06 Nov 2018

Probability: A Second Dose in ROB 501

1 Probability Spaces

Bell Curve

0.008

Gauss Distribution

Randomly preduced numbers

Figure 1: (Left) Normal distribution N(u, o) with 4 = 0 and ¢ = 30. (Right) How do you determine the
density? You have to collect data! The figure shows a “fit” of a normal distribution to data.

Def. (Q2,.#, P) is called a probability space.

e () is the sample space. Think of it as the domain of a random variable
X : Q0 — R or random vector X : 2 — R™.

e A C ) is an event.

e .7 is the collection of allowed events!. It must at least contain () and Q. It
is closed w.r.t. countable unions and intersections, and set complement.

e P: .7 — [0,1] is a probability measure. It has to satisfy a few basic
operations

— P(0) =0and P(Q) = 1.
— Foreach Ae %, 0<P(A) <1
— If the sets Ay, Ao, ... are disjoint (i.e., A; N A; =0 for i # j), then

P(J4) = > p(a)

e Example event A :={w € Q| |w—pu| <o} = P(A) =0.682

' Though it is too deep for ROB 501, there are subsets of the reals, for example, that are so complicated one cannot define
a reasonable notion of probability that agrees with how we would want to define the probability of an interval, such as [a, b].
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2 Random Variables

Def. X ? — R is a random variable if V x € R, the set {w € Q |X(w) <
x} € Z. This just means that such sets can be assigned probabilities.

Remarks:

e Shorthand notation {X <z} :={w e Q|X(w) <z}

e Because .7 is closed under set complements, (countable) unions, and (count-
able) intersections, we can also assign probabilities to

a) {X > 1} =~ {X <2} ={X <a}¢
b) {r < X <y} ={X <y} {X >z}

Def. X : 2 — R is a continuous random variable if there exists a density
f:RP — [0, 00) such that,

VeeR, P{X <z})= / f(Z)dz (¥ dummy variable in the integral)

Remarks:

of f(z)dx =P (a<X§b):P(a§X§b)
=P{we Q| X(w) € [a,b]})

e mean: p:=E{X} =[O f(z)dz

e Variance: 0 := E{(X — p)?)} := [ (z — p)*f(z)dz

e Standard Deviation o := Vo2 (Std. Dev.)



3 Random Vectors

Def. Let (€2, 7, P) be a probability space. A function X :  — R” is called
X1

X
a random vector if each component of X = _2 is a random variable, that

Xp
is, V1<i<p, X,;:Q— Ris arandom variable.

Consequence: Vr € RP| the set {w € Q | X(w) < z} € F (ie., it is an
allowed event), where the inequality is understood pointwise, that is,

X1 (w) 1
Xo(w) X9

IA

{weQ | X(w) <z} ={we| }:m{wEQ\Xi(w)gxi}

Xpl(w ) x‘p

Def. X : 0 — RP? is a continuous random vector if there exists a density
f:RP — [0,00) such that,

Ve RP, P({X < I}) =/ ’ / / fX(fl,fg...i’p>df1df2...d£fp




4 Moments

Def. Suppose g : R — R

Blo(0)} = [

RP —00

Mean or Expected Value

X1 E{Xl} M1
p=FE{X}=E{| : |}= : = |
Xp S{Xp} Hp

Covariance Matrices
Y= cov(X) = cov(X, X) = B{(X — p)(X — )"}
where

(X =) ispx 1, (X —p)' is 1xp, (X = p)(X —p)" ispxp

Exercise cov(X) is positive semidefinite

g(x)fX(x)dxz/oo /_OO 921, s 1) (21, s ) 1.

dz,



5 Marginal Densities, Independence, and Correlatation

Suppose the random vector X : 2 — RP is partitioned into two components
X1:Q — R"and z9 : Q — R™, with p = n + m, so that,

=[]

Notation: We denote the density of X by

fx(r) = f{ X, }(3717562) = fx,x,(21,22)

X2

and it is called the joint density of X; and X5. As before, we can define the
mean and covariance.

e Mean is p = [Z;] Zg{X}:E{{ﬁil}: [?{{iﬁl

e Covariance is
w [211 Z12] :g{_Xl_,ul_ [Xl—M]T}
Yol 222 | Xo — g | | Xo— o
S
o [ [ =) (=) ']}
_ &4 (X1 = ) (Xa =) (X = ) (X — o) '
| (X1 = ) (X — )T (X — ) (X — i)

= &

where Y15 = X, = cov(X1, Xo) = E{(X7 — p1) (X2 — po) T} is also called the
correlation of X7 and Xos.



X1

IfX:[X2

] : 0 — R"P is a continuous random vector, then its components

X1:Q—=R" and X5:Q — R™

are also continuous random vectors and have densities, fx,(x1) and fx,(z2).
These densities are given a special name.

Def. fx,(x1) and fx,(z2) are called the marginal densities of X; and Xo.

Fact: In general the marginal densities are a nightmare to compute.

fx,(x1) = /OO Ix,x, (21, 2)dxy

00 00
::/ / fX1X2(?17"'7j@7?n+17"' 7jn+@)gjn+1“'djn+@
—00 —00

TV TV WV
X T2 dxo

Fa(ia) = / " (e, o),

(0. ¢] (0. ¢]
;:/ / fX1X2(?17_'_7f@’£gn+l’...7jn+@)£ij;l...dj@
— 00 —00

Vv TV TV
Tq T2 d.’El

For Normal Random Vectors, however, we can read them directly from the joint
density! We will not be doing any iterated integrals.

Def. X; and X5 are independent random vectors if their joint density factors

fx(x) = fx,x,(w1,22) = fx, (1) fx,(72).

Def. X; and X5 are uncorrelated if their “cross covariance” or “correlation ” is
Zero

COU(Xl,Xg) = g{(Xl — Ml)(XQ - ,UQ)T} = Onxm

6



Fact: If X; and X5 are independent, then they are also uncorrelated. The
converse is in general false.

6 Conditioning

Def. For two events A, B € %, P(B) >0

P(AB)

P(A|B) = =55

is the conditional probability of A given B.

Remarks:

e Suppose P(A) is our current estimate of the probability that our robot is
near a certain location and B is a measurement of the robot’s location, with
confidence in the measurement being P(B). The conditional probability of
A given B occurred is how we “fuse” the two pieces of information

B P(A| B) ;:%
BCA,P(A|B):P(;1(Q))B):]ngggzl
hj .
ACB PA|B) =L (;1(2)3) _ igg; > P(A)
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]

Consider again our partitioned random vector X = [ b%
2

Def. The conditional density of X given X5 = x5 is

fx,x, (21, 22)

sz ($2)

fX1|X2(x1 | 272) -

Sometimes we simply write f(zq | z2)

Remarks on Conditional Random Vectors:

e Very important: X given Xo = x5 is (still) a random vector. It’s density
18 fX1‘X2(x1 ‘ x2)

e Conditional Mean:

1:/ xle1|X2(371 | ﬂfz)dfﬂl

(6.9]
KX, | X,—z, 18 @ function of wy. Think of it as a function of the value read by

your sensor!

e Conditional Covariance:

S x [ Xomrs = EL(XT = pxy Xomo) (X1 — fixyXom) | | X2 = 32}

= / (Xl - MX1\X2=$2)(X1 - MX1|X2:$2)TfX1|X2(:C1 ’ xQ)dxl

e.¢]

Y X, X,=x, 18 @ function of xo. Think of it as a function of the value read by
your sensor!



Teek at e KF  (Kelmea Filter)

Model
Tri1 = Arxp + Grwy, xo initial condition
yr = Crar + vg
xeR" welRP ye R ve R"™ Moreover, the random vectors xg, and, for

k > 0, wy, v are all independent Gaussian (normal) random vectors.

Definition of Terms:

T = E{xklyo, -+ ,yr}
Pr = E{(xx — Tap) (T — Tage)  |yo, -y}
Ti1h 1= E{xprlyo, - s yn}
Proap = E{(@rs1 — D) @rs1 — Trgrw) o5+ -+ 5y}
Initial Conditions: @y _1 := Zo = E{x0}, and Fy_1 := Py = cov(xo)

For £ >0

Measurement Update Step:
—1
Ky = Py1C) (ChPr—1C) + Qk)
(Kalman Gain)

Trjp = Tt + Kk (Ye — CrZrp—1)
Py = Prjr—1 — KiCrPrjp—1

Time Update or Prediction Step:

Th1k = ArThp
Prip = AP AL + GRRyGYL

End of For Loop (Just stated this way to emphasize the recursive nature of
the filter)
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