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Abstract

This paper examines expansive integer polynomials, i.e. polynomi-
als with integer coefficients whose roots lie outside of the unit circle.
Our question regards the so-called expansivity gap, i.e. how close
the roots of such polynomials can be to the unit circle. We recall
a previous result of the author which gave 1/(c(n)Hn−1) as a lower
bound on the expansivity gap, where n is the degree, H is the height
of the polynomial, and c(n) is some n-dependent value. This paper
defines a family of expansive integer polynomials, and proves that their
expansivity gap is approx. 1/(2Hn−1). This indicates how much the
lower bound might be improved, and in fact, if the degree is constant,
the lower bound is asymptotically sharp. The construction of the
polynomials uses the so-called Motzkin numbers, and some linear
algebra tools for expansive polynomials, developed by the author for
his previous lower bound results.

1 Introduction

In this paper, f(x) denotes an integer polynomial of degree n and coefficients
ai ∈ Z:

f(x) = anx
n + . . .+ a1x+ a0

with n ≥ 1 and an 6= 0.
We are interested in the following type of polynomials:
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Definition 1.1. The polynomial f is expansive if all of its roots lie outside
the unit circle, i.e. for all roots xi (either real or complex) we have: |xi| > 1.

The goal is to estimate the following quantity:

Definition 1.2. The expansivity gap of an expansive polynomial, whose
roots are x1, x2, . . . , xn, is:

ε :=
n

min
i=1
|xi| − 1.

In the estimations, we use the degree n of the polynomial and the following
property:

Definition 1.3. Denote by H(f) the height of f(x):

H(f) :=
n

max
i=0
|ai|.

In [2], the author proved, among others, the following:

Theorem 1.4. The expansivity gap of an expansive integer polynomial f(x)
has the following lower bound:

ε ≥ 1(
n
2

)
n!Hn−1 +

(
n
2

)
+ 1

, (1.1)

where H := H(f) is the height of f(x), and n ≥ 3.

In this paper we prove the following:

Theorem 1.5. For each n ≥ 2 and for each sufficiently large H, there
exists an expansive integer polynomial f(x) of degree n and height H whose
expansivity gap is:

ε =
1

2Hn−1 +O

(
1

Hn

)
.

This latter result shows that the lower bound is quite close, and its
dependence on H is asymptotically sharp.

To prove this result, we use the determinant-based tool developed by the
author and used to prove Theorem 1.4 in [2]. This involves the following
determinants. Here the polynomial coefficients can be any real numbers, not
neccessarily integers.
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Definition 1.6. [2, Def. 3.1] For a polynomial f of degree n, define the
determinant D±k (f) for each 1 ≤ k ≤ n and both signs + or − as a function
of the coefficients of f as follows. The size of D±k (f) is k×k, and the element
in the ith row and jth column is the following:

dij = aj−i ± ai+j+n−k−1 (1 ≤ i, j ≤ k),

with the convention that indices outside the allowed range indicate zero
values, i.e. ai = 0 for i < 0 and i > n.

For example for n = 7 and k = 6:

D−6 (f) =

∣∣∣∣∣∣∣∣∣∣∣∣

a0 − a2 a1 − a3 a2 − a4 a3 − a5 a4 − a6 a5 − a7
−a3 a0 − a4 a1 − a5 a2 − a6 a3 − a7 a4
−a4 −a5 a0 − a6 a1 − a7 a2 a3
−a5 −a6 −a7 a0 a1 a2
−a6 −a7 a0 a1
−a7 a0

∣∣∣∣∣∣∣∣∣∣∣∣
.

These determinants can be used to characterize the expansivity of real
polynomials:

Theorem 1.7. [2, Theorem 3.2] Assume that f has real coefficients, i.e. all
ak ∈ R, and a0 > 0. Then f is expansive if and only if:

1. for all k between 1 ≤ k ≤ n− 1 and for both signs: D±k (f) > 0, and

2. f(±1) > 0.

This is proven in [2] using the well-known Schur–Cohn-test [1].
The rest of this paper is devoted to the proof of Theorem 1.5. In

Section 2.1, we define the Motzkin-triangle and state some of its simple
properties. In Section 2.2, we use the Motzkin-triangle to define the family
of polynomials for the main theorem, and we calculate the quantities of
Theorem 1.7 for these polynomials. In Section 2.3, we use these quantities
to finish the proof of Theorem 1.5.

2 Proof of Theorem 1.5

2.1 Motzkin-triangle and its inverse

For the construction of the polynomials, we need a certain table of values,
the so-called Motzkin triangle [3]. Let Mn,k (n, k ≥ 0) be the number
of possible paths from the origin (0, 0) to the point (n, k) using the steps
(1, 1), (1, 0), (1,−1) and never going below the x-axis. We can take the inverse
of (Mn,k), considered as an infinite matrix, and denote the values by Nn,k.
The first few values of Mn,k and Nn,k are:
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Mn,k k = 0 1 2 3 4 5 6 7
n = 0 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0
2 2 2 1 0 0 0 0 0
3 4 5 3 1 0 0 0 0
4 9 12 9 4 1 0 0 0
5 21 30 25 14 5 1 0 0
6 51 76 69 44 20 6 1 0
7 127 196 189 133 70 27 7 1

Nn,k k = 0 1 2 3 4 5 6 7
n = 0 1 0 0 0 0 0 0 0

1 -1 1 0 0 0 0 0 0
2 0 -2 1 0 0 0 0 0
3 1 1 -3 1 0 0 0 0
4 -1 2 3 -4 1 0 0 0
5 0 -4 2 6 -5 1 0 0
6 1 2 -9 0 10 -6 1 0
7 -1 3 9 -15 -5 15 -7 1

It is also convenient to set M−1,−1 := 1 and M−1,k = Mn,−1 := 0 for
k, n ≥ 0, and the same for N . The Mn,k-values have a simple recurrence
relation:

Mn,k = Mn−1,k−1 +Mn−1,k +Mn−1,k+1 (n, k ≥ 0). (2.1)

We show that the Mn,k- and Nn,k-values have the following properties:

Lemma 2.1.
j∑

k=i

Mj,kNk,i = δi,j (i, j ≥ −1), (2.2)

j−l∑
k=i

Mj,l+kNk,i = Mj−i−1,l−1 (l ≥ 0,−1 ≤ i ≤ j), (2.3)

min(i,j)∑
k=0

Mi,kMj,k = Mi+j,0 (i, j ≥ 0), (2.4)

where δi,j is the Kronecker delta function, i.e. it is 1 if i = j and 0 otherwise.

Proof. (2.2) just means that N is the inverse of M .
(2.3) is essentially the generalization of (2.2), being the same for l = 0 (if

i ≤ j). If l ≥ 1, it can be easily proven by an induction on j starting from
j = i, using the recurrence relation (2.1):

j−l+1∑
k=i

Mj+1,l+kNk,i =

=

j−l+1∑
k=i

Mj,l+k−1Nk,i +

j−l∑
k=i

Mj,l+kNk,i +

j−l−1∑
k=i

Mj,l+k+1Nk,i =

= Mj−i−1,l−2 +Mj−i−1,l−1 +Mj−i−1,l = Mj−i,l−1.

(2.4) is proved by induction on i with constant i+j, assuming i ≤ j. The
case i = 0 is trivial, and for i → i + 1 (assuming i + 1 ≤ j − 1), it goes as
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follows:

i+1∑
k=0

Mi+1,kMj−1,k =

=
i+1∑
k=0

Mi,k−1Mj−1,k +
i+1∑
k=0

Mi,kMj−1,k +
i+1∑
k=0

Mi,k+1Mj−1,k =

=
i∑

k=0

Mi,kMj−1,k+1 +
i∑

k=0

Mi,kMj−1,k +
i∑

k=0

Mi,kMj−1,k−1 =
i∑

k=0

Mi,kMj,k.

2.2 The construction

Now we define the family of polynomials for which Theorem 1.5 will be
proved. For each n ≥ 2 and H ≥ 1, define the coefficients of f(x) as follows:

a0 := H,

a1 := H − (Mn−3,0 + 1),

a2 := H −Mn−2,0,

ai := −Mn−2,i−2 (3 ≤ i ≤ n).

(2.5)

For the first few degrees, these polynomials are:

n = 2 : (H − 1)x2 + (H − 1)x+H

n = 3 : −x3 + (H − 1)x2 + (H − 2)x+H

n = 4 : −x4 − 2x3 + (H − 2)x2 + (H − 2)x+H

n = 5 : −x5 − 3x4 − 5x3 + (H − 4)x2 + (H − 3)x+H

n = 6 : −x6 − 4x5 − 9x4 − 12x3 + (H − 9)x2 + (H − 5)x+H

n = 7 : −x7 − 5x6 − 14x5 − 25x4 − 30x3 + (H − 21)x2 + (H − 10)x+H

An interesting side-note is that the constant 1 in the definition of a1 can
sometimes be replaced by −1, more precisely by an ω such that ωn−2 = 1,
i.e. a1 := H − (Mn−3,0 +ω). For odd n, it remains only ω = +1, but for even
n, it can be either +1 or −1, moreover if n = 2, it can be any ω ∈ Z.

First we need to ensure that these polynomials are indeed expansive
(at least for sufficiently large H). For this, we use Theorem 1.7 on these
polynomials, and consider the quantities f(±1) and D±k (f) appearing in
it. The crux in our proof is the following lemma about these quantities,
especially the third part.
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Lemma 2.2.

1. f(±1) > 0 for sufficiently large H parameters.

2. For any 1 ≤ k ≤ n − 1 and any sign in {+,−}, D±k (f) > 0 (as in
Def. 1.6) for sufficiently large H.

3. D−n−1(f) = 1 for all H ∈ N+.

Proof. The first statement of the lemma is trivial.
Denote the k× k components of D±k (f) by di,j, which is, by Def. 1.6 and

(2.5):

di,j = aj−i ± ai+j+n−k−1 =

= ∓Mn−2,i+j+n−k−3 +



0 (j < i),

H ±H (j = i = 1 ∧ k = n− 1),

H (j = i, otherwise),

H −Mn−3,0 − ω (j = i+ 1),

H −Mn−2,0 (j = i+ 2),

−Mn−2,j−i−2 (j ≥ i+ 3).

(2.6)
For example for n = 7:

D−6 (f) =

∣∣∣∣∣∣∣∣∣∣∣∣

21 H + 20 H + 4 −16 −20 −13
30 H + 25 H + 4 H − 16 −29 −25
25 14 H + 5 H − 9 H − 21 −30
14 5 1 H H − 10 H − 21
5 1 H H − 10
1 H

∣∣∣∣∣∣∣∣∣∣∣∣
.

These determinants are polynomials in H of degree at most k. H occurs
only in the main diagonal and the two diagonals above it. All occurences
have 1 as coefficient except on the top left corner, where it is 1 if k < n−1, 2
if k = n−1 with the (+) sign, and 0 if k = n−1 with the (−) sign. Therefore,
in the former two cases, the leading term of the polynomial is Hk or 2Hk,
which proves that the determinant is positive for sufficiently large H. The
remaining of this proof will show that in the third case, the determinant is
the constant polynomial 1.

From now on, let n ≥ 2, and let D be the matrix of the determinant
D−n−1(f). The latter will be multiplied by matrices with determinant 1,
bringing it to a simplified form where it is obvious that its determinant is
also 1.
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In the first step, we remove the off-diagonal H values from D. This can
be achieved by row-operations from the bottom to the top, which can be
equivalently described as a product D = ED′, where D′ is the resulting
matrix having only diagonal H values, and E is an appropriate upper
triangular matrix representing the inverse transformation, more specifically
a matrix containing 1’s exactly in the three diagonals where D has H’s, and
otherwise 0. For example (n = 6):

9 H + 7 H −8 −8
12 H + 9 H − 1 H − 8 −12
9 4 H + 1 H − 5 H − 9
4 1 0 H H − 5
1 0 0 0 H

 =


1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1




0 −1 1 0 −1
4 H + 5 −2 −3 −3
5 3 H + 1 −5 −4
3 1 0 H −5
1 0 0 0 H

.

Using the recurrence relation (2.1) of Mn,k, it is straightforward to prove
that, as the example suggests, the resulting D′ matrix has a similar, but
simplier structure than D:

d′i,j = Mn−3,i+j−3 +


0 (j < i),

0 (j = i = 1),

H (j = i ≥ 2),

−Mn−3,j−i−1 − ωNj−i−1,0 (j > i).

(2.7)

In the second step of the determinant transformation, we calculate D′′ :=
M−1D′M , whereM is a matrix from the transposed Motzkin triangle starting
from −1, more precisely whose elements are mi,j = Mj−2,i−2 and whose
invert’s elements are ni,j = Nj−2,i−2. For example (n = 6):


1 0 0 0 0
0 1 −1 0 1
0 0 1 −2 1
0 0 0 1 −3
0 0 0 0 1




0 −1 1 0 −1
4 H + 5 −2 −3 −3
5 3 H + 1 −5 −4
3 1 0 H −5
1 0 0 0 H




1 0 0 0 0
0 1 1 2 4
0 0 1 2 5
0 0 0 1 3
0 0 0 0 1

 =


0 −1 0 0 0
0 H + 2 −1 0 0
0 1 H + 2 −1 0
0 1 1 H + 2 −1
1 0 0 0 H

 .

To calculate this product, we split D′ into A−B+C where A has the top-
left triangular pattern, B has the top-right triangular pattern of numbers,
and C has all the H. More precisely (cf. (2.7)):

ai,j = Mn−3,i+j−3,

bi,j = Mn−3,j−i−1 + ωNj−i−1,0 (j > i),

ci,j = δi,jH (i ≥ 2).
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Now calculating termwise:

(M−1AM)i,j =

min(j,n−i)∑
l=1

n−l∑
k=i

Nk−2,i−2Mn−3,l+k−3Mj−2,l−2 =

(2.3)
=

min(j,n−i)∑
l=1

Mn−i−2,l−2Mj−2,l−2
(2.4)
=


δi,n−1 (j = 1),

δj,1 (i = n− 1),

Mn−i+j−4,0 (otherwise).

(M−1BM)i,j =
n−1∑
k=1

n−1∑
l=k+1

Nk−2,i−2(Mn−3,l−k−1 + ωNl−k−1,0)Mj−2,l−2 =

=
n−2∑
m=1

(Mn−3,m−1 + ωNm−1,0)
n−m−1∑
k=1

Mj−2,m+k−2Nk−2,i−2 =

(2.3)
=

j−i∑
m=1

(Mn−3,m−1 + ωNm−1,0)Mj−i−1,m−1 =

(2.4),(2.2)
=

{
Mn−i+j−4,0 + ωδi+1,j (j ≥ i+ 1),

0 (otherwise).

(M−1CM)i,j =
n−1∑
k=2

Nk−2,i−2HMj−2,k−2
(2.2)
= H

{
δi,j (i ≥ 2),

0 (otherwise).

Putting these together:

d′′i,j = (M−1D′M)i,j =


δi,n−1 (j = 1),

Hδj,n−1 (i = n− 1 ∧ j ≥ 2),

Mn−i+j−4,0 +Hδi,j (2 ≤ j ≤ i ≤ n− 2),

−ωδi+1,j (j ≥ i+ 1).

It is now easy to see that detD′′ = ωn−2 = 1, which finally proves Lemma 2.2.

2.3 Finishing the proof

Theorem 1.5 will be proved for the family of polynomials f(x) in (2.5). It is
already clear that they are expansive for sufficiently large H, since Lemma 2.2
proved that all quantities of f(x) required to be positive by Theorem 1.7 are
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indeed positive. To find the smallest root of f(x), we need to examine the
same quantities but for fε(x) := f ((1 + ε)x), and the smallest ε for which
one of these quantities becomes non-positive will give the size of the smallest
root as 1 + ε.

Let Q0(H) be any of these quantities in Theorem 1.7 (i.e. D±k (f) or
f(±1)), and let Q(H, ε) be the same for fε(x), i.e. replace the coefficients
a0, a1, . . . , an by a0, a1(1 + ε), . . . , an(1 + ε)n, respectively. It is a bivariate
polynomial in H and ε, and let d := degH Q and N := degεQ. It can be
expanded by ε:

Q(H, ε) = Q0(H) +Q1(H)ε+Q2(H)ε2 + . . .+QN(H)εN ,

where all degQi ≤ d.
We need to find the smallest ε for each sufficiently large H such that

Q(H, ε) = 0 for any of the examined Q polynomials. First we prove that
such ε exists and ε = O(1/H).

For any ε = O(1/H), the expansion of Q(H, ε) can be written as follows,
using that Qk(H) = O(Hd):

Q(H, ε) = Q0(H) + ε
(
Q1(H) +O(Hd−1)

)
. (2.8)

For those Q polynomials where degQ0 = d, i.e. Q0(H) = cHd+O(Hd−1) with
c > 0 (not negative because of Lemma 2.2), the expansion (2.8) becomes:

Q(H, ε) = cHd +O(Hd−1),

which is positive for sufficiently large H. Using the results from the beginning
of the proof of Lemma 2.2, this holds for:

1. Q := f(±1), where d = 1 and c = 2± 1;

2. for all Q := D±k (f) with k < n− 1, where d = k and c = 1;

3. and for Q := D+
n−1(f), where d = n− 1 and c = 2.

The only remaining case is Q := D−n−1(f), where Q0(H) = 1. We prove
that here the next polynomial has full degree, i.e. degQ1 = n− 1. Examine
the coefficient of Hn−1 in the expansion of Q(H, ε) by H. The structure of
Q(H, ε) is similar to (2.6), but the ak coefficients are replaced by ak(1 + ε)k.
It is still true that this is an (n− 1)× (n− 1) determinant where H appears
only in the upper triangular elements, and only as linear terms, so the term
Hn−1 can come only from the product of the main diagonal entries. They
are qk,k = a0 − a2k(1 + ε)2k, which is H + Mn−2,2k−2(1 + ε)2k for k ≥ 2 and
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q1,1 = −Hε(ε + 2) + Mn−2,0(1 + ε)2, so the coefficient of Hn−1 is −ε(ε + 2).
Therefore, the leading term of Q1 is −2Hn−1.

Substituting this and Q0(H) = 1 into (2.8) gives:

Q(H, ε) = 1 + ε
(
−2Hn−1 +O(Hn−2)

)
. (2.9)

Now if ε = 1/H exactly, then:

Q(H, ε) = 1− 2Hn−2 +O(Hn−3),

which is negative for sufficiently large H. Since Q(H, 0) > 0, there must be
a zero for some ε = O(1/H). We can find its order by making (2.9) equal to
zero and rearranging:

ε =
1

2Hn−1 +O(Hn−2)
=

1

2Hn−1 +O

(
1

Hn

)
.

Since any other Q polynomials are positive for ε = O(1/H), this is the first
ε for which the conditions of Theorem 1.7 fail. This finishes the proof of
Theorem 1.5.

References
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