 0.03 (0.01) 0.14 (0.03) 0.56 (0.08)
5 0.06 (0.01) 0.27 (0.03) 1.34 (0.14)
7 0.09 (0.01) 0.56 (0.13) 2.49 (0.15)
10 0.19 (0.01) 0.95 (0.14) 4.38 (0.47)

and so

U(x(j), y) ≥ min{U(X(j + 1), Y |Xj+1 = 0),

U(X(j + 1), Y |Xj+1 = 1)}. (52)

This implies U is a pessimistic estimator.

V. COMPUTATIONAL RESULTS

This section describes the results of computational exper-

iments in which Algorithm 2 was used to solve the opti-

mization problem (2) corresponding to our dietary planning

formulation. We used a database constructed from a subset

of the Recipes Wikia [23] consisting of about 2000 food

recipes prepared from 130 raw ingredients. We conducted a

series of experiments based on three databases sizes: small

(20 recipes and 10 ingredients), medium (about 300 recipes

and 50 ingredients), and large (the full database). We also

varied the horizon N to be between one to ten weeks.

We conducted 100 repetitions where the food preferences

v, w in (2) were randomly chosen, and Table I shows the

average optimality gap – with respect to the LP relaxation

of (2) – of solutions computed using Algorithm 2; standard

deviation is in parenthesis. Table II shows the computation

time needed to calculate solutions using Algorithm 2. The

average solution time is in seconds, and the standard devi-

ation is in parenthesis. Our experiments were conducted on

a 2.2Ghz laptop computer with 8.00Gb of RAM and using

Gurobi 7.0 [24] to compute the LP’s for our algorithm.

VI. CONCLUSION

We gave a novel model formulation for dietary planning

with temporal constraints, abstracted this formulation into

a generalized packing integer program (GPIP), and con-

structed a deterministic approximation algorithm to solve

GPIP. Simulations with a real dietary database were used to

evaluate our algorithm. Interesting future directions include

improving our algorithm by either tightening the bounds of

the pessimistic estimators or by exploiting specific ordering

properties in the rounding that occurs in our algorithm.
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