
 

Network Evolution Analysis of Vehicle Road-Driving Behavior
Strategies and Design of Information Guidance Algorithm

Tong Lyu, Lefeng Shi*, and Weijun He

Abstract:    By analyzing the influence of time and safety factors on the behavior strategies of vehicles on
the  road,  a  network  game  evolution  model  between  drivers  that  considers  the  behavior  strategies  of  the
driving  vehicle  itself  and  its  neighbors  is  constructed,  and  the  competition  relationship  between  different
types of cars is studied. The influence of the proportion of driving vehicle types on the potential risk of the
road  is  also  discussed.  This  paper  presents  a  guidance  algorithm  for  vehicle  dynamic  behavior  preference
information.  The  correctness  of  the  algorithm  is  verified  by  an  example.  Research  shows:  The  choice  of
behavior strategies,  such as speeding and lane changing, is  related to the expected benefits  of time, safety,
and  neighboring  vehicle  strategies,  and  the  critical  value  of  payable  benefits  is  obtained.  The  higher  the
proportion of aggressive vehicles on the road, the greater the potential risk on the road. Whether there is a
vehicle  in  the  adjacent  lane  of  the  driving  vehicle  will  affect  the  type  of  driving  vehicle.  Information
guidance helps to stabilize the state of vehicles on the road, and the policy transition probability also helps
stabilize the form of vehicles cars on the road. Still, information guidance has a more significant impact on
the transition of vehicle types. Finally, the guidance strategy of managers is given when the road is smooth
and congested.
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1    Introduction

1.1    Background

With  the  rapid  development  of  urban  transportation,
modern  urban  transportation  networks  have  been
becoming  more  complex  and  causing  many
concomitant  problems  such  as  traffic  congestion  and
accidents  as  well  as  environmental  pollution,  all  of
which  make  the  promotion  of  the  governmental
capacity  over  the  urban  traffic  system  seem  very

urgent[1].  To  mitigate  these  problems  and  meanwhile
not  limiting  the  number  of  vehicles  unduly,  designing
an  efficient  and  reliable  intelligent  transportation
system  usually  is  viewed  as  a  necessary  way[2, 3] in
which  an  information  guidance  system  is  its  core
component[4−6],  consisting  of  the  critical  part  of
intelligent  networked  vehicles  system[7−9].  In  ideal
scenarios, the traffic information guidance system (IGS)
is  expected  to  improve  the  efficiency  of  urban  traffic
operation,  thus  reducing  the  possibility  of  traffic
congestion  and  accidents  by  guiding  vehicle  drivers’
driving behaviors[10]. Moreover, the rapid development
of  road-related  information  technologies,  e.g.,  Internet
of  Things  technology  and  comprehensive  platform
technology,  lay  a  steady  foundation  for  vision
realization[11, 12].  Therefore,  the  discussion  around
traffic  information  guidance  becomes  the  research
focus in the field of transportation management.
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1.2    Literature review

Generally, traffic information guidance research topics
mainly  contain  the  following  aspects.  Some  scholars
discussed  the  effect  of  introducing  traffic  information
guidance. For example, Zhang and Huang[13] and Lv et
al.[14] argued  that  the  dissemination  of  extra  traffic
information would be beneficial to alleviate congestion.
Tang  and  Wang[15] measured  the  aggregated
effectiveness  of  building  IGS  from  the  aspects  of
economic  rationality,  technical  rationality,  and  social
and  economic  benefits.  Other  studies  focused  on  the
driving  behavior  changes  of  vehicle  drivers.  Some
discussed  the  impact  of  traffic  information  signs  on
drivers’ route[16],  travel  mode  selection[17, 18],  and
departure  time  selection[19, 20] as  well  as  the  payment
willingness  for  obtaining  extra  transportation
information[21, 22].  Besides, many studies have recently
paid  attention  to  relevant  issues  in  background  smart
transportation.  For  example,  Lv  et  al.[23] argued  that
utilizing  big  data  analysis  techniques  to  improve
electric  vehicle  transportation  networks  can
significantly  reduce  network  data  transmission
performance and change the path to suppress the spread
of congestion effectively. Gargoum and El-Basyouny[24]

studied  the  influence  of  point  density  on  extracting
traffic signs from lidar data sets. Zhao et al.[25] learned
the  strategies  of  regional  route  guidance  for  an
autonomous  driving  vehicle.  Li  et  al.[26] deemed  that
the  mixed-use  of  description  and  specification
information  in  an  appropriate  proportion  can  improve
traffic  flow  stability.  Dong  et  al.[27] argued  that
networked  autonomous-driving  vehicles  could  favor
disseminating  traffic-related  information  with  the
assistance  of  vehicular  wireless  communication
technology.

Before  releasing  guidance  information,  it  is
necessary  to  comprehensively  consider  its  expected
effectiveness[28].  To  this  aspect,  most  studies  argued
that providing extra information for guiding the driving
of vehicles could reduce drivers’ cognitive uncertainties,
thus enhancing their driving efficiency[29, 30]; however,
ignoring  the  possible  negative  impact.  To  specify  the
unexpected  latent  outcomes,  Ben-Elia  et  al.[31]

discussed  the  relationship  between  information
accuracy  and  drivers’ route  choice,  confirming  that
travelers’ choices are sensitive to the accuracy of travel

information. Similarly, Liu and Zhou[32] argued that the
effect  of  information  guidance  is  affected  by  the
information  permeability  of  the  situations  the  drivers
are  in,  exhibiting  an  inverted  U-shaped  trend.  The
reasons  incurring  the  negative  influence  of  traffic
information  guidance  partly  could  be  attributed  to  the
mutual  relation  between  drivers’ factors  and  the
information  factors.  For  example,  Tang  et  al.[11] and
Iraganaboina et al.[33] argued that people with different
travel  purposes  would  pay  special  attention  to  various
information before and on the way. In an account of the
personal  factors,  Zhang  et  al.[34] proposed  the
intelligent  transportation  service  recommendation
(Masr)  model,  which  comprehensively  considered  the
personalized behavior of users from many aspects.

Generally speaking, compared with the existing road
traffic system, the intelligent traffic represented by the
information  guidance  system  could  provide  a  more
convenient,  reliable,  and  economical  traffic
environment[35],  laying  a  foundation  not  only  for  the
current  person-centered  driving  mode  but  also  for
future autonomous driving. To this end, the research on
the  deigns  of  the  information-guidance  scheme  has
become  a  hot  topic  in  intelligent  transportation.
Nevertheless, a lot of issues should be addressed further.
For  instance,  the  extant  studies  pay  little  attention  to
the  dynamic  information  induction  according  to  real-
time  road  situations,  especially  according  to  the
different  characteristics  of  drivers  to  make  guidance
strategies.  This  may  be  due  to  the  difficulty  that  it  is
hard to get  private  information in terms of  the driving
features of drivers.

1.3    Contribution and organization

In response to the above challenges, based on the idea
of  a  network  evolution  game,  this  paper  analyzes  and
classifies  the  driving  vehicle  behavior,  realizes  the
overall accurate perception and personalized service of
the  road  network  through  comprehensive  portraits,
releases  guidance  information,  improves  the  level  of
traffic service, and coordinates the operation efficiency
of  the  road  network.  Compared  with  the  existing
research, the innovations of this paper are as follows:

(1) The vehicle behavior strategy selection is analyzed,
and  a  vehicle  network  game  evolution  model  is
constructed.

(2)  The conversion relationship of  different  types of
vehicles in different environments is studied.
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(3)  An  information  guidance  algorithm  for  vehicle
behavior selection is proposed.

The rest of this paper will be structured as follows: A
network  evolutionary  game  model  is  established  in
Section  2.  Then  the  influence  of  manager  information
guidance on vehicles is analyzed in Section 3. Next, we
build  a  set  of  algorithms  for  identifying  vehicle  types
and conducting traffic information guidance in Section
4.  And  then,  an  example  is  given  to  verify  the
rationality  of  the  proposed  model  and  algorithm  in
Section 5. Finally, the conclusion is given in Section 6.

2    Traffic Network Analysis

The  road  could  be  viewed  as  areas  where  moving
vehicles affect each other and compete for limited road
rights[36]. All vehicles on the road consist of a typically
dynamic network game[37], in which one vehicle as the
node of the network interacts with others, as shown in
Fig. 1. To analyze the features of this dynamic network
game,  the  network  evolutionary  game  model  is
employed in this section.

2.1    Network structure description

G = (V,e) V = {v1,v2, ...,vn}
v1,v2, ...,vn

e = {e11,e12, ...,enn}

vi v j ei j

In the process of the traffic game, the moving vehicles,
as shown in Fig. 1, constitute the main body of the game,
which  are  affected  by  the  road  environment  (traffic
density/road saturation), driving speed, and lane change
frequency of other vehicles, and accordingly choose the
driving  strategy  of  themselves  (i.e.,  driving  speed  and
whether  changing  lane).  All  these  factors  make  the
traffic  network  complicated.  Yet,  the  game  could  also
be described as a game made up of multiple two-player
games  in  which  the  neighboring  vehicles  influence
mutually[38−40]. Thus, the traffic network game could be
abstracted as , in which  is the
set  of  driving  vehicles  ( )  on  the  road  and

 represents  the  traffic  network
relationships (named edges of the network in this paper)
among  driving  cars  in  the  network.  If  the  driving
vehicles  and  are  neighbors,  is  1,  otherwise,

ei j = 0 Ni

vi ∈ V di

vi

.  In  addition,  represents  the  number  of
neighbor  vehicles  of  the  vehicles ,  and  is  the
aggregated amount of all edges of the .

ΓG = (G,S ,U) G
S = {S i|vi ∈ V}

S i

U = {ui|vi ∈ V}
ui

In  the  traffic  network  game,  one  driving  vehicle
gleans  the  information  of  other  neighbor  vehicles  and
adjusts  the  driving  strategy  in  real-time  according  to
the principle of utility maximum. Taking all introduced
factors  together,  the  game  could  be  described  as

 in which  represents the traffic network,
 represents  driving  strategy  set  of  the

driving  vehicles  on  the  road  (  is  the  strategy  of
vehicle i),  and  represents  the  utility  set
of the driving vehicles (  is the utility of the vehicle i).
The symbolic meaning of this paper is shown in Table 1.

2.2    Game model construction

VA

VC

VB xA

xB xC

rA rB

rC

Pi = {p1,i, p2,i, ..., pm,i} i ∈ {A,B,C}

The  utility  functions  of  different  vehicles  usually
determine  their  choice  of  game  behavior.  To  better
describe  the  driving  behavior  of  vehicles,  the  vehicles
are  categorized  into  three  types:  the  aggressive  (often
performing  impatiently  in  driving)  represented  by ,
the  slow  (often  performing  inactively  in  driving)
represented  by ,  and  the  stable  (lying  the  mediate
state between the above types) defined by [41−44]. ,

,  and  are  used to  represent  numbers  of  the three
types of vehicles on the road, respectively. Besides, as
the  information  on  vehicle  types  is  grey  information
that  can  not  be  obtained  directly,  the  vehicle  type
judgments  are  often  described  as  some  probabilities.
Hence, set the possibility that one vehicle is aggressive
vehicles ,  the  probability  of  stable  vehicles ,  and
the  probability  of  slow  vehicles .  The  vehicles  of
different  types  have  different  driving  strategy  sets
represented by , .
2.2.1    Individual income function of driving vehicle
Running  vehicles’ state  benefit  function  can  be
composed of time and safety benefits[45].  Time benefit
refers  to  the  time  utility  brought  by  road  travel  time,
and  safety  benefit  refers  to  the  potential  accident  risk
mitigated  by  paying  attention  to  the  possibility  of  an
accident.  When  a  driving  vehicle  overtakes  or
accelerates, it is necessary to judge the vehicle’s speed
in  front  and  the  distance  between  the  vehicle  and  the
vehicle in front. When meeting, it is necessary to judge
the  lateral  clearance  between  the  two  vehicles.
Otherwise,  a  traffic  accident  may  occur.  If  a  traffic
accident occurs, money will be lost, and the travel time

 

 
Fig. 1    Network topology of driving vehicles.
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will  be increased,  which means that  the income of the
driving vehicle will be reduced. The degree of attention
paid  to  safety  and  temporal  benefits  is  determined  by
the  driver’s  personality  and  safety  awareness[46−49].
Based  on  this,  the  individual  income  equation  of

vidriving vehicles  is constructed as follows:
 

Ri = αiD+βiZ (1)

αi βiwhere  is the driver’s emphasis on safety benefits, 
is  the  driver’s  emphasis  on  temporal  benefits,  and

 

Table 1    Nomenclature.

Symbol Meaning
ΓG Traffic network game
G Traffic network
V Set of driving vehicles
e Traffic network relationships among driving cars in the network
Ni vi ∈ VNumber of neighbor vehicles of the vehicles 
di viAggregated amount of all edges of the 
S Driving strategy set of the driving vehicles
U Utility set of the driving vehicles
VA Aggressive vehicles
VB Stable vehicles
VC Slow vehicles
xA Number of the aggressive vehicles
xB Number of the stable vehicles
xC Number of the slow vehicles
rA Possibility of aggressive vehicles
rB Possibility of stable vehicles
rC Possibility of slow vehicles
Ri viIndividual income function of driving vehicle 
αi Driver’s emphasis on safety benefits
βi Driver’s emphasis on temporal benefits
D Safety benefit of running vehicles
εi Probability of traffic accident risk
ci Accident cost
Z Time benefit of driving vehicles
ηi j Headway of the j type driving vehicle in front and the i type driving vehicle in the back

η̄
i j
a η

i j
aAverage headway of 

Ca aCapacity of the road section 
ĈA

a aRoad capacity when the road  is full of aggressive vehicles
RS i Vehicle strategic benefit function
ri j Vehicle strategy transfer probability
πi Total income of driving vehicles

Ēvi viAverage expected return on a vehicle 
Evi viExpected return on a vehicle 
yA Proportion of aggressive vehicles
yB Proportion of stable vehicles
yC Proportion of slow vehicles
LR Road network system loss
J Traffic congestion degree
E Safety factor damage
µ Impact of issuing information to the manager on the strategy transfer
Di Actual driving behavior preference set
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αi+βi = 1 i = A,B,C

αA αB αC

βA βB βC

 ( ). A represents the aggressive type.
B represents the stable type. C represents the slow type.

, ,  and  represent  the  emphasis  of  aggressive,
stable, and slow vehicles on safety benefits, respectively.

, ,  and  represent  the  emphasis  of  aggressive,
stable, and slow vehicles on time benefit, respectively.

D

The  safety  benefit  of  running  vehicles  is  inversely
proportional  to  the  accident  rate.  When  the  accident
rate  is  low,  the  safety  benefit  is  significant.  Let  be
the safety benefit of running vehicles, and its equation is
 

D = −εI × ci(v) (2)

εI

I ∈ {A,B,C} ci

where  is the probability of traffic accident risk when
driving  vehicles  overtake  and  change  lanes
( ).  is the accident cost.

Z

The  time  benefit  of  driving  vehicles  is  inversely
proportional  to  the  road  section  saturation.  When  the
road section saturation is more minor, the time benefit
is  fantastic[46].  Let  be  the  time  benefit  of  driving
vehicles. The equation is
 

Z = −bt0

1+ ξ
 xt,a

A + xt,a
B + xt,a

C

Ca

ψ
 (3)

b

ξ ψ t0 Ca

a

ρ =
(
xt,a

A + xt,a
B + xt,a

C

)
/Ca

xt,a
A

a t xt,a
B

a t

xt,a
C

a t

where  is  the  contribution  of  the  road  travel  time  of
the driving vehicle to the utility of the driving vehicle,

 and  are the parameters,  is the free flow time, 
is  the  capacity  of  the  road  section ,

 is  the  saturation  of  the  road
section,  is  the  number  of  aggressive  driving
vehicles on the road  at the time ,  is the number
of  stable  driving  vehicles  on  the  road  at  the  time ,
and  is  the number of  slow driving vehicles  on the
road  at the time .

ηi j i ∈ {A,B,C} j ∈ {A,B,C}

ηBA

For  road  capacity,  this  paper  adopts  the  model
proposed  by  Liu  and  Song[50],  which  is  based  on  the
relationship  between  road  capacity  and  average
minimum headway. As shown in Fig. 2, there are nine
different  headways.  ( , )
represents the headway of the j type driving vehicle in
front  and  the i type  driving  vehicle  in  the  back,  for
example,  represents the headway of the aggressive
driving vehicle in front and the stable driving vehicle in
the back.

η̄
i j
a i ∈ {A,B,C} j ∈ {A,B,C}

η
i j
a i ∈ {A,B,C} j ∈ {A,B,C} a

Let  ( , )  be  the  average
headway of  ( , ) on the road .
Assuming  that  all  vehicles  are  randomly  distributed,

a

the  vehicle  type  arrival  model  is  Bernoulli
distribution[51].  Then  the  average  headway  of  mixed
traffic flow on the road  is
 

η̄a =
∑

i∈{A,B,C}

∑
j∈{A,B,C}

η̄
i j
a ra

i ra
j =

η̄AA
a ra

Ara
A+ η̄

BA
a ra

Ara
B+ η̄

CA
a ra

Ara
C + η̄

AB
a ra

Bra
A+

η̄BB
a ra

Bra
B+ η̄

CB
a ra

Bra
C + η̄

AC
a ra

Cra
A+ η̄

BC
a ra

Cra
B+

η̄CC
a ra

Cra
C (4)

ra
i i ∈ {A,B,C}

a

ra
A+ ra

B+ ra
C = 1

where  ( )  is  the  proportion  of i type
vehicles  on  the  road , A represents  aggressive  type
vehicles, B represents stable type vehicles, C represents
slow  type  vehicles,  and .  The  ratio  of
aggressive vehicles on the street is
 

ra
A =

xt,a
A

xt,a
A + xt,a

B + xt,a
C

(5)

The  lane  change  behavior  of  vehicles  in  other  lanes
will affect the proportion of different types of vehicles.
The impact of lane change will be described in detail in
the next section.

According to  the  traffic  flow theory,  the  capacity  of
each lane of the section is equal to the reciprocal of the
average minimum headway.
 

Ca =
ϕa

η̄a
= ϕa/

[
(η̄BA

a + η̄
AB
a )ra

Ara
B+ (η̄CA

a + η̄
AC
a )ra

Ara
C+

(η̄CB
a + η̄

BC
a )ra

Bra
C + η̄

AA
a ra

Ara
A+ η̄

BB
a ra

Bra
B+ η̄

CC
a ra

Cra
C

]
(6)

a
Equation (6) is  the number of  lanes on the road and

the minimum headway on the road .
ĈA

a a

ĈA
a = ϕa/η̄

AA
a

Let  indicate the road capacity when the road  is
full of aggressive vehicles. Bring  into Eq.
(6):
 

Ca =
ϕa

η̄a
= ĈA

a /

[
(η̄BA

a + η̄
AB
a )

η̄AA
a

ra
Ara

B+
(η̄CA

a + η̄
AC
a )

η̄AA
a

ra
Ara

C+

(η̄CB
a + η̄

BC
a )

η̄AA
a

ra
Bra

C + ra
Ara

A+
η̄BB

a

η̄AA
a

ra
Bra

B+
η̄CC

a

η̄AA
a

ra
Cra

C

]
(7)

Substituting Eqs. (2), (3), (5) and (7) into Eq. (1), the

 

A

A

B

A

B

C

B

C

C

C

B

C
A

Aggressive vehicle

B
Stable vehicle

C
Slow vehicle

ηCB ηBC ηCC

ηCA ηAA ηAC

ηBA ηAB ηBB

 
Fig. 2    Schematic diagram of headway.
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vi

I
individual  revenue  equation  of  running  vehicles  of
type  can be obtained as
 

Ri = −αiεI × ci(v)−βibt0

1+ ξ
Hxt,a

A + η̄
BB
a xt,a

B +Kxt,a
C

ĈA
a η̄

AA
a

ψ


(8)

where H and K are respectively:
 

H = η̄BA
a + η̄

AB
a − η̄BB

a + (η̄AA
a +2η̄BB

a − η̄BA
a − η̄AB

a )rt,a
A +

(η̄CA
a + η̄

AC
a + η̄

BB
a − η̄CB

a − η̄BC
a − η̄BA

a − η̄AB
a )rt,a

C ,

K = η̄CB
a + η̄

BC
a − η̄BB

a + (η̄CC
a + η̄

BB
a − η̄CB

a − η̄BC
a )rt,a

C .

2.2.2    Benefit function of a moving vehicle affected by
adjacent vehicles

vi I di

RS i

The profitability of a vehicle is related to its operating
status  and  is  affected  by  its  adjacent  vehicles.  The
vehicle  interacts  with  adjacent  vehicles  through  the
automobile  network  and  learns  the  strategy  from  the
middle side of the game and the side to decide whether
to change the design after weighing the benefits of the
individual state and transferring the help of the design.
The  micro  decision  of  a  single-vehicle  ultimately
determines the operational efficiency of the entire road
network at  the macro level.  From the previous section
setting, it can be seen that the number of all neighbors
of the vehicle  of type  is . Due to the influence of
the  adjacent  vehicle  strategies,  the  vehicle  strategic
benefit function  is constructed as
 

RS i =
∑
j∈V−i

ei j · ri j ·R j (9)

vi v j

ri→ j(t+1) ∼ (π j(t)−πi(t))
vi v j t

vi

si(t+1) = s j(t)

ri j

The car  randomly selects a neighbor  to compare
the benefits by observing. Suppose that the probability
of  vehicle  strategy  transfer  is  only  related  to  income,
that  is, .  When  the  revenue  of
a car  is less than that of the vehicle  at the time ,
the  car  will  choose  to  learn  its  neighbor  car’s
strategy at the time t, that is, . According
to  the  Fermi  update  rule[52],  the  vehicle  strategy
transfer probability  is
 

ri j =

{
ri→ j(t+1),R j > Ri;
0,R j < Ri

(10)

ri→ j(t+1) = 1/
[
1+ exp

(
Ri(t)−R j(t)

ζ

)]
ζwhere ,  and  is

the degree of individual rationality.
2.2.3    Total revenue function of running vehicles
In the network game, each individual’s income depends
not only on itself but also on the strategies of neighbor
individuals. In the pair interaction mode, each neighbor

vi

pair  plays  a  two-person  game.  The  income  of  each
individual  is  the  sum  of  the  revenue  generated  by  the
match  between  him  and  all  neighbors.  Because  the
driving state of the driving vehicle will  be affected by
the  behavior  preference  of  the  surrounding  cars,  the
driving state of the front and rear cars and the left and
suitable  vehicles  of  the  driving  vehicle  needs  to  be
observed  in  the  process  of  safe  road  driving,  and  the
subsequent  driving  decision  should  be  made.  After
each  game,  individuals  decide  their  next  strategy
according  to  the  obtained  income  information  and  the
strategy  information  of  other  neighbor  individuals.
Therefore, the total income of driving vehicles  is
 

πi = Ui(si, s−i) = Ui

si,
∑

v j∈Ni

s j

 (11)

vi

I

To sum up, by substituting Eqs. (8) and (9) into Eq.
(11), the total income function of running vehicles  of
type  is
 

πi =−βibt0

1+ ξ
Hxt,a

A + η̄
BB
a xt,a

B +Kxt,a
C

ĈA
a η̄

AA
a

ψ
−

αiεI × ci(v)+
∑
j∈V−i

ei j · ri j ·R j (12)

ei j

vi

vi ei j = 1 ei j = 0

where  indicates  whether  there is  a  vehicle  near  the
driving vehicle . If there is a vehicle near the driving
vehicle , , otherwise, .

2.3    Evolution rule

Based on the above analysis and according to Eq. (12),
the  income  function  of  different  types  of  vehicles  can
be obtained, and the income function at this time is the
expected income of  this  type of  vehicles.  The average
expected income of vehicles can be obtained according
to the proportion of vehicles with blocked roads. Finally,
the corresponding replication dynamic equation can be
obtained, which will pave the way for the discussion of
evolutionary equilibrium results in the next section.

t
vi

At  the  time ,  the  expected  benefits  of  each  type  of
vehicle  (aggressive, stable, or slow) are
 

Evi,A =−βibt0

1+ ξ
Hxt,a

A + η̄
BB
a xt,a

B +Kxt,a
C

ĈA
a η̄

AA
a

ψ
−

αiεA× ci(v)+
∑
j∈V−i

ei j

16∑
x=1

ri→x, j ·Rx
j (13)
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Evi,B =−βibt0

1+ ξ
Hxt,a

A + η̄
BB
a xt,a

B +Kxt,a
C

ĈA
a η̄

AA
a

ψ
−

αiεB× ci(v)+
∑
j∈V−i

ei j

16∑
x=1

ri→x, j ·Rx
j (14)

 

Evi,C =−βibt0

1+ ξ
Hxt,a

A + η̄
BB
a xt,a

B +Kxt,a
C

ĈA
a η̄

AA
a

ψ
−

αiεC × ci(v)+
∑
j∈V−i

ei j

16∑
x=1

ri→x, j ·Rx
j (15)

viThe average expected return on a vehicle  is
 

Ēvi = yA ·Evi,A+ yB ·Evi,B+ yC ·Evi,C (16)

The replica dynamic equations are
 

dyA = yA · (Evi,A− Ēvi) =
yA · [(yB+ yC)Evi,A− (yBEvi,B+ yC Evi,C)] (17)

 

dyB = yB · (Evi,B− Ēvi) =
yB · [(yA+ yC)Evi,B− (yAEvi,A+ yC Evi,C)] (18)

 

dyC = yC · (Evi,C − Ēvi) =
yC · [(yA+ yB)Evi,C − (yAEvi,A+ yBEvi,B)] (19)

yA

a yB

yC

where  represents  the  proportion  of  aggressive
vehicles in the road section ,  represents the ratio of
stable  vehicles  in  the  road  section,  and  represents
the proportion of slow vehicles in the road section.

Evi,A

vi Evi,B

vi Evi,C

vi
16∑

x=1
ri→x, j ·Rx

j vi

ri→x, j

vi

v j S x Ēvi

In the above equations,  represents the expected
income when the driving vehicle  is aggressive, 
represents  the  expected  income  when  the  driving
vehicle  is  stable,  and  represents  the  expected
income  when  the  driving  vehicle  is  slow.

 represents  the  benefit  of  a  moving  car 

affected  by  its  neighbor  strategy.  represents  the
probability that the vehicle  strategy is transferred to
its neighbor ’s method .  represents the average
expected return.

2.4    Equilibrium solution

According to the replicated dynamic equations of Eqs.
(17)−(19), the critical value of the expected revenue for
aggressive vehicles is
 

E∗(vi,A) =
yBEvi,B+ yC Evi,C

1− yA
(20)

The critical  value of the expected revenue for stable
vehicles is

 

E∗(vi,B) =
yAEvi,A+ yC Evi,C

1− yB
(21)

The  critical  value  of  the  expected  revenue  for  slow
vehicles is
 

E∗(vi,C) =
yAEvi,A+ yBEvi,B

1− yC
(22)

I E∗(vi,I)
Theorem 1: When the expected return of the driving

vehicle of type  is less than the critical value ,
the  driving  vehicle  will  not  continue  the  current
strategy over time.

Proof: Assuming  that  the  driving  vehicles  on  the
road are  divided into  aggressive  type,  stable  type,  and
slow type, the driving cars are discussed, respectively.

(1) When the driving vehicle is aggressive:
Evi,A < E∗(vi,A)If , the replicated dynamic equation of

the  proportion  of  aggressive  driving  vehicles  is  less
than zero, which means that in this case, the balance of
aggressive driving vehicles will tend to be zero.

(2) When the driving vehicle is stable:
Evi,B < E∗(vi,B)If , the replicated dynamic equation of

the  proportion  of  stable  vehicles  is  less  than  zero,
which  means  that  in  this  case,  the  balance  of  stable
vehicles will tend to be zero.

(3) When the driving vehicle is slow:
Evi,C < E∗(vi,C)If , the replicated dynamic equation of

the  proportion  of  slow  vehicles  is  less  than  zero,  the
balance of slow vehicles will tend to be zero in this case.

E∗(vi,I)
Therefore, when the expected return of the vehicle is

less  than the  critical  value ,  the  driving vehicle
will not drive on the road over time. □

Based on Theorem 1, it  can further push the vehicle
affected  by  adjacent  vehicles  when  driving  strategy
change. For the convenience of analysis, the vehicle in
the  adjacent  lane  is  referred  to  as “neighbor  vehicle”.
Centered  on  a  particular  vehicle  (the  vehicle  in  the
following  referred  to  as “main  vehicle”),  the
subsequent  deduction  to  explore  its  affected  by
surrounding vehicles can be got.

Inference 1: When the front vehicle is stable and the
neighbor  vehicles  is  existence,  the  main  vehicle  types
will only change in the following situation. Details are
as follows:

(1) When the front vehicle is stable and the neighbor
vehicle  is  stable,  the  aggressive  main  vehicle
transitions stable.

(2) When the front vehicle is stable and the neighbor
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vehicle is slow, the aggressive main vehicle transitions
stable.

Proof: When the front vehicle is stable, and the main
vehicle  is  aggressive,  if  the  neighbor  vehicle  is
aggressive,  it  will  be  urged  to  accelerate,  then  change
lanes, and the main vehicle will keep the same type. If
the neighbor vehicle is stable, the main vehicle will not
change lanes to avoid a collision, and the main vehicle
will  become a stable  type.  If  the neighbor  vehicle  is  a
slow  type,  the  main  vehicle  will  not  change  lanes  in
order  to  avoid  a  collisionm,  and the  main  vehicle  will
become stable.

When the front  car  is  stable  and the main vehicle  is
stable,  the  main  vehicle  will  keep  the  same  type
regardless  of  the  type  of  the  neighbor  vehicle.  When
the front vehicle is stable and the main vehicle is slow,
the main vehicle will keep the same type regardless of
the type of the neighbor vehicle, as shown in Fig. 3. □

Inference  2: When  the  front  vehicle  is  slow  and
neighbor  vehicles  is  existence,  the  main  vehicle  type

will  only  change  in  the  following  situations.  The
specifics are as follows:

(1)  When the front  vehicle is  slow and the neighbor
vehicle is  aggressive,  the stable main vehicle becomes
slow.

(2)  When the front  vehicle is  slow and the neighbor
vehicle  is  stable,  the  aggressive  main  vehicle  and  the
stable main vehicle become slow.

(3)  When the front  vehicle is  slow and the neighbor
vehicle  is  slow,  the  aggressive  main  vehicle  and  the
stable main vehicle become slow.

Proof: When the front vehicle is slow, and the main
vehicle  is  aggressive,  if  the  neighbor  vehicle  is
aggressive, it is urged to accelerate and then change lanes,
and  the  main  vehicle  remains  the  same  type.  If  the
neighbor  vehicle  is  stable,  the  main  vehicle  will  not
change lanes to avoid a collision, and the main vehicle
will  become slow.  If  the  neighbor  vehicle  is  slow,  the
main vehicle will not change lanes to avoid a collision,
and the main vehicle will become slow type.

 

The neighbor vehicle

The main vehicle The front vehicle

The neighbor vehicle

The main vehicle The front vehicle

The neighbor vehicle

The main vehicle The front vehicle

The neighbor vehicle

The main vehicle The front vehicle

The neighbor vehicle
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The main vehicle The front vehicle

The neighbor vehicle

The main vehicle The front vehicle
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The main vehicle The front vehicle
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The main vehicle The front vehicle

The neighbor vehicle

The main vehicle The front vehicle
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The main vehicle The front vehicle
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The main vehicle The front vehicle

The neighbor vehicle

The main vehicle The front vehicle

(c) Slow main vehicle and stable front vehicle

(a) Aggressive main vehicle and stable front vehicle (b) Stable main vehicle and stable front vehicle

Aggressive vehicle

Stable vehicle

Slow vehicle

 
Fig. 3    Change diagram of the main vehicle type when the front vehicle is stable and the neighbor vehicle is existence.
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When the front vehicle is slow, and the main vehicle
is stable type, if the neighbor vehicle is aggressive, the
main vehicle will not change lanes to avoid a collision,
and  the  main  vehicle  will  become  a  slow  type.  If  the
neighbor  vehicle  is  stable,  the  main  vehicle  will  not
change lanes to avoid a collision, and the main vehicle
will become a slow type. If the neighbor vehicle is slow,
the  main  vehicle  will  not  change  lanes  to  avoid  a
collision, and the main vehicle will become a slow type.

When the front vehicle is slow and the main vehicle
is  slow,  the  main  vehicle  will  remain  the  same  type
regardless  of  the  type  of  the  neighbor  vehicle.  This  is
shown in Fig. 4. □

E∗(vi,I)
Theorem 2: When the expected benefit of vehicle is

more than its critical value , each type of vehicle
will continue to drive the previous driving strategy over
time.

Evi,A >
yBEvi,B+ yC Evi,C

yB+ yC

Proof: When  the  expected  return  of  aggressive
vehicles  is  more  than  its  critical  value,  that  is,

,  the  stable  solution  of  the

proportion of aggressive vehicles is
 

yA
∗ =

[
yB

2M
(
ri→x, j

A − ri→x, j
B

)
+

yByC M
(
2ri→x, j

A − ri→x, j
B − ri→x, j

C

)
+

yC
2M

(
ri→x, j

A − ri→x, j
C

)]
/[

(yB+ yC)M(ri→x, j
B + ri→x, j

C −2ri→x, j
A )

]
.

Evi,B >
yAEvi,A+ yC Evi,C

yA+ yC

When the expected return of  stable  vehicles  is  more

than its critical value, that is, ,

the stable solution of the proportion of stable vehicles is
 

yB
∗ =

[
yA

2M
(
ri→x, j

B − ri→x, j
A

)
+

yAyC M
(
2ri→x, j

B − ri→x, j
A − ri→x, j

C

)
+

yC
2M

(
ri→x, j

B − ri→x, j
C

)]
/[

(yA+ yC)M
(
ri→x, j

A + ri→x, j
C −2ri→x, j

B

)]
.

Evi,C >
yAEvi,A+ yBEvi,B

yA+ yB

When  the  expected  return  of  slow  vehicles  is  more

than its critical value, that is, ,

the stable solution of the proportion of slow vehicles is
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Fig. 4    Change diagram of the main vehicle type when the front vehicle is slow and the neighbor vehicle is existence.
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yC
∗ =

[
yA

2M
(
ri→x, j

C − ri→x, j
A

)
+

yByAM
(
2ri→x, j

C − ri→x, j
B − ri→x, j

A

)
+

yB
2M

(
ri→x, j

C − ri→x, j
B

)]
/[

(yA+ yB)M
(
ri→x, j

B + ri→x, j
A −2ri→x, j

C

)]
,

M(x) =
∑

j∈V−i

ei j

(
16∑

x=1
x ·Rx,z

j

)
vi

where  represents  the  sum of

the payoffs of a car  affected by its neighbor policy.
The above analysis shows that aggressive, stable, and

slow  vehicles  will  be  stabilized.  Over  time,  each  type
of  vehicle  will  continue  to  drive  the  previous  driving
strategy, so it is proven.  □

Theorem  2  gives  the  conditions  for  the  vehicle  to
maintain  its  own  driving  strategy,  based  on  which  an
Inference 3 can be drawn:

Inference 3: When there is no the neighbor vehicle,
the  main  vehicle  type  will  not  be  affected  by  the  type
of  the  front  vehicle,  and  the  main  vehicle  will  still
maintain its own driving strategy.

Proof: When  the  main  vehicle  is  aggressive,  since
there  is  no  the  neighbor  vehicle,  the  main  vehicle  can
be  changed  lanes  regardless  of  the  front  vehicle,
keeping it still aggressive.

When  the  main  vehicle  is  a  stable  type,  the
aggressive  front  vehicle  and  the  stable  front  vehicle
will not hinder the stable main vehicle, so that the main
vehicle  type  will  not  change;  the  slow  type  front
vehicle  will  affect  the stable main vehicle  driving,  but
because  there  is  no  the  neighbor  vehicle,  the  main
vehicle type can remain unchanged by changing lanes.

When  the  main  vehicle  is  a  slow  type,  the  main
vehicle  can  be  kept  slow regardless  of  the  type  of  the
front vehicle.

Therefore,  it  is  proved.  The  change  of  the  main
vehicle  type  when  there  is  no  the  neighbor  vehicle  is
shown in Fig. 5. □

Inference  4: When  the  front  vehicle  is  aggressive,
the  main  vehicle  type  does  not  change,  regardless  of
the type of the neighbor vehicle.
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Fig. 5    Change diagram of the main vehicle type when the neighbor vehicle is inexistence.
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Proof: When the front vehicle is aggressive, and the
main vehicle is also aggressive, if the neighbor vehicle
is aggressive, it is urged to accelerate and then change
lanes;  if  the  neighbor  vehicle  is  stable,  it  will  not
change lanes; if the neighbor vehicle is slow, it will not
change lanes,  and eventually it  will  remain unchanged
from the original type.

When  the  front  vehicle  is  aggressive  and  the  main
vehicle is stable, the main vehicle will remain the same
regardless  of  the  type  of  the  neighbor  vehicle.  When
the front vehicle is aggressive, and the main vehicle is
slow,  the  main  vehicle  remains  the  same  type
regardless  of  the  type  of  the  neighbor  vehicle.  This  is
shown in Fig. 6. □

Theorem  3: The  proportion  of  aggressive  vehicles
has an inverted U-shaped relationship with the accident
probability  and  a  U-shaped  relationship  with  the
accident probability of stable and slow cars.

Proof: Bring Eqs. (14)−(16) into Eq. (17) to get
 

dyA = yA · [(yB+ yC)Evi,A− (yBEvi,B+ yC Evi,C)] =
yA ·

[
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ĈA
a η̄

AA
a

ψ
+

βibt0

1+ ξ
Hxt,a

A + η̄
BB
a xt,a

B +Kxt,a
C

ĈA
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(23)
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Fig. 6    Change diagram of the main vehicle type when the front vehicle is aggressive and the neighbor vehicle is existence.
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From  Eq.  (23),  the  following  conclusions  can  be
obtained  under  the  condition  that  other  conditions
remain unchanged.

εA < (yBεB+ yCεC)/(1− yA) dyA > 0
εA > (yBεB+ yCεC)/(1− yA) dyA < 0

When , .  when
, , as shown in Fig. 7a.

εB < [(yB+ yC)εA− yCεC]/yB dyA < 0
εB > [(yB+ yC)εA− yCεC]/yB dyA > 0

When , ;  when
, ,  as  shown  in

Fig. 7b.
εC < [(yB+ yC)εA− yBεB]/yC dyA < 0

εC > [(yB+ yC)εA− yBεB]/yC dyA > 0
When , ;  when

, ,  as  shown  in
Fig. 7c.

Therefore,  it  can  be  seen  that  the  proportion  of
aggressive  driving  vehicles  has  an  inverted  U-shaped
relationship with the accident probability and has a U-
shaped  relationship  with  the  accident  probability  of
stable and slow type. □

From  Theorem  3,  one  derives  the  following
Inference 5:

ε = yAεA+ yBεB+ yCεC

Inference 5: The higher the proportion of aggressive
vehicles, the greater the potential risk on the road, and
the potential risk is .

Proof: From Theorem 3, it can be concluded that the
critical  values  of  the  vehicle  accident  probability  for
aggressive  type,  stable  type,  and  slow  type  can  be
concluded.

The  critical  value  of  the  accident  probability  of  the

aggressive vehicles, the maximum proportions, and the
minimum proportions of aggressive vehicles are
 

ε∗A = (yBεB+ yCεC)/(1− yA),
ymax

A = 1− (yBεB+ yCεC)/εA,

ymin
A = 1− (yB+ yC)2εA/(yBεB+ yCεC).

Similarly, the critical value of accident probability of
stable  vehicles,  the  maximum  proportion,  and  the
minimum proportion of stable vehicles are
 

ε∗B = (yAεA+ yCεC)/(1− yB),
ymax

B = 1− (yAεA+ yCεC)/εB,

ymin
B = 1− (yA+ yC)2εB/(yAεA+ yCεC).

The  critical  value  of  accident  probability  of  slow
vehicles,  the  maximum  proportion,  and  the  minimum
proportion of slow vehicles are
 

ε∗C = (yBεB+ yAεA)/(1− yC),
ymax

C = 1− (yBεB+ yAεA)/εC ,

ymin
C = 1− (yB+ yA)2εC/(yBεB+ yAεA).

Figure  7 shows  the  relationship  between  vehicle
proportion  and  accident  probability.  According  to
Theorem  3,  the  proportion  of  type I vehicles  has  an
inverted  U-shaped  relationship  with  the  accident
probability  of  this  type  of  vehicles,  and  a  U-shaped
relationship with the accident probability of non-type I
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Fig. 7    Relationship between the proportion of vehicles and accident probability.
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vehicles. Figure  7a shows,  all  else  being  equal,  the
effect  of  accident  risk generated by aggressive vehicle
behavior  on  the  proportion  of  aggressive  vehicles.
Figure  7b shows,  all  else  being  equal,  the  effect  of
accident  risk  arising  from  stable  vehicle  behavior  on
the proportion of aggressive vehicles. Figure 7c shows,
all  else  being  equal,  the  effect  of  accident  risk  arising
from  slow  vehicle  behavior  on  the  proportion  of
aggressive  vehicles. Figure  7d shows  the  combined
effect  of  aggressive,  slow,  and  stable  behavior  on  the
proportion of aggressive vehicles. The shaded part R is
the maximum potential risk of the bold type.

Similarly, it can be seen that the maximum potential
risk of the stable type is the shaded part shown in Fig. 7h.
The  maximum  potential  risk  of  the  slow  type  is  the
shaded  section  shown  in Fig.  7l.  As  shown  in Fig.  7,
the  potential  road  risk  caused  by  different  proportions
of vehicles is different, and the higher the proportion of
aggressive vehicles,  the greater the road potential risk.
So it is proven. □

Figure  7 shows  the  relationship  between  the
proportion of vehicles and the accident rate, respectively,
describing  the  mixed  potential  accident  risk  between
different types of vehicles.

Take  aggressive  vehicles  as  an  example.  With  the
increasing  number  of  aggressive  vehicles  on  the  road,
their  accident  risk is  increasing,  and when the number
of  aggressive  vehicles  increases  to  the  maximum,  it
will  reach  the  critical  value  of  risk  that  aggressive
vehicles  are  willing  to  bear.  When  the  accident  risk
exceeds  this  critical  value,  some  aggressive  vehicles
will  change  their  driving  behavior  because  they  are
unwilling  to  bear  too  much  accident  risk,  and  the
proportion  of  aggressive  vehicles  will  continue  to
decrease, as shown in Fig. 7a.

In  addition  to  vehicles  affected  by  their  own  type,
they are also affected by vehicles other than their own
type.  When  there  are  only  aggressive  vehicles  and
stable  vehicles  on  the  road,  the  aggressive  vehicles
constantly  change  their  behavior  into  stable  vehicles,
which  increases  the  accident  risk  of  stable  vehicles.
When  the  critical  value  of  stationary  accident  risk  is
reached,  the  proportion  of  aggressive  vehicles  reaches
the minimum value, at which time it will be profitable
to  change  their  behavior  to  aggressive,  so  the
proportion  of  aggressive  vehicles  will  increase,  as
shown in Fig. 7b.

When  there  are  only  aggressive  vehicles  and  slow
vehicles on the road, with the increase in accident risk,

aggressive  vehicles  constantly  change  their  behavior
into slow vehicles. When the critical value of accident
risk  is  reached,  the  proportion  of  aggressive  vehicles
reaches  a  minimum  value,  after  which  it  will  be
profitable  to  change  their  behavior  to  the  aggressive
class,  so  the  proportion  of  aggressive  vehicles  will
increase, as shown in Fig. 7c.

When the road is mixed with three types of vehicles:
aggressive, stable, and slow, the potential accident risk
of aggressive vehicles can be obtained according to the
difference  in  accident  risk  tolerance  of  different  types
of vehicles, as shown in Fig. 7d. The analysis of Figs.
7e−7l is  similar  to  that  of Figs.  7a−7d,  so  it  is  not
necessary to go into details here.

In summary, whether a vehicle on the road exhibits a
particular  characteristic  (such  as  aggressive,  stable,  or
slow)  is  the  result  of  its  careful  consideration  of  time
gains  and  safety  gains,  that  is,  whether  there  is  a
specific  type  of  vehicle  on  the  road  is  related  to  its
individual perceived total benefits. The original driving
strategy will only be continued if its total return is more
significant  than  its  critical  return.  Otherwise,  it  will
change  its  approach.  When  there  are  three  types  of
vehicles on the road in a particular  proportion,  the car
will  consider  how its  safety benefits  and time benefits
are distributed to maximize the total benefits. The ratio
of vehicles is affected by the combination of aggressive,
slow,  and  stable  accident  risks.  The  higher  the
proportion  of  aggressive  cars,  the  greater  the  potential
danger on the road.

The  above  analysis  shows  that  in  the  early  days,
under  the  condition  of  smooth  roads,  the  competition
for  road  rights  between  different  vehicles  was  not
apparent.  The  proportion  of  cars  increased,  and  the
accident rate also increased. When the critical value is
reached,  the  balance  of  cars  of  various  types  has
reached its maximum, and the road is close to saturation.
People  will  think  more  about  security  factors  to  be
more secure at the expense of time. After reaching the
threshold,  the  proportion  of  vehicles  is  constantly
reduced  in  order  to  avoid  increasing  the  likelihood  of
accidents.

3    Information  Guidance  Model  for
Managers to Drive Vehicles

Traffic  information  is  an  essential  factor  affecting  the
travel behavior choice of driving vehicles[32].  With the
development  of  intelligent  automobiles,  the  popularity
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of  mobile  and onboard  terminals,  as  well  as  the  result
of  extensive  data  analysis  and  mining  and  wireless
communication  technology,  the  vehicle  road
coordination system based on wireless  interconnection
allows  managers  to  accurately  perceive  the  overall
situation  of  the  road  network  and  road  transportation,
and  provide  personalized  services.  Managers  and
vehicles  work  together  to  achieve  the  goal  of  safe,
efficient, and green travel.

3.1    Problem description

The  process  of  traffic  information  guidance  is  also  a
dynamic  interaction  process  in  which traffic  managers
and  driving  vehicle  drivers  play  each  other  (as  shown
in Fig. 8):

(1)  The manager  observes the traffic  capacity of  the
road  network  and  determines  whether  the  operation
efficiency of the road network needs to be optimized.

(2)  After  determining  the  need  for  optimization,  the
manager  actively  releases  guidance  information  to  the
driving vehicle according to the driving vehicle profile
defined by the information platform.

(3)  The  driving  vehicle  receives  the  induction

information,  judges  the  data  according  to  the  road
environment in which it is located, and decides whether
to adopt it.

(4)  The  driving  vehicle  combines  the  existing  prior
probability  of  road  capacity  (congestion,  non-
congestion),  selects  the  optimal  behavior  strategy,  and
updates  the  posterior  probability  judgment  of  the  road
condition.

(5)  After  observing  the  behavior  selection  of  the
moving  vehicle,  the  manager  determines  whether  the
operation efficiency of the road network is optimal.

(6)  Cycle  through  the  above  processes  until  the
optimum road network operation efficiency.

3.2    Construction of information guidance model

The  purpose  of  choosing  different  driving  modes
during road driving is to minimize the impedance of its
road  section.  Still,  it  may  make  the  road  network
environment unable to operate normally.  According to
the  analysis  in  the  previous  area,  the  accident
probability  of  different  types  of  vehicles  is  different,
and the accident probability is related to the proportion
of  different  types  of  cars.  The  information  publisher
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Fig. 8    Flow chart of mutual information feed between manager and driving vehicle.
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accurately  judges  the  driving  vehicles  through  the
user’s  accurate  portrait  and releases  accurate  guidance
information to the target  user to change the dangerous
behavior  strategy  to  reduce  the  possibility  of  traffic
accidents.  For  example,  warning  information  is  issued
for  radical  driving  vehicles  to  stop  speeding  up  road
congestion  such  as  running  traffic  lights,  changing
lanes at will, and speeding, and warning information is
given for slow driving vehicles to improve their driving
speed.
3.2.1    Manager objective function
The  manager’s  purpose  is  to  minimize  the  loss  of  the
road  network  and  ensure  the  safety  and  reliability  of
the  road  network.  The  goal  of  driving  vehicles  is  to
reduce their section impedance.

tIn this stage , the objective function of the manager is
 

min UD(t) = LR(t) = J(t−1) ·E(t−1) (24)

LR

J
E

Road  network  system loss  ( )  refers  to  the  loss  of
road  network  environment  caused  by  the  disorderly
behavior  of  driving  vehicles,  including  loss  of
individual travel efficiency, loss of travel efficiency of
the  whole  road  network,  traffic  congestion,  reduction
of road capacity, and reduction of road capacity traffic
travel  safety  factor.  Road  network  system  loss  can  be
described  by  traffic  congestion  degree  ( )  and  safety
factor  damage  ( ).  This  paper  sets  the  traffic
congestion  degree  as  high,  medium,  and  low.  The
higher the congestion level, the greater the system loss
when damaged road network stability. The safety factor
damage is quantified by five factors: traffic violation rate,
safe  vehicle  operation,  accident  rate,  mortality,  and
injury rate.
3.2.2    Objective function of moving vehicle
The  goal  of  the  driving  vehicle  is  to  minimize  the
impedance of its road section, and the pursuit is to pass
through the road section in a short time based on safety.

t
a

In  this  stage ,  the  objective  function  of  driving
vehicles on the road  is
 

max UV (t) =
∑

i

(Ri(t)+RS i(t)) (25)
 

s.t.,

Ri = −αiεI × ci(v)−βibt0

1+ ξ
Hxt,a

A + η̄
BB
a xt,a

B +Kxt,a
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ĈA
a η̄

AA
a

ψ
 ,

RS i(t) =
∑
j∈V−i

ei j · ri j(t) ·R j(t−1),

na(t) = na(t−1)+ua(t−1)−ga(t−1),

Ri(t) vi

t RS i(t)
t

vi ua(t−1)
t−1 a ga(t−1)

t−1
a na(t−1)
t−1 a na(t)

t a

where  is the individual income of the vehicle  in
the  phase .  is  the  income  of  the  car  after  the
stage  manager  guidance  the  information  of  the
driving  vehicle .  is  the  number  of  vehicles
flowing in on stage , on the road .  is the
number  of  vehicles  drifting  out  of  phase ,  on  the
road .  is  the number of reserved vehicles on
stage , on the road .  is the number of stocked
vehicles on the scene , route .
3.2.3    Mutual  feed  mode  between  manager  and

driving vehicle
When  the  manager  releases  the  information,  it  will
affect  the  strategy  transfer  probability  of  the  driving
vehicle, so the strategy transfer probability is updated as
 

ri j(t) =
1

1+ exp
(

Ri(t−1)−R j(t−1)
ζ

) +µ(t) (26)

µwhere  is  the  impact  of  issuing  information  to  the
manager on the strategy transfer.

At time t, the revenue function of the vehicle is
 

UV (t) =
∑

i

−βibt0
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−

αiεI × ci(v)+
∑
j∈V−i

ei j·

 1

1+ exp
(

Ri(t−1)−R j(t−1)
ζ

) +µ(t)

 ·R j(t−1)


(27)

4    Algorithm Analysis

At present, the information guidance is mainly through
traffic  lights,  variable  information  boards,  on-board
terminals,  etc.,  and  rarely  provides  targeted  induction
information  to  vehicles  based  on  their  behavioral
preferences.  Based  on  this,  this  study  starts  from  the
dynamic behavioral preferences of vehicles, constructs
user  portraits,  obtains  the  real-time  changing
behavioral  preferences  of  vehicles,  and  proposes
targeted  information  induction  algorithms.  This  not
only helps to identify the true type of vehicle, but also
helps to promote stable traffic flow.

4.1    Portrait of the user of the moving vehicle

The  user  portrait  label  of  the  driving  vehicle  is
composed  of  the  dynamic  label  and  static  label,  of
which  the  static  label  is  composed  of  the  essential
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attributes  of  the  driving  vehicle  such  as  age,  gender,
and  driving  age[53−56].  Dynamic  labels  consist  of
driving  speed,  lane  change  frequency,  traffic  light
crossing  behavior,  safety  distance  to  follow  the  car,
steering  response  time,  and  brake  reaction  time[57−60].
The  user  portrait  of  the  driving  vehicle  can  be
expressed in the following form.
 

Userprofile = Static∪Dynamic,
Static = {(m1,ωm1 ), (m2,ωm2 ), ..., (mi,ωmi ), ..., (ml,ωml )},
Dynamic = {(k1,ωk1 ), (k2,ωk2 ), ..., (k j,ωk j ), ..., (kn,ωkn )},

where  Static  represents  the  static  attribute  tag  set.

mi

(i = 1,2, ..., l) ωmi

mi k j

( j = 1,2, ...,n) ωk j

k j

Dynamic  represents  the  dynamic  attribute  tag  set. 
stands for a static attribute tag .  means
the  weight  of  the  label .  represents  the  active
attribute tag .  represents the weight of
the  dynamic  attribute  label .  The  label  table  of  the
driving vehicle user portrait is shown in Table 2.

In this paper’s dynamic generation method, the static
attribute  label  remains  unchanged,  and  the  active
attribute  label  is  in  change.  As  shown  in Table  2,  the
dynamic  labels  of  the  driving  vehicle  in  this  paper
include  16  types  of  potential  behaviors,  which
constitute a collection of optional driving behaviors of

 

Table 2    User behavior preference portrait label table.

Label Criteria Describe Sign

Dynamic label

Speed speed0Standard speed ( )

speedA > speed0

Accelerate driving
( ) k1

speedB = speed0

Steady speed driving
( ) k2

speedC < speed0

Slow driving
( ) k3

Lane change lanec0Standard lane change ( )

lanecA > lanec0

Frequent lane change
( ) k4

lanecB = lanec0

Normal lane change
( ) k5

lanecC < lanec0

Low-frequency lane change
( ) k6

Traffic light Number
Pass the yellow light k7

Pass the green light k8

Safety distance dist0
Standard safety distance

( )

distA < dist0
Close safety distance

( ) k9

distB = dist0
Moderate safety distance

( ) k10

distC > dist0
Far safety distance

( ) k11

Steering reaction time steer0
Standard steering reaction time

( )

steerA < steer0
Quick steering

( ) k12

steerB = steer0
Smooth steering
( ) k13

steerC > steer0
Slow steering

( ) k14

Braking reaction time brak0

Standard braking reaction time
( )

brakA < brak0

Emergency braking
( ) k15

brakB/C < brak0

Smooth braking
( ) k16

Static label

Age

18−30 m1

31−50 m2

51−70 m3

More than 70 m4

Gender
Male m5

Female m6

Driving age
0−6 years m7

7−16 years m8

More than 16 years m9
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driving vehicles. In different driving environments, the
priority  of  each  car’s  operating  behavior  selection  is
represented by the set of behavioral preferences.

vi

vi

vi

vi

In this paper, the dynamic behavior preference set of
the  driving  vehicle  is  composed  of  the  top  six
behaviors  of  driving  behavior  weight  values,  and  the
other  ten  behaviors  constitute  its  candidate  preference
set. As shown in Fig. 9, dynamic labels and behavioral
preference sets  for  moving vehicles  often change over
time.  To  accurately  predict  the  behavior  preference  of
the  driving  vehicle  and  make  timely  information
induction,  it  is  necessary  to  characterize  the  behavior
preference set of the driving vehicle. To this end, it can
be reversed based on the  historical  driving data  of  the
car .  The number of occurrences of driving behavior
in the car  can be constructed as a set of behaviors:
 

S t
i = {s

t,i
k1
, st,i

k2
, ..., st,i

k16
},

st,i
k j

vi

D
t j
i = {d

t j
1 ,d

t j
2 , ...,d

t j
6 }

vi t j 1 ⩽ j ⩽ n

where  represents the number of times the j label of
the  vehicle  appears.  Based  on  the  set  of  behaviors
obtained,  follow  these  steps  to  receive  a  collection  of
dynamic  behavior  preferences  ( )  of
the vehicle  at different times  ( ):

(1) Determine the weight of the vehicle’s historical
behavior

S i 1 ⩽ i ⩽ n

S i

k j

The  initial  weights  of  driving  behavior  within  each
 ( )  are  estimated  to  explore  the  historical

behavioral  preferences  of  the  moving  vehicle.  After
preprocessing  all  the  behavior  information  in  the
behavior  set ,  the  driving  behavior  weight  is
calculated  by  the  term  frequency-inverse  document
frequency  (TF-IDF)  method,  and  the  weight  of  the 

vi

k j

tag  of  the  driving  vehicle  can  be  obtained.  The
weight of the  is
 

ωi
k j
= TF(ki

j)× IDF(ki
j) (28)
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where  represents the proportion of the tag  in
all tags of the user .  indicates how scarce the
label  is  among all  labels.  represents the number
of  times  the j-th  label  of  the  vehicle  appears. 
means  whether  the  moving  vehicle  contains  a 
label  if  the  driving  vehicle  contains  a  label
otherwise .  represents  the j-th  label  of  the
moving vehicle .  represents the weight of the j-th
label of the traveling vehicle . The set of weights for
the  candidate  behavior  preferences  of  the  vehicle  is

.  represents
a collection of dynamic tags.

(2)  Determine the temporal  correlation of  vehicle
behavior

t

Tmin

Tmax

Considering  the  degree  of  correlation  between  the
behavioral  preferences  before  and  after  driving  the
vehicle (the subsequent selections are often affected by
choice  of  previous  likes)  and  the  time  series
characteristics  of  the  impact  (the  preference  sets  in
different periods in the past often have other influences
on  the  choice  of  current  preferences),  this  paper
introduces  a  time  decay  function  to  characterize  this
unbalanced  relationship[61].  Let  represent  the  period
during which the current set of behaviors has changed.

 defines  the  minimum  time  interval  at  which  the
behavior  of  the  moving  vehicle  has  shifted. 
represents  the  maximum  time  interval  at  which  the
behavior  of  the  moving  vehicle  has  been  transferred.
Suppose  that  the  behavior  of  the  driving  vehicle  is
quickly  completed.  In  that  case,  it  indicates  that  the
driving  vehicle  prefers  the  behavior  after  the
transformation,  and  the  intensity  of  this  behavior  is
relatively large.  Suppose that  the driving vehicle takes
a long time to complete a specific behavior change. In
that  case,  it  may  be  affected  by  the  influence  of  the
surrounding environment to change the behavior, rather
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Fig. 9    Diagram  of  the  generation  and  update  process  of
dynamic attribute tags.
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than  spontaneous  behavior,  indicating  that  the  driving
vehicle’s preference for this behavior is not strong. The
build time decay function based on this is
 

g(t) =


1, t < Tmin;

e−
t−Tmin

Tmax−Tmin , Tmin ⩽ t ⩽ Tmax;
0, t > Tmax

(29)

(3)  Update  the  behavior  weights  in  the  dynamic
behavior preference set

Changes  in  driving  behavior  in  each  period  of  the
vehicle  impact  the  weight  of  that  behavior.  When
considering the behavior weight of the current time point,
it is necessary to comprehensively assess the weight of
the  behavior  in  the  historical  behavior  set.  The  new
weight  generated  by  the  recent  behavior  set  on  the
behavior and the combination of the two can calculate
the cumulative weight of the behavior after the current
behavior  set.  The  result  is  a  dynamic  update  of  the
behavior weights. According to Eqs. (28) and (29), the
weights available to update the formula are as follows:
 

ω[n]
i =


ω[1]

acti, n = 1;

ω[n−1]
i ×g(t)+ω[1]

acti, n ⩾ 2
(30)

ω[n]
i

ki

ki ω[1]
acti

n ⩾ 2

where  represents  the  cumulative  weight  of
behavioral  characteristics  after  the  current  behavior
set S.  When n =  1,  that  is,  the  first  occurrence  of  the
behavior  word ,  its  weight  is  the  weight  in  the
current  set  of  behaviors.  When ,  its  weight  is  the
sum  of  the  accumulated  preference  weights  of  the
historical  behavior  set  (n−1)  and  the  newly  generated
preference weights of the current behavior set.

vi

After  updating  the  weight  of  the  driving  behavior
according  to  Eq.  (30),  the  driving  behavior  weight  is
sorted by size. The first six driving behaviors are added
to  the  dynamic  behavior  preference  set  Dynamic,  and
the  remaining  driving  behaviors  are  grouped  into  the
candidate  behavior  preference  set  Candidate.  Every
time  a  driving  behavior  change  occurs  in  a  moving
vehicle,  the  corresponding  driving  behavior  weight
changes.  The  dynamic  behavior  preference  set  is
updated  when  the  last  six  driving  behaviors  change.
Vehicles  traveling on the road, when the observation
vehicle  is  driven  for  a  sufficiently  long  period,  its
dynamic  behavior  preference  set  is  updated  enough
times  to  stabilize  eventually,  so  the  final  dynamic
behavior  preference  set  will  be  able  to  represent  the

Di

Di = lim
t→+∞

Dt
i

actual driving behavior preference set  of the vehicle,
that is, .

4.2    Algorithm step

Based  on  the  above  analysis,  the  algorithm  steps  are
shown as follows. The flow of the algorithm is shown
in Fig. 10.

D = {Dt
i |i ∈ (1,n)}

(1)  Construct  a  set  of  dynamic  behavior  preferences
for  moving  vehicles  from  user  portraits

.

SI = {SI1,SI2, ...,SIγ}

DS = {DS1,

DS2, ...,DSε}
A0

A
ri j(DS j|DSi)

(2) Construct a collection of induced signal strategies
,  For  example,  if  the  road

saturation is  low,  the  signal  could  remind the  vehicles
to  speed  up.  If  the  road  is  congested,  the  signal  could
remind  the  vehicles  to  slow  down.  Change  lanes  in
front  of  the  barrier,  and  so  on.  Construct  an  array  of
driving  vehicle  behavior  strategies 

,  For  example,  slow  down,  speed  up,
change lanes, etc. Construct an initial state set  and a
steady-state  set ,  and  initialize  the  driving  vehicle
strategy transfer probability .

Uk
D = LR

Uk
V =

∑
i

(Ri+RS i)

k

(3) Get the manager objective function  and

the driving vehicle objective function 
of the  stage.

Due to the uncertainty of the future, there is a series
of noise effects such as signal attenuation, and the next
stage  of  revenue  will  be  attenuated  accordingly.
Therefore,  this  paper  introduces  the  discount  expected
return criterion function to obtain the actual return value.
That  is,  the  discounted  expected  return  criterion
function:
 

Rk
D = Uk

D+γ
∑

g,h∈[k,λ]

rgh(DSh|DSg)Rh
D (31)

 

Rk
V = Uk

V +γ
∑

g,h∈[k,λ]

rgh(DSh|DSg)Rh
V (32)

rgh(DSh|DSg)
DSg DSh γ

where  denotes  the  probability  that  the
vehicle  transforms  action  into  action . 
represents the discount factor.

When  the  return  of  individual  strategies  is  higher
than the average return of the group, the proportion of
strategies  will  increase.  On  the  contrary,  when  the
return  of  individual  strategy  is  lower  than  the  average
return of the group, its strategy proportion will decrease.
Based on this, the vehicle replication dynamic equation
is  established  respectively  to  obtain  the  optimal
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behavior  strategy  of  the  vehicle.  The  optimal  vehicle
behavior  strategy  obtained  here  is  put  into  the
manager’s  income  function.  Accordingly,  the
probability  function  of  the  optimal  driving  vehicle
behavior  strategy  and  the  probability  function  of  the
optimal guidance information strategy are obtained.  In
this step, Bayes’ law can be used to solve the posterior
probability  to  obtain  the  probability  of  taking  the
strategy  under  the  induced  information  in k − 1  stage
until  the  posterior  probability  no  longer  changes,  then
the  driving  behavior  and  the  induced  information  are

optimal at this time.
(4)  Obtain  the k-phase  optimal  action  strategy  to

copy the dynamic equation:
 

Bk( f )=
d f k

σ(DSi)
dt

= f k
σ(DSi) ·[Rk

V (DSi,SIσ)−U
k
V (DS,SIσ)]

(33)

f k
σ(DSi)

SIσ

where  denotes  the  driving  vehicle  behavioral
strategy  probability  function  under  the  guidance
information .

Obtain  the k-phase  optimal  guidance  information
strategy to copy the dynamic equation:

 

Start

End

Initialize the driving vehicle behavior strategy
transfer probability

rij(DSj|DSi)

No

Yes

Construct a set of
vehicles dynamic

behavioural preference
through user profiling

D={Di|iÎ(1,n)}

Construct a set of
guidance signalling

strategies
SI={SI1, SI2, ..., SIγ}

Construct a set of
vehicle behavior

strategy
DS={DS1, DS2, ..., DSε}

Calculate the discounted expected return
functions of managers and vehicles:

Rk
D=Uk

D+γΣrgh(DSh|DSg)Rh
D

Rk
V=Uk

V+γΣrgh(DSh|DSg)Rh
V

g,hÎ[k,λ]

g,hÎ[k,λ]

Construct the replication dynamic equation of
optimal vehicle behavior strategy:

Bk(f)= =f k
σ(DSi)·[Rk

V(DSi,SIσ)−Uk
V(DSi,SIσ)]
−df k

σ(DSi)
dt

Construct the replication dynamic equation of
optimal guidance information strategy:

Dk(q)= =qk
j (SIσ)·[Rk

D(DSi
*,SIσ)−Uk

D(DSi
*,SIσ)]

−dqk
j (SIσ)
dt

 Solve for the equilibrium value.
Get the probability function of the optimal driving vehicle behavior strategy: f σk*(DS).
Get the probability function of the optimal guidance information strategy: qk*(SI).

 Let =0B(f)
D(q)

Solve for posterior probabilities
using Bayes’ rule

pk−1(D|SIσ)=
~ qk

j (SIσ)·p(SIσ|Dj)

j=1

n

Σqk
j (SIσ)·p(SIσ|Dj)

pk−1(D|SIσ)=pk(D|SIσ)?
~

Output: DS*,SI*

 
Fig. 10    Algorithm flow chart.
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Dk(q)=
dqk

j(SIσ)

dt
= qk

j(SIσ) ·[Rk
D(DS∗i ,SIσ)−U

k
D(DS∗i ,SIσ)]

(34)

qk
j(SIσ)

DS∗i

where  denotes  the  guidance  information
strategy probability function for .[

B( f )
D(q)

]
= 0

f k∗
σ (DS)

qk∗ (SI)

Let ,  solve  for  the  equilibrium  value.

The probability function of the optimal driving vehicle
behavior  strategy  in  the k-stage  ( )  and  the
probability  function  of  the  optimal  induction
information strategy ( ) are obtained.

(5) Solve for posterior probabilities using Bayes’ law.
 

p̃k−1(D|SIσ) =
qk

j(SIσ) · p(SIσ
∣∣∣D j )

n∑
j=1

qk
j(SIσ) · p(SIσ

∣∣∣D j )
(35)

p̃k−1(D|SIσ) = pk(D|SIσ)
DS∗

SI∗

(6)  If ,  output  the  optimal
driving  vehicle  behavior  strategy  and  optimal
guidance information strategy .

(7) End.

5    Case Analysis

To  verify  the  feasibility  of  the  above  conclusions  and
algorithms,  the  simulation  idea  is  as  follows:  Firstly,
MATLAB  software  is  used  to  simulate  the  impact  of
accident  rate  and  road  saturation  on  the  income  of
different  types  of  vehicles.  Secondly,  the  behavior
characteristics of 40 vehicles were randomly generated
by  MATLAB  software.  Finally,  AnyLogic  is  used  to
simulate vehicle strategy selection.

5.1    Analysis  of  inter-driver  information induction
studies

ξ ψ

ε =

ρ =

For  ease  of  analysis,  this  research  assumed  that  the
length of the road section is 1 km. Take = 1 and = 4
according  to  Ref.  [62].  MATLAB  software  is  used  to
simulate the impact of accident rate and road saturation
on the  income of  different  types  of  vehicles.  Take  the
accident rate  0.1, 0.3, 0.5, 0.7, and 0.9, and the road
saturation  is  0.1,  0.3,  0.5,  0.7,  and  0.9.  The
following simulation results can be obtained.

The  change  in  revenue  of  aggressive,  stable,  and
slow  vehicles  under  the  combined  impact  of  accident
rate and road saturation is shown in Fig. 11. Regardless
of  the  type  of  vehicle,  the  benefits  of  the  vehicle
decrease as the saturation of the road increases. However,
different  types  of  vehicles  have  different  preferences
for  time  benefit  and  accident  risk.  The  details  are  as

follows:
Different types of vehicles have different preferences

for time benefit and accident risk.
(1) When the vehicle is aggressive, the preference for

time gains is greater than for safety gains. Vehicles are
not sensitive to risk but to time saved. Therefore, in the
early  days,  as  the  risk  of  accidents  increases,  the
benefits  of  the  vehicle  increase.  After  reaching  the
threshold, the vehicle’s benefits decrease as the risk of
accidents increases, as shown in Figs. 11a and 11b.

(2)  When  the  vehicle  is  stable,  the  preference  for
time benefits is not much different from safety benefits.
When road saturation is  low, vehicles  can trade safety
risks  for  time  gains,  and  there  is  a  maximum  cut-off
value for benefits. When the road saturation is high, the
return of the vehicle is negative, and it is not profitable
at this time, as shown in Figs. 11c and 11d.

(3) When the vehicle is slow, the preference for time
gains  is  less  than  for  safety  gains.  The  vehicle’s
revenue  decreases  with  the  increase  in  road  saturation
throughout  the  period,  and  the  revenue  is  negative,
indicating  that  the  vehicle  is  susceptible  to  road
saturation. When the road saturation is low, the road is
smooth,  and  vehicles  can  only  obtain  high  returns  by
increasing  the  risk.  As  the  saturation  of  the  road
increases,  the  willingness  of  the  vehicle  to  exchange
risk for returns is getting lower and lower, as shown in
Figs. 11e and 11f.

After  simulating  and  analyzing  the  comprehensive
effects  of  accident  incidence  and  road  saturation  on
revenue. The effect of road saturation on the revenue of
the three types of vehicles at different accident rates is
shown in Fig.  12.  The  impact  of  accident  rates  on  the
benefits of the three types of vehicles at different road
saturation levels is shown in Fig. 13.

Figure  12 indicates  that  the  revenue  of  vehicles
decreases with the increase of road saturation, which is
consistent  with  the  fact  that  the  revenue  of  vehicles
decreases  in  the  event  of  road  congestion.  Aggressive
vehicles prefer risk, and the greater the risk, the higher
the  return.  Stable  vehicles  remain  neutral,  and  returns
stabilize  when  risk  reaches  a  certain  level.  Slow
vehicles avoid the wind direction, and when the risk is
small,  it  has  little  impact  on  the  change  of  its  returns,
and when the risk is significant, its return will decrease
significantly.
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Figures  13 shows  that  aggressive  vehicles  prefer  to
risk,  and  their  returns  are  proportional  to  risk.  Both
stable and slow vehicles have acceptable critical  risks,
and when the critical risks are exceeded, their benefits
are reduced.

Under  the  same  accident  rate,  the  change  in  the
earning  difference  of  aggressive  vehicles  is  the  most
stable, and the change in the earning difference of slow
vehicles  is  the  steepest,  indicating  that  aggressive

vehicles are not sensitive to risk and slow vehicles are
sensitive to risk, as shown in Fig. 14.

Under  the  same  road  saturation,  the  earning
difference of slow vehicles changes the most smoothly.
The  earning  difference  of  aggressive  vehicles  changes
the  most  steeply,  indicating  that  slow vehicles  are  not
sensitive to road saturation and aggressive vehicles are
sensitive to road saturation, as shown in Fig. 15.

The  average  income  variations  for  three  different

 

0.4

0.5

0.3

0.2

0.1

0

−0.1
−0.2

1.0 0
0.2

0.4
0.6

0.8
1.0

0.8
0.6

0.4
0.2

0

R
ev

en
ue

 fr
om

 a
gg

re
ss

iv
e

dr
iv

in
g 

ve
hi

cl
es

Road saturation Accident ris
k

(a) Aggressive vehicle−three-dimensional bar chart
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(c) Stable vehicle−three-dimensional bar chart

0

1.0 0
0.2

0.4
0.6

0.8
1.0

0.8
0.6

0.4
0.2

0

R
ev

en
ue

 fr
om

 s
lo

w
 m

ov
in

g 
ve

hi
cl

es

Road saturation Accident ris
k

(e) Slow vehicle−three-dimensional bar chart
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(b) Aggressive vehicle−three-dimensional surface chart
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(d) Stable vehicle−three-dimensional surface chart
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(f) Slow vehicle−three-dimensional surface chart 
Fig. 11    Income chart of different types of vehicles.
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types  of  vehicles  are  examined  in  terms  of  accident
rates and road saturation. The higher the accident rate,
the greater the average return of aggressive vehicles on
the  road,  indicating  that  aggressive  vehicles  are  risk-
conscious.  Stable  vehicles  are  risk-neutral,  and  the
average  benefit  is  maximized  when  the  accident  rate
reaches  0.7.  Slow  vehicles  are  risk-averse,  and  the
average  benefit  is  maximized  when  the  accident  rate
reaches 0.4, as shown in Table 3.

Aggressive  vehicles  are  sensitive  to  road  saturation,

and  their  benefits  are  significantly  reduced  when  the
roads  are  too  congested.  Slow vehicles  are  insensitive
to road saturation, and changes in road saturation have
little  impact  on  changes  in  their  earnings.  Stable
vehicles  are  somewhere  between aggressive  and  slow.
This is shown in Table 4.

5.2  Analysis  of  manager  information  induction
studies

In  this  paper,  40  vehicles  driving  on  the  road  are
selected  as  the  research  object.  The  dynamic  label  of

 

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

Ag
gr

es
si

ve
 re

tu
rn 0.8

1.0

Road saturation
(a) Aggressive vehicle

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

St
ab

le
 re

tu
rn

0.8

1.0

Road saturation
(b) Stable vehicle

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

Sl
ow

 re
tu

rn

0.8

1.0

Road saturation
(c) Slow vehicle

ε=0.1
ε=0.3
ε=0.5
ε=0.7
ε=0.9

ε=0.1
ε=0.3
ε=0.5
ε=0.7
ε=0.9

ε=0.1
ε=0.3
ε=0.5
ε=0.7
ε=0.9

 
Fig. 12    Effect of road saturation on vehicle revenue at different accident rates.
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Fig. 13    Effect of accident rates on vehicle revenue at different road saturation levels.
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Fig. 14    Variation  in  earning  differential  at  different
accident rates.

 

Ea
rn

in
g 

di
ffe

re
nc

e

Road saturation

Aggressive vehicle
Stable vehicle
Slow vehicle

0 0.2 0.4 0.6 0.8 1.0

−0.25

−0.20

−0.15

−0.10

−0.05

0

 
Fig. 15    Variation  of  earning  differential  under  different
road saturation levels.
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the  driving  vehicle  is  represented  by  six  sets  of
characteristics:  driving  speed,  lane  change  frequency,
traffic light behavior, safe distance following the vehicle,
steering  reaction  time,  and  braking  reaction  time.  The
basic data in this paper are derived from the METR-LA
dataset.  However,  because  some driving behaviors  are
difficult  to  obtain,  this  paper  uses  simulation to  verify
them.

Since vehicles and their driving behavior are random
events,  and  normal  distribution  can  well  describe  the
occurrence  rule  of  random time,  MATLAB is  used  in
this section to generate random numbers conforming to
normal  distribution.  According  to  the  above  analysis,
the  vehicle  has  6  types  of  dynamic  behavior
characteristics,  namely  16  kinds  of  behavior  choices,
and  the  vehicle  makes  behavior  choices  in  6  types  of
behavior  characteristics.  Since  driver  behavior  is
difficult  to  obtain,  in  order  to  better  analyze  vehicle
behavior  characteristics  and  easily  distinguish
important  vehicle  behavior  characteristics,  the  total
number of each type of behavior characteristic needs to
be  constrained  by  a  fixed  value.  Therefore,  this  paper
assumes  that  the  maximum  value  of  each  behavior
selection is 10, the total number of behavior features of
speed,  lane  change,  safety  distance,  and  steering
reaction  time  is  30,  and  the  total  number  of  behavior
features of traffic light and braking reaction time is 20.

For example, in the category of steering reaction time,

the  vehicle  has  three  choices,  and  the  total  number  of
such  behavioral  characteristics  is  30.  To  better  fit  the
actual  simulation,  3  ×  40  random  numbers  with  a
normal  distribution  and  a  sum  of  30  for  each  column
are generated. In the category of braking reaction time,
the  vehicle  has  two  choices,  and  the  total  number  of
such behavioral features is 20. 2 × 40 random numbers
with a normal distribution and a column sum of 20 are
generated.

By  analogy,  in  order  to  better  simulate  vehicle
behavior  characteristics,  this  paper  uses  MATLAB  to
randomly generate six types of behavior characteristics
of  40  vehicles,  whose  behavior  characteristics  obey
normal  distribution,  and  the  number  sum of  each  type
of behavior characteristic is a fixed value.

Due  to  space  limitation,  only  16  vehicle
characteristics were shown in this paper. Since driving
vehicles  will  show  hidden  driving  behavior  with
changes  in  the  road  environment,  it  is  organized  into
the forms of Table 5.

When  road  congestion  is  low,  the  behavior  of  the
vehicle  exhibits  an  objective  vehicle  type.  However,
when  the  road  congestion  is  above  moderate,  the
vehicle  will  be  affected  by  the  external  environment,
and show the false behavioral characteristics, as shown
in Table 5. Specific performance is as follows:

(1) When the road congestion is high, aggressive and
stable vehicles will show slow behavior.

(2)  When  road  congestion  is  moderate,  aggressive

 

Table 3    Average revenue of the three types of vehicles under different accident rates.

Vehicle
type

Average return
Accident

rate=0
Accident
rate=0.1

Accident
rate=0.2

Accident
rate=0.3

Accident
rate=0.4

Accident
rate=0.5

Accident
rate=0.6

Accident
rate=0.7

Accident
rate=0.8

Accident
rate=0.9

Accident
rate=1.0

Aggressive
vehicle 0.000 0.044 0.100 0.158 0.207 0.248 0.280 0.323 0.360 0.370 0.395

Stable
vehicle 0.122 0.177 0.220 0.265 0.285 0.310 0.325 0.330 0.325 0.310 0.285

Slow
vehicle 0.272 0.323 0.360 0.383 0.392 0.387 0.368 0.335 0.288 0.240 0.175

 

Table 4    Average revenue of three types of vehicles under different road saturation levels.

Vehicle
type

Average return
Road

saturation=
0.1

Road
saturation=

0.2

Road
saturation=

0.3

Road
saturation=

0.4

Road
saturation=

0.5

Road
saturation=

0.6

Road
saturation=

0.7

Road
saturation=

0.8

Road
saturation=

0.9

Road
saturation=

1.0
Aggressive

vehicle 0.296 0.295 0.291 0.294 0.268 0.237 0.201 0.119 0.021 0.000

Stable
vehicle 0.334 0.333 0.330 0.321 0.303 0.269 0.214 0.147 0.052 0.000

Slow
vehicle 0.387 0.387 0.385 0.380 0.369 0.349 0.315 0.265 0.191 0.111
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vehicles exhibit a stable behavior.
Based  on  the  above  analysis,  the  influence  of

information  induction  on  vehicle  behavior  change  is
further  explored.  AnyLogic  simulation  software  was
used for information induction simulation analysis. For
the convenience of discussion, this calculation example
only discusses  the  type change between the  two pairs,
taking  the  aggressive  type  change  to  the  slow  type  as
an example.  Suppose that the total  number of vehicles
on the road is 40, and the number of vehicles in contact
with neighbors is 4. Assume that the initial vehicles on
the  road  are  all  aggressive.  Then,  the  effects  of
information  guidance  and  strategy  transfer  on  vehicle
type change are discussed. The details are as follows:

Figure  16 analyzes  the  transformation  of  aggressive
vehicles under different information guidance rates and
strategy  transfer  probabilities  when  the  vehicle
behavior  changes  will  not  change  to  the  previous
behavior  (that  is,  the  vehicle  behavior  changes  are
permanent).

When the information guidance rate and the strategy
transfer probability are both 0, that is, the vehicle itself
has  no  idea  of  transferring  strategy  and  the  outside

world  has  not  induced  it  to  change  strategy,  then  all
vehicles  will  not  change  their  own  strategy,  as  shown
in Fig. 16a.

With the increase in information guidance rate, when
the  information  guidance  rate  is  0  and  the  strategy
transfer  probability  is  1,  that  is,  the  vehicle  itself  has
the  idea  of  transferring  policy,  but  if  there  is  no
external security information to help it change strategy,
all  vehicles  will  not  change  their  own  strategy,  as
shown in Fig. 16c. When the information guidance rate
is 0.5 and the strategy transfer probability is 1, that is,
the  vehicle  itself  has  the  idea  of  transferring  the
strategy  completely,  and  the  outside  world  provides
some information to help it change the strategy, then all
the vehicles will change their own strategy, as shown in
Fig. 16e.

With  the  increase  in  strategy  transfer  probability,
when  the  information  guidance  rate  is  1  and  the
strategy  transfer  probability  is  0,  that  is,  the  vehicle
itself  has  no  idea  of  policy  transfer.  However,  if  the
outside  world  provides  complete  safety  information to
help it  change its  policy, all  vehicles will  change their
own  policies,  as  shown  in Fig.  16b.  When  the

 

Table 5    Number of vehicle behaviors when road congestion is medium and high.

Feature
Frequency of occurrence

“1” “2” “3” “4” “5” “6” “7” “8” “9” “10” “11” “12” “13” “14” “15” “16”
Accelerate driving 8 7 5 0 11 5 7 12 7 9 12 6 8 6 8 9

Frequent lane change 18 0 18 15 20 8 17 9 3 27 15 10 16 16 20 9
Pass the yellow light 12 11 8 4 8 11 1 7 6 8 6 16 7 2 7 11
Close safety distance 14 8 8 3 2 16 27 24 20 23 24 15 1 23 12 20

Quick steering 2 26 13 8 28 19 10 13 9 2 0 14 1 18 5 3
Emergency braking 1 1 4 14 3 2 9 2 11 9 11 1 3 3 3 2

Steady speed driving 9 7 5 8 14 3 22 17 18 11 16 19 20 23 19 5
Normal lane change 4 6 5 7 9 0 11 14 17 2 14 10 9 8 8 7

Moderate safety distance 7 2 6 11 26 2 2 4 10 6 6 12 28 5 11 1
Smooth steering 7 1 6 10 2 3 18 9 11 23 16 14 18 9 24 8
Smooth braking 19 19 16 6 17 18 11 18 9 11 9 19 17 17 17 18

Pass the green light 8 9 12 16 12 9 19 13 14 12 14 4 13 18 13 9
Slow driving 13 16 19 22 5 23 2 1 4 9 2 5 2 1 3 15

Low frequency lane change 8 24 8 8 1 21 2 7 9 1 2 10 6 6 1 13
Far safety distance 10 20 16 17 2 12 1 2 1 2 0 3 1 1 7 9

Slow steering 21 3 11 12 0 7 2 8 10 6 14 3 10 3 2 19
Real vehicle type A A A A A A A A A A A A A A A A
Fake performance C C C C B C B B B B B B B B B C
Road congestion H H H H M H H H H M M M M M M H

Note: “1”–“16” represent the vehicle number, H represents high, M represents middle, pink represents aggressive, blue represents
stable, and yellow represents slow.
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information guidance rate is 1 and the strategy transfer
probability is 0.5, that is, the vehicles themselves have
some  ideas  of  policy  transfer,  and  the  outside  world
provides  complete  safety  information  to  help  them
change their policies, then all vehicles will change their
own  policies,  as  shown  in Fig.  16d.  When  the
information guidance rate is 1 and the strategy transfer
probability  is  1,  that  is,  the  vehicle  itself  fully  intends
to  transfer  the  policy,  and  the  outside  world  provides
complete safety information to help it change the policy,
then all the vehicles will change their own policies, as
shown  in Fig.  16f.  Based  on  the  above  analysis,  the
following conclusions can be drawn.

(1)  When  the  vehicle  type  changes  and  does  not
change again, the following situations exist.

(a)  When  the  information  guidance  rate  and  the
likelihood of strategy transfer are 0, the type change of
aggressive vehicles will not occur.

(b)  When  the  information  guidance  rate  and  the
strategy  transfer  probability  are  1,  the  aggressive
vehicle will change to a slow type.

(c) As the rate of information guidance increases, the
faster  the  road  vehicle  state  tends  to  stabilize.  The
increase  of  the  policy  transition  probability  will  also
speed  up  the  stabilization  of  the  vehicle’s  state  on  the

road.  However,  the  influence  of  the  policy  transition
probability  on  the  vehicle  type  transition  is  not  as
significant  as  that  guidance  by  the  information
guidance for the neighbor policy, as shown in Fig. 16.

Figure  17 analyzes  the  transformation  of  aggressive
vehicles under different information guidance rates and
strategy  transfer  probabilities,  when  vehicle  behavior
changes will also change to the previous behavior (that
is, vehicle behavior changes are not permanent).

When the information guidance rate and the strategy
transfer  probability  are  both  0,  it  indicates  that  the
vehicle  itself  has  no  idea  of  transferring  strategy,  and
the outside world has not induced it to change strategy.
Then all aggressive vehicles will not change their own
strategy, as shown in Fig. 17a.

With the increase in information guidance rate, when
the  information  guidance  rate  is  0.5  and  the  strategy
transfer  probability  is  0,  it  indicates  that  the  vehicle
itself has no idea of transferring strategy at all, but the
outside  world  can  provide  some  safety  information  to
help  it  change  strategy.  In  this  case,  the  aggressive
vehicle  will  change  its  own  strategy,  but  because  the
change  in  vehicle  behavior  is  not  permanent,  the
vehicle  will  change  its  own strategy.  At  this  time,  the
number  of  aggressive  vehicles  and  slow  vehicles  is
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Fig. 16    Transition from aggressive  vehicles  to  slow vehicles.  The  total  number of  vehicles  is  40,  and the  number of  contact
neighbors is 4.
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equal  and will  tend to  stabilize,  as  shown in Fig.  17b.
When  the  information  guidance  rate  is  1  and  the
strategy  transfer  probability  is  0,  the  number  of  slow
vehicles exceeds the number of aggressive vehicles, but
because  the  behavior  change  of  vehicles  is  not
permanent,  the  aggressive  vehicles  will  not  be
completely transformed into slow vehicles, as shown in
Fig. 17d.

When  the  information  guidance  rate  is  0.5  and  the
strategy  transfer  probability  is  0.5,  it  indicates  that
when  the  vehicle  itself  has  some  idea  of  the  transfer
strategy  and  the  outside  world  provides  some  safety
information  to  help  it  change  strategy,  the  number  of
slow  vehicles  exceeds  the  number  of  radical  vehicles.
However,  since the behavior  change of  vehicles is  not
permanent,  the radical  vehicles  will  not  be completely
transformed into slow vehicles, as shown in Fig. 17c.

With  the  increase  in  strategy  transfer  probability,
when  the  information  guidance  rate  is  1  and  the
strategy  transfer  probability  is  0.5,  it  indicates  that
when  the  vehicle  itself  has  some  ideas  of  policy
transfer and the outside world provides complete safety
information to help it change its strategy, the number of
slow vehicles exceeds the number of aggressive vehicles.

However,  since  the  change  in  vehicle  behavior  is  not
permanent,  aggressive  vehicles  do  not  fully  transform
into  slow  vehicles,  and  the  volatility  of  their  number
changes  increases,  as  shown  in Fig.  17e.  When  the
information guidance rate is 1 and the strategy transfer
probability is 1, it indicates that when the vehicle itself
fully has the idea of a transfer strategy and the outside
world  provides  complete  safety  information  to  help  it
change  strategy,  the  number  of  slow  vehicles  exceeds
the number of aggressive vehicles. However, since the
behavior  change  of  vehicles  is  not  permanent,  the
aggressive vehicles will not be completely transformed
into  slow  vehicles.  And  the  volatility  of  its  quantity
change  further  increases,  as  shown  in Fig.  17f.  Based
on the above analysis, the following conclusions can be
drawn.

(2) When the vehicle type changes after the change,
the following situations exist.

(a)  When  the  information  guidance  rate  and  the
probability  of  strategy  transfer  are  0,  the  type
transformation of aggressive vehicles will not occur.

(b)  When  the  information  guidance  rate  and  the
probability  of  strategy  transfer  are  both  1,  the
aggressive vehicle coexists with the slow type.
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Fig. 17    Coexistence diagram of the transition from aggressive vehicles to slow vehicles. The total number of vehicles is 40, and
the number of contact neighbors is 4.
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(c)  Information  guidance  helps  speed  up  the
transition  of  vehicle  types,  and  the  increase  in  the
probability  of  policy  transition  increases  the  volatility
of the number of vehicles, as shown in Fig. 17.

When  the  number  of  vehicles  is  40  and  the  number
of neighboring vehicles is 4, the information induction
rate  is  0,  0.2,  0.5,  or  1,  and  the  strategy  transfer
probability  is  0,  0.5,  or  1.  The  test  results  shown  in
Table  6 can  be  obtained  by  running  the  information
induction  algorithm.  It  can  be  seen  from Table  6 that
the  information  guidance  algorithm  proposed  in  this
paper  can  improve  the  efficiency  of  vehicle  behavior
strategy change while shortening the running time.

Based  on  the  above  simulation  analysis,  the  driving
vehicle  guidance  strategy  for  different  roads  is  as
follows:

(1) When the road saturation is low, that is, the road
is  smooth.  Aggressive  vehicles  prefer  risks,  and
managers can release information such as road safety to
aggressive vehicles to increase the safety factor of their
road  passage.  Slow  vehicles  are  not  sensitive  to  road
saturation,  and  changes  in  road  saturation  have  little
impact on their income changes. Managers can release
information such as acceleration or lane change to slow
vehicles, thus improving the operation efficiency of the
road  network.  Stable  vehicles  are  between  aggressive
and  slow  vehicles,  and  managers  should  not  only
release safe driving information to them, but also make
them properly accelerate information, so as to increase
the  operating  efficiency  of  the  road  network  and  the
time benefit of the driving vehicle itself.

(2) When the road saturation is high, that is, the road
is congested. Aggressive vehicles are the most sensitive
to  road  saturation  and  are  also  the  most  prone  to
accidents.  The manager’s  induction strategy is  to  send
warning messages  to  aggressive  vehicles  to  encourage

aggressive  vehicles  to  reduce  aggressive  behaviors,
thereby  reducing  the  risk  of  accidents  and  increasing
the profits of driving vehicles.

6    Conclusion

In  this  paper,  considering  the  factors  of  time,  safety,
and  neighbor  vehicle  behavior  strategy,  the  vehicle
behavior  strategy  selection  is  analyzed,  and  a  vehicle
network game evolution model is  constructed to study
the competition relationship between different types of
vehicles.  Then,  an  algorithm  for  vehicle  dynamic
behavior preference information induction is proposed.
Finally,  an  example  is  given  to  verify  the  algorithm.
The results show that:

(1)  In  the  network  evolutionary  game  of  vehicle
behavior,  different  types  of  vehicles  have  different
dynamic  behavior  preferences,  and  vehicle  behavior
selection  is  not  only  affected  by  safety  and  time  gain
but  also  by  neighboring  vehicle  types  and  behavior
strategies.

(2) Different combinations of road vehicle types lead
to  different  potential  accident  risks,  among  which  the
higher the proportion of aggressive vehicles, the greater
the potential  road risk.  In  order  to  reduce the accident
probability,  aggressive  vehicles  should  be  guided  to
transform into other types.

(3)  With  the  change  in  road  environment,  vehicles
will  hide  their  real  driving  behavior,  and  information
guidance of vehicles will help to change vehicle types.

(4)  Vehicle  type  identification  also  contributes  to
road  risk  assessment.  Information  guidance  helps  to
promote the stability of vehicle states, and information
guidance  helps  to  change  vehicle  types  and  promote
road traffic safety.

(5)  Managers  can  provide  differentiated  information
guidance  strategies  according  to  different  road

 

Table 6    Experimental results of information guidance algorithm.

No. Information guidance rate Strategy transfer rate Time (s) Conversion rate (%) Number of vehicles Number of neighbors
1 0 0 +∞ 0.00 40 4
2 0.2 1.0 9.8 87.50 40 4
3 0.5 0.5 7.2 74.26 40 4
4 0.5 1.0 7.1 100.00 40 4
5 0.5 0 6.9 50.02 40 4
6 1.0 0 6.1 65.75 40 4
7 1.0 0.5 3.6 100.00 40 4
8 1.0 1.0 3.6 100.00 40 4
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saturation states.  For example, when road saturation is
low, managers can release inducements related to time
preference. When road saturation is high, managers can
release inducements related to safety preferences.

This study analyzed the evolutionary game of vehicle
networks,  and  only  discussed  vehicle  behavior  choice
and  the  influence  of  information  guidance  on  vehicle
behavior  strategy,  but  did  not  discuss  the  incentive
mechanism design of information guidance. Therefore,
future  research  can  consider  how  to  establish  an
information  guidance  incentive  mechanism  to
encourage  individual  vehicles  to  transmit  valuable
information,  and  ultimately  achieve  the  purpose  of
smoothing the operation of the road network.
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