6 Nov 2018

Probability: A Second Dose in ROB 501

1 Probability Spaces

Figure 1: (Left) Normal distribution $N(\mu, \sigma)$ with $\mu = 0$ and $\sigma = 30$. (Right) How do you determine the density? You have to collect data! The figure shows a "fit" of a normal distribution to data.

Def. (Ω, \mathscr{F}, P) is called a probability space.

- Ω is the sample space. Think of it as the domain of a random variable $X:\Omega\to\mathbb{R}$ or random vector $X:\Omega\to\mathbb{R}^m$.
- $A \subset \Omega$ is an event.
- $\mathscr F$ is the collection of allowed events¹. It must at least contain \emptyset and Ω . It is closed w.r.t. countable unions and intersections, and set complement.
- $P : \mathscr{F} \to [0,1]$ is a probability measure. It has to satisfy a few basic operations

$$
- P(\emptyset) = 0 \text{ and } P(\Omega) = 1.
$$

- For each $A \in \mathscr{F}$, $0 \leq P(A) \leq 1$

- If the sets
$$
A_1, A_2, ...
$$
 are disjoint (i.e., $A_i \cap A_j = \emptyset$ for $i \neq j$), then

$$
P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)
$$

• Example event $A := {\omega \in \Omega \mid |\omega - \mu| \leq \sigma} \Rightarrow P(A) = 0.682$

 $\overline{1}$ Though it is too deep for ROB 501, there are subsets of the reals, for example, that are so complicated one cannot define a reasonable notion of probability that agrees with how we would want to define the probability of an interval, such as $[a, b]$.

2 Random Variables

Def. $X : \Omega \to R$ is a random variable if $\forall x \in \mathbb{R}$, the set $\{\omega \in \Omega \mid X(\omega) \leq \omega\}$ $x\} \in \mathscr{F}$. This just means that such sets can be assigned probabilities.

Remarks:

- Shorthand notation $\{X \leq x\} := \{\omega \in \Omega \mid X(\omega) \leq x\}$
- \bullet Because $\mathscr F$ is closed under set complements, (countable) unions, and (countable) intersections, we can also assign probabilities to

a)
$$
\{X > x\} = \sim \{X \le x\} = \{X \le x\}^C
$$

b) $\{x < X \le y\} = \{X \le y\} \cap \{X > x\}$

Def. $X : \Omega \to \mathbb{R}$ is a continuous random variable if there exists a density $f:\mathbb{R}^p\to[0,\infty)$ such that,

 $\forall x \in \mathbb{R}, P(\{X \leq x\}) =$ \int_0^x $-\infty$ $f(\bar{x})d\bar{x}$ (\bar{x} dummy variable in the integral)

Remarks:

$$
\bullet \int_{a}^{b} f(x)dx = P(a < X \le b) = P(a \le X \le b)
$$

$$
= P(\{\omega \in \Omega \mid X(\omega) \in [a, b]\})
$$

- mean: $\mu := \mathcal{E}\{X\} := \int_{-\infty}^{\infty} f(x) dx$
- Variance: $\sigma^2 := \mathcal{E}\{(X-\mu)^2\} := \int_{-\infty}^{\infty} (x-\mu)^2 f(x) dx$
- Standard Deviation $\sigma := \sqrt{\sigma^2}$ (Std. Dev.)

3 Random Vectors

Def. Let (Ω, \mathscr{F}, P) be a probability space. A function $X : \Omega \to \mathbb{R}^p$ is called a random vector if each component of $X =$ $\sqrt{ }$ \vert $\overline{}$ $\overline{1}$ \vert X_1 X_2 . . . X_p 1 \vert \mathbf{I} \mathbb{R} \vert is a random variable, that is, $\forall 1 \leq i \leq p$, $X_i : \Omega \to \mathbb{R}$ is a random variable.

Consequence: $\forall x \in \mathbb{R}^p$, the set $\{\omega \in \Omega \mid X(\omega) \leq x\} \in \mathscr{F}$ (i.e., it is an allowed event), where the inequality is understood pointwise, that is,

$$
\{\omega \in \Omega \mid X(\omega) \leq x\} := \{\omega \in \Omega \mid \begin{bmatrix} X_1(\omega) \\ X_2(\omega) \\ \vdots \\ X_p(\omega) \end{bmatrix} \leq \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} \} = \bigcap_{i=1}^p \{\omega \in \Omega \mid X_i(\omega) \leq x_i\}
$$

Def. $X : \Omega \to \mathbb{R}^p$ is a continuous random vector if there exists a density $f:\mathbb{R}^p\to [0,\infty)$ such that,

$$
\forall x \in \mathbb{R}^P, \ P(\lbrace X \leq x \rbrace) = \int_{-\infty}^{x_p} \dots \int_{-\infty}^{x_2} \int_{-\infty}^{x_1} f_X(\bar{x}_1, \bar{x}_2 \dots \bar{x}_p) d\bar{x}_1 d\bar{x}_2 \dots d\bar{x}_p
$$

4 Moments

Def. Suppose $g : \mathbb{R}^p \to R$

$$
E\{g(X)\} = \int_{\mathbb{R}^p} g(x) f_X(x) dx = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} g(x_1, ..., x_p) f_X(x_1, ..., x_p) dx_1...dx_p
$$

Mean or Expected Value

$$
\mu = E\{X\} = E\{\begin{bmatrix} X_1 \\ \vdots \\ X_p \end{bmatrix}\} = \begin{bmatrix} \mathcal{E}\{X_1\} \\ \vdots \\ \mathcal{E}\{X_p\} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_p \end{bmatrix}
$$

Covariance Matrices

$$
\Sigma := \text{cov}(X) = \text{cov}(X, X) = E\{(X - \mu)(X - \mu)^{T}\}\
$$

where

$$
(X - \mu)
$$
 is $p \times 1$, $(X - \mu)^T$ is $1 \times p$, $(X - \mu)(X - \mu)^T$ is $p \times p$

Exercise $cov(X)$ is positive semidefinite

5 Marginal Densities, Independence, and Correlatation

Suppose the random vector $X: \Omega \to \mathbb{R}^p$ is partitioned into two components $X_1: \Omega \to \mathbb{R}^n$ and $x_2: \Omega \to \mathbb{R}^m$, with $p = n + m$, so that,

$$
X = \left[\begin{array}{c} X_1 \\ X_2 \end{array} \right]
$$

Notation: We denote the density of X by

$$
f_X(x) = f_{\left[\begin{array}{c} X_1\\ X_2 \end{array}\right]}(x_1, x_2) = f_{X_1 X_2}(x_1, x_2)
$$

and it is called the joint density of X_1 and X_2 . As before, we can define the mean and covariance.

- Mean is $\mu =$ $\lceil \mu_1 \rceil$ μ_2 1 $=\mathcal{E}\{X\} = E\{$ $\bigl\lceil X_1$ X_2 1 $\} =$ $\bigl\lceil \mathcal{E}\{X_1\}\bigr\rceil$ $\mathcal{E}\{X_2\}$ 1
- Covariance is

$$
\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} = \mathcal{E}\left\{ \begin{bmatrix} X_1 - \mu_1 \\ X_2 - \mu_2 \end{bmatrix} \begin{bmatrix} X_1 - \mu_1 \\ X_2 - \mu_2 \end{bmatrix}^{\top} \right\}
$$

= $\mathcal{E}\left\{ \begin{bmatrix} X_1 - \mu_1 \\ X_2 - \mu_2 \end{bmatrix} \begin{bmatrix} (X_1 - \mu_1)^{\top} & (X_2 - \mu_2)^{\top} \end{bmatrix} \right\}$
= $\mathcal{E}\left\{ \begin{bmatrix} (X_1 - \mu_1)(X_1 - \mu_1)^{\top} & (X_1 - \mu_1)(X_2 - \mu_2)^{\top} \\ (X_1 - \mu_1)(X_2 - \mu_2)^{\top} & (X_2 - \mu_1)(X_2 - \mu_2)^{\top} \end{bmatrix} \right\}$

where $\Sigma_{12} = \Sigma_{21}^{\top} = cov(X_1, X_2) = \mathcal{E}\{(X_1 - \mu_1)(X_2 - \mu_2)^{\top}\}\)$ is also called the correlation of X_1 and X_2 .

If $X =$ $\left\lceil X_1 \right\rceil$ X_2 $\left[\alpha : \Omega \to \mathbb{R}^{n+p} \right]$ is a continuous random vector, then its components $X_1 : \Omega \to \mathbb{R}^n$ and $X_2 : \Omega \to \mathbb{R}^m$

are also continuous random vectors and have densities, $f_{X_1}(x_1)$ and $f_{X_2}(x_2)$. These densities are given a special name.

Def. $f_{X_1}(x_1)$ and $f_{X_2}(x_2)$ are called the <u>marginal densities</u> of X_1 and X_2 .

Fact: In general the marginal densities are a nightmare to compute.

$$
f_{X_1}(x_1) = \int_{-\infty}^{\infty} f_{X_1X_2}(x_1, x_2) dx_2
$$

 :=
$$
\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X_1X_2}(\underbrace{\bar{x}_1, \ldots, \bar{x}_n}_{x_1}, \underbrace{\bar{x}_{n+1}, \cdots, \bar{x}_{n+m}}_{x_2}) \underbrace{d\bar{x}_{n+1} \cdots d\bar{x}_{n+m}}_{dx_2}
$$

$$
f_{X_2}(x_2) = \int_{-\infty}^{\infty} f_{X_1X_2}(x_1, x_2) dx_1
$$

 :=
$$
\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X_1X_2}(\underbrace{\bar{x}_1, \ldots, \bar{x}_n}_{x_1}, \underbrace{\bar{x}_{n+1}, \cdots, \bar{x}_{n+m}}_{x_2}) \underbrace{d\bar{x}_1 \cdots d\bar{x}_n}_{dx_1}
$$

For Normal Random Vectors, however, we can read them directly from the joint density! We will not be doing any iterated integrals.

Def. X_1 and X_2 are independent random vectors if their joint density factors $f_X(x) = f_{X_1 X_2}(x_1, x_2) = f_{X_1}(x_1) f_{X_2}(x_2).$

Def. X_1 and X_2 are uncorrelated if their "cross covariance" or "correlation" is zero

$$
cov(X_1, X_2) := \mathcal{E}\{(X_1 - \mu_1)(X_2 - \mu_2)^{\top}\} = 0_{n \times m}
$$

Fact: If X_1 and X_2 are independent, then they are also uncorrelated. The converse is in general false.

6 Conditioning

Def. For two events $A, B \in \mathcal{F}, P(B) > 0$

$$
P(A \mid B) := \frac{P(A \cap B)}{P(B)}
$$

is the conditional probability of A given B .

Remarks:

•

•

• Suppose $P(A)$ is our current estimate of the probability that our robot is near a certain location and B is a measurement of the robot's location, with confidence in the measurement being $P(B)$. The conditional probability of A given B occurred is how we "fuse" the two pieces of information

$$
P(A \mid B) := \frac{P(A \cap B)}{P(B)}
$$

$$
B \subset A
$$
, $P(A | B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$

$$
A \subset B, P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)}{P(B)} \ge P(A)
$$

Consider again our partitioned random vector $X =$ $\bigl\lceil X_1$ X_2 1

Def. The <u>conditional density of X_1 given $X_2 = x_2$ </u> is

$$
f_{X_1|X_2}(x_1 \mid x_2) = \frac{f_{X_1X_2}(x_1, x_2)}{f_{X_2}(x_2)}.
$$

Sometimes we simply write $f(x_1 | x_2)$

Remarks on Conditional Random Vectors:

- Very important: X_1 given $X_2 = x_2$ is (still) a random vector. It's density is $f_{X_1|X_2}(x_1 | x_2)$
- Conditional Mean:

$$
\mu_{X_1|X_2=x_2} := \mathcal{E}\{X_1 \mid X_2 = x_2\}
$$

 :=
$$
\int_{-\infty}^{\infty} x_1 f_{X_1|X_2}(x_1 \mid x_2) dx_1
$$

 $\mu_{X_1|X_2=x_2}$ is a function of x_2 . Think of it as a function of the value read by your sensor!

• Conditional Covariance:

$$
\Sigma_{X_1|X_2=x_2} := \mathcal{E}\{(X_1 - \mu_{X_1|X_2=x_2})(X_1 - \mu_{X_1|X_2=x_2})^\top \mid X_2 = x_2\}
$$

 :=
$$
\int_{-\infty}^{\infty} (X_1 - \mu_{X_1|X_2=x_2})(X_1 - \mu_{X_1|X_2=x_2})^\top f_{X_1|X_2}(x_1 \mid x_2) dx_1
$$

 $\Sigma_{X_1|X_2=x_2}$ is a function of x_2 . Think of it as a function of the value read by your sensor!

Peek at the KF (Kalman Filter)

Model

$$
x_{k+1} = A_k x_k + G_k w_k, \quad x_0 \text{ initial condition}
$$

$$
y_k = C_k x_k + v_k
$$

 $x \in \mathbb{R}^n$, $w \in \mathbb{R}^p$, $y \in \mathbb{R}^m$, $v \in \mathbb{R}^m$. Moreover, the random vectors x_0 , and, for $k \geq 0$, w_k , v_k are all independent Gaussian (normal) random vectors.

Definition of Terms:

$$
\widehat{x}_{k|k} := \mathcal{E}\{x_k|y_0, \cdots, y_k\}
$$

\n
$$
P_{k|k} := \mathcal{E}\{(x_k - \widehat{x}_{k|k})(x_k - \widehat{x}_{k|k})^\top | y_0, \cdots, y_k\}
$$

$$
\widehat{x}_{k+1|k} := \mathcal{E}\{x_{k+1}|y_0, \cdots, y_k\}
$$

\n
$$
P_{k+1|k} := \mathcal{E}\{(x_{k+1} - \widehat{x}_{k+1|k})(x_{k+1} - \widehat{x}_{k+1|k})^\top | y_0, \cdots, y_k\}
$$

Initial Conditions: $\hat{x}_{0|-1} := \bar{x}_0 = \mathcal{E}\{x_0\}$, and $P_{0|-1} := P_0 = \text{cov}(x_0)$

For $k \geq 0$

Measurement Update Step:

$$
K_{k} = P_{k|k-1} C_{k}^{\top} (C_{k} P_{k|k-1} C_{k}^{\top} + Q_{k})^{-1}
$$

(Kalman Gain)

$$
\widehat{x}_{k|k} = \widehat{x}_{k|k-1} + K_{k} (y_{k} - C_{k} \widehat{x}_{k|k-1})
$$

$$
P_{k|k} = P_{k|k-1} - K_{k} C_{k} P_{k|k-1}
$$

Time Update or Prediction Step:

$$
\widehat{x}_{k+1|k} = A_k \widehat{x}_{k|k}
$$

$$
P_{k+1|k} = A_k P_{k|k} A_k^{\top} + G_k R_k G_k^{\top}
$$

End of For Loop (Just stated this way to emphasize the recursive nature of the filter)

