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Poisson Manifold 
Francesco Cattafi ¹* 

Abstract 
In differential geometry, a field in mathematics, a Poisson manifold is a smooth manifold endowed with a Poisson 
structure. The notion of Poisson manifold generalises that of symplectic manifold, which in turn generalises the 
phase space from Hamiltonian mechanics.  A Poisson structure (or Poisson bracket) on a smooth manifold M is a 
function {⋅,⋅}:C∞(M)×C∞(M)→C∞(M) on the vector space C∞(M) of smooth functions on M, making it into a Lie 
algebra subject to a Leibniz rule (also known as a Poisson algebra).Poisson structures on manifolds were intro-
duced by André Lichnerowicz in 1977 [1] and are named after the French mathematician Siméon Denis Poisson, 
due to their early appearance in his works on analytical mechanics. [2] 

 

 

Introduction  

From phase spaces of classical mechanics to 
symplectic and Poisson manifolds 

In classical mechanics, the phase space of a physical 
system consists of all the possible values of the position 
and of the momentum variables allowed by the system. 
It is naturally endowed with a Poisson bracket/symplec-
tic form (see below), which allows one to formulate 
the Hamilton equations and describe the dynamics of 
the system through the phase space in time. 

For instance, a single particle freely moving in the  -
dimensional  Euclidean space (i.e. hav-

ing   as configuration space) has phase space   . 

The coordinates  describe re-
spectively the positions and the generalised momenta. 
The space of observables, i.e. the smooth functions 

on  , is naturally endowed with a binary operation 
called Poisson bracket, defined as 

 .  

Such bracket satisfies the standard properties of a Lie 
bracket, plus a further compatibility with the product of 
functions, namely the Leibniz identity 

 .  

Equivalently, the Poisson bracket on  can be refor-
mulated using the  symplectic form  

 .  

Indeed, if one considers the Hamiltonian vector field 

   

associated to a function  , then the Poisson bracket 

can be rewritten as  

In more abstract differential geometric terms, the con-
figuration space is an  -dimensional smooth manifold  

 , and the phase space is its cotangent bundle  (a 

manifold of dimension ). The latter is naturally 
equipped with a canonical symplectic form, which 
in canonical coordinates coincides with the one de-
scribed above. In general, by Darboux theorem, any ar-

bitrary symplectic manifold   admits special co-
ordinates where the form    and the 

bracket   are equivalent with, 
respectively, the symplectic form and the Poisson 

bracket of  . Symplectic geometry is therefore the 
1Julius-Maximilians-Universität, Würzburg  

Licensed under: CC-BY SA 4.0 

Received 10-03-2023; accepted 15-07-2024 

https://en.wikipedia.org/wiki/classical_mechanics
https://en.wikipedia.org/wiki/phase_space
https://en.wikipedia.org/wiki/Hamilton_equations
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Configuration_space_(physics)
https://en.wikipedia.org/wiki/observable
https://en.wikipedia.org/wiki/Poisson_bracket
https://en.wikipedia.org/wiki/Lie_bracket
https://en.wikipedia.org/wiki/Lie_bracket
https://en.wikipedia.org/wiki/symplectic_form
https://en.wikipedia.org/wiki/smooth_manifold
https://en.wikipedia.org/wiki/cotangent_bundle
https://en.wikipedia.org/wiki/canonical_symplectic_form
https://en.wikipedia.org/wiki/canonical_coordinates
https://en.wikipedia.org/wiki/Darboux_theorem
https://en.wikipedia.org/wiki/symplectic_manifold
https://creativecommons.org/licenses/by/4.0/


WikiJournal of Science, 2024, 7(1):6 
doi: 10.15347/wjs/2024.006 
Encyclopedic Review Article 

   
 

2 of 15 | WikiJournal of Science  

natural mathematical setting to describe classical 
Hamiltonian mechanics.[3][4][5][6][7] 

Poisson manifolds are further generalisations of 
symplectic manifolds, which arise by axiomatising the 
properties satisfied by the Poisson bracket on  . 
More precisely, a Poisson manifold consists of a smooth 
manifold  (not necessarily of even dimension) to-
gether with an abstract bracket  

 ,  

still called Poisson bracket, which does not necessarily 
arise from a symplectic form   , but satisfies the same 
algebraic properties. 

Poisson geometry is closely related to symplectic ge-
ometry: for instance, every Poisson bracket determines 
a foliation whose leaves are naturally equipped with 
symplectic forms. However, the study of Poisson geom-
etry requires techniques that are usually not employed 
in symplectic geometry, such as the theory of Lie 
groupoids and algebroids. 

Moreover, there are natural examples of structures 
which should be "morally" symplectic, but fails to be so. 
For example, the smooth quotient of a symplectic man-
ifold by a group acting by symplectomorphisms is a 
Poisson manifold, which in general is not symplectic. 
This situation models the case of a physical system 
which is invariant under symmetries: the "reduced" 
phase space, obtained by quotienting the original phase 
space by the symmetries, in general is no longer 
symplectic, but is Poisson.[8][9][10][11] 

History 

Although the modern definition of Poisson manifold 
appeared only in the 70's–80's,[1] its origin dates back to 
the nineteenth century. Alan Weinstein synthetised the 
early history of Poisson geometry as follows: 

"Poisson invented his brackets as a tool for classical dy-
namics. Jacobi realized the importance of these brack-
ets and elucidated their algebraic properties, and Lie 
began the study of their geometry."[12] 

Indeed, Siméon Denis Poisson introduced in 1809 what 
we now call Poisson bracket in order to obtain 
new integrals of motion, i.e. quantities which are pre-
served throughout the motion.[13] More precisely, he 

proved that, if two functions  and   are integral of 
motions, then there is a third function, denoted 

by , which is an integral of motion as well. In 
the Hamiltonian formulation of mechanics, where the 
dynamics of a physical system is described by a given 

function  (usually the energy of the system), an inte-

gral of motion is simply a function  which Poisson-

commutes with  , i.e. such that  . What 
will become known as Poisson's theorem can then be 
formulated as 

  

Poisson computations occupied many pages, and his 
results were rediscovered and simplified two decades 
later by Carl Gustav Jacob Jacobi.[14][2] Jacobi was the 
first to identify the general properties of the Poisson 
bracket as a binary operation. Moreover, he established 
the relation between the (Poisson) bracket of two func-
tions and the (Lie) bracket of their associ-
ated Hamiltonian vector fields, i.e. 

  

in order to reformulate (and give a much shorter proof 
of) Poisson's theorem on integrals of mo-
tion.[15] Jacobi's work on Poisson brackets influenced 
the pioneering studies of Sophus Lie on symmetries 
of differential equations, which led to the discovery 
of Lie groups and Lie algebras. For instance, what are 
now called linear Poisson structures (i.e. Poisson brack-
ets on a vector space which send linear functions to lin-
ear functions) correspond precisely to Lie algebra struc-
tures. Moreover, the integrability of a linear Poisson 
structure (see below) is closely related to the integrabil-
ity of its associated Lie algebra to a Lie group.[16] 

The twentieth century saw the development of modern 
differential geometry, but only in 1977 André Lich-
nerowicz introduce Poisson structures as geometric ob-
jects on smooth manifolds.[1] Poisson manifolds were 
further studied in the foundational 1983 paper of Alan 
Weinstein, where many basic structure theorems were 
first proved.[17] 

These works exerted a huge influence in the subse-
quent decades on the development of Poisson geome-
try, which today is a field of its own, and at the same 
time is deeply entangled with many others, includ-
ing non-commutative geometry, integrable sys-
tems, topological field theories and representation 
theory.[15][10][11] 

Formal definition 

There are two main points of view to define Poisson 
structures: it is customary and convenient to switch be-
tween them.[1][17] 
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As bracket 

Let   be a smooth manifold and let  denote 
the real algebra of smooth real-valued functions on  , 
where the multiplication is defined pointwise. A Pois-

son bracket (or Poisson structure) on   is an  -
bilinear map  

 

defining a structure of Poisson algebra on  , i.e. 
satisfying the following three conditions: 

• Skew symmetry:  

 

• Jacobi identity:  

 

• Leibniz's Rule: 

 . 

The first two conditions ensure that  defines a 

Lie-algebra structure on , while the third 

guarantees that, for each  , the linear 

map    is 

a derivation of the algebra , i.e., it defines 

a vector field    called the Hamiltonian 

vector field associated to  . 

Choosing local coordinates  , any Poisson 
bracket is given by 

 

for  the Poisson bracket of the coordi-
nate functions. 

As bivector 

A Poisson bivector on a smooth manifold  is 

a bivector field    satisfy-
ing the non-linear partial differential equa-

tion , where   

 

denotes the Schouten–Nijenhuis bracket on multivec-

tor fields. Choosing local coordinates , any Pois-
son bivector is given by  

 

for   skew-symmetric smooth functions on . 

Equivalence of the definitions 

Let  be a bilinear skew-symmetric bracket (called 
an "almost Lie bracket") satisfying Leibniz's rule; then 

the function   can be described as 

 for a unique smooth bivec-

tor field . Conversely, given any smooth 

bivector field  on , the same for-

mula   defines an almost Lie 

bracket   that automatically obeys Leibniz's rule. 

A bivector field, or the corresponding almost Lie 
bracket, is called an almost Poisson structure. An al-
most Poisson structure is Poisson if one of the follow-
ing equivalent integrability conditions holds:[15] 

•   satisfies the Jacobi identity (hence it is 
a Poisson bracket); 

•    satisfies   (hence it a Poisson 
bivector); 

• the map   is a 
Lie algebra homomorphism, i.e. the Hamilto-
nian vector fields satisfy     

; 

• the graph  

 

defines a Dirac structure, i.e. a Lagrangian sub-

bundle of  which is closed under 
the standard Courant bracket.[18] 

Holomorphic Poisson structures 

The definition of Poisson structure for real smooth 
manifolds can be also adapted to the complex case. 

A holomorphic Poisson manifold is a complex mani-

fold  whose sheaf of holomorphic functions  is 
a sheaf of Poisson algebras. Equivalently, recall that a 
holomorphic bivector field    on a complex mani-

fold   is a section    such that

 . Then a holomorphic Poisson structure 
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on  is a holomorphic bivector field satisfying the 

equation . Holomorphic Poisson manifolds 
can be characterised also in terms of Poisson-Nijenhuis 
structures.[19] 

Many results for real Poisson structures, e.g. regarding 
their integrability, extend also to holomorphic 
ones.[20][21] 

Holomorphic Poisson structures appear naturally in the 
context of generalised complex structures: locally, any 
generalised complex manifold is the product of a 
symplectic manifold and a holomorphic Poisson mani-
fold.[22] 

Symplectic leaves 

A Poisson manifold is naturally partitioned into regu-
larly immersed symplectic manifolds of possibly differ-
ent dimensions, called its symplectic leaves. These 
arise as the maximal integral submanifolds of 
the completely integrable singular distribu-
tion spanned by the Hamiltonian vector fields.[17] 

Rank of a Poisson structure 

Recall that any bivector field can be regarded as a 

skew homomophism  . 

The image   consists therefore of the 

values  of all Hamiltonian vector fields evaluated 
at every . 

The rank of   at a point   is the rank of the in-

duced linear mapping  . A point   is 

called regular for a Poisson structure   on   if and 
only if the rank of   is constant on an open neighbor-

hood of  ; otherwise, it is called a singular 
point. Regular points form an open dense sub-

set  ; when the map   is of constant 
rank, the Poisson structure   is called regular. Exam-
ples of regular Poisson structures include trivial and 
nondegenerate structures (see below). 

The regular case 

For a regular Poisson manifold, the im-

age   is a regular distribution; it is 
easy to check that it is involutive, therefore, by 

the Frobenius theorem,   admits a partition into 
leaves. Moreover, the Poisson bivector restricts nicely 
to each leaf, which therefore become symplectic mani-
folds. 

 

The non-regular case 

For a non-regular Poisson manifold the situation is 
more complicated, since the distribu-

tion   is singular, i.e. the vector sub-

spaces    have different dimensions. 

An integral submanifold for  is a path-con-

nected submanifold    satisfy-

ing    for all  . Integral subman-
ifolds of   are automatically regularly immersed man-
ifolds, and maximal integral submanifolds of   are 
called the leaves of  . 

Moreover, each leaf   carries a natural symplectic 

form    determined by the condi-

tion  for 

all   and  . Correspondingly, 
one speaks of the symplectic leaves of  . Moreover, 

both the space    of regular points and its comple-
ment are saturated by symplectic leaves, so symplectic 
leaves may be either regular or singular. 

Weinstein splitting theorem 

To show the existence of symplectic leaves also in the 
non-regular case, one can use Weinstein splitting the-
orem (or Darboux-Weinstein theorem).[17] It states that 

any Poisson manifold   splits locally around a 

point   as the product of a symplectic mani-

fold   and a transverse Poisson submani-

fold   vanishing at . More precisely, 

if  , there are local coordinates  

         

such that the Poisson bivector   splits as the sum 

 

where  . Notice that, when the rank 
of    is maximal (e.g. the Poisson structure is 

nondegenerate, so that  ), one recovers the clas-
sical Darboux theorem for symplectic structures. 
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Examples 

Trivial Poisson structures 

Every manifold   carries the trivial Poisson structure  

 equivalently de-

scribed by the bivector  . Every point of   is 
therefore a zero-dimensional symplectic leaf. 

Nondegenerate Poisson structures 

A bivector field    is called nondegener-

ate if    is a vector bundle isomor-
phism. Nondegenerate Poisson bivector fields are ac-
tually the same thing as symplectic manifolds 

 . 

Indeed, there is a bijective correspondence between 
nondegenerate bivector fields   and nondegenerate 

2-forms  , given by   where   is en-
coded by the  musical isomor-

phism  . Further-
more,   is Poisson precisely if and only if   is closed; 
in such case, the bracket becomes the canoni-
cal Poisson bracket from Hamiltonian mechanics:  

 

nondegenerate Poisson structures on  connected  man-

ifolds have only one symplectic leaf, namely    itself. 

Log-symplectic Poisson structures 

Consider the space    with coordi-

nates  .  Then the bivector field 

  

 is a Poisson structure on   which is "almost every-
where nondegenerate". Indeed, the open submani-

fold   is a symplectic leaf of dimen-

sion  , together with the symplectic form   

  

while the   -dimensional submani-

fold    contains the 

other  -dimensional leaves, which are the in-

tersections of   with the level sets of  . 

This is actually a particular case of a special class of 

Poisson manifolds  , called log-symplectic or 
b-symplectic, which have a "logarithmic singularity'' 

concentrated along a submanifold   of codi-
mension 1 (also called the singular locus of ), but are 

nondegenerate outside of  .[23] 

Linear Poisson structures 

A Poisson structure  on a vector space   is 
called linear when the bracket of two linear functions 
is still linear. 

The class of vector spaces with linear Poisson struc-
tures coincides actually with that of (dual of) Lie alge-

bras. Indeed, the dual   of any finite-dimensional Lie 

algebra   carries a linear Poisson bracket, 
known in the literature under the names of Lie-Pois-
son, Kirillov-Poisson or KKS (Kostant-Kirillov-Souriau) 
structure:  

  where  

  and the deriva-

tives     are interpreted as ele-

ments of the bidual  .  

Equivalently, the Poisson bivector can be locally ex-
pressed as  

  

where  are coordinates on   and   are the asso-

ciated structure constants of  . Conversely, any linear 

Poisson structure   on  must be of this form, 
i.e. there exists a natural Lie algebra structure induced 

on   whose Lie-Poisson bracket recov-

ers  . 

The symplectic leaves of the Lie-Poisson structure 

on   are the orbits of the coadjoint ac-

tion of   on  . For instance, 

for    with the standard basis, the 

Lie-Poisson structure on   is identified with  
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and its symplectic foliation is identified with the folia-

tion by concentric spheres in   (the only singular leaf 
being the origin). On the other hand, 

for  with the standard basis, the 

Lie-Poisson structure on   is identified with  

 

and its symplectic foliation is identified with the folia-
tion by concentric hyperboloids and conical sur-

face in   (the only singular leaf being again the 
origin). 

Fibrewise linear Poisson structures 

The previous example can be generalised as follows. A 
Poisson structure on the total space of a vector bun-

dle   is called  fibrewise linear when the 

bracket of two smooth functions  , whose re-
strictions to the fibres are linear, is still linear when re-
stricted to the fibres. Equivalently, the Poisson bivector 

field   is asked to satisfy    for any

 , where    is the scalar multiplica-

tion  . 

The class of vector bundles with linear Poisson struc-
tures coincides actually with that of (dual of) Lie alge-

broids. Indeed, the dual   of any Lie alge-

broid   carries a fibrewise linear Poisson 
bracket,[24] uniquely defined by  

where   is the evaluation 
by  . Equivalently, the Poisson bivector can be locally 
expressed as  

 

where  are coordinates around a point  ,  

are fibre coordinates on  , dual to a local frame  

of  , and   and    are the structure function 

of  , i.e. the unique smooth functions satisfying  

Conversely, any fibrewise linear Poisson struc-

ture  on   must be of this form, i.e. there exists 
a natural Lie algebroid structure induced 

on   whose Lie-Poisson backet recovers 
.[25] 

If    is integrable to a Lie groupoid  , the 

symplectic leaves of   are the connected compo-
nents of the orbits of the cotangent 

groupoid  . In general, given any algebroid 

orbit , the image of its cotangent bundle via 

the dual  of the anchor map is a 
symplectic leaf. 

For   one recovers linear Poisson structures, 
while for   the fibrewise linear Poisson struc-
ture is the nondegenerate one given by the canonical 

symplectic structure of the cotangent bundle  . 
More generally, any fibrewise linear Poisson structure 

on   that is nondegenerate is isomorphic to 
the canonical symplectic form on  . 

Other examples and constructions 

• Any constant bivector field on a vector space is 
automatically a Poisson structure; indeed, all 
three terms in the Jacobiator are zero, being 
the bracket with a constant function. 

• Any bivector field on a 2-dimensional mani-
fold is automatically a Poisson structure; in-

deed,   is a 3-vector field, which is always 
zero in dimension 2. 

• Given any Poisson bivector field   on a 3-

dimensional manifold  , the bivector 

field  ,  for any  , is automati-
cally Poisson. 

• The  Cartesian product     

of two Poisson manifolds   

and   is again a Poisson manifold. 

• Let    be a (regular) foliation of dimen-

sion   on   and    a closed foli-

ated two-form for which the power   is no-
where-vanishing. This uniquely determines a 

regular Poisson structure on   by requiring 

the symplectic leaves of   to be the leaves  
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of    equipped with the induced symplectic 

form  . 

• Let   be a Lie group acting on a Poisson 

manifold   and such that the Poisson 

bracket of  -invariant functions on   is  
-invariant. If the action is free and proper, 

the quotient manifold    inherits a Pois-

son structure   from   (namely, it is the 
only one such that the submersion   

 is a Poisson 
map). 

Poisson cohomology 

The Poisson cohomology groups    of a 
Poisson manifold are the cohomology groups of 
the cochain complex  

 

where the operator   is the Schouten-Ni-
jenhuis bracket with  . Notice that such a sequence 

can be defined for every bivector  on  ; the condi-

tion    is equivalent to  , 

i.e.    being Poisson.[1] 

Using the morphism  , one obtains 
a morphism from the  de Rham com-

plex    to the Poisson com-

plex  , inducing a group homomor-

phism  . In the nondegenerate 
case, this becomes an isomorphism, so that the Poisson 
cohomology of a symplectic manifold fully recovers 
its de Rham cohomology. 

Poisson cohomology is difficult to compute in general, 
but the low degree groups contain important geometric 
information on the Poisson structure: 

•   is the space of the Casimir func-
tions, i.e. smooth functions Poisson-commut-
ing with all others (or, equivalently, smooth 
functions constant on the symplectic leaves); 

•   is the space of Poisson vector fields 
modulo Hamiltonian vector fields; 

•   is the space of the infinitesimal de-
formations of the Poisson structure modulo 
trivial deformations; 

•   is the space of the obstructions to 
extend infinitesimal deformations to actual 
deformations. 

Modular class 

The modular class of a Poisson manifold is a class in the 
first Poisson cohomology group: for orientable mani-
folds, it is the obstruction to the existence of a volume 
form invariant under the Hamiltonian flows.[26] It was 
introduced by Koszul[27] and Weinstein.[28] 

Recall that the divergence of a vector 

field    with respect to a given volume 

form    is the function    defined 

by  . The modular vector field of 
an orientable Poisson manifold, with respect to a vol-

ume form  , is the vector field  defined by the di-
vergence of the Hamiltonian vector fields:  

. The modular vector field is a Pois-

son 1-cocycle, i.e. it satisfies . Moreover, 

given two volume forms   and  , the differ-

ence  is a Hamiltonian vector field. Ac-
cordingly, the Poisson cohomology class   

  does not depend on the original 

choice of the volume form , and it is called the modu-
lar class of the Poisson manifold. 

An orientable Poisson manifold is called unimodular if 
its modular class vanishes. Notice that this happens if 

and only if there exists a volume form   such that the 

modular vector field    vanishes, 

i.e.    for every  ; in other words,    is 
invariant under the flow of any Hamiltonian vector field. 
For instance: 

• Symplectic structures are always unimodular, 
since the Liouville form is invariant under all 
Hamiltonian vector fields. 

• For linear Poisson structures the modular class 

is the infinitesimal modular character of  , 
since the modular vector field associated to 

the standard Lebesgue measure on   is the 
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constant vector field on    . Then  is uni-
modular as Poisson manifold if and only if it 
is unimodular as Lie algebra.[29] 

• For regular Poisson structures the modular 
class is related to the Reeb class of the under-
lying symplectic foliation (an element of the 
first leafwise cohomology group, which ob-
structs the existence of a volume normal form 
invariant by vector fields tangent to the folia-
tion).[30] 

The construction of the modular class can be easily ex-
tended to non-orientable manifolds by replacing vol-
ume forms with densities.[28] 

Poisson homology 

Poisson cohomology was introduced in 1977 by Lich-
nerowicz himself;[1] a decade later, Brylinski introduced 
a homology theory for Poisson manifolds, using the op-

erator  .[31] 

Several results have been proved relating Poisson ho-
mology and cohomology.[32] For instance, for orienta-
ble unimodular Poisson manifolds, Poisson homology 
turns out to be isomorphic to Poisson cohomology: this 
was proved independently by Xu[33] and Evans-Lu-
Weinstein.[29] 

Poisson maps 

A smooth map    between Poisson man-
ifolds is called a Poisson map if it respects the Poisson 
structures, i.e. one of the following equivalent condi-
tions holds (compare with the equivalent definitions of 
Poisson structures above): 

• the Poisson brackets    and  
satisfy   

for every    and smooth func-

tions  ; 

• the bivector fields  and  are  -re-

lated, i.e.  ; 

• the Hamiltonian vector fields associated to 

every smooth function   are  -

related, i.e.  ; 

• the differential   

 is a forward Dirac morphism.[18] 

An anti-Poisson map satisfies analogous conditions 
with a minus sign on one side. 

Poisson manifolds are the objects of a category 
with Poisson maps as morphisms. If a Poisson 

map  is also a diffeomorphism, then we 

call   a Poisson-diffeomorphism. 

Examples 

• Given a product Poisson manifold  

, the canonical projec-

tions  , for  , 
are Poisson maps. 

• Given a Poisson manifold  , the inclusion 

into   of a symplectic leaf, or of an open sub-
set, is a Poisson map. 

• Given two Lie algebras   and  , the dual of 

any Lie algebra homomorphism   in-

duces a Poisson map  between their 
linear Poisson structures. 

• Given two Lie algebroids   and  , 
the dual of any Lie algebroid morphism   
over the identity induces a Poisson 

map  between their fibrewise linear 
Poisson structures. 

One should notice that the notion of a Poisson map is 
fundamentally different from that of a symplectic map. 
For instance, with their standard symplectic structures, 

there exist no Poisson maps  , whereas 
symplectic maps abound. More generally, given two 

symplectic manifolds  and  and a 

smooth map , if  is a Poisson map, it 

must be a submersion, while if   is a symplectic map, it 
must be an immersion. 

Integration of Poisson manifolds 

Any Poisson manifold    induces a structure 

of Lie algebroid on its cotangent bundle  , 
also called the cotangent algebroid.[24] The anchor 

map is given by   while the Lie 

bracket on    is defined 
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Several notions defined for Poisson manifolds can be in-

terpreted via its Lie algebroid  : 

• the symplectic foliation is the usual (singular) 
foliation induced by the anchor of the Lie alge-
broid; 

• the symplectic leaves are the orbits of the Lie 
algebroid; 

• a Poisson structure on  is regular precisely 

when the associated Lie algebroid   is; 

• the Poisson cohomology groups coincide with 
the Lie algebroid cohomology groups of   
with coefficients in the trivial representation; 

• the modular class of a Poisson manifold coin-
cides with the modular class of the associated 
Lie algebroid  .[29] 

It is of crucial importance to notice that the Lie alge-

broid   is not always integrable to a Lie 
groupoid.[34][35][36] 

Symplectic groupoids 

A symplectic groupoid is a Lie groupoid   to-

gether with a symplectic form  which is also 
multiplicative, i.e. it satisfies the following algebraic 
compatibility with the groupoid multiplication:

 . Equivalently, the graph 
of   is asked to be a Lagrangian submanifold of

 . Among the several 

consequences, the dimension of   is automatically 

twice the dimension of  . The notion of symplectic 
groupoid was introduced at the end of the 80's inde-
pendently by several authors.[34][37][38][24] 

 A fundamental theorem states that the base space of 
any symplectic groupoid admits a unique Poisson 
structure   such that the source 

map   and the target 

map   are, respectively, a Poisson 
map and an anti-Poisson map. Moreover, the Lie alge-

broid   is isomorphic to the cotangent alge-

broid   associated to the Poisson mani-

fold  .[39] Conversely, if the cotangent bun-

dle   of a Poisson manifold is integrable (as a Lie 

algebroid), then its  -simply connected integra-

tion   is automatically a symplectic 
groupoid.[40] 

Accordingly, the integrability problem for a Poisson 
manifold consists in finding a (symplectic) Lie groupoid 
which integrates its cotangent algebroid; when this 
happens, the Poisson structure is called integrable. 

While any Poisson manifold admits a local integration 
(i.e. a symplectic groupoid where the multiplication is 
defined only locally),[39] there are general topological 
obstructions to its integrability, coming from the inte-
grability theory for Lie algebroids.[41] The candi-

date   for the symplectic groupoid integrating 

any given Poisson manifold   is called Poisson ho-
motopy groupoid and is simply the Ševera-Weinstein 

groupoid[42][41] of the cotangent algebroid  , 
consisting of the quotient of the Banach space of a spe-

cial class of paths in   by a suitable equivalent rela-

tion. Equivalently,   can be described as an infi-
nite-dimensional symplectic quotient.[35] 

Examples of integrations 

• The trivial Poisson structure    is al-
ways integrable, a symplectic groupoid being 
the bundle of abelian (additive) 

groups   with the   canonical 
symplectic structure. 

• A nondegenerate Poisson structure on   is 
always integrable, a symplectic groupoid be-
ing the pair groupoid    together 

with the symplectic form  (for 

 ). 

• A Lie-Poisson structure on    is always inte-
grable, a symplectic groupoid being the 

(coadjoint) action groupoid  , 

for   a Lie group integrating  , together 
with the canonical symplectic form 

of   . 

• A Lie-Poisson structure on   is integrable if 

and only if the Lie algebroid   is inte-

grable to a Lie groupoid  , a symplectic 
groupoid being the cotangent 

groupoid   with the canonical 
symplectic form. 
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Symplectic realisations 

A (full) symplectic realisation on a Poisson manifold M 

consists of a symplectic manifold  together with 

a Poisson map  which is a surjec-
tive submersion. Roughly speaking, the role of a 
symplectic realisation is to "desingularise" a compli-
cated (degenerate) Poisson manifold by passing to a 
bigger, but easier (nondegenerate), one. 

A symplectic realisation  is called complete if, for 

any complete Hamiltonian vector field  , the vector 

field  is complete as well. While symplectic reali-
sations always exist for every Poisson manifold (and 
several different proofs are availa-
ble),[17][38][43] complete ones do not, and their existence 
plays a fundamental role in the integrability problem 
for Poisson manifolds. Indeed, using the topological 
obstructions to the integrability of Lie algebroids, one 
can show that a Poisson manifold is integrable if and 
only if it admits a complete symplectic realisa-
tion.[36] This fact can also be proved more directly, 
without using Crainic-Fernandes obstructions.[44] 

Poisson submanifolds 

A Poisson submanifold of   is an immersed 

submanifold   together with a Poisson struc-

ture   such that the immersion 

map    is a Poisson 
map.[17] Alternatively, one can require one of the fol-
lowing equivalent conditions:[45] 

• the image of   

 is in-

side  for every  ; 

• the -orthogonal   

vanishes, where    denotes 

the annihilator of   ; 

• every Hamiltonian vector field  , for  

, is tangent to  . 

Examples 

• Given any Poisson manifold , its 

symplectic leaves   are Poisson sub-
manifolds. 

• Given any Poisson manifold   and a Cas-

imir function  , its level 

sets   , with   any regular value of   , 
are Poisson submanifolds (actually they are 
unions of symplectic leaves). 

• Consider a Lie algebra    and the Lie-Poisson 

structure on  . If    is compact, its Killing 

form defines an  -invariant inner prod-

uct on  , hence an  -invariant inner prod-

uct   on  . Then the sphere   

 is a 

Poisson submanifold for every , being 
a union of coadjoint orbits (which are the 
symplectic leaves of the Lie-Poisson struc-
ture). This can be checked equivalently after 

noticing that  for the Casimir 

function . 

Other types of submanifolds in Poisson ge-
ometry 

The definition of Poisson submanifold is very natural 
and satisfies several good properties, e.g. 
the transverse intersection of two Poisson submani-
folds is again a Poisson submanifold. However, it does 
not behave well functorially: if  

  is a Poisson map trans-

verse to a Poisson submanifold , the submani-

fold  is not necessarily Poisson. In order 
to overcome this problem, one can use the notion of 
Poisson transversals (originally called cosymplectic 
submanifolds).[17] A Poisson transversal is a submani-

fold  which is transverse to every 

symplectic leaf  and such that the intersec-

tion  is a symplectic submanifold of . 
It follows that any Poisson transver-

sal  inherits a canonical Poisson struc-

ture  from . In the case of a nondegenerate Pois-

son manifold  (whose only symplectic leaf 

is   itself), Poisson transversals are the same thing 
as symplectic submanifolds.[45] 

Another important generalisation of Poisson submani-
folds is given by coisotropic submanifolds, introduced 
by Weinstein in order to "extend the lagrangian calcu-
lus from symplectic to Poisson mani-
folds".[46] A coisotropic submanifold is a submani-
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fold   such that the  -orthogo-

nal   is a subspace of  . For 

instance, given a smooth map  , 
its  graph is a  coisotropic submanifold 

of      if and only if   is a 

Poisson map. Similarly, given a Lie algebra   and a 

vector subspace  , its annihilator   is a coiso-
tropic submanifold of the Lie-Poisson structure 

on   if and only if   is a Lie subalgebra. In general, 

coisotropic submanifolds such that   re-
cover Poisson submanifolds, while for nondegenerate 
Poisson structures, coisotropic submanifolds boil down 
to the classical notion of coisotropic submanifold in 
symplectic geometry.[45] 

Other classes of submanifolds which play an important 
role in Poisson geometry include Lie–Dirac submani-
folds, Poisson–Dirac submanifolds and pre-Poisson 
submanifolds.[45] 

Further topics 

Deformation quantisation 

The main idea of deformation quantisation is to de-
form the (commutative) algebra of functions on a Pois-
son manifold into a non-commutative one, in order to 
investigate the passage from classical mechanics to 
quantum mechanics.[47][48][49] This topic was one of the 
driving forces for the development of Poisson geome-
try, and the precise notion of formal deformation 
quantisation was developed already in 1978.[50] 

A (differential) star product on a manifold   is an as-

sociative, unital and  -bilinear product  

on the ring    of formal power series, of the 
form  

where   

  

is a family of bidifferential operators on   such 

that   is the pointwise multiplication . 

The expression  

  

defines a Poisson bracket on  , which can be inter-
preted as the "classical limit" of the star prod-

uct  when the formal parameter   (denoted with 
same symbol as the reduced Planck's constant) goes to 
zero, i.e. 

 

A (formal) deformation quantisation of a Poisson 

manifold  is a star product  such that the 

Poisson bracket  coincide with . Sev-
eral classes of Poisson manifolds have been shown to 
admit a canonical deformation quantisations:[47][48][49] 

•  with the canonical Poisson bracket (or, 
more generally, any finite-dimensional vector 
space with a constant Poisson bracket) admits 
the Moyal-Weyl product; 

• the dual  of any Lie algebra  , with the Lie-
Poisson structure, admits the Gutt star prod-
uct;[51] 

• any nondegenerate Poisson manifold admits 
a deformation quantisation. This was showed 
first for symplectic manifolds with a 
flat symplectic connection,[50] and then in 
general by de Wilde and Lecompte,[52] while a 
more explicit approach was provided later by 
Fedosov[53] and several other authors.[54] 

In general, building a deformation quantisation for any 
given Poisson manifold is a highly non trivial problem, 
and for several years it was not clear if it would be even 
possible.[54] In 1997 Kontsevich provided a quantisation 
formula, which shows that every Poisson mani-

fold   admits a canonical deformation quanti-
sation;[55] this contributed to getting him the Fields 
medal in 1998.[56] 

Kontsevich's proof relies on an algebraic result, known 
as the formality conjecture, which involves a quasi-iso-
morphism of differential graded Lie algebras between 

the multivector fields   (with 
Schouten bracket and zero differential) and the multi-

differential operators  (with Gerstenhaber 
bracket and Hochschild differential). Alternative ap-
proaches and more direct constructions of Kontse-
vich's deformation quantisation were later provided by 
other authors.[57][58] 
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Linearisation problem 

The isotropy Lie algebra of a Poisson mani-

fold  at a point    is the isotropy Lie al-

gebra  of its cotangent Lie 

algebroid  ; explicitly, its Lie bracket is given by

 . If, furthermore,   is a 

zero of   , i.e. , then   is the en-
tire cotangent space. Due to the correspondence be-

tween Lie algebra structures on   and linear Poisson 
structures, there is an induced linear Poisson structure 

on , denoted by  . A Poisson 

manifold  is called (smoothly) linearisable at 

a zero  if there exists a Poisson dif-
feomorphism be-

tween  and  which 

sends  to .[17][59] 

It is in general a difficult problem to determine if a 
given Poisson manifold is linearisable, and in many in-
stances the answer is negative. For instance, if the isot-

ropy Lie algebra of  at a zero  is iso-

morphic to the  special linear Lie algebra , 

then  is not linearisable at .[17] Other coun-
terexamples arise when the isotropy Lie algebra is a 
semisimple Lie algebra of real rank at least 2,[60] or 
when it is a semisimple Lie algebra of rank 1 whose 
compact part (in the Cartan decomposition) is not 
semisimple.[61] 

A notable sufficient condition for linearisability is pro-
vided by Conn's linearisation theorem:[62] 

Let  be a Poisson manifold and  a zero 
of . If the isotropy Lie alge-

bra   is semisimple and compact, then   is 
linearisable around . 

In the previous counterexample, indeed,   is 
semisimple but not compact. The original proof of 
Conn involves several estimates from analysis in order 
to apply the Nash-Moser theorem; a different proof, 
employing geometric methods which were not availa-
ble at Conn's time, was provided by Crainic and Fer-
nandes.[63] 

If one restricts to analytic Poisson manifolds, a similar 
linearisation theorem holds, only requiring the isot-

ropy Lie algebra  to be semi simple. This was con-
jectured by Weinstein[17] and proved by Conn before 

his result in the smooth category;[64] a more geometric 
proof was given by Zung.[65] Several other particular 
cases when the linearisation problem has a positive an-
swer have been proved in the formal, smooth or ana-
lytic category.[59][61] 

Poisson-Lie groups 

See also: Poisson–Lie group 

A Poisson-Lie group is a Lie group  together with a 
Poisson structure compatible with the multiplication 
map. This condition can be formulated in a number of 
equivalent ways:[66][67][68] 

• the multiplication    is a Poisson 
map, with respect to the product Poisson 
structure on  ; 

• the Poisson bracket satisfies  

 f

or every    and  , 

where   and  are the right- and left-translations 

of  ; 

• the Poisson bivector field   is a multiplicative 
tensor, i.e. it satisfies  

   

for every  . It follows from the last character-
isation that the Poisson bivector field  of a Poisson-

Lie group always vanishes at the unit . Accord-
ingly, a non-trivial Poisson-Lie group cannot arise from 
a symplectic structure, otherwise it would contra-
dict Weinstein splitting theorem applied to  ; for the 
same reason,   cannot even be of constant rank. 

Infinitesimally, a Poisson-Lie group   induces 

a comultiplication   on its Lie alge-

bra , obtained by linearising the Poisson 

bivector field   at the unit  , 

i.e. . The comultiplication  endows  with 
a structure of Lie coalgebra, which is moreover com-
patible with the original Lie algebra structure, mak-

ing  into a Lie bialgebra. Moreover, Drinfeld proved 
that there is an equivalence of categories between 
simply connected Poisson-Lie groups and finite-di-
mensional Lie bialgebras, extending the classical 
equivalence between simply connected Lie groups and 
finite-dimensional Lie algebras.[66][69] 

Weinstein generalised Poisson-Lie groups to Poisson(-
Lie) groupoids, which are Lie groupoids  with a 
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compatible Poisson structure on the space of ar-

rows .[46] This can be formalised by saying that the 
graph of the multiplication defines a coisotropic sub-

manifold of  , or in other 
equivalent ways.[70][71] Moreover, Mackenzie and Xu ex-
tended Drinfeld's correspondence to a correspondence 
between Poisson groupoids and Lie bialgebroids.[72][73] 
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